JP2006299605A - Equipment for countermeasure against liquefaction of ground immediately below underground structure, and equipment and construction method for countermeasure against liquefaction of ground immediately below fill - Google Patents

Equipment for countermeasure against liquefaction of ground immediately below underground structure, and equipment and construction method for countermeasure against liquefaction of ground immediately below fill Download PDF

Info

Publication number
JP2006299605A
JP2006299605A JP2005121129A JP2005121129A JP2006299605A JP 2006299605 A JP2006299605 A JP 2006299605A JP 2005121129 A JP2005121129 A JP 2005121129A JP 2005121129 A JP2005121129 A JP 2005121129A JP 2006299605 A JP2006299605 A JP 2006299605A
Authority
JP
Japan
Prior art keywords
drain pipe
ground
underground structure
liquefaction
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005121129A
Other languages
Japanese (ja)
Inventor
Naoyuki Harada
尚幸 原田
Kunisuke Tsunoda
晋相 角田
Atsushi Watanabe
淳 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zenitaka Corp
Original Assignee
Zenitaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zenitaka Corp filed Critical Zenitaka Corp
Priority to JP2005121129A priority Critical patent/JP2006299605A/en
Publication of JP2006299605A publication Critical patent/JP2006299605A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide equipment for countermeasures against the liquefaction of not only ground immediately below an underground structure but also ground immediately below fill, which can prevent the settlement and lift of the underground structure and the collapse of the fill due to the liquefaction of the ground by effectively suppressing the flow-around of soil, caused by the liquefaction of the ground, by virtue of an excess-pore-water-pressure dissipating effect and a ground reinforcing effect, and which can sufficiently ensure the stability of the ground for countermeasures against giant earthquakes. <P>SOLUTION: A drain pipe with a drainage part is driven into the ground at each predetermined interval along the following longitudinal direction from a ground surface side 17 near the longitudinal side surface of the ground structure 14, or from a section of a toe 39 of slope in the longitudinal direction of the fill 34. The drain pipe is constituted by pairing a vertically-driven vertical drain pipe 11 and an inclined drain pipe 12 which is driven in the direction of inclination, making a certain angle with the vertical direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、地盤の液状化による地中構造物の浮き上がりを防止する対策としての地中構造物の直下地盤の液状化対策設備及び工法、更に地盤の液状化による盛土の崩壊を防止する対策としての盛土の直下地盤の液状化対策設備及び工法に関する。   The present invention is a liquefaction countermeasure facility and construction method for a direct foundation board of underground structure as a countermeasure for preventing floating of underground structure due to liquefaction of ground, and further, as a countermeasure for preventing collapse of embankment due to liquefaction of ground. Liquefaction countermeasure equipment and construction method for direct foundation board of embankment.

兵庫県南部地震を契機として、社会資本による耐震性の向上が強く求められている。下水道施設などの地中構造物の地震の被害は、地盤の液状化によるものが最も多いため、地盤の液状化による被害を軽減するための対策が求められている。   In response to the Hyogoken-Nanbu Earthquake, there is a strong demand for improved earthquake resistance through social capital. Earthquake damage to underground structures such as sewerage facilities is most often caused by liquefaction of the ground, so measures to reduce the damage caused by liquefaction of the ground are required.

また、兵庫県南部地震、新潟中越地震などの巨大地震において、盛土は、甚大な被害を受けた。震災調査報告書には、道路の崩壊箇所には盛土の部分が多数存在し、その崩壊箇所の周辺は、地下水位が高く、水分を多く含んだ状態であったと報告されている。これまでの盛土の設計は、復旧の容易性やコスト面から、耐震設計がなされていなかったが、盛土に対しても、緊急時の物資輸送や避難経路を確保する等の理由から、液状化対策を含む十分な耐震性を持たせることが重要であると考えられている。   In addition, the embankments were severely damaged by huge earthquakes such as the Hyogoken-Nanbu Earthquake and the Niigata Chuetsu Earthquake. The earthquake survey report reports that there are many embankments in the collapsed areas of the road, and the area around the collapsed area was high in groundwater level and contained a lot of water. The conventional embankment design has not been seismic design from the viewpoint of ease of restoration and cost. However, the embankment is also liquefied due to reasons such as securing emergency supplies and evacuation routes. It is considered important to have sufficient earthquake resistance including countermeasures.

ここで、道路の補強に関する最重要課題は、最小限の費用で必要とされる機能を発揮する工法及び設備の選定である。道路の性質上、1箇所が崩壊していれば、他の箇所が崩壊していなかったとしても、緊急輸送の道路としての機能に大きな障害が生じるため、経路全体に少なくとも最小限の補強が必要だからである。これは鉄道においても同様である。従って、耐震強度が不足している盛土の耐震補強を簡易かつ安価に実施可能である工法及び設備が、地震の防災対策を推進する点で望まれる。   Here, the most important issue related to road reinforcement is the selection of construction methods and equipment that perform the required functions at a minimum cost. Due to the nature of the road, if one location is collapsed, even if the other location is not collapsed, there will be a major obstacle to the function of the emergency transport road, so at least minimum reinforcement is required for the entire route. That's why. The same applies to railways. Therefore, a construction method and equipment capable of simply and inexpensively implementing seismic reinforcement of embankments with insufficient seismic strength are desired in terms of promoting earthquake disaster prevention measures.

一般に地盤の液状化現象とは、地震時に地盤の間隙水圧が上昇すると共に、地盤が剪断変形して地盤が流動化する現象を意味している。地下水で緩く飽和していた砂層等の地盤が地震動によって激しくゆらされた場合、砂の粒子のかみ合わせがはずれて砂の粒子が浮遊した液体状態となり、間隙水圧が上昇する(過剰間隙水圧)ことによって、砂や水が地表に噴出し、地表面が沈下して、種々の被害が発生する。   In general, the liquefaction phenomenon of the ground means a phenomenon in which the pore water pressure of the ground rises at the time of an earthquake and the ground is fluidized by shear deformation of the ground. When ground such as a sand layer that is loosely saturated with groundwater is shaken violently by earthquake motion, the sand particles are disengaged and the sand particles float into a liquid state, and the pore water pressure rises (excess pore water pressure). Sand and water erupt on the ground surface and the ground surface sinks, causing various damage.

地盤の液状化対策として、従来から様々な方法が提案されているが、これらの原理を大別すると、地盤が液状化しても構造物が安全なように設計する対策と、地盤の液状化の発生を防止する対策に分類される。前者の液状化しても構造物が安全なように設計する方法の代表例として、液状化の程度を考慮した杭基礎工法等が挙げられる。一方後者については、液状化の原理に基いていくつかの対策が提案されている。このうち、既設の地中構造物や盛土を対象とした場合の代表例としては、鋼矢板等で地盤を囲み、地震時あるいは液状化時の地盤のせん断変形を抑制する鋼矢板壁工法等が挙げられる。   Various methods have been proposed as countermeasures against ground liquefaction, but these principles can be broadly divided into measures to design the structure to be safe even if the ground is liquefied, and ground liquefaction. Classified as measures to prevent outbreaks. A typical example of the former method of designing the structure so that it is safe even after liquefaction is a pile foundation method considering the degree of liquefaction. On the other hand, for the latter, several countermeasures have been proposed based on the principle of liquefaction. Among them, typical examples of existing underground structures and embankments are steel sheet pile wall methods that surround the ground with steel sheet piles and suppress the shear deformation of the ground during earthquakes or liquefaction. Can be mentioned.

また、特許文献1には、構造物のフーチングに、その上面から下面に抜けるように設けた貫通孔と、この貫通孔からフーチングの直下地盤に挿入され、フーチングの直下地盤の液状化予測層からフーチングの上面に達するドレーンを形成する透水性の排水管とを備えたことを特徴とする構造物直下地盤の液状化対策装置が開示されている。   Further, in Patent Document 1, a through hole provided in a footing of a structure so as to pass from the upper surface to the lower surface, and a liquefaction prediction layer of the footing direct base plate is inserted from the through hole to the direct base plate of the footing. There is disclosed a liquefaction countermeasure device for a structure-underlying base plate, comprising a water-permeable drain pipe that forms a drain reaching the upper surface of the footing.

