JP2006299441A - Nonwoven fabric for thermoforming - Google Patents
Nonwoven fabric for thermoforming Download PDFInfo
- Publication number
- JP2006299441A JP2006299441A JP2005120068A JP2005120068A JP2006299441A JP 2006299441 A JP2006299441 A JP 2006299441A JP 2005120068 A JP2005120068 A JP 2005120068A JP 2005120068 A JP2005120068 A JP 2005120068A JP 2006299441 A JP2006299441 A JP 2006299441A
- Authority
- JP
- Japan
- Prior art keywords
- thermoforming
- thermoplastic
- nonwoven fabric
- fibers
- short
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Nonwoven Fabrics (AREA)
Abstract
Description
本発明は、熱成型に際して収縮がほとんど発生しない熱成型用不織布に関し、さらに詳しくは、高融点の第一熱可塑性短繊維と熱成型に際して溶融する低融点の第二熱可塑性短繊維とが均一混合状態で短繊維相互が接合(bonding)されてなる熱成型用不織布に係る。 The present invention relates to a non-woven fabric for thermoforming that hardly undergoes shrinkage during thermoforming. More specifically, the first thermoplastic short fiber having a high melting point and the second thermoplastic short fiber having a low melting point that melts during thermoforming are uniformly mixed. The present invention relates to a non-woven fabric for thermoforming in which short fibers are bonded in a state.
ここでは、主として、低融点の第二熱可塑性単繊維としてPP短繊維を使用し、フェンダーライナー(図1参照)やフロアマット等の自動車用成型品を熱成型(熱圧成型を含む。)をする場合を例に採り説明するがこれに限られるものはない。 Here, PP short fibers are mainly used as the second thermoplastic single fiber having a low melting point, and automotive molded products such as fender liners (see FIG. 1) and floor mats are thermoformed (including hot-pressure molding). However, the present invention is not limited to this.
自動車成型品等を熱成型する場合の成型用材料としては、防音性、干渉性等の見地から、主として熱可塑性短繊維からなる不織布が多用されてきた。 As a molding material in the case of thermoforming an automobile molded product or the like, a nonwoven fabric mainly composed of thermoplastic short fibers has been frequently used from the viewpoint of soundproofing and interference.
不織布としては、熱可塑性繊維を、SBR(スチレンゴム)ラテックスやNBR(アクリルゴム)ラテックス等の水性のエマルション接着剤(バインダー)を用いて加熱架橋(加硫を含む。)して接合させたものが多用されている。そして、当該不織布は、熱成型(加工)工程に供給して、フロア−カーペット、フェンダーライナー等の自動車用成型品としていた。 As the nonwoven fabric, thermoplastic fibers are joined by heat crosslinking (including vulcanization) using an aqueous emulsion adhesive (binder) such as SBR (styrene rubber) latex or NBR (acrylic rubber) latex. Is frequently used. And the said nonwoven fabric was supplied to the thermoforming (processing) process, and was made into molded articles for motor vehicles, such as a floor carpet and a fender liner.
熱成型加工には、上記主として熱可塑性短繊維の熱可塑性を利用する。バインダーはゴム成分であるため、接合部の剛直性が小さく成型用材料である不織布は容易に熱賦形できる。 In the thermoforming process, the thermoplasticity of the thermoplastic short fiber is mainly used. Since the binder is a rubber component, the non-woven fabric, which is a molding material, has low rigidity at the joint and can be easily heat-formed.
それらの自動車成型品は、耐用期間が経過後において、昨今は、廃棄されるのではなく、リサイクル化が要請されている。 These automobile molded products are not discarded but recently requested to be recycled after the end of their useful life.
そして、リサイクル化は、他のプラスチック廃棄物と同様、通常、不織布を形成する短繊維(骨格繊維)の溶融温度まで加熱させて、リペレット(再生ペレット)とすることにより行う。この加熱の際に、接着剤成分である架橋SBR・NBRは熱溶融せずに、熱分解・炭化して、溶融物中にカス(煤:カーボン)として残る。この炭化物は、着色性や物性に悪影響を与えてリサイクル性を低下させる。 And recycling is normally performed by heating to the melting temperature of the short fiber (skeleton fiber) which forms a nonwoven fabric, and making it a repellet (recycled pellet) like other plastic waste. During this heating, the crosslinked SBR / NBR, which is an adhesive component, is not thermally melted but is pyrolyzed and carbonized, and remains in the melt as residue (soot: carbon). This carbide adversely affects the colorability and physical properties and lowers the recyclability.
