JP2006300119A - Controller for magnetic bearing device - Google Patents

Controller for magnetic bearing device Download PDF

Info

Publication number
JP2006300119A
JP2006300119A JP2005119195A JP2005119195A JP2006300119A JP 2006300119 A JP2006300119 A JP 2006300119A JP 2005119195 A JP2005119195 A JP 2005119195A JP 2005119195 A JP2005119195 A JP 2005119195A JP 2006300119 A JP2006300119 A JP 2006300119A
Authority
JP
Japan
Prior art keywords
control
controller
magnetic bearing
displacement
stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005119195A
Other languages
Japanese (ja)
Inventor
Hironori Kameno
浩徳 亀野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2005119195A priority Critical patent/JP2006300119A/en
Publication of JP2006300119A publication Critical patent/JP2006300119A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets

Abstract

<P>PROBLEM TO BE SOLVED: To provide a controller for a magnetic bearing device which is capable of reducing power consumption without deteriorating control stability over a wide-range frequency band. <P>SOLUTION: The controller for a magnetic bearing device controls an exciting current supplied to electromagnets 12, 13, and 14 of controlled magnetic bearings 2, 3, and 4 on the basis of the displacement of a rotator 1. The exciting current, which is composed by combining a stationary current not varying by the displacement of the rotator 1 with a control current varying by the displacement of the rotator 1, is supplied to the electromagnets 12, 13, and 14. The controller is provided with a stability evaluation means for evaluating the control stability of a feedback control system including a plant and a controller, a stationary current value control means for changing a stationary current value on the basis of the evaluation results of the control stability, and an optimization means for executing identification of the plant and optimization of the controller on the basis of the evaluation results of the control stability. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、フライホイールエネルギ貯蔵装置などに使用される磁気軸受装置の制御装置に関する。   The present invention relates to a control device for a magnetic bearing device used in a flywheel energy storage device or the like.

フライホイールエネルギ貯蔵装置に使用される磁気軸受装置として、フライホイールを有する回転体と、回転体をラジアル制御軸方向(径方向)に非接触支持する2組の制御型ラジアル磁気軸受と、回転体をアキシアル制御軸方向(軸方向)に非接触支持する1組の制御型アキシアル磁気軸受と、回転体を高速回転させる内蔵電動モータと、回転体のラジアル制御軸方向およびアキシアル制御軸方向の変位を検出する変位検出装置と、変位検出装置の出力に基づいてラジアル磁気軸受およびアキシアル磁気軸受の電磁石を制御する電磁石制御装置とを備えたいわゆる5軸制御型磁気軸受装置が知られている。   As a magnetic bearing device used for a flywheel energy storage device, a rotary body having a flywheel, two sets of control-type radial magnetic bearings that support the rotary body in a radial control axial direction (radial direction), and a rotary body A set of control-type axial magnetic bearings that support non-contact in the axial control axis direction (axial direction), a built-in electric motor that rotates the rotating body at high speed, and the displacement of the rotating body in the radial control axial direction and the axial control axis direction. A so-called five-axis control type magnetic bearing device is known which includes a displacement detection device to detect and an electromagnet control device for controlling an electromagnet of the radial magnetic bearing and the axial magnetic bearing based on the output of the displacement detection device.

従来の磁気軸受装置では、電磁石制御装置は、回転体の変位によって変化しない一定の定常電流(バイアス電流)と回転体の変位によって変化する制御電流とを合わせた励磁電流を磁気軸受の電磁石に供給するようになっていた。   In the conventional magnetic bearing device, the electromagnet controller supplies an excitation current, which is a combination of a constant steady current (bias current) that does not change due to displacement of the rotating body, and a control current that varies depending on displacement of the rotating body, to the electromagnet of the magnetic bearing. I was supposed to.

磁気軸受装置をフライホイールエネルギ貯蔵装置に適用する場合、電磁石の消費電力の低減および制御安定性が重要である。   When the magnetic bearing device is applied to a flywheel energy storage device, reduction of power consumption of the electromagnet and control stability are important.