特開2000−154551号公報JP 2000-154551 A

しかしながら、鋼矢板壁工法では、地震時に矢板に作用する土圧に対して矢板が健全であることが前提となるが、巨大地震にも対処し得る状態にすると、矢板の曲げ剛性及び支持地盤への貫入長が大きくなるため、経済性が損なわれてしまう問題がある。また、路面下の地中構造物を対象とした場合においては、鋼矢板壁工法では、地上部まで鋼矢板が残置するため、この撤去作業に多くの時間とコストがかかり、交通規制による渋滞を引き起こすという問題がある。   However, the steel sheet pile wall construction method assumes that the sheet pile is healthy against the earth pressure acting on the sheet pile during an earthquake, but if it is able to cope with a huge earthquake, the bending stiffness of the sheet pile and the support ground There is a problem that the economic efficiency is impaired due to the large penetration length. In addition, in the case of underground structures under the road surface, the steel sheet pile wall method leaves the steel sheet pile to the ground, so this removal work takes a lot of time and cost, and traffic congestion is caused. There is a problem of causing.

また、鋼矢板壁工法の浮き上がり量は、矢板内での回り込みによる浮き上がり量と矢板たわみによる浮き上がり量の和で予測されるため、構造物との離隔と矢板の剛性が対策効果の決め手となるが、地中構造物の場合には、通常マンホール、枝管等があり、所々で矢板壁の欠損箇所が生じるため、対策効果が十分発揮されないことも生じ得る問題がある。   In addition, the amount of lift of the steel sheet pile wall method is predicted by the sum of the amount of lift due to wraparound in the sheet pile and the amount of lift due to sheet pile deflection, so the separation from the structure and the stiffness of the sheet pile are the decisive factors for the countermeasure effect. In the case of underground structures, there are usually manholes, branch pipes, etc., and there is a problem that the countermeasure effect may not be sufficiently exhibited because there are missing portions of the sheet pile wall in some places.

また、自立式の鋼矢板壁工法は、施工が容易で経済的な工法であるが、矢板壁が自立式となるため、巨大地震に対しては、矢板の曲げ剛性および支持地盤への貫入長を大きくする必要が生じることから、経済性が損なわれる場合がある。また、鋼矢板壁を補強するためにタイロッドを併用する工法では、自立式の鋼矢板壁工法に比べ、矢板の曲げ剛性および支持地盤への貫入長を小さくすることができるが、既設盛土ののり尻を水平方向に貫通させるため、施工性に課題が残る。さらに、いずれの場合も盛土のせん断変形による沈下の被害を抑えることはできない問題がある。   In addition, the self-supporting steel sheet pile wall method is an easy and economical construction method. However, because the sheet pile wall is self-supporting, the bending stiffness of the sheet pile and the length of penetration into the support ground for a large earthquake Therefore, economic efficiency may be impaired. In addition, the construction method that uses tie rods to reinforce the steel sheet pile wall can reduce the bending stiffness of the sheet pile and the penetration length into the supporting ground compared to the self-supporting steel sheet pile wall construction method. Since the bottom is penetrated in the horizontal direction, problems remain in workability. Furthermore, in any case, there is a problem that the settlement damage due to the shear deformation of the embankment cannot be suppressed.

一方、特許文献1に記載された発明においては、地盤の液状化によって地盤が流動することによる地中構造物の沈下・浮き上がりの問題について、更に地盤液状化による盛土の崩壊の問題については全く考慮されていない。   On the other hand, in the invention described in Patent Document 1, the problem of subsidence / lifting of underground structures due to the ground flowing due to liquefaction of the ground, and the problem of collapse of the embankment due to ground liquefaction are completely considered. It has not been.

本発明の目的は、地盤の液状化によって地盤が流動することによる地中構造物の沈下・浮き上がりや盛土の崩壊を、過剰間隙水圧の消散効果と地盤補強効果によって、地盤の液状化で生じる土の回り込みを効果的に抑制して防止し、巨大地震時における対策地盤の安定性を十分確保することができると共に、施工の効率化及び建設費の低減に寄与する地中構造物の直下地盤の液状化対策設備及び工法、更に盛土の直下地盤の液状化対策設備及び工法を提供することにある。   The object of the present invention is to prevent the subsidence / floating of underground structures and collapse of embankments caused by ground liquefaction due to ground liquefaction, and the soil generated by liquefaction of ground due to the effect of dissipating excess pore water pressure and ground reinforcing This effectively suppresses the sneaking around and can ensure sufficient stability of the countermeasure ground in the event of a large earthquake, while improving the efficiency of construction and reducing construction costs. It is to provide a liquefaction countermeasure facility and construction method, and a liquefaction countermeasure facility and construction method for a direct foundation board of embankment.

上記課題を解決するため、本発明の第1の態様に係る地中構造物の直下地盤の液状化対策設備は、地中構造物の長手方向の側面近傍の地表側から、前記長手方向に沿って所定間隔毎に、排水部を有するドレーン管が地盤中に打設されていると共に、該ドレーン管は鉛直方向に打設された鉛直ドレーン管と鉛直方向と一定角度をなす傾斜方向に打設された傾斜ドレーン管とが対を成して構成されていることを特徴とするものである。   In order to solve the above-mentioned problem, the liquefaction countermeasure facility for the direct foundation board of the underground structure according to the first aspect of the present invention is along the longitudinal direction from the surface side near the side surface in the longitudinal direction of the underground structure. At a predetermined interval, a drain pipe having a drainage portion is driven into the ground, and the drain pipe is driven in an inclined direction that forms a certain angle with the vertical drain pipe that is driven in the vertical direction. The slanted drain pipe is formed in a pair.

共同溝、下水道管、専用配線管等のライフライン等の構造物を地中に設置する場合、地中にはこれら地中構造物を確実に固定する手段がなく、孤立した状態となる。地盤が流動しなければ、地中構造物の移動は起こりえないが、巨大地震による地盤の液状化によって地中に存在する土の移動が起こると、この土の移動に起因して、地中構造物の浮き上がりや沈下が発生する。   When a structure such as a lifeline such as a common ditch, sewer pipe, and dedicated wiring pipe is installed in the ground, there is no means for securely fixing the underground structure in the ground, and the structure is isolated. If the ground does not flow, the movement of underground structures cannot occur, but if the soil that exists in the ground moves due to the liquefaction of the ground due to a large earthquake, the movement of the ground The structure will rise and fall.

本発明によれば、地中構造物の長手方向の側面近傍の地表側から、排水部を有する鉛直ドレーン管と傾斜ドレーン管が対を成して地盤中に打設されているため、鉛直ドレーン管と傾斜ドレーン管とで挟まれた(囲まれた)領域は、最も水が排出されやすくなることから、最も液状化が起こりにくい部分となる。巨大地震の際には、この領域が液状化されずに一種の壁となって存在し続け、この壁の両側(周囲)の液状化した土の流れを阻止する働きをする。
すなわち、ドレーン管の過剰間隙水圧の消散作用に基づく前記壁の働きと、更に該ドレーン管自体の地盤補強効果によって、液状化地盤が地中構造物の下側へ回り込むことを効果的に防止し、以て地中構造物の浮き上がりや沈下を防止し、巨大地震時における対策地盤の安定性を十分確保することができるようになる。
According to the present invention, since the vertical drain pipe having the drainage portion and the inclined drain pipe form a pair in the ground from the surface side near the side surface in the longitudinal direction of the underground structure, the vertical drain The region sandwiched (enclosed) between the tube and the inclined drain tube is the portion where the liquefaction hardly occurs because water is most easily discharged. In the event of a major earthquake, this area continues to exist as a kind of wall without being liquefied, and works to block the flow of liquefied soil on both sides (surroundings) of this wall.
In other words, the action of the wall based on the action of dissipating excess pore water pressure in the drain pipe and the ground reinforcement effect of the drain pipe itself effectively prevent the liquefied ground from entering the lower side of the underground structure. Therefore, the underground structure can be prevented from rising and sinking, and the stability of the countermeasure ground in the event of a huge earthquake can be secured sufficiently.

また、本発明によれば、従来の鋼矢板工法では大型の施工機械が必要となり、近接施工も困難な場合が多いが、鋼矢板を用いずに、ドレーン管を用いるため、小型機械での施工及び近接施工が可能となるだけでなく、低振動、低騒音となり、周辺環境への影響が少なく、民家等が近い箇所でも施工することが可能となる。さらに、局限的な適用性も高くなることから、施工の効率化及び建設費の低減に寄与するのに加え、マンホール、枝管等により、矢板壁の場合には欠損箇所が生じる場所であっても、過剰間隙水圧の消散効果を簡易かつ経済的に得ることができるようになる。さらに、従来工法では困難である路面から下2.5m以内の撤去作業も当該ドレーン管を用いたことにより容易であるため、将来の他の工事計画などに支障が生じない。   In addition, according to the present invention, the conventional steel sheet pile method requires a large construction machine, and in many cases, close construction is difficult, but because a drain pipe is used without using a steel sheet pile, construction with a small machine is possible. In addition, not only can construction be performed in close proximity, but also low vibration and noise can be achieved, and there is little influence on the surrounding environment, and construction can be performed even in places close to private houses. In addition, since the local applicability is also high, in addition to contributing to the efficiency of construction and reduction of construction costs, manholes, branch pipes, etc., are places where defects occur in the case of sheet pile walls. However, the effect of dissipating excess pore water pressure can be obtained easily and economically. Furthermore, since the removal work within 2.5 m below the road surface, which is difficult with the conventional construction method, is easy by using the drain pipe, there will be no trouble in other construction plans in the future.