本発明の特許性に影響を与えるものではないが、例えば特許文献1(ポリプロピレン系不織布に関する技術が記載されている。)、特許文献2(熱収縮の小さなポリエステル系不織布に関する技術が記載されている。)等がある。また、成型品不織布に関する先行技術文献として、本願出願人同一人の出願に係る特許文献3がある。
本発明者は、上記問題点を解決するために、熱成型の際におけるエマルション接着剤による接合方式に代わって、ゴムラテックスを使用しない仕様、例えば、ポリエステル繊維を第一熱可塑性繊維(骨格繊維)とし、PP短繊維を第二熱可塑性繊維(接着繊維)とした構成で、最終的にPP短繊維を接着繊維として使用するものが考えられる。 In order to solve the above problems, the present inventor, instead of the joining method using an emulsion adhesive at the time of thermoforming, a specification that does not use rubber latex, for example, a polyester fiber is a first thermoplastic fiber (skeleton fiber) It is conceivable that PP short fibers are used as the second thermoplastic fibers (adhesive fibers), and finally the PP short fibers are used as the adhesive fibers.
すなわち、PP短繊維を含む不織布を使用して熱成型を行う際に、熱成型加工に際して、PP短繊維を溶融させ、不織布を形成する繊維間に浸透させて不織布の中で繊維同士を接着(接合)させ、さらに、不織布に付与された形態を保持する機能を発揮させる。 That is, when performing thermoforming using a nonwoven fabric containing PP short fibers, the PP short fibers are melted and penetrated between the fibers forming the nonwoven fabric to bond the fibers within the nonwoven fabric ( And the function of maintaining the form imparted to the nonwoven fabric is exhibited.
しかし、通常のPP短繊維を使用した不織布では、成型工程において過度の収縮が該不織布成型品に発生することが分かった。すなわち、PP短繊維を含む不織布は、熱収縮を強制的に制限することができる特殊な成型方法でしか成型用材料としては使用することができないことが分かった。 However, it has been found that in a nonwoven fabric using ordinary PP short fibers, excessive shrinkage occurs in the nonwoven fabric molded product in the molding process. That is, it has been found that a nonwoven fabric containing PP short fibers can be used as a molding material only by a special molding method that can forcibly limit thermal shrinkage.
このような特殊な成型方法では、特殊な成型機械が必要であるばかりではなく、自由な形状に成型することが困難となる(複雑な形状になると特に)。このような問題はPP繊維が固有に有する熱的特性に起因するために避けられないものとして考えられる。 Such a special molding method not only requires a special molding machine, but also makes it difficult to mold into a free shape (especially when it becomes a complicated shape). Such a problem is considered to be unavoidable due to the inherent thermal properties of PP fibers.
本発明の課題(目的)は、上記にかんがみて、高融点の第一熱可塑性短繊維と、少なくとも熱成型に際して溶融接着(接合)作用を奏する低融点の第二熱可塑性短繊維とで形成される成型用不織布において、熱成型の際、収縮がほとんど発生せず、自由な熱成型加工を可能とすることにある。 In view of the above, the subject (object) of the present invention is formed of a high-melting-point first thermoplastic short fiber and a low-melting-point second thermoplastic short fiber that exhibits a melt-bonding (joining) action at least during thermoforming. In the non-woven fabric for molding, there is almost no shrinkage during thermoforming, and free thermoforming is possible.
本発明に係る熱成型用不織布は、上記課題(目的)を、下記構成により解決するものである。 The non-woven fabric for thermoforming according to the present invention solves the above problem (purpose) by the following configuration.
なお、数値限定の前に付している「約」は、特許請求の範囲も含めて、当該数値範囲を不明確とするものではなく、当業者なら、それに接したとき、発明の構成(発明特定事項)を明瞭なものと認識できる。なぜなら、発明(特許請求の範囲)における数値限定は、実施可能性のある技術上の範囲の指標を示すものに過ぎず、数学的な意味での厳密性を要求されるものではない。 It should be noted that the “about” given before the numerical limitation does not obscure the numerical range including the claims, and those skilled in the art, when touched by it, will recognize the constitution of the invention (invention). Specific matter) can be recognized as clear. This is because the numerical limitation in the invention (claims) merely indicates an index of a technical range that can be implemented, and does not require strictness in a mathematical sense.
高融点の第一熱可塑性短繊維と、少なくとも熱成型に際して溶融接着(接合)作用を奏する低融点の第二熱可塑性短繊維とが実質的に均一混合状態で短繊維相互が接合(bonding)されてなる熱成型用不織布であって、
前記第二熱可塑性短繊維が、熱収縮率(JIS−L1015)約2%(望ましくは、約1.5%)以下を示すものであることを特徴とする。
The first short thermoplastic fibers having a high melting point and the second short thermoplastic fibers having a low melting point exhibiting a melt bonding (bonding) action at the time of thermoforming are bonded to each other in a substantially uniform mixed state. A non-woven fabric for thermoforming,
The second thermoplastic short fiber is characterized by exhibiting a heat shrinkage rate (JIS-L1015) of about 2% (preferably about 1.5%) or less.
第二熱可塑性短繊維(溶融繊維)として所定収縮率以下のものを使用することにより、熱成型(加工)工程において、後述の実施例の如く、成型品にほとんど熱収縮が発生しない。 By using a second thermoplastic short fiber (melted fiber) having a predetermined shrinkage ratio or less, in the thermoforming (processing) step, almost no heat shrinkage occurs in the molded product as in the examples described later.