消費電力低減の対策として、電磁石に供給する定常電流を0にして省電力化を図ったゼロバイアス制御の磁気軸受装置が提案されている(たとえば特許文献1参照)。
特開平11−022730号公報
As a measure for reducing power consumption, a zero-bias control magnetic bearing device has been proposed in which a steady current supplied to an electromagnet is set to 0 to save power (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 11-022730

ところが、電磁石に供給する定常電流を0にすると、制御安定性が劣化するという問題がある。   However, when the steady current supplied to the electromagnet is set to 0, there is a problem that the control stability is deteriorated.

ところで、フライホイールの取り付けられた回転体は、ジャイロの影響により、固有振動数が回転数増大とともに大きく分岐する。そのため、広範囲の周波数域にわたって充分なダンピング効果を持たせた制御パラメータを設定する必要があったが、この設定は非常に難しいことが多かった。   By the way, the rotating body to which the flywheel is attached branches greatly with the increase in the number of rotations due to the effect of the gyro. Therefore, it is necessary to set a control parameter having a sufficient damping effect over a wide frequency range, but this setting is often very difficult.

そこで、制御安定性向上の対策として、現状では、0rpmから高速回転域までの広範囲の周波数域にわたって制御安定性を満たす制御パラメータを試行法(trial error method)によって設定している。   Therefore, as a measure for improving the control stability, at present, control parameters that satisfy the control stability over a wide frequency range from 0 rpm to a high-speed rotation range are set by a trial error method.

ところが、この試行法には、非常に長時間を要するという問題があり、また、場合によっては、広範囲の周波数域にわたって制御安定性を満たす制御パラメータを設定できないこともある。   However, this trial method has a problem that it takes a very long time. In some cases, a control parameter that satisfies control stability over a wide frequency range may not be set.

この発明の目的は、上記の問題を解決し、広範囲の周波数域にわたって制御安定性を劣化させることなく、消費電力を低減できる磁気軸受装置の制御装置を提供することにある。   An object of the present invention is to provide a control device for a magnetic bearing device that solves the above problems and can reduce power consumption without degrading control stability over a wide frequency range.

この発明による磁気軸受装置の制御装置は、回転体の変位に基づいて制御型磁気軸受の電磁石に供給する励磁電流を制御する磁気軸受装置の制御装置であって、回転体の変位によって変化しない定常電流と回転体の変位によって変化する制御電流とを合わせた励磁電流を電磁石に供給するものにおいて、プラントとコントローラを含むフィードバック制御系の制御安定性を評価する安定性評価手段と、制御安定性の評価結果に基づいて定常電流値を変化させる定常電流値制御手段と、制御安定性の評価結果に基づいてプラントの同定とコントローラの最適化を実施する最適化手段とを備えていることを特徴とするものである。   A control device for a magnetic bearing device according to the present invention is a control device for a magnetic bearing device that controls an excitation current supplied to an electromagnet of a control type magnetic bearing based on the displacement of the rotating body, and is a steady state that does not change due to the displacement of the rotating body. Stability evaluation means for evaluating the control stability of a feedback control system including a plant and a controller, in which an excitation current that combines a current and a control current that changes depending on the displacement of a rotating body is supplied to an electromagnet; It is characterized by comprising a steady current value control means for changing the steady current value based on the evaluation result, and an optimization means for performing plant identification and controller optimization based on the evaluation result of the control stability. To do.

安定性評価手段は、たとえば、フィードバック制御系の閉ループ伝達関数あるいは感度関数などにより制御安定性を評価する。   The stability evaluation means evaluates the control stability by, for example, a closed loop transfer function or a sensitivity function of the feedback control system.

定常電流値制御手段は、たとえば、制御安定性が所定値以上であれば、定常電流値を減少させ、制御安定性が所定値未満であれば、定常電流値を増加させる。   For example, the steady current value control means decreases the steady current value if the control stability is greater than or equal to a predetermined value, and increases the steady current value if the control stability is less than the predetermined value.