本発明の第2の態様に係る地中構造物の直下地盤の液状化対策設備の発明は、第1の態様において、前記鉛直ドレーン管と前記傾斜ドレーン管とが交互に千鳥状に配列されていることを特徴とするものである。
本発明によれば、第1の態様による作用効果に加えて、鉛直ドレーン管と傾斜ドレーン管が交互に千鳥状に配列されているため、前記液状化しない壁を効率的に形成することができ、以て一層効果的に液状化地盤の地中構造物下方への回り込みが抑制されるようになる。
According to a second aspect of the present invention, in the first aspect of the invention for a liquefaction countermeasure facility for a direct foundation board of an underground structure, the vertical drain pipes and the inclined drain pipes are alternately arranged in a staggered pattern. It is characterized by being.
According to the present invention, in addition to the function and effect of the first aspect, the vertical drain pipes and the inclined drain pipes are alternately arranged in a staggered manner, so that the walls that are not liquefied can be efficiently formed. Thus, the liquefied ground is more effectively prevented from going downward in the underground structure.

本発明の第3の態様に係る地中構造物の直下地盤の液状化対策設備の発明は、第1又は第2の態様において、前記ドレーン管は、その先端に位置する打込みヘッドの先端付近が平面視で菱形形状に形成されていることを特徴とするものである。
本発明によれば、第1又は第2の態様による作用効果に加えて、ドレーン管の打込みヘッドの先端付近が平面視で菱形形状に形成されているため、引き抜き抵抗力による地盤補強効果がより強固となる。
According to a third aspect of the present invention, in the first or second aspect, the drain pipe according to the third aspect of the present invention is directed to a liquefaction countermeasure facility for a direct foundation board. It is formed in a rhombus shape in a plan view.
According to the present invention, in addition to the operational effects of the first or second aspect, the vicinity of the tip of the driving head of the drain pipe is formed in a rhombus shape in plan view, so that the ground reinforcement effect due to the pulling resistance force is further increased. Become strong.

本発明の第4の態様に係る地中構造物の直下地盤の液状化対策設備の発明は、第1から第3のいずれかの態様において、前記ドレーン管には、前記ドレーン管を補強する補強材を備えていることを特徴とする。
本発明によれば、第1から第3のいずれかの態様による作用効果に加えて、ドレーン管は補強材により補強されているため、巨大地震においても地盤補強効果が確実に発揮され、液状化地盤の回り込みも一層抑制されるようになる。
According to a fourth aspect of the present invention, there is provided an invention for a liquefaction countermeasure facility for a direct foundation board of an underground structure according to any one of the first to third aspects, wherein the drain pipe is reinforced to reinforce the drain pipe. It is characterized by having a material.
According to the present invention, in addition to the operational effects of any one of the first to third aspects, since the drain pipe is reinforced by the reinforcing material, the ground reinforcing effect is reliably exhibited even in a huge earthquake, and liquefaction is achieved. The sneak around the ground is further suppressed.

本発明の第5の態様に係る盛土の直下地盤の液状化対策工法の発明は、地中構造物の長手方向の側面近傍の地表側から、前記長手方向に沿って所定間隔毎に、排水部を有するドレーン管を地盤中に打設すると共に、該ドレーン管は鉛直方向に打設する鉛直ドレーン管と鉛直方向と一定角度をなす傾斜方向に打設する傾斜ドレーン管とが対を成すように構成することを特徴とするものである。
本発明に係る工法によれば、第1の態様と同様の作用効果を得ることができる。
The invention of the liquefaction countermeasure construction method for the direct foundation board of the embankment according to the fifth aspect of the present invention is the drainage section at predetermined intervals along the longitudinal direction from the surface side near the longitudinal side surface of the underground structure. A drain pipe having a vertical direction, and a vertical drain pipe that is placed in the vertical direction and an inclined drain pipe that is placed in an inclined direction that forms a fixed angle with the vertical direction. It is characterized by comprising.
According to the construction method of the present invention, it is possible to obtain the same function and effect as the first aspect.

本発明の第6の態様に係る盛土の直下地盤の液状化対策設備の発明は、盛土の長手方向におけるのり尻部分から、前記長手方向に沿って所定間隔毎に、排水部を有するドレーン管が地盤中に打設されていると共に、該ドレーン管は鉛直方向に打設された鉛直ドレーン管と鉛直方向と一定角度をなす傾斜方向に打設された傾斜ドレーン管とが対を成して構成されていることを特徴とするものである。   According to the sixth aspect of the present invention, the liquefaction countermeasure equipment for the direct foundation board of the embankment is provided with a drain pipe having a drainage section at predetermined intervals along the longitudinal direction from the glue bottom portion in the longitudinal direction of the embankment. The drain pipe is formed in the ground, and the drain pipe is composed of a vertical drain pipe placed in the vertical direction and an inclined drain pipe placed in an inclined direction that forms a fixed angle with the vertical direction. It is characterized by being.

本発明によれば、盛土ののり尻部分から、排水部を有する鉛直ドレーン管と傾斜ドレーン管が対を成して地盤中に打設されているため、鉛直ドレーン管と傾斜ドレーンとで挟まれた(囲まれた)領域は、最も水が排出されやすくなることから、最も液状化が起こりにくい部分となる。巨大地震の際には、この領域が液状化されずに一種の壁となって存在し続け、この壁の両側(周囲)の液状化した土の流れを阻止する働きをする。   According to the present invention, since the vertical drain pipe having the drainage portion and the inclined drain pipe are placed in the ground from the embankment of the embankment, they are sandwiched between the vertical drain pipe and the inclined drain. The (enclosed) region is the portion where the liquefaction hardly occurs because water is most easily discharged. In the event of a major earthquake, this area continues to exist as a kind of wall without being liquefied, and works to block the flow of liquefied soil on both sides (surroundings) of this wall.

すなわち、ドレーン管の過剰間隙水圧の消散作用に基づく前記壁の働きと、更に該ドレーン管自体の地盤補強効果によってのり尻がしっかり抑えられて、のり尻の崩落が抑制される。従って、地盤の液状化による盛土の崩壊が効果的に防止され、巨大地震時における対策地盤の安定性を十分確保することができるようになる。このように本発明によれば、従来の盛土のみ又は液状化対策のみを対象とした場合と異なって、地盤の液状化対策と盛土の安定化を同時に行うことができる。   That is, the glue bottom is firmly suppressed by the action of the wall based on the action of dissipating excess pore water pressure of the drain pipe and the ground reinforcement effect of the drain pipe itself, and the collapse of the glue bottom is suppressed. Therefore, the collapse of the embankment due to the liquefaction of the ground is effectively prevented, and the stability of the countermeasure ground during a huge earthquake can be sufficiently secured. Thus, according to the present invention, unlike the case where only conventional embankment or only liquefaction countermeasures are targeted, liquefaction countermeasures for ground and embankment stabilization can be performed simultaneously.

また、本発明によれば、鋼矢板の代わりに、ドレーン管を用いるため、小型機械での施工及び近接施工が可能となり、盛土近傍に厳しい用地制限がある場合であっても、のり面上での小型機械の施工が可能となって、用地制限内での施工が可能となることに加え、低振動、低騒音となり、周辺環境への影響が少なく、民家等が近い箇所でも施工することができる。   In addition, according to the present invention, since a drain pipe is used instead of a steel sheet pile, construction with a small machine and proximity construction are possible, and even if there is a severe land restriction near the embankment, on the slope surface In addition to being able to perform construction within the site restrictions, it can be constructed in places where private houses are close, with low vibration and low noise, and little impact on the surrounding environment. it can.

さらに、局限的な適用性が高く、盛土の軸方向に直交するボックスカルバート、管渠等の近傍や橋台背面、切盛境等の路面沈下の生じやすく段差が問題となる箇所に、限定して適用することもできることから、施工の効率化及び建設費の低減に寄与する。さらに、従来工法では困難である路面から下2.5m以内の撤去作業も容易であるため、将来の計画などに支障が生じない。   In addition, it is limited to places where the level of applicability is high, the box culvert orthogonal to the axial direction of the embankment, the vicinity of the pipe pit, the back of the abutment, and the road surface is prone to road subsidence, where the level difference is a problem. Since it can also be applied, it contributes to the efficiency of construction and the reduction of construction costs. Furthermore, the removal work within 2.5 m below the road surface, which is difficult with the conventional construction method, is easy, so there will be no hindrance to future plans.