上記において、第一熱可塑性短繊維(骨格繊維)と第二熱可塑性短繊維(溶融繊維)との融点差を20℃(望ましくは25℃)以上とすることが、熱成型性が良好となる。すなわち、融点差が小さいと、それぞれ骨格繊維および溶融繊維として作用の峻別が困難となり、熱成型に際して、厳格な温度制御が必要となる。 In the above, when the melting point difference between the first thermoplastic short fiber (skeleton fiber) and the second thermoplastic short fiber (molten fiber) is 20 ° C. (desirably 25 ° C.) or more, the thermoformability is improved. . That is, if the difference in melting point is small, it becomes difficult to distinguish the action as a skeletal fiber and a molten fiber, and strict temperature control is required during thermoforming.
通常、第二熱可塑性短繊維(溶融繊維)をポリプロピレン(PP)短繊維とすることが望ましい。通常(汎用)のPPは、相対的に融点が低い(165〜173℃)とともに、耐熱接着性も有し、バランスが採れているためである。 Usually, it is desirable that the second thermoplastic short fiber (molten fiber) is a polypropylene (PP) short fiber. This is because normal (general-purpose) PP has a relatively low melting point (165 to 173 ° C.), has heat-resistant adhesiveness, and is balanced.
上記、第二熱可塑性短繊維をPP短繊維とした場合、組み合わせる第一熱可塑性短繊維はポリエステル短繊維が望ましい。ポリエステル短繊維は軟化点と溶融点に所定の温度差(約20℃)を有して、熱成型性に優れているためである。 When the second thermoplastic short fiber is a PP short fiber, the first thermoplastic short fiber to be combined is preferably a polyester short fiber. This is because polyester short fibers have a predetermined temperature difference (about 20 ° C.) between the softening point and the melting point, and are excellent in thermoformability.
第一熱可塑性短繊維と前記第二熱可塑性短繊維との混合質量比は、前者/後者≒10/90〜80/20とすることが望ましい。接着繊維となる第二熱可塑性短繊維が過少では、熱成型品に形態保持性を確保し難い。骨格繊維である第一熱可塑性短繊維間に、接着繊維(第二熱可塑性短繊維)の不足による接合(bonding)不良が発生するためである。一方、第二熱可塑性過剰では不織布の特性(断熱性・防音性等)・風合いを確保し難い。骨格繊維の割合が少なくなり、溶融して樹脂化した接着繊維の熱成型品における占有比率が高くなって、風合いがプラスチック成型品(樹脂成型品)のそれに近くなる。 The mixing mass ratio of the first thermoplastic short fiber and the second thermoplastic short fiber is desirably the former / the latter≈10 / 90 to 80/20. If the amount of the second thermoplastic short fiber that becomes the adhesive fiber is too small, it is difficult to ensure the form retainability of the thermoformed product. This is because a bonding failure occurs due to a shortage of adhesive fibers (second thermoplastic short fibers) between the first thermoplastic short fibers which are skeleton fibers. On the other hand, if the second thermoplastic excess is obtained, it is difficult to ensure the properties (heat insulation, soundproofing, etc.) and texture of the nonwoven fabric. The ratio of the skeletal fibers decreases, the occupation ratio of the melted resin-bonded adhesive fibers in the thermoformed product increases, and the texture becomes close to that of a plastic molded product (resin molded product).
この成型用不織布は、短繊維相互の接合をニードルロック(ニードルパンチング)接合とすることが望ましい。他の機械的接合(例えば、ウォーターニードル:水交絡法、スピンレース法)でもよいが、ニードルロックの方が、針密度・打ち込み数を制御することにより、熱成型加工に適した伸び度及び熱成型時の取り扱い性に適した形態保持性を備えた成型用不織布を得易い。 In this molding nonwoven fabric, it is desirable that the short fibers are joined to each other by needle lock (needle punching) joining. Other mechanical joints (for example, water needle: water entanglement method, spin race method) may be used, but the needle lock is more suitable for thermoforming by controlling the needle density and the number of driving. It is easy to obtain a non-woven fabric for molding having a form retaining property suitable for handling at the time of molding.
本発明の成型用不織布は、第二熱可塑短繊維を部分溶融されて接着された予備溶融接着処理物であってもよい。 The non-woven fabric for molding of the present invention may be a pre-melt bonded treatment product in which the second thermoplastic short fibers are partially melted and bonded.
そして、本発明の技術的範囲は、上記各構成の熱成型用不織布で熱成型されてなる、フェンダーライナーやフロアカーペット等の熱成型品(自動車用部品)に及ぶ。 The technical scope of the present invention extends to thermoformed products (automobile parts) such as fender liners and floor carpets, which are thermoformed with the thermoforming nonwoven fabric having the above-described configurations.
また、同じく、上記各構成の熱成型用不織布を使用して熱成型により成型品を製造する成型品の製造方法にも及ぶ。 Further, the present invention also extends to a method for manufacturing a molded product in which a molded product is manufactured by thermoforming using the thermoforming nonwoven fabric having the above-described configurations.