最適化手段は、たとえば、コントローラおよび閉ループ伝達関数を用いてプラントの同定を行い、H∞制御(H infinity control)によりコントローラの最適化を行う。   The optimization means, for example, identifies a plant using a controller and a closed loop transfer function, and optimizes the controller by H∞ control.

定常電流値制御手段が、制御安定性の評価結果に基づいて定常電流値を変化させることにより、制御安定性を劣化させることなく、定常電流値を極力小さくして、消費電力を低減することができる。また、最適化手段が、制御安定性の評価結果に基づいてプラントの同定とコントローラの最適化を行うことにより、広範囲の周波数域にわたって制御安定性を満たす制御パラメータを設定することができる。   The steady current value control means can change the steady current value based on the evaluation result of the control stability, thereby reducing the power consumption by reducing the steady current value as much as possible without degrading the control stability. it can. In addition, the optimization means can identify control parameters that satisfy control stability over a wide frequency range by performing plant identification and controller optimization based on the control stability evaluation results.

この発明の磁気軸受装置の制御装置によれば、上述のように、広範囲の周波数域にわたって制御安定性を劣化させることなく、消費電力を低減することができる。   According to the control device for a magnetic bearing device of the present invention, as described above, power consumption can be reduced without deteriorating control stability over a wide frequency range.

以下、図面を参照して、この発明を5軸制御型磁気軸受装置に適用した実施形態について説明する。   Hereinafter, an embodiment in which the present invention is applied to a five-axis control type magnetic bearing device will be described with reference to the drawings.

図1は磁気軸受装置の主要部を概略的に示す縦断面図、図2は磁気軸受装置の電気的構成を示すブロック図である。   FIG. 1 is a longitudinal sectional view schematically showing main parts of a magnetic bearing device, and FIG. 2 is a block diagram showing an electrical configuration of the magnetic bearing device.

磁気軸受装置は、図示しない鉛直な筒状のハウジングの内側で鉛直な回転体(1)が回転する縦型のものであり、回転体(1)の周囲のハウジングの部分に、回転体(1)をラジアル制御軸方向に非接触支持する2組の制御型ラジアル磁気軸受(2)(3)、回転体(1)をアキシアル制御軸方向に非接触支持する1組の制御型アキシアル磁気軸受(4)、変位検出装置(5)を構成する2組のラジアル変位センサユニット(6)(7)および1組のアキシアル変位センサユニット(8)、ならびに回転体(1)を回転させる内蔵電動モータのステータ(9)、回転体(1)の回転数を検出するための回転センサ(図示略)、タッチダウン用の保護軸受(図示略)などが配置されている。   The magnetic bearing device is a vertical type in which a vertical rotating body (1) rotates inside a vertical cylindrical housing (not shown), and the rotating body (1 ) Two sets of control type radial magnetic bearings (2) (3) for non-contact support in the radial control axis direction, and one set of control type axial magnetic bearings (1) for non-contact support of the rotating body (1) in the axial control axis direction ( 4) Two sets of radial displacement sensor units (6) and (7) and one set of axial displacement sensor units (8) that constitute the displacement detection device (5), and a built-in electric motor that rotates the rotating body (1). A stator (9), a rotation sensor (not shown) for detecting the rotation speed of the rotating body (1), a protective bearing for touchdown (not shown), and the like are arranged.

この明細書において、アキシアル制御軸(軸方向の制御軸)をZ軸、Z軸に直交するとともに互いに直交する2つのラジアル制御軸(径方向の制御軸)をX軸およびY軸とする。   In this specification, an axial control axis (axial control axis) is a Z-axis, and two radial control axes (radial control axes) orthogonal to the Z-axis and orthogonal to each other are an X-axis and a Y-axis.