本発明の第7の態様に係る盛土の直下地盤の液状化対策設備の発明は、第6の態様において、前記鉛直ドレーン管と前記傾斜ドレーン管とが交互に千鳥状に配列されていることを特徴とするものである。
本発明によれば、第6の態様による作用効果に加えて、鉛直ドレーン管と傾斜ドレーン管が交互に千鳥状に配列されているため、前記液状化しない壁を効率的に形成することができ、以て一層効果的に盛土の崩落が防止されるようになる。
According to a seventh aspect of the present invention, in the sixth aspect, the vertical drain pipe and the inclined drain pipe are alternately arranged in a staggered pattern. It is a feature.
According to the present invention, in addition to the function and effect of the sixth aspect, the vertical drain pipes and the inclined drain pipes are alternately arranged in a staggered pattern, so that the walls that do not liquefy can be efficiently formed. Thus, the collapse of the embankment is prevented more effectively.

本発明の第8の態様に係る盛土の直下地盤の液状化対策設備の発明は、第6又は第7の態様において、前記ドレーン管は、その先端に位置する打込みヘッドの先端付近が平面視で菱形形状に形成されていることを特徴とするものである。
本発明によれば、第6又は第7の態様による作用効果に加えて、ドレーン管の打込みヘッドの先端付近が平面視で菱形形状に形成されているため、引き抜き抵抗力による地盤補強効果がより強固となる。
According to an eighth aspect of the present invention, in the sixth or seventh aspect, the drain pipe according to the sixth aspect of the present invention is the drain pipe, wherein the drain pipe is located in a plan view near the tip of the driving head located at the tip. It is formed in a rhombus shape.
According to the present invention, in addition to the operational effects of the sixth or seventh aspect, the vicinity of the tip of the driving head of the drain pipe is formed in a rhombus shape in plan view. Become strong.

本発明の第9の態様に係る盛土の直下地盤の液状化対策設備の発明は、第6から第8のいずれかの態様において、前記ドレーン管には、前記ドレーン管を補強する補強材を備えていることを特徴とする。
本発明によれば、第6から第8のいずれかの態様による作用効果に加えて、ドレーン管は補強材により補強されているため、巨大地震においても地盤補強効果が確実に発揮され、地盤の回り込みも一層抑制されて、盛土本体がさらに安定する。
According to a ninth aspect of the present invention, in the invention for a liquefaction countermeasure facility for a direct foundation board for embankment according to any one of the sixth to eighth aspects, the drain pipe is provided with a reinforcing material for reinforcing the drain pipe. It is characterized by.
According to the present invention, in addition to the operational effects of any of the sixth to eighth aspects, the drain pipe is reinforced by the reinforcing material, so that the ground reinforcing effect is reliably exhibited even in a huge earthquake, The wraparound is further suppressed and the embankment body is further stabilized.

本発明の第10の態様に係る盛土の直下地盤の液状化対策工法の発明は、盛土の長手方向におけるのり尻部分から、前記長手方向に沿って所定間隔毎に、排水部を有するドレーン管を地盤中に打設すると共に、該ドレーン管は鉛直方向に打設された鉛直ドレーン管と鉛直方向と一定角度をなす傾斜方向に打設された傾斜ドレーン管とが対を成すように構成することを特徴とするものである。
本発明に係る工法によれば、第6の態様と同様の作用効果を得ることができる。
The invention of the liquefaction countermeasure construction method of the direct foundation board of the embankment according to the tenth aspect of the present invention is a method of providing a drain pipe having a drainage portion at a predetermined interval along the longitudinal direction from a glue bottom portion in the longitudinal direction of the embankment. The drain pipe is constructed in such a manner that a vertical drain pipe placed in the vertical direction and an inclined drain pipe placed in an inclined direction that forms an angle with the vertical direction form a pair. It is characterized by.
According to the construction method of the present invention, the same effect as that of the sixth aspect can be obtained.

本発明の地中構造物の直下地盤の液状化対策設備または工法によれば、地中構造物の長手方向の側面近傍の地表側から、排水部を有する鉛直ドレーン管と傾斜ドレーン管が対を成して地盤中に打設されているため、鉛直ドレーン管と傾斜ドレーン管とで挟まれた(囲まれた)領域は、最も水が排出されやすくなることから、最も液状化が起こりにくい部分となる。巨大地震の際には、この領域が液状化されずに一種の壁となって存在し続け、この壁の両側(周囲)の液状化した土の流れを阻止する働きをする。すなわち、ドレーン管の過剰間隙水圧の消散作用に基づく前記壁の働きと、更に該ドレーン管自体の地盤補強効果によって、液状化地盤が地中構造物の下側へ回り込むことを効果的に防止し、以て地中構造物の浮き上がりや沈下を防止し、巨大地震時における対策地盤の安定性を十分確保することができるようになる。   According to the liquefaction countermeasure facility or construction method for a direct foundation board of an underground structure of the present invention, a vertical drain pipe having a drainage portion and an inclined drain pipe are paired from the surface side near the longitudinal side surface of the underground structure. Because it is formed and placed in the ground, the area between the vertical drain pipe and the inclined drain pipe (the enclosed area) is the part where water is most likely to be drained, so it is the most unlikely to cause liquefaction It becomes. In the event of a major earthquake, this area continues to exist as a kind of wall without being liquefied, and works to block the flow of liquefied soil on both sides (surroundings) of this wall. In other words, the action of the wall based on the action of dissipating excess pore water pressure in the drain pipe and the ground reinforcement effect of the drain pipe itself effectively prevent the liquefied ground from entering the lower side of the underground structure. Therefore, the underground structure can be prevented from rising and sinking, and the stability of the countermeasure ground in the event of a huge earthquake can be secured sufficiently.

本発明の盛土の直下地盤の液状化対策設備または工法によれば、盛土ののり尻部分から、排水部を有する鉛直ドレーン管と傾斜ドレーン管が対を成して地盤中に打設されているため、鉛直ドレーン管と傾斜ドレーンとで挟まれた(囲まれた)領域は、最も水が排出されやすくなることから、最も液状化が起こりにくい部分となる。巨大地震の際には、この領域が液状化されずに一種の壁となって存在し続け、この壁の両側(周囲)の液状化した土の流れを阻止する働きをする。すなわち、ドレーン管の過剰間隙水圧の消散作用に基づく前記壁の働きと、更に該ドレーン管自体の地盤補強効果によってのり尻がしっかり抑えられて、のり尻の崩落が防止される。従って、地盤の液状化による盛土の崩壊が効果的に防止され、巨大地震時における対策地盤の安定性を十分確保することができるようになる。   According to the liquefaction countermeasure facility or construction method of the direct foundation board of the embankment of the present invention, a vertical drain pipe having a drainage part and an inclined drain pipe form a pair and are placed in the ground from the paste bottom part of the embankment. Therefore, the region sandwiched (enclosed) between the vertical drain pipe and the inclined drain is the portion where water is most likely to be discharged, and thus the portion where liquefaction hardly occurs. In the event of a major earthquake, this area continues to exist as a kind of wall without being liquefied, and works to block the flow of liquefied soil on both sides (surroundings) of this wall. That is, the glue butt is firmly suppressed by the action of the wall based on the action of dissipating the excess pore water pressure of the drain pipe and the ground reinforcing effect of the drain pipe itself, and the fall of the glue butt is prevented. Therefore, the collapse of the embankment due to the liquefaction of the ground is effectively prevented, and the stability of the countermeasure ground during a huge earthquake can be sufficiently secured.