そして、本発明のより望ましい実施態様の熱成型品用不織布の構成は、下記の如くになる。 And the structure of the nonwoven fabric for thermoformed articles of the more desirable embodiment of the present invention is as follows.
ポリエステル短繊維と熱収縮率約1.5%以下のPP短繊維とが実質的に均一混合状態で短繊維相互が接合(bonding)されてなる熱成型用不織布であって、
それらの混合質量比が前者/後者≒10/90〜80/20であることを特徴とする。
A non-woven fabric for thermoforming, in which short polyester fibers and PP short fibers having a heat shrinkage of about 1.5% or less are bonded in a substantially uniform mixed state.
Their mixing mass ratio is characterized by the former / the latter≈10 / 90 to 80/20.
以下、本発明を実施形態に基づいて詳細に説明する。 Hereinafter, the present invention will be described in detail based on embodiments.
本明細書で、「成型用不織布」とは、不織布を用いて成型工程に供給して熱成型加工を行う際に使用される不織布をいう。そして、該不織布自体は、形態保持性を有し、かつ、成型により自在な形に熱セット(形態固定)される必要がある。 In the present specification, the “molding nonwoven fabric” refers to a nonwoven fabric used when a nonwoven fabric is supplied to the molding process and subjected to thermoforming. And this nonwoven fabric itself has a form-retaining property, and needs to be heat-set (fixed form) into a free shape by molding.
このような不織布における骨格繊維として使用する第一熱可塑性短繊維(骨格繊維)としては、熱成型時における熱により熱セットされるが完全熱溶融しない熱特性を有すれば、特に限定されない。例えば、熱成型温度(型温)160〜200℃の場合、ポリエステル、ナイロン、高融点PP、レーヨン等の人造繊維(特に合成繊維)やジュート、ケナフ、サイザル等の天然繊維を挙げることができる。なお、短繊維断面の少なくとも外側の一部を接着繊維と同様な熱可塑性樹脂材料で形成した、バイメタル型、さや−芯型、キドニー型などの複合繊維(複合糸)も使用可能である。 The first thermoplastic short fiber (skeleton fiber) used as the skeleton fiber in such a nonwoven fabric is not particularly limited as long as it has heat characteristics that are set by heat at the time of thermoforming but are not completely melted. For example, when the thermoforming temperature (mold temperature) is 160 to 200 ° C., artificial fibers (particularly synthetic fibers) such as polyester, nylon, high melting point PP, and rayon, and natural fibers such as jute, kenaf, and sisal can be used. In addition, composite fibers (composite yarns) such as bimetal type, sheath-core type, and kidney type, in which at least part of the outer side of the short fiber cross section is formed of the same thermoplastic resin material as the adhesive fiber, can also be used.
特に、これらの内で、熱成型性に優れ、リサイクルの際の熱劣化も相対的に小さいポリエステル繊維(PET、PBT)が好ましい。 Among these, polyester fibers (PET, PBT) that are excellent in thermoformability and relatively small in thermal deterioration during recycling are preferable.
また、接着短繊維(溶融短繊維)を形成する第二熱可塑性短繊維としては、熱成型に際して、略完全溶融して、骨格短繊維相互を接着する作用を奏して、熱収縮率(JIS−L1015)が約2%以下、望ましくは約1.5%以下であれば、特に限定されない。例えば、ポリエチレン(PE)、ポリプロピレン(PP)、低融点ポリエステル(設計溶融温度:110℃、120℃、130℃)を挙げることができる。ここで、PPが望ましい。PEの場合は、耐熱性に乏しく、また、低融点ポリエステルの場合は、高価である。なお、汎用のPP繊維は、熱収縮率(JIS−L1015)で、3.0%前後である。 In addition, the second thermoplastic short fiber forming the adhesive short fiber (melted short fiber) is substantially completely melted at the time of thermoforming, and has an effect of adhering the skeleton short fibers to each other. If L1015) is about 2% or less, desirably about 1.5% or less, there is no particular limitation. For example, polyethylene (PE), polypropylene (PP), low melting point polyester (design melting temperature: 110 ° C., 120 ° C., 130 ° C.) can be mentioned. Here, PP is desirable. In the case of PE, the heat resistance is poor, and in the case of a low melting point polyester, it is expensive. The general-purpose PP fiber has a heat shrinkage rate (JIS-L1015) of around 3.0%.
そして、骨格短繊維と接着(溶融)短繊維との混合比(質量比)は、選択繊維及び要求される形態保持性・不織布性(風合い及び機能性(断熱性・防音・クッション性等))により異なる。すなわち、形態保持性(剛性)の見地からは、接着短繊維が多目とし、不織布性の観点からは、骨格短繊維を多目とする。 The mixing ratio (mass ratio) between the skeleton short fibers and the bonded (melted) short fibers is the selected fiber and the required shape retention / nonwoven fabric properties (texture and functionality (heat insulation, soundproofing, cushioning, etc.)) Varies by That is, from the standpoint of form retention (rigidity), the short adhesive fibers are many, and from the viewpoint of nonwoven fabric, the short skeleton fibers are many.