各ラジアル磁気軸受(2)(3)は、それぞれ、回転体(1)の外周部に設けられたターゲット部(10)(11)に対向し、かつ回転体(1)をX軸方向およびY軸方向の両側から挟むように周方向に等間隔をおいて配置された4個(2対)の電磁石(ラジアル電磁石)(12)(13)を備えている。   The radial magnetic bearings (2) and (3) are respectively opposed to the target portions (10) and (11) provided on the outer peripheral portion of the rotating body (1), and the rotating body (1) is arranged in the X-axis direction and the Y-axis direction. There are four (two pairs) electromagnets (radial electromagnets) (12, 13) arranged at equal intervals in the circumferential direction so as to be sandwiched from both sides in the axial direction.

アキシアル磁気軸受(4)は、回転体(1)に形成されたフランジ部(1a)をZ軸方向の両側から挟むように配置された1対の環状の電磁石(アキシアル電磁石)(14)を備えている。   The axial magnetic bearing (4) includes a pair of annular electromagnets (14) arranged so as to sandwich the flange portion (1a) formed on the rotating body (1) from both sides in the Z-axis direction. ing.

各ラジアル変位センサユニット(6)(7)は、回転体(1)の外周部に設けられたターゲット部(15)(16)に対向し、かつ回転体(1)をX軸方向およびY軸方向の両側から挟むように周方向に等間隔をおいて配置された4個(2対)のラジアル変位センサ(17)(18)を備えている。   Each radial displacement sensor unit (6) (7) is opposed to the target portion (15) (16) provided on the outer periphery of the rotating body (1), and the rotating body (1) is placed in the X-axis direction and the Y-axis There are four (2 pairs) radial displacement sensors (17), (18) arranged at equal intervals in the circumferential direction so as to be sandwiched from both sides in the direction.

各ラジアル変位センサ(17)(18)は、インダクタンス型変位センサである。   Each radial displacement sensor (17), (18) is an inductance type displacement sensor.

アキシアル変位センサユニット(8)は、回転体(1)の下端面に設けられたターゲット部(図示略)に対向するように配置された1個のアキシアル変位センサ(19)を備えている。   The axial displacement sensor unit (8) includes one axial displacement sensor (19) disposed so as to face a target portion (not shown) provided on the lower end surface of the rotating body (1).

アキシアル変位センサ(19)は、ラジアル変位センサ(17)(18)と同様のインダクタンス型変位センサである。   The axial displacement sensor (19) is an inductance type displacement sensor similar to the radial displacement sensors (17) and (18).

各ターゲット部(10)(11)(15)(16)は、磁性材料である環状の珪素鋼板が積層されたものであり、各ターゲット部(10)(11)(15)(16)に隣接する回転体(1)の外周部は非磁性材料で構成されている。   Each target part (10) (11) (15) (16) is formed by laminating an annular silicon steel plate, which is a magnetic material, and adjacent to each target part (10) (11) (15) (16). The outer periphery of the rotating body (1) is made of a nonmagnetic material.

変位検出装置(5)は、上記の変位センサユニット(6)(7)(8)と、ラジアル変位センサ(17)(18)およびアキシアル変位センサ(19)の出力から回転体(1)のX軸方向、Y軸方向およびZ軸方向の変位を演算する変位演算手段(20)と、ラジアル変位センサ(17)(18)およびアキシアル変位センサ(19)を個別に駆動して変位センサ(17)(18)(19)からの信号を出力する9個のセンサ駆動回路(21)と、センサ駆動回路(21)からの変位センサ(17)(18)(19)の出力をAD変換して変位演算手段(20)に出力する9個のAD変換器(22)とを備えている。   The displacement detection device (5) includes the displacement sensor unit (6), (7), (8), the radial displacement sensors (17), (18), and the output of the axial displacement sensor (19) from the X of the rotating body (1). Displacement calculation means (20) that calculates displacement in the axial direction, Y-axis direction, and Z-axis direction, and the displacement sensor (17) by individually driving the radial displacement sensor (17) (18) and the axial displacement sensor (19) (18) Nine sensor drive circuits (21) that output signals from (19) and displacement sensors (17), (18), and (19) outputs from the sensor drive circuit (21) are AD-converted for displacement And nine AD converters (22) for outputting to the arithmetic means (20).