以下、図面を参照しながら本発明の実施の形態を説明する。まず、本発明の地中構造物の直下地盤の液状化対策設備の一実施形態について説明する。
図1は、本発明の地中構造物の直下地盤の液状化対策設備の一実施形態を示す縦断面図である。図2は、図1と同じ液状化対策設備の平面図である。図3は、本発明に用いられるドレーン管の一例を示す概略図である。図4は、本発明に用いられるドレーン管における排水部としてのスクリーン管の他の一例を示す両端の一部を断面で示した平面図(a)とA−A線断面図である。図5は、本発明に用いられるドレーン管における排水部としてのスクリーン管の更に他の一例を示す両端の一部を断面で示した平面図(a)とB−B線断面図である。図6は、本発明に用いられるドレーン管における排水部としてのスクリーン管の更に他の一例を示す両端の一部を断面で示した平面図(a)とC−C線断面図である。である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, an embodiment of a liquefaction countermeasure facility for a direct foundation board of an underground structure according to the present invention will be described.
FIG. 1 is a longitudinal sectional view showing an embodiment of a liquefaction countermeasure facility for a direct foundation board of an underground structure according to the present invention. FIG. 2 is a plan view of the same liquefaction countermeasure facility as in FIG. FIG. 3 is a schematic view showing an example of a drain pipe used in the present invention. FIG. 4 is a plan view (a) and a sectional view taken along line AA showing a part of both ends showing another example of the screen tube as a drainage portion in the drain tube used in the present invention. FIGS. 5A and 5B are a plan view (a) and a cross-sectional view taken along the line B-B showing a part of both ends in a cross section showing still another example of a screen tube as a drainage portion in a drain tube used in the present invention. FIG. 6 is a plan view (a) showing a cross section of a part of both ends showing still another example of a screen tube as a drainage portion in the drain tube used in the present invention, and a cross-sectional view taken along the line CC. It is.

図1に示すように、地中構造物の直下地盤の液状化対策設備10は、地盤における透水層15に配設されている地中構造物14の長手方向の側面近傍の地表側17に溝9を設け、該溝9の底部から、所定間隔毎に、鉛直ドレーン管11と地中構造物14の外側下方に傾斜した傾斜ドレーン管12が、図2に示したように交互に千鳥状に打設されている。鉛直ドレーン管11と傾斜ドレーン管12は透水層15内で交差する位置関係で配設されているが、最上部が大きく離間せず略同じ位置にあれば両ドレーン11と12は必ずしも交差していなくてもよい しかし、図1のように両ドレーン11と12を交差構造に配置するのが好ましい。
ここで、鉛直ドレーン管11と傾斜ドレーン管12とを対を成して打設するのは、同じ本数のドレーン管を鉛直方向のみ打設した場合に比べ、地盤の液状化が生じた際に、地盤の流動を機械的に抑制するに際して、より効果的だからである。
As shown in FIG. 1, the liquefaction countermeasure facility 10 for the direct foundation board of the underground structure has a groove on the ground surface side 17 in the vicinity of the side surface in the longitudinal direction of the underground structure 14 disposed in the water permeable layer 15 in the ground. 9, and the vertical drain pipe 11 and the inclined drain pipe 12 inclined to the lower outside of the underground structure 14 are alternately staggered from the bottom of the groove 9 at predetermined intervals as shown in FIG. It has been cast. The vertical drain pipe 11 and the inclined drain pipe 12 are arranged so as to intersect with each other in the water permeable layer 15, but the drains 11 and 12 do not necessarily intersect if the uppermost portion is not largely separated and is at substantially the same position. However, it is preferable that both drains 11 and 12 are arranged in an intersecting structure as shown in FIG.
Here, the vertical drain pipe 11 and the inclined drain pipe 12 are placed in pairs when the ground liquefaction occurs as compared with the case where the same number of drain pipes are driven only in the vertical direction. This is because it is more effective in mechanically suppressing the flow of the ground.

鉛直ドレーン管11は真に鉛直である必要は無く、ほぼ鉛直であれば足りる。本実施の形態では、傾斜ドレーン12の傾きは鉛直方向に対して5〜60度、望ましくは30〜45度であり、各ドレーン管11と12の隣り合う間隔は、500〜1500mmである。鉛直ドレーン管11及び傾斜ドレーン管12は、その先端(下端)が透水層15を貫通して不透水層16に到達するように設けられている。各ドレーン管11,12を地盤中に打設した後は、前記溝9に砕石13が敷設されて排水路6が形成される。   The vertical drain pipe 11 does not have to be truly vertical, and is almost vertical. In the present embodiment, the inclination of the inclined drain 12 is 5 to 60 degrees, preferably 30 to 45 degrees with respect to the vertical direction, and the adjacent interval between the drain pipes 11 and 12 is 500 to 1500 mm. The vertical drain pipe 11 and the inclined drain pipe 12 are provided such that their tips (lower ends) penetrate the water permeable layer 15 and reach the water impermeable layer 16. After the drain pipes 11 and 12 are placed in the ground, the crushed stone 13 is laid in the groove 9 to form the drainage channel 6.

鉛直ドレーン管11及び傾斜ドレーン管12は、図3(a)に示すように、先端に打込みヘッド21が設けられ、打込みヘッド21の後方に螺旋状の溝穴22cを有する排水部としてのスクリーン管22が設けられ、スクリーン管22の後方に無孔鋼管の開口端23が設けられた構造となっている。打込みヘッド21の先端付近は、本実施の形態では平面視で菱形形状部21aとなっており、この形状に基づく引き抜き抵抗力による地盤補強効果がより増大した状態となっている。尚、引き抜き抵抗力を高める形状は、上記菱形に限定されず、銛形状等の他の形状でもよい。排水部としてのスクリーン管22は、図3(b)に示すように、円形を成すように複数本が配列された円形断面の芯材22bの外周に、断面三角形の線材22aが頂部を内側にして螺旋状に巻かれて一体化された構成となっている。線材22aは、螺旋状に巻かれて隣り合う線材間に溝穴22cが形成されている。スクリーン管22の内径は、50〜150mmである。   As shown in FIG. 3A, the vertical drain pipe 11 and the inclined drain pipe 12 are provided with a driving head 21 at the tip, and a screen pipe as a drainage section having a spiral slot 22 c behind the driving head 21. 22 is provided, and an opening end 23 of a non-porous steel pipe is provided behind the screen pipe 22. In the present embodiment, the vicinity of the tip of the driving head 21 is a rhombus-shaped portion 21a in plan view, and the ground reinforcement effect due to the pulling resistance force based on this shape is further increased. In addition, the shape which raises drawing resistance force is not limited to the said rhombus, Other shapes, such as a collar shape, may be sufficient. As shown in FIG. 3 (b), the screen tube 22 as a drainage portion has a circular cross-section core material 22b arranged in a circular shape and a triangular cross-section wire 22a with the top portion inside. It is configured to be integrated by winding in a spiral. The wire 22a is spirally wound and a slot 22c is formed between adjacent wires. The inner diameter of the screen tube 22 is 50 to 150 mm.

スクリーン管22としては、図4(a)(b)に示すように、芯材22bが円形では無く頂部を有する形状であり、線材22aが断面円形のものであってもよい。また、図5(a)(b)に示すように、芯材22bの内側にストレーナ処理された有孔管22fが補強材として配置されていてもよく、図6(a)(b)に示すように、芯材22bの内側に十字形鋼22hが補強材として配置されていてもよい。スクリーン管22の両端部には、雌ねじ22dと雄ねじ22eが切られ、有効管又は十字形鋼と溶接により接合されている。無孔鋼管の開口端23は、スクリーン管22とねじで接合されている関係上、容易に分離可能であるため、従来工法では困難である路面から下2.5m以内の撤去作業も容易であり、将来の計画などに支障が生じないようになっている。   As shown in FIGS. 4A and 4B, the screen tube 22 may have a shape in which the core 22b is not circular but has a top, and the wire 22a has a circular cross section. Moreover, as shown to Fig.5 (a) (b), the perforated pipe | tube 22f by which the strainer process was carried out inside the core material 22b may be arrange | positioned as a reinforcing material, and it shows to Fig.6 (a) (b). Thus, the cross-shaped steel 22h may be arrange | positioned as a reinforcing material inside the core material 22b. A female screw 22d and a male screw 22e are cut at both ends of the screen tube 22, and are joined to the effective tube or cross-shaped steel by welding. The open end 23 of the non-porous steel pipe is easily separable because it is joined to the screen pipe 22 with a screw. Therefore, the removal work within 2.5 m below the road surface, which is difficult with the conventional method, is easy. , So that future plans are not hindered.

ドレーン管20は、図3(a)に示すように、打込みヘッド21が不透水層16に配置され、排水部としてのスクリーン管22が透水層15及び排水路6としての砕石13の層に配置され、開口端23が埋戻し部27に配置される。   As shown in FIG. 3A, the drain pipe 20 has a driving head 21 disposed in the impermeable layer 16, and a screen pipe 22 as a drainage section disposed in the layer of the permeable layer 15 and the crushed stone 13 as the drainage channel 6. Then, the open end 23 is disposed in the backfill portion 27.