第二熱可塑性短繊維(接着短繊維)/第一熱可塑性短繊維(骨格短繊維)の質量混合比において、接着短繊維をPP、骨格短繊維をPETとした場合、一般的には約10/90〜80/20、さらに一般的には、約20/80〜70/30、最も一般的には、約30/70〜60/40の範囲から適宜選択する。実際の使用に当っては、不織布の目付の大きさや、骨格短繊維の熱的特性を考慮してその混合率を決定すればよい。 In the mass mixing ratio of the second thermoplastic short fiber (adhesive short fiber) / first thermoplastic short fiber (skeleton short fiber), when the adhesive short fiber is PP and the skeleton short fiber is PET, it is generally about 10 / 90 to 80/20, more generally about 20/80 to 70/30, and most typically about 30/70 to 60/40. In actual use, the mixing ratio may be determined in consideration of the basis weight of the nonwoven fabric and the thermal characteristics of the skeleton short fibers.
PP短繊維が過少では、得られる成型加工品の形態保持性が低下し本発明の目的を達成することができない。一方、該PP短繊維が過多では成型加工して得られる成型加工品が不織布としての風合いを損ねて樹脂成型加工品のようになるおそれがある。 If the PP short fibers are too small, the shape retention of the molded product obtained is lowered and the object of the present invention cannot be achieved. On the other hand, if the PP short fibers are excessive, a molded product obtained by molding may lose the texture as a nonwoven fabric and become a resin molded product.
また、本発明で使用する前記のPP短繊維には、熱収縮率が約2.0%以下、望ましくは、約1.5%以下、さらには望ましくは約1.3%以下であるものを使用する必要がある。該PP短繊維の熱収縮率が、約1.5%(特に約2.0%)を超える場合には、従来の不織布のように成型加工の際に不織布自体が大きく収縮するので成型加工が困難となり本発明の目的を達成することが困難となる。 The PP short fibers used in the present invention have a heat shrinkage of about 2.0% or less, preferably about 1.5% or less, more preferably about 1.3% or less. Need to use. When the thermal contraction rate of the PP short fibers exceeds about 1.5% (especially about 2.0%), the nonwoven fabric itself is greatly shrunk during the molding process as in the case of the conventional nonwoven fabric, so that the molding process is not performed. It becomes difficult to achieve the object of the present invention.
このような物性を有するPP短繊維は、ポリマーとしては従来から公知のPPのポリマーを使用することができるが、このポリマーを溶融紡糸して延伸加工を施す際して、延伸倍率を通常のそれより大幅に低くすることにより製造することができる。すなわち、延伸倍率を約130〜180%、望ましくは約140〜160%の範囲で設定する。低熱収縮率の見地からは、延伸倍率は相対的に低い方が望ましいが、低すぎると、繊維に所定の強度を得難くなって、混綿工程やカード工程において、繊維切れが発生しやすくなる。このため、熱収縮率は、要求繊維強度のバランスから、上記範囲内で適宜設定する。 For the PP short fibers having such physical properties, a conventionally known PP polymer can be used as the polymer. However, when the polymer is melt-spun and subjected to a drawing process, the draw ratio is set to a normal one. It can be manufactured by making it much lower. That is, the draw ratio is set in the range of about 130 to 180%, desirably about 140 to 160%. From the viewpoint of a low heat shrinkage rate, it is desirable that the draw ratio is relatively low. However, if the draw ratio is too low, it becomes difficult to obtain a predetermined strength in the fiber, and fiber breakage is likely to occur in the blending process and the carding process. For this reason, the heat shrinkage rate is appropriately set within the above range from the balance of the required fiber strength.
本発明に使用するPP短繊維は、成型加工時には溶融して不織布を形成する他の第一熱可塑性短繊維(ポリエステル短繊維:骨格繊維)の繊維間に浸透し、該骨格繊維同士を接着(接合)せしめる様に機能し、成型加工が完了した後には形態保持のための樹脂として機能する。 PP short fibers used in the present invention permeate between fibers of other first thermoplastic short fibers (polyester short fibers: skeletal fibers) that melt during molding to form a nonwoven fabric, and bond the skeleton fibers together ( It functions as a resin for holding the shape after the molding process is completed.
このためには成型加工温度としてはPPの溶融温度以上の高温で行うことが必要であり、このような高温度加工にもかかわらず不織布自体はPP短繊維に起因して収縮しないことが求められる。低収縮(熱収縮率約2.0%以下、望ましくは約1.5%以下)のPP短繊維はかかる要求を満たすことは、公知ではなく、本発明者が、試行錯誤の結果知見したものである。 For this purpose, it is necessary to carry out the molding process at a temperature higher than the melting temperature of PP, and it is required that the nonwoven fabric itself does not shrink due to PP short fibers despite such a high temperature process. . It is not publicly known that PP short fibers having a low shrinkage (thermal shrinkage of about 2.0% or less, preferably about 1.5% or less) satisfy such a requirement, and the present inventors have found out as a result of trial and error. It is.