磁気軸受装置には、変位検出装置(5)で検出された回転体(1)のX軸方向、Y軸方向およびZ軸方向の変位に基づいて各磁気軸受(2)(3)(4)の電磁石(12)(13)(14)を制御する電磁石制御装置(23)が設けられている。   The magnetic bearing device includes magnetic bearings (2), (3), (4) based on displacements of the rotating body (1) detected by the displacement detector (5) in the X-axis direction, Y-axis direction, and Z-axis direction. An electromagnet control device (23) for controlling the electromagnets (12), (13), and (14) is provided.

電磁石制御装置(23)からの電磁石制御信号は、DA変換器(24)を介して電力増幅器(25)に入力し、電力増幅器(25)から電磁石(12)(13)(14)に励磁電流が供給される。   The electromagnet control signal from the electromagnet controller (23) is input to the power amplifier (25) via the DA converter (24), and the excitation current is sent from the power amplifier (25) to the electromagnets (12), (13), and (14). Is supplied.

変位演算手段(20)および電磁石制御装置(23)は、ソフトウェアプログラムが可能なディジタル処理手段によって構成されている。この例では、DSPによって構成されている。   The displacement calculation means (20) and the electromagnet control device (23) are constituted by digital processing means capable of a software program. In this example, it is configured by a DSP.

各電磁石(12)(13)(14)に供給される励磁電流は、回転体(1)の変位によって変化しない定常電流と回転体(1)の変位によって変化する制御電流とを合わせたものである。   The excitation current supplied to each electromagnet (12), (13), and (14) is the sum of the steady current that does not change with the displacement of the rotating body (1) and the control current that changes with the displacement of the rotating body (1). is there.

上記の磁気軸受装置において、各制御軸の電磁石(12)(13)(14)を制御するフィードバック制御系は、図3のようなモデルとして表わされる。図3において、(26)は制御対象であるプラント、(27)は制御装置(23)の一部であるコントローラである。   In the above magnetic bearing device, the feedback control system for controlling the electromagnets (12), (13) and (14) of each control shaft is represented as a model as shown in FIG. In FIG. 3, (26) is a plant to be controlled, and (27) is a controller that is part of the control device (23).

プラント(26)およびコントローラ(27)の伝達関数をそれぞれPおよびCとすると、フィードバック制御系全体の伝達関数Gclおよび感度関数Gsenは、次のように表わされる。   Assuming that the transfer functions of the plant (26) and the controller (27) are P and C, respectively, the transfer function Gcl and the sensitivity function Gsen of the entire feedback control system are expressed as follows.

Gcl=C・P/(1+C・P)
Gsen=Gcl/(C・P)=1/(1+C・P)
制御装置(23)は、図3のフィードバック制御系の制御安定性を評価して、最適化制御を行う。さらに詳しくは、制御安定性の評価に基づいて、各電磁石(12)(13)(14)に供給する励磁電流のうちの制御電流値を変化させるとともに、プラント(26)の同定とコントローラ(27)の最適化を行う。
Gcl = C · P / (1 + C · P)
Gsen = Gcl / (C · P) = 1 / (1 + C · P)
The control device (23) evaluates the control stability of the feedback control system of FIG. 3 and performs optimization control. More specifically, based on the evaluation of the control stability, the control current value of the excitation current supplied to each electromagnet (12) (13) (14) is changed, and the identification of the plant (26) and the controller (27 ) Optimization.

次に、図4のフローチャートを参照して、上記の最適化制御の1例を説明する。   Next, an example of the above optimization control will be described with reference to the flowchart of FIG.