次に、上記実施の形態の作用を説明する。本実施の形態によれば、地中構造物14の長手方向の側面近傍の地表側17から、排水部(22)を有する鉛直ドレーン管11と傾斜ドレーン管12が対を成して地盤中に打設されているため、鉛直ドレーン管11と傾斜ドレーン管12とで挟まれた(囲まれた)領域8は、最も水が排出されやすくなることから、最も液状化が起こりにくい部分となる。巨大地震の際には、この領域8が液状化されずに一種の壁7となって存在し続け、この壁7の両側(周囲)の液状化した土の流れを阻止する働きをする。   Next, the operation of the above embodiment will be described. According to the present embodiment, the vertical drain pipe 11 having the drainage portion (22) and the inclined drain pipe 12 form a pair from the ground surface 17 near the side surface in the longitudinal direction of the underground structure 14 into the ground. Since it is driven, the region 8 sandwiched (enclosed) between the vertical drain pipe 11 and the inclined drain pipe 12 is the portion where water is most easily discharged, and thus is the portion where liquefaction hardly occurs. In the event of a large earthquake, this region 8 continues to exist as a kind of wall 7 without being liquefied, and functions to block the flow of liquefied soil on both sides (surroundings) of the wall 7.

すなわち、ドレーン管11,12の過剰間隙水圧の消散作用に基づく前記壁7の働きと、更に該ドレーン管11,12自体の地盤補強効果によって、液状化地盤が地中構造物14の下側へ回り込むことを効果的に防止し、以て地中構造物14の浮き上がりや沈下を防止し、巨大地震時における対策地盤の安定性を十分確保することができるようになる。   That is, the liquefied ground moves to the lower side of the underground structure 14 by the action of the wall 7 based on the action of dissipating excess pore water pressure of the drain pipes 11 and 12 and the ground reinforcing effect of the drain pipes 11 and 12 themselves. It is possible to effectively prevent the sneaking around, thereby preventing the underground structure 14 from rising and sinking, and sufficiently securing the stability of the countermeasure ground in the event of a huge earthquake.

更に具体的に説明すると、各ドレーン管11,12におけるスクリーン管22の周囲に存在する水は、液状化層となる透水層15に接するスクリーン管22の螺旋状の溝穴22cからドレーン管20の中に浸入する。ドレーン管20に浸入した水は、ドレーン管20の内部を通過して、排水路6としての砕石13の層に接するスクリーン管22の螺旋状の溝穴22cから溢れ出て、排水路6から排出される。それ故、スクリーン管22で挟まれた領域8は、最も水が排出されやすくなるため、最も液状化が起こりにくい部分となり、この領域8が液状化されずに一種の壁7となって、巨大地震の際に、矢示18で示した方向の液状化した土が流れることを阻止する。   More specifically, the water existing around the screen tube 22 in each of the drain tubes 11 and 12 passes through the spiral groove 22c of the screen tube 22 in contact with the water permeable layer 15 serving as a liquefied layer. Infiltrate inside. The water that has entered the drain pipe 20 passes through the drain pipe 20, overflows from the spiral groove 22 c of the screen pipe 22 that contacts the layer of the crushed stone 13 as the drainage path 6, and is discharged from the drainage path 6. Is done. Therefore, the region 8 sandwiched between the screen tubes 22 is the portion where the water is most easily discharged, so that the region 8 is the least liable to liquefy. During the earthquake, the liquefied soil in the direction indicated by the arrow 18 is prevented from flowing.

すなわち本実施の形態では、両ドレーン管11,12自体と、これら鉛直ドレーン管11と傾斜ドレーン管12の間に挟まれた液状化されにくい地盤とによって強固な壁7が形成されていると言うことになる。これにより、該壁7が液状化地盤の流動を阻止し、地盤の液状化により地中構造物14が沈下したり浮き上がるのを効果的に防止する。   That is, in the present embodiment, it is said that the strong wall 7 is formed by both the drain pipes 11 and 12 themselves and the ground which is sandwiched between the vertical drain pipe 11 and the inclined drain pipe 12 and hardly liquefied. It will be. Accordingly, the wall 7 prevents the liquefied ground from flowing, and effectively prevents the underground structure 14 from sinking or floating due to the liquefaction of the ground.

なお、本発明の地中構造物の直下地盤の液状化対策設備は、共同溝、下水道管、専用配線管等のライフライン等に適用可能であるが、局限的な適用性が高いため、例えば、下水道施設、水道施設、下水処理場施設、浄水場などにも有効である。   In addition, the liquefaction countermeasure equipment for the direct foundation panel of the underground structure of the present invention can be applied to lifelines etc. such as common grooves, sewer pipes, dedicated wiring pipes, etc. It is also effective for sewage facilities, water facilities, sewage treatment plants, and water treatment plants.

次に、本発明の盛土の直下地盤の液状化対策設備の一実施形態について説明する。上述した地中構造物の直下地盤の液状化対策設備の実施形態と同様の構成部分については同一符合を付してその説明は省略する。図7は、本発明の盛土の直下地盤の液状化対策設備の一実施形態を示す縦断面図である。図8は、図7と同じ液状化対策設備の平面図である。図9は、本発明の盛土の直下地盤の液状化対策設備の他の一実施形態を示す正面図である。   Next, an embodiment of a liquefaction countermeasure facility for a direct foundation board of embankment according to the present invention will be described. Constituent parts similar to those of the above-described embodiment of the liquefaction countermeasure facility for the direct foundation board of the underground structure are given the same reference numerals and description thereof is omitted. FIG. 7: is a longitudinal cross-sectional view which shows one Embodiment of the liquefaction countermeasure equipment of the direct foundation | substrate board of the embankment of this invention. FIG. 8 is a plan view of the same liquefaction countermeasure facility as in FIG. FIG. 9 is a front view showing another embodiment of the liquefaction countermeasure facility for the direct foundation board of embankment according to the present invention.

図7に示すように、盛土の直下地盤の液状化対策設備30は、盛土34の長手方向におけるのり尻39部分から、長手方向に沿って所定間隔毎に、鉛直ドレーン管11と盛土34の内側に傾斜した傾斜ドレーン管12とが、交互に千鳥状に打設されている(図8)。鉛直ドレーン管11と傾斜ドレーン管12とで挟まれた(囲まれた)領域8は、最も水が排出されやすくなることから、最も液状化が起こりにくい部分となる。巨大地震の際には、この領域8が液状化されずに一種の壁7となって存在し続け、この壁7の両側(周囲)の液状化した土の流れを阻止する働きをする。両ドレーン管11,12を地盤中に打設した後は、排水路6としての砕石13が敷設され、掘削土等で地表面まで埋め戻される(埋戻し部、不図示)。   As shown in FIG. 7, the liquefaction countermeasure equipment 30 for the direct foundation board of the embankment is arranged inside the vertical drain pipe 11 and the embankment 34 at predetermined intervals along the longitudinal direction from the paste bottom 39 portion in the longitudinal direction of the embankment 34. Inclined drain pipes 12 inclined in a staggered manner are alternately placed in a staggered pattern (FIG. 8). The region 8 sandwiched (enclosed) by the vertical drain pipe 11 and the inclined drain pipe 12 is the portion where water is most easily discharged, and thus is the portion where liquefaction hardly occurs. In the event of a large earthquake, this region 8 continues to exist as a kind of wall 7 without being liquefied, and functions to block the flow of liquefied soil on both sides (surroundings) of the wall 7. After placing both drain pipes 11 and 12 in the ground, the crushed stone 13 as the drainage channel 6 is laid and backfilled to the ground surface by excavating soil or the like (backfill portion, not shown).

次に作用を説明する。盛土34ののり尻39近傍から、排水部(22)を有する鉛直ドレーン管11と傾斜ドレーン管12が対を成して地盤中に打設されているため、鉛直ドレーン管11と傾斜ドレーン12とで挟まれた(囲まれた)領域8は、最も水が排出されやすくなることから、最も液状化が起こりにくい部分となる。巨大地震の際には、この領域8が液状化されずに一種の壁7となって存在し続け、この壁7の両側(周囲)の液状化した土の流れを阻止する働きをする。すなわち、各ドレーン管11,12の過剰間隙水圧の消散作用に基づく前記壁7の働きと、更に該ドレーン管11,12自体の地盤補強効果によってのり尻39がしっかり抑えられて、のり尻39の崩落が防止される。従って、地盤の液状化による盛土34の崩壊が効果的に防止され、巨大地震時における対策地盤の安定性を十分確保することができるようになる。   Next, the operation will be described. Since the vertical drain pipe 11 having the drainage portion (22) and the inclined drain pipe 12 are placed in pairs in the ground from the vicinity of the paste bottom 39 of the embankment 34, the vertical drain pipe 11 and the inclined drain 12 The region 8 sandwiched between (enclosed) is the portion where water is most likely to be discharged, and thus is the portion where liquefaction hardly occurs. In the event of a large earthquake, this region 8 continues to exist as a kind of wall 7 without being liquefied, and functions to block the flow of liquefied soil on both sides (surroundings) of the wall 7. That is, the glue buttocks 39 are firmly suppressed by the action of the wall 7 based on the action of dissipating excess pore water pressure of the drain pipes 11 and 12 and the ground reinforcement effect of the drain pipes 11 and 12 themselves. Collapse is prevented. Accordingly, the collapse of the embankment 34 due to the liquefaction of the ground is effectively prevented, and the stability of the countermeasure ground during a huge earthquake can be sufficiently secured.