なお、骨格繊維及び溶融繊維をそれぞれ形成する第一・第二熱可塑性短繊維の各繊度及びカット長は、不織布に対する要求特性により異なるが、不織布を製造する際のカードの通過性を考慮して、繊度:約3.3〜11.0dtexの、カット長(ステープル長):約51〜76mmの、各範囲とする。 The fineness and cut length of the first and second thermoplastic short fibers forming the skeletal fiber and the molten fiber differ depending on the required properties for the nonwoven fabric, but considering the card's passability when manufacturing the nonwoven fabric. Fineness: about 3.3 to 11.0 dtex, cut length (staple length): about 51 to 76 mm.
このようなPP短繊維を含む短繊維混合物(不織布原料)は、通常の方法により混綿工程に供給し、さらに流綿工程を経てウェブに形成する。こうして、PP短繊維をウェブ中に均一に分散される。次いでクロスレイヤー工程により短繊維シートを形成し、該短繊維シートを用いて不織布を製造することができる。 Such a short fiber mixture (nonwoven fabric raw material) containing PP short fibers is supplied to a blending process by a normal method, and further formed into a web through a fluffing process. Thus, the PP short fibers are uniformly dispersed in the web. Subsequently, a short fiber sheet can be formed by a cross layer process, and a nonwoven fabric can be manufactured using this short fiber sheet.
不織布を製造するには、ウォーターニードル(流水交絡法、スピンレースプロセス)を用いて加工する方法や金属のニードル(ニードル針)を用いて加工する方法等の公知の方法が例示される。 In order to manufacture the nonwoven fabric, known methods such as a method of processing using a water needle (flowing water entanglement method, spin race process) and a method of processing using a metal needle (needle needle) are exemplified.
ウォーターニードルを用いた加工方法による不織布では、成型加工時に不織布の伸度を得難く、成型加工品の形状(曲率半径が小さいような場合)によっては成型が困難となることがある。 In the nonwoven fabric by the processing method using a water needle, it is difficult to obtain the elongation of the nonwoven fabric during the molding process, and molding may be difficult depending on the shape of the molded product (when the radius of curvature is small).
一方、ニードル針を用いた加工方法による不織布は適度の伸度と形態保持性が得られるので特に成型用不織布としては好ましい態様である。 On the other hand, a non-woven fabric produced by a processing method using a needle needle is a preferred embodiment particularly as a non-woven fabric for molding because moderate elongation and shape retention are obtained.
こうして調製した熱成型用不織布12は、下記熱成型工程(図2参照)を経て、図1に示すような成形品(フェンダーライナー)2とする。なお、図1において、4は補強リブ、6は車体取付けようボルト孔である。
The
熱赤外ヒータ(電熱ヒータ)14等により、表面温度を設定温度になるまで加熱後、連続的に、雌・雄型16、18の間に供給して型閉し、所定時間、加圧・冷却後、型開・離型する。
After heating with a thermal infrared heater (electric heater) 14 or the like until the surface temperature reaches the set temperature, it is continuously supplied between the female and
上記において各作業条件は、第一・第二熱可塑性短繊維の種類、混合比率、成形品の厚み等により異なる。例えば、第一熱可塑性繊維/第二熱可塑性繊維=汎用PET/PP(50/50)のとき、繊維表面加熱温度:170〜200℃、型閉時間:30〜60s、型内水冷とする。 In the above, each working condition varies depending on the types of first and second thermoplastic short fibers, the mixing ratio, the thickness of the molded product, and the like. For example, when the first thermoplastic fiber / second thermoplastic fiber = general-purpose PET / PP (50/50), the fiber surface heating temperature: 170 to 200 ° C., mold closing time: 30 to 60 s, and in-mold water cooling.
なお、成形用不織布12は、電熱ヒータ、マイクロ波加熱、又は熱風加熱を、適宜、単独又は組み合わせて加熱処理をして放置したもの、いわゆる、予備溶融接着処理物であってもよい。この予備溶融接着処理の作業条件は、例えば、前述のPET/PPの組み合わせの場合、加熱手段、繊維の種類/混合比率により異なるが、雰囲気温度:約180〜200℃×処理時間:約30s〜5minとする。この予備溶融接着処理により、すなわち、不織布に含まれるPP短繊維をある程度溶融させ不織布を構成する短繊維同士が接着することにより、成型用不織布の取り扱い性が向上するとともに、加熱成型工程の時間の短縮も図ることができる。
In addition, the
以下、実施例により本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
なお、本発明で云う熱収縮率の測定方法は、JIS−L1015に記載された方法に準拠して行い、このとき試験条件は、つかみ間隔:25mm、処理温度:145℃×5minとした。 The method for measuring the heat shrinkage rate according to the present invention was performed in accordance with the method described in JIS-L1015. At this time, the test conditions were a gripping interval: 25 mm and a processing temperature: 145 ° C. × 5 min.