磁気軸受装置の電源が投入されると、まず、コントローラ(27)の制御パラメータCに予め定められている初期設定値Cinitがセットされるとともに、カウント値Countが0にセットされ(S01)、電磁石(12)(13)(14)に励磁電流が供給されて、磁気浮上が開始される(S02)。   When the magnetic bearing device is powered on, first, a preset initial setting value Cinit is set to the control parameter C of the controller (27), and the count value Count is set to 0 (S01). (12) An excitation current is supplied to (13) and (14), and magnetic levitation is started (S02).

次に、制御安定性評価のために感度関数Gsenが測定され(A01)、これが所定値a(たとえば8dB)と比較される(A02)。A02において、Gsenがa以下の場合は、制御安定性が高いと判断され、A03に進んで、定常電流値ioが所定値b(たとえば0.01A)減少され、Countが0にセットされて(A04)、A01に戻る。A02において、Gsenがaより大きい場合は、制御安定性が低いと判断され、A05に進んで、Countが1増加させられ、ioが許容最大値imaxと比較される(A06)。A06において、ioがimaxより小さい場合は、Countが3以上であるかどうかが調べられ(A07)、そうでなければ、A08に進んで、ioがb増加され、A01に戻る。   Next, the sensitivity function Gsen is measured for control stability evaluation (A01), and this is compared with a predetermined value a (for example, 8 dB) (A02). In A02, when Gsen is equal to or less than a, it is determined that the control stability is high, the process proceeds to A03, the steady current value io is decreased by a predetermined value b (for example, 0.01 A), and Count is set to 0 ( Return to A04), A01. In A02, when Gsen is larger than a, it is determined that the control stability is low, the process proceeds to A05, Count is increased by 1, and io is compared with the allowable maximum value imax (A06). In A06, if io is smaller than imax, it is checked whether Count is 3 or more (A07). Otherwise, the process proceeds to A08, io is increased by b, and the process returns to A01.

A06においてioがimax以上である場合およびA07においてCountが3以上である場合は、S03に進んで、Countが0にセットされ、前記の式に基づいてプラント(26)のPの同定が行われ(B01)、H∞制御などによりCの最適化が行われる(B02)。次に、Gsenが測定され(B03)、これがaと比較される(B04)。B04において、Gsenがaより大きい場合は、B05に進んで、Countが5以上であるかどうかが調べられ、そうでなければ、B06に進んで、Countが1増加させられ、B01に戻る。B05において、Countが5以上である場合は、S04に進んで、Countが0にセットされ、A01に戻る。B04において、Gsenがa以下である場合は、S05に進んで、ioがb減少され、Countが0にセットされて(S06)、A01に戻る。   If io is greater than or equal to imax in A06 and if Count is greater than or equal to 3 in A07, the process proceeds to S03, Count is set to 0, and P of the plant (26) is identified based on the above formula. (B01), C is optimized by H∞ control or the like (B02). Next, Gsen is measured (B03) and compared with a (B04). In B04, if Gsen is larger than a, the process proceeds to B05 to check whether Count is 5 or more. If not, the process proceeds to B06, where Count is incremented by 1, and the process returns to B01. In B05, when Count is 5 or more, the process proceeds to S04, Count is set to 0, and the process returns to A01. In B04, if Gsen is equal to or less than a, the process proceeds to S05, io is decreased by b, Count is set to 0 (S06), and the process returns to A01.

上記のA01〜A08において、制御安定性の評価に基づいて定常電流値の制御が行われ、B01〜B06において、制御安定性の評価に基づいてPの同定とCの最適化が行われる。   In the above A01 to A08, the steady current value is controlled based on the evaluation of the control stability, and in B01 to B06, the identification of P and the optimization of the C are performed based on the evaluation of the control stability.

上記の実施形態では、フィードバック制御系の感度関数を測定し、それによって制御安定性を評価しているが、伝達関数を測定して、それから感度関数を演算し、その感度関数によって制御安定性を評価するようにしてもよい。また、伝達関数を測定し、それによって制御安定性を評価するようにしてもよいし、感度関数を測定して、それから伝達関数を演算し、その伝達関数によって制御安定性を評価するようにしてもよい。   In the above embodiment, the sensitivity function of the feedback control system is measured and thereby the control stability is evaluated. However, the transfer function is measured, and then the sensitivity function is calculated, and the control stability is determined by the sensitivity function. You may make it evaluate. Alternatively, the transfer function may be measured, thereby evaluating the control stability, or the sensitivity function may be measured, and then the transfer function may be calculated and the control function may be evaluated based on the transfer function. Also good.