なお、本発明の盛土の直下地盤の液状化対策設備は、局限的な適用性が高く、図9に示すように、盛土34の長手(軸)方向に直交するボックスカルバート38、管渠等の近傍や橋台背面、切盛境等の路面沈下の生じやすく段差が問題となる箇所に、限定して適用することもできる。   In addition, the liquefaction countermeasure facility for the direct foundation board of the embankment of the present invention has a high local applicability, and as shown in FIG. 9, a box culvert 38 perpendicular to the longitudinal (axis) direction of the embankment 34, a pipe culvert, etc. The present invention can also be applied in a limited manner to locations where road surface subsidence is likely to occur, such as in the vicinity, the back of an abutment, and a cut-off boundary.

本発明は上記実施の形態に限定されることなく、特許請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらも本願発明の範囲内に含まれるものであることは言うまでもない。   The present invention is not limited to the above-described embodiment, and various modifications are possible within the scope of the invention described in the claims, and these are also included in the scope of the present invention. Needless to say.

本発明の地中構造物の直下地盤の液状化対策設備の一実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Embodiment of the liquefaction countermeasure equipment of the direct foundation board of the underground structure of this invention. 図1と同じ液状化対策設備の平面図である。It is a top view of the same liquefaction countermeasure equipment as FIG. 本発明に用いられるドレーン管の一例を示す図であり、(a)はドレーン管を打設した後の側面図、(b)はドレーン管の排水部としてのスクリーン管の一部切欠の要部拡大斜視図を示す。It is a figure which shows an example of the drain pipe used for this invention, (a) is a side view after placing the drain pipe, (b) is the principal part of a part notch of the screen pipe as a drainage part of a drain pipe An enlarged perspective view is shown. 本発明に用いられるドレーン管における排水部としてのスクリーン管の他の一例を示す図であり、(a)は両端の一部を断面で示した平面図、(b)はA−A断面の断面図を示す。It is a figure which shows another example of the screen pipe as a drainage part in the drain pipe used for this invention, (a) is the top view which showed a part of both ends in cross section, (b) is the cross section of an AA cross section. The figure is shown. 本発明に用いられるドレーン管における排水部としてのスクリーン管の更に他の一例を示す図であり、(a)は両端の一部を断面で示した平面図、(b)はB−B断面の断面図を示す。It is a figure which shows another example of the screen pipe | tube as a drainage part in the drain pipe used for this invention, (a) is the top view which showed a part of both ends in cross section, (b) is a BB cross section. A cross-sectional view is shown. 本発明に用いられるドレーン管における排水部としてのスクリーン管の更に他の一例を示す図であり、(a)は両端の一部を断面で示した平面図、(b)は、C−C断面の断面図を示す。It is a figure which shows another example of the screen pipe | tube as a drainage part in the drain pipe used for this invention, (a) is the top view which showed a part of both ends in cross section, (b) is CC cross section. FIG. 本発明の盛土の直下地盤の液状化対策設備の一実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Embodiment of the liquefaction countermeasure equipment of the direct foundation board | substrate of the embankment of this invention. 図7と同じ液状化対策設備の平面図である。It is a top view of the same liquefaction countermeasure equipment as FIG. 本発明の盛土の直下地盤の液状化対策設備の他の一実施形態を示す平面図である。It is a top view which shows other one Embodiment of the liquefaction countermeasure equipment of the direct foundation | substrate board of the embankment of this invention.

符号の説明Explanation of symbols

6 排水路、7 壁、8 液状化されにくい領域、10 地中構造物の液状化対策設備、11 鉛直ドレーン管、12 傾斜ドレーン管、13 砕石、14 地中構造物、
15 透水層、16 不透水層、17 地表側、21 打込みヘッド、21a 銛形状部22 スクリーン管、22a 線材、22b 芯材、22c 溝穴、22d 雌ねじ、
22e 雄ねじ、22f 有孔管、22h 十字形鋼、23 開口端、27 埋戻し部、
30 盛土の液状化対策設備、34 盛土、38 ボックスカルバート
6 Drainage channel, 7 Wall, 8 Area not easily liquefied, 10 Liquefaction countermeasures for underground structures, 11 Vertical drain pipe, 12 Inclined drain pipe, 13 Crushed stone, 14 Underground structure,
15 water-permeable layer, 16 water-impermeable layer, 17 ground surface side, 21 driving head, 21a bowl-shaped portion 22 screen tube, 22a wire rod, 22b core material, 22c slot, 22d female thread,
22e male thread, 22f perforated tube, 22h cross-shaped steel, 23 open end, 27 backfilling part,
30 Liquefaction countermeasures for embankment, 34 embankment, 38 Box culvert

Claims (10)

地中構造物の長手方向の側面近傍の地表側から、前記長手方向に沿って所定間隔毎に、排水部を有するドレーン管が地盤中に打設されていると共に、該ドレーン管は鉛直方向に打設された鉛直ドレーン管と鉛直方向と一定角度をなす傾斜方向に打設された傾斜ドレーン管とが対を成して構成されていることを特徴とする地中構造物の直下地盤の液状化対策設備。   A drain pipe having a drainage portion is driven into the ground at predetermined intervals along the longitudinal direction from the surface side near the side surface in the longitudinal direction of the underground structure, and the drain pipe extends in the vertical direction. The liquid of the direct foundation board of an underground structure characterized in that the vertical drain pipe placed and the inclined drain pipe placed in an inclination direction that makes a certain angle with the vertical direction are paired. Countermeasures. 請求項1において、前記鉛直ドレーン管と前記傾斜ドレーン管とが交互に千鳥状に配列されていることを特徴とする地中構造物の直下地盤の液状化対策設備。   In Claim 1, the said vertical drain pipe and the said inclined drain pipe are alternately arranged in the zigzag pattern, The liquefaction countermeasure equipment of the direct foundation board | substrate of an underground structure characterized by the above-mentioned. 請求項1又は2において、前記ドレーン管は、その先端に位置する打込みヘッドの先端付近が平面視で菱形形状に形成されていることを特徴とする地中構造物の直下地盤の液状化対策設備。   3. The liquefaction countermeasure device for a direct foundation board of an underground structure according to claim 1 or 2, wherein the drain tube is formed in a rhombus shape in plan view near the tip of the driving head located at the tip thereof. . 請求項1から3のいずれか1項において、前記ドレーン管には、前記ドレーン管を補強する補強材が設けられていることを特徴とする地中構造物の直下地盤の液状化対策設備。   The liquefaction countermeasure equipment for a direct foundation board of an underground structure according to any one of claims 1 to 3, wherein the drain pipe is provided with a reinforcing material for reinforcing the drain pipe. 地中構造物の長手方向の側面近傍の地表側から、前記長手方向に沿って所定間隔毎に、排水部を有するドレーン管を地盤中に打設すると共に、該ドレーン管は鉛直方向に打設する鉛直ドレーン管と鉛直方向と一定角度をなす傾斜方向に打設する傾斜ドレーン管とが対を成すように構成することを特徴とする地中構造物の直下地盤の液状化対策工法。   A drain pipe having a drainage portion is driven into the ground at predetermined intervals along the longitudinal direction from the surface side near the side surface in the longitudinal direction of the underground structure, and the drain pipe is driven in the vertical direction. A method for preventing liquefaction of a direct foundation board for underground structures, wherein the vertical drain pipe and the inclined drain pipe placed in an inclined direction that forms a certain angle with the vertical direction form a pair. 盛土の長手方向におけるのり尻部分から、前記長手方向に沿って所定間隔毎に、排水部を有するドレーン管が地盤中に打設されていると共に、該ドレーン管は鉛直方向に打設された鉛直ドレーン管と鉛直方向と一定角度をなす傾斜方向に打設された傾斜ドレーン管とが対を成して構成されていることを特徴とする地中構造物の直下地盤の液状化対策設備。   A drain pipe having a drainage portion is driven into the ground at a predetermined interval along the longitudinal direction from the glue bottom portion in the longitudinal direction of the embankment, and the drain pipe is vertically driven in the vertical direction. A liquefaction countermeasure facility for a direct foundation board of underground structure, characterized in that a drain pipe and an inclined drain pipe placed in an inclined direction that forms a certain angle with the vertical direction are paired. 請求項6において、前記鉛直ドレーン管と前記傾斜ドレーン管とが交互に千鳥状に配列されていることを特徴とする地中構造物の直下地盤の液状化対策設備。   In Claim 6, the said vertical drain pipe and the said inclined drain pipe are arranged in the staggered pattern alternately, The liquefaction countermeasure equipment of the direct foundation | ground board | plate of an underground structure characterized by the above-mentioned. 請求項6又は7において、前記ドレーン管は、その先端に位置する打込みヘッドの先端付近が平面視で菱形形状に形成されていることを特徴とする地中構造物の直下地盤の液状化対策設備。   8. The liquefaction countermeasure device for a direct foundation board of an underground structure according to claim 6 or 7, wherein the drain pipe is formed in a rhombus shape in plan view near the tip of the driving head located at the tip thereof. . 請求項6から8のいずれか1項において、前記ドレーン管には、前記ドレーン管を補強する補強材が設けられていることを特徴とする地中構造物の直下地盤の液状化対策設備。   9. The liquefaction countermeasure equipment for a direct foundation board of an underground structure according to any one of claims 6 to 8, wherein the drain pipe is provided with a reinforcing material for reinforcing the drain pipe. 盛土の長手方向におけるのり尻部分から、前記長手方向に沿って所定間隔毎に、排水部を有するドレーン管を地盤中に打設すると共に、該ドレーン管は鉛直方向に打設された鉛直ドレーン管と鉛直方向と一定角度をなす傾斜方向に打設された傾斜ドレーン管とが対を成すように構成することを特徴とする地中構造物の直下地盤の液状化対策工法。   A drain pipe having a drainage portion is driven into the ground at predetermined intervals along the longitudinal direction from a glued portion in the longitudinal direction of the embankment, and the drain pipe is a vertical drain pipe driven in the vertical direction. A liquefaction prevention method for a direct foundation board of underground structure, characterized in that it is configured so that a slanted drain pipe placed in a slanting direction that forms a certain angle with the vertical direction is paired.
JP2005121129A 2005-04-19 2005-04-19 Equipment for countermeasure against liquefaction of ground immediately below underground structure, and equipment and construction method for countermeasure against liquefaction of ground immediately below fill Pending JP2006299605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005121129A JP2006299605A (en) 2005-04-19 2005-04-19 Equipment for countermeasure against liquefaction of ground immediately below underground structure, and equipment and construction method for countermeasure against liquefaction of ground immediately below fill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005121129A JP2006299605A (en) 2005-04-19 2005-04-19 Equipment for countermeasure against liquefaction of ground immediately below underground structure, and equipment and construction method for countermeasure against liquefaction of ground immediately below fill