<実施例1>
不織布の原料となる短繊維として、市販で得られるポリエステル短繊維(PET:6.6dtex×64mm)を全短繊維の60質量%の割合で用い、熱収縮率(JIS−L)1.3%である低熱収縮性のPP短繊維(6.6dtex×64mm)を全短繊維の40質量%の割合で用いて、混綿工程に供給して両繊維を混合した後、次いで該短繊維をカードに供給してウェブを作り、該ウェブをクロスレイヤーで積層させて短繊維シートにした後、通常のニードルパンチ加工を施した不織布を、雰囲気温度:200℃×時間:4minの条件下で予備接合処理をして成型用不織布とした。
<Example 1>
As a short fiber used as a raw material of the nonwoven fabric, a commercially available polyester short fiber (PET: 6.6 dtex × 64 mm) is used at a ratio of 60% by mass of the total short fiber, and a heat shrinkage rate (JIS-L) is 1.3%. The low heat-shrinkable PP short fibers (6.6 dtex × 64 mm) are used in a proportion of 40% by mass of the total short fibers and fed to the cotton blending process to mix both the fibers. A web is formed by feeding, the web is laminated with a cross layer to form a short fiber sheet, and then a non-woven fabric subjected to normal needle punching is pre-bonded under conditions of ambient temperature: 200 ° C. × time: 4 min. To form a nonwoven fabric for molding.
該成型用不織布を、裁断して、フリーの状態にして乾熱190℃×5minの条件下で加熱収縮試験を行ったが収縮は全く見られなかった。 The molding nonwoven fabric was cut into a free state and subjected to a heat shrinkage test under conditions of dry heat of 190 ° C. × 5 min, but no shrinkage was observed.
また、同じ成型用不織布を用いて、通常の熱成型工程に供給し、遠赤外ヒータで表面加熱温度:190℃になるまで加熱したものを、金型で成型加工を行ったが、収縮等の問題は全く発生せず所定の成型加工品が得られた。ここで、成型加工の条件は、型締め時間:40s、金型内水冷とした。 Also, using the same non-woven fabric for molding, it was supplied to a normal thermoforming process and heated with a far-infrared heater until the surface heating temperature was 190 ° C., and then molded with a mold. This problem did not occur at all, and a predetermined molded product was obtained. Here, the molding process conditions were a mold clamping time: 40 s and water cooling in the mold.
<比較例1>
不織布の原料となる短繊維として、実施例1で使用したと同様のポリエステル短繊維(6.6dtex×64mm)を全短繊維の60質量%の割合で用い、市販で得た通常のPP短繊維(6.6dtex×64mm、熱収縮率:2.5%)を全短繊維の40質量%の割合で用いて行う他は、実施例1と同様に行って成形用不織布を得た。この不織布を用いて実施例1と同様の条件で熱処理を行ったところ、収縮率として約50%の収縮が発生し成型用不織布として使用することができなかった。
<Comparative Example 1>
As short fibers used as a raw material for the nonwoven fabric, the same polyester short fibers as used in Example 1 (6.6 dtex × 64 mm) were used in a proportion of 60% by mass of the total short fibers, and commercially available normal PP short fibers. A nonwoven fabric for molding was obtained in the same manner as in Example 1 except that (6.6 dtex × 64 mm, heat shrinkage rate: 2.5%) was used at a ratio of 40% by mass of all short fibers. When this non-woven fabric was heat-treated under the same conditions as in Example 1, a shrinkage of about 50% occurred as the shrinkage rate, and could not be used as a non-woven fabric for molding.
このようにして得られる本発明の成型用不織布は、車輌用の部材等として広く使用することができ、特にフェンダーライナーやフロアーカーペット等の防音/遮音性が要求される自動車用内外装品への用途展開が期待されている。 The nonwoven fabric for molding of the present invention obtained in this way can be widely used as a member for vehicles, and is particularly suitable for interior and exterior products for automobiles that require soundproofing / sound insulation such as fender liners and floor carpets. Application expansion is expected.
12・・・熱成型用不織布
14・・・遠赤外ヒータ
16・・・雄型(上型)
18・・・雌型(下型)
12 ... Nonwoven fabric for thermoforming 14 ... Far
18 ... Female mold (lower mold)
Claims (9)
前記第二熱可塑性短繊維が、熱収縮率(JIS−L1015)約2%以下を示すものであることを特徴とする熱成型用不織布。 The first short thermoplastic fibers having a high melting point and the second short thermoplastic fibers having a low melting point exhibiting a melt bonding (bonding) action at the time of thermoforming are bonded to each other in a substantially uniform mixed state. A non-woven fabric for thermoforming,
The non-woven fabric for thermoforming, wherein the second thermoplastic short fiber exhibits a heat shrinkage rate (JIS-L1015) of about 2% or less.
それらの混合質量比が前者/後者≒10/90〜80/20であることを特徴とする熱成型用不織布。
A non-woven fabric for thermoforming, in which short polyester fibers and PP short fibers having a heat shrinkage of about 1.5% or less are bonded in a substantially uniform mixed state.