定常電流値の制御ならびにプラントの同定およびコントローラの最適化は、上記実施形態のものに限らず、適宜変更可能である。   The control of the steady current value and the identification of the plant and the optimization of the controller are not limited to those in the above embodiment, and can be changed as appropriate.

磁気軸受装置の全体構成および各部の構成は、上記実施形態のものに限らず、適宜変更可能である。   The overall configuration of the magnetic bearing device and the configuration of each part are not limited to those of the above-described embodiment, and can be changed as appropriate.

また、この発明による変位検出装置は、回転体が水平に配置される横型の磁気軸受装置にも適用される。   The displacement detection device according to the present invention is also applied to a horizontal magnetic bearing device in which a rotating body is horizontally arranged.

図1は、この発明の実施形態を示す磁気軸受装置の主要部の概略縦断面図である。FIG. 1 is a schematic longitudinal sectional view of a main part of a magnetic bearing device showing an embodiment of the present invention. 図2は、図1の磁気軸受装置の電気的構成を示すブロック図である。FIG. 2 is a block diagram showing an electrical configuration of the magnetic bearing device of FIG. 図3は、磁気軸受装置の一部をモデル化したフィードバック制御系を示すブロック図である。FIG. 3 is a block diagram showing a feedback control system in which a part of the magnetic bearing device is modeled. 図4は、制御装置における最適化制御の1例を示すフローチャートである。FIG. 4 is a flowchart illustrating an example of optimization control in the control device.

符号の説明Explanation of symbols

(1) 回転体
(2)(3) ラジアル磁気軸受
(4) アキシアル磁気軸受
(23) 電磁石制御装置
(26) プラント
(27) コントローラ
(1) Rotating body
(2) (3) Radial magnetic bearing
(4) Axial magnetic bearing
(23) Electromagnet controller
(26) Plant
(27) Controller

Claims (1)

回転体の変位に基づいて制御型磁気軸受の電磁石に供給する励磁電流を制御する磁気軸受装置の制御装置であって、回転体の変位によって変化しない定常電流と回転体の変位によって変化する制御電流とを合わせた励磁電流を電磁石に供給するものにおいて、
プラントとコントローラを含むフィードバック制御系の制御安定性を評価する安定性評価手段と、制御安定性の評価結果に基づいて定常電流値を変化させる定常電流値制御手段と、制御安定性の評価結果に基づいてプラントの同定とコントローラの最適化を実施する最適化手段とを備えていることを特徴とする磁気軸受装置の制御装置。
A control device for a magnetic bearing device that controls an exciting current supplied to an electromagnet of a control type magnetic bearing based on a displacement of a rotating body, a steady current that does not change due to the displacement of the rotating body, and a control current that changes according to the displacement of the rotating body To supply an exciting current combined with
Stability evaluation means for evaluating the control stability of the feedback control system including the plant and the controller, steady current value control means for changing the steady current value based on the evaluation result of the control stability, and the evaluation result of the control stability An apparatus for controlling a magnetic bearing device, comprising: optimization means for performing plant identification and controller optimization based on the controller.
JP2005119195A 2005-04-18 2005-04-18 Controller for magnetic bearing device Pending JP2006300119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005119195A JP2006300119A (en) 2005-04-18 2005-04-18 Controller for magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005119195A JP2006300119A (en) 2005-04-18 2005-04-18 Controller for magnetic bearing device

Publications (1)

Publication Number Publication Date
JP2006300119A true JP2006300119A (en) 2006-11-02

Family

ID=37468662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005119195A Pending JP2006300119A (en) 2005-04-18 2005-04-18 Controller for magnetic bearing device