Publications (1)

Publication Number Publication Date
JP2006299605A true JP2006299605A (en) 2006-11-02

Family

ID=37468229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005121129A Pending JP2006299605A (en) 2005-04-19 2005-04-19 Equipment for countermeasure against liquefaction of ground immediately below underground structure, and equipment and construction method for countermeasure against liquefaction of ground immediately below fill

Country Status (1)

Country Link
JP (1) JP2006299605A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168725A (en) * 2008-12-25 2010-08-05 Penta Ocean Construction Co Ltd Uniform subsidence ground structure
WO2013185056A1 (en) * 2012-06-07 2013-12-12 Geopier Foundation Company, Inc. Soil reinforcement system including angled soil reinforcement elements to resist seismic shear forces and methods of making same
JP2015145605A (en) * 2014-02-04 2015-08-13 五洋建設株式会社 Soil liquefaction prevention structure
CN117661536A (en) * 2023-12-12 2024-03-08 山东省建筑设计研究院有限公司 Soft soil foundation reinforcing structure
JP7503998B2 (en) 2020-10-27 2024-06-21 株式会社竹中土木 Liquefaction countermeasures for linear embankment structures and liquefaction countermeasures

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319335A (en) * 1986-07-14 1988-01-27 Daiei Sangyo Kk Method and apparatus for burying water drain pipe
JPH04115011A (en) * 1990-09-04 1992-04-15 Sumitomo Metal Ind Ltd Liquefaction restraining pile, manufacture thereof and plug for liquefaction restraining pile
JPH04254610A (en) * 1991-02-07 1992-09-09 Okumura Corp Soil improvement method and drain device
JPH0617414A (en) * 1992-05-18 1994-01-25 Pub Works Res Inst Ministry Of Constr Drainage reinforcement pile
JPH09189025A (en) * 1995-11-08 1997-07-22 Nippon Kaiyo Kutsusaku Kk Construction method against liquefaction and consolidation type drilling machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319335A (en) * 1986-07-14 1988-01-27 Daiei Sangyo Kk Method and apparatus for burying water drain pipe
JPH04115011A (en) * 1990-09-04 1992-04-15 Sumitomo Metal Ind Ltd Liquefaction restraining pile, manufacture thereof and plug for liquefaction restraining pile
JPH04254610A (en) * 1991-02-07 1992-09-09 Okumura Corp Soil improvement method and drain device
JPH0617414A (en) * 1992-05-18 1994-01-25 Pub Works Res Inst Ministry Of Constr Drainage reinforcement pile
JPH09189025A (en) * 1995-11-08 1997-07-22 Nippon Kaiyo Kutsusaku Kk Construction method against liquefaction and consolidation type drilling machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168725A (en) * 2008-12-25 2010-08-05 Penta Ocean Construction Co Ltd Uniform subsidence ground structure
WO2013185056A1 (en) * 2012-06-07 2013-12-12 Geopier Foundation Company, Inc. Soil reinforcement system including angled soil reinforcement elements to resist seismic shear forces and methods of making same
US9869070B2 (en) 2012-06-07 2018-01-16 Geopier Foundation Company, Inc. Soil reinforcement system including angled soil reinforcement elements to resist seismic shear forces and methods of making same
JP2015145605A (en) * 2014-02-04 2015-08-13 五洋建設株式会社 Soil liquefaction prevention structure
JP7503998B2 (en) 2020-10-27 2024-06-21 株式会社竹中土木 Liquefaction countermeasures for linear embankment structures and liquefaction countermeasures
CN117661536A (en) * 2023-12-12 2024-03-08 山东省建筑设计研究院有限公司 Soft soil foundation reinforcing structure
CN117661536B (en) * 2023-12-12 2024-05-24 山东省建筑设计研究院有限公司 Soft soil foundation reinforcing structure

Similar Documents

Publication Publication Date Title
JP5157710B2 (en) Embankment reinforcement structure
KR101612521B1 (en) Method for constructing underground structures restraining transformation and using external wall
JP2006299605A (en) Equipment for countermeasure against liquefaction of ground immediately below underground structure, and equipment and construction method for countermeasure against liquefaction of ground immediately below fill
JP5148001B1 (en) Steel pipe piles for preventing levitation of underground objects, and methods for preventing levitation of underground objects using the same
JP2018044337A (en) Structure and method for reinforcing embankment
JP6164949B2 (en) Filling reinforcement structure
JP6854479B2 (en) Liquefaction countermeasure structure for underground structures
JP2803409B2 (en) Liquefaction countermeasure structure for embankment
JP6037770B2 (en) Drainage system and drainage method
JP2013083144A (en) Liquefaction preventing structure
JP4900972B2 (en) Ground drainage structure and its construction method
JP2009068203A (en) Earth retaining wall composed of horizontal sheathing with soldier beam, and cut-off structure, construction method and cut-off method for the earth retaining wall
JP2005016231A (en) Liquefaction countermeasure construction method
JP4953384B2 (en) Ground drainage structure and its construction method
JP7183819B2 (en) Levee body seepage failure prevention structure
JP5880060B2 (en) Structure and method for suppressing level difference between building and surrounding ground caused by ground subsidence
JP2011032703A (en) Subterranean rainwater infiltration facility
JP4274898B2 (en) Groundwater flow conservation method
JP2725516B2 (en) Liquefaction countermeasures for buried structures
JP2019173521A (en) Embankment structure
JPH08302661A (en) Mat constructing method for prevention of sand spout
JPH01125413A (en) Steel sheet pile for preventing liquefaction
JP2007154575A (en) Earthquake resistance structure
JP2015048641A (en) Liquefaction countermeasure structure of structure
JP2010209528A (en) Lateral flow countermeasure structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080304

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100615

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100623

A02 Decision of refusal

Effective date: 20101104

Free format text: JAPANESE INTERMEDIATE CODE: A02