A non-woven fabric for thermoforming, wherein the mixing mass ratio is the former / the latter≈10 / 90 to 80/20.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005120068A JP2006299441A (en) | 2005-04-18 | 2005-04-18 | Nonwoven fabric for thermoforming |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005120068A JP2006299441A (en) | 2005-04-18 | 2005-04-18 | Nonwoven fabric for thermoforming |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006299441A true JP2006299441A (en) | 2006-11-02 |
Family
ID=37468076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005120068A Withdrawn JP2006299441A (en) | 2005-04-18 | 2005-04-18 | Nonwoven fabric for thermoforming |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006299441A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013145960A1 (en) * | 2012-03-28 | 2013-10-03 | 株式会社オートネットワーク技術研究所 | Wire harness protection material and wire harness |
JP2014005573A (en) * | 2012-06-26 | 2014-01-16 | Ohtsuka Co Ltd | Method for producing processed nonwoven fabric |
CN105442185A (en) * | 2009-03-31 | 2016-03-30 | 3M创新有限公司 | Non-woven fiber materials with stable size, manufacture method thereof, and usage method thereof |
KR101715712B1 (en) * | 2016-09-23 | 2017-03-22 | 길한산업 주식회사 | Method for manufacturing of polyester staple fiber and non-woven using thereof |
JP2021195645A (en) * | 2020-06-11 | 2021-12-27 | 前田工繊株式会社 | Sheet material, composite material using the same, multilayer molded article using the same, and sheet material manufacturing method |
-
2005
- 2005-04-18 JP JP2005120068A patent/JP2006299441A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105442185A (en) * | 2009-03-31 | 2016-03-30 | 3M创新有限公司 | Non-woven fiber materials with stable size, manufacture method thereof, and usage method thereof |
WO2013145960A1 (en) * | 2012-03-28 | 2013-10-03 | 株式会社オートネットワーク技術研究所 | Wire harness protection material and wire harness |
JP2013207873A (en) * | 2012-03-28 | 2013-10-07 | Auto Network Gijutsu Kenkyusho:Kk | Wire harness protective material and wire harness |
CN104205539A (en) * | 2012-03-28 | 2014-12-10 | 株式会社自动网络技术研究所 | Wire harness protection material and wire harness |
US9362726B2 (en) | 2012-03-28 | 2016-06-07 | Autonetworks Technologies, Ltd. | Wiring harness protection member and wiring harness |
DE112013001739B4 (en) | 2012-03-28 | 2024-03-21 | Autonetworks Technologies, Ltd. | Wire harness protection part and wire harness |
JP2014005573A (en) * | 2012-06-26 | 2014-01-16 | Ohtsuka Co Ltd | Method for producing processed nonwoven fabric |
KR101715712B1 (en) * | 2016-09-23 | 2017-03-22 | 길한산업 주식회사 | Method for manufacturing of polyester staple fiber and non-woven using thereof |
JP2021195645A (en) * | 2020-06-11 | 2021-12-27 | 前田工繊株式会社 | Sheet material, composite material using the same, multilayer molded article using the same, and sheet material manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4946738A (en) | Non-woven fibrous product | |
US4418031A (en) | Moldable fibrous mat and method of making the same | |
CN102341296B (en) | Laminate for vehicular exterior trim, process for producing same, and vehicular exterior trim | |
EP3408141B1 (en) | Lofty thermoset felt for noise attenuation | |
WO2016166218A1 (en) | Light weight engine mounted trim part | |
JP2006299441A (en) | Nonwoven fabric for thermoforming | |
WO2018088135A1 (en) | Molded article, and compression molding method | |
KR101901235B1 (en) | Lightweight and sound absorbing, interior materials for automobile containing waste fibers and their preparation | |
US5948712A (en) | Fabric for trim base member | |
CN104723570B (en) | Method for producing an economical structural component, in particular for a motor vehicle | |
KR20190091447A (en) | Manufacturing method of semifinished product for automotive equipment | |
JP6498454B2 (en) | Sheet for multilayer molding and sheet molded body | |
JP6046930B2 (en) | Fiber mat and laminate | |
TWI694926B (en) | Vehicle interior material and manufacturing method of the same | |
US20040235377A1 (en) | Vehicle interior trim component of basalt fibers and polypropylene binder and method of manufacturing the same | |
KR20120094890A (en) | Moulded product for automotive panels | |
KR101817551B1 (en) | Scrim reinforced with natural fiber materals and manufacturing method | |
JP5453061B2 (en) | Ventilation duct | |
JP2871507B2 (en) | Manufacturing method of automotive interior materials | |
JP4406496B2 (en) | Felt material for vehicles | |
KR101817550B1 (en) | Headlining reinforce automobile parts with jute fiber and manufacturing metho | |
JP2016188452A (en) | Nonwoven fabric for thermo-formed article | |
CN204452268U (en) | Lining components | |
JP5764078B2 (en) | Interior materials for vehicles | |
JP2008056186A (en) | Foamed laminated sheet for vehicular interior material, and vehicular interior material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080701 |