Country Status (1)

Country Link
JP (1) JP2006300119A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196741A (en) * 2009-02-24 2010-09-09 Jtekt Corp Control type magnetic bearing device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159414A (en) * 1988-12-14 1990-06-19 Mitsui Eng & Shipbuild Co Ltd Magnetic bearing stability watching system
JPH03276317A (en) * 1990-03-27 1991-12-06 Toshiba Corp Controller for magnetic bearing
JPH11210750A (en) * 1998-01-29 1999-08-03 Koyo Seiko Co Ltd Controlled magnetic bearing device
JP2000005977A (en) * 1998-06-26 2000-01-11 Toyota Motor Corp Controller for machine tool
JP2000074064A (en) * 1998-09-02 2000-03-07 Ntn Corp Magnetic bearing device
JP2001248639A (en) * 2000-03-03 2001-09-14 Koyo Seiko Co Ltd Stator unit of magnetic bearing and control type magnetic bearing
JP2005502004A (en) * 2001-09-06 2005-01-20 ソシエテ・ドゥ・メカニーク・マグネティーク Apparatus and method used for automatic compensation of synchronous disturbances

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159414A (en) * 1988-12-14 1990-06-19 Mitsui Eng & Shipbuild Co Ltd Magnetic bearing stability watching system
JPH03276317A (en) * 1990-03-27 1991-12-06 Toshiba Corp Controller for magnetic bearing
JPH11210750A (en) * 1998-01-29 1999-08-03 Koyo Seiko Co Ltd Controlled magnetic bearing device
JP2000005977A (en) * 1998-06-26 2000-01-11 Toyota Motor Corp Controller for machine tool
JP2000074064A (en) * 1998-09-02 2000-03-07 Ntn Corp Magnetic bearing device
JP2001248639A (en) * 2000-03-03 2001-09-14 Koyo Seiko Co Ltd Stator unit of magnetic bearing and control type magnetic bearing
JP2005502004A (en) * 2001-09-06 2005-01-20 ソシエテ・ドゥ・メカニーク・マグネティーク Apparatus and method used for automatic compensation of synchronous disturbances

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196741A (en) * 2009-02-24 2010-09-09 Jtekt Corp Control type magnetic bearing device

Similar Documents

Publication Publication Date Title
US8136426B2 (en) Rotary table mounting and drive device
US6508614B1 (en) Spindle device and machine tool utilizing the same
EP1188943B1 (en) Magnetic levitation rotating machine
JP6351400B2 (en) Improved active magnetic bearing control system
JP2008229806A (en) Magnetic bearing device
WO2000045059A1 (en) Controlled magnetic bearing device
JP2012007919A (en) Rotation angle detector
JP2006062081A (en) Die processing device
JP5997597B2 (en) Magnetic bearing device and method for reducing vibration caused by magnetic bearing device
US7576463B2 (en) Magnetic bearing device and magnetic bearing spindle device
JP2006300119A (en) Controller for magnetic bearing device
JP4513458B2 (en) Magnetic bearing device and flywheel energy storage device including the same
JP2006022914A (en) Magnetic bearing device
JP2010196741A (en) Control type magnetic bearing device
JPH07180724A (en) Magnetic bearing device
JPH06249286A (en) Vibration restraining device for rotor
JP6327595B2 (en) Magnetic bearing device and bias current control method for magnetic bearing device
JP2006153117A (en) Magnetic bearing
WO2017041839A1 (en) Control method and controller for electrical machines
JP5273367B2 (en) Magnetic bearing control device
JP2006214528A (en) Displacement detection device for magnetic bearing device
JP2014045548A (en) Magnetic bearing vacuum pump
JP3913396B2 (en) Processing equipment equipped with hydrostatic magnetic compound bearings
JP2007114155A (en) Magnetic type encoder device
JP2003083330A (en) Magnetic bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080219

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091126

A131 Notification of reasons for refusal

Effective date: 20091208

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100420