JP2006298832A - High-purity o-(5,6,7,8-tetrahydro-2-naphthyl)-n-(6-methoxy-2-pyridyl)-n-methylthiocarbamate and its preparation method - Google Patents
High-purity o-(5,6,7,8-tetrahydro-2-naphthyl)-n-(6-methoxy-2-pyridyl)-n-methylthiocarbamate and its preparation method Download PDFInfo
- Publication number
- JP2006298832A JP2006298832A JP2005123847A JP2005123847A JP2006298832A JP 2006298832 A JP2006298832 A JP 2006298832A JP 2005123847 A JP2005123847 A JP 2005123847A JP 2005123847 A JP2005123847 A JP 2005123847A JP 2006298832 A JP2006298832 A JP 2006298832A
- Authority
- JP
- Japan
- Prior art keywords
- thiocarbamate
- tetrahydro
- methoxy
- naphthyl
- pyridyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Pyridine Compounds (AREA)
Abstract
Description
本発明は無機塩含有量が低減した高品質なO−(5,6,7,8−テトラヒドロ−2−ナフチル)−N−(6−メトキシ−2−ピリジル)−N−メチルチオカーバメート、及びその製造方法に関するものである。 The present invention relates to high-quality O- (5,6,7,8-tetrahydro-2-naphthyl) -N- (6-methoxy-2-pyridyl) -N-methylthiocarbamate having a reduced inorganic salt content, and its It relates to a manufacturing method.
下記一般式(1)で示されるO−(5,6,7,8−テトラヒドロ−2−ナフチル)−N−(6−メトキシ−2−ピリジル)−N−メチルチオカーバメート(以下「目的チオカーバメート」と略記する)は、抗真菌剤の有効成分として知られている。(例えば特許文献1参照) O- (5,6,7,8-tetrahydro-2-naphthyl) -N- (6-methoxy-2-pyridyl) -N-methylthiocarbamate represented by the following general formula (1) (hereinafter “target thiocarbamate”) Are abbreviated as “active ingredients” of antifungal agents. (For example, see Patent Document 1)
目的チオカーバメートを医薬品の原料として使用するためには、目的チオカーバメートは高純度であることが必要であり、特に無機塩の残存は皮膚刺激性の観点から好ましくなく、従来品よりも更に無機塩の少ない目的チオカーバメートが求められている。 In order to use the target thiocarbamate as a raw material for pharmaceutical products, the target thiocarbamate needs to have a high purity. In particular, the remaining inorganic salt is not preferred from the viewpoint of skin irritation, and is more inorganic than conventional products. There is a need for thiocarbamates with low target.
従来、無機塩の少ない目的チオカーバメートの製造方法としては、C1〜C3のアルコール−水の混合溶媒中、原料O−(5,6,7,8−テトラヒドロ−2−ナフチル)クロロチオホルメイトを2−メトキシ−6−メチルアミノピリジンと過剰の脱ハロゲン化水素剤存在下で反応させるか、又は、C1〜C3のアルコール−水の混合溶媒中、原料N−メチル−N−(6−メトキシ−2−ピリジル)カルバモイルクロライドを5,6,7,8−テトラヒドロ−2−ナフトールと過剰の脱ハロゲン化水素剤存在下で反応させた後、水洗し、エタノール、イソプロピルアルコール等のC1〜C3のアルコールを用いて再結晶することにより目的チオカーバメートが得られることが知られている。(例えば、特許文献2参照)
しかし、従来の連続降温による自然放冷によって得られる目的チオカーバメートは700ppm程度の無機塩を含有していた。
Conventionally, as a method for producing a target thiocarbamate having a small amount of inorganic salt, a raw material O- (5,6,7,8-tetrahydro-2-naphthyl) chlorothioformate is mixed in a C1-C3 alcohol-water mixed solvent. Reaction with 2-methoxy-6-methylaminopyridine in the presence of an excess of a dehydrohalogenating agent, or starting material N-methyl-N- (6-methoxy-) in a mixed solvent of C1-C3 alcohol-water 2-pyridyl) carbamoyl chloride was reacted with 5,6,7,8-tetrahydro-2-naphthol in the presence of an excess of a dehydrohalogenating agent, washed with water, and C1-C3 alcohols such as ethanol and isopropyl alcohol. It is known that the desired thiocarbamate can be obtained by recrystallization using (For example, see Patent Document 2)
However, the target thiocarbamate obtained by natural cooling by conventional continuous cooling has contained about 700 ppm of inorganic salt.
一方、工業的製造設備としては一般にステンレス鋼等の金属製材料が用いられており、それらから微量の鉄をはじめとする重金属が溶出する場合があった。それらの重金属は水酸化物または炭酸塩として無機塩と共に残存するが、全ての工程を非金属材料からなる製造設備で工業的な製造を行うことは現実的ではなく、製造方法を工夫することにより重金属含有量を低減することが課題であった。 On the other hand, metal materials such as stainless steel are generally used as industrial production equipment, and heavy metals such as trace amounts of iron may be eluted from them. Although these heavy metals remain together with inorganic salts as hydroxides or carbonates, it is not practical to carry out industrial production in production equipment made of non-metallic materials for all processes, and by devising production methods The problem was to reduce the heavy metal content.
本発明は医薬品の有効成分として使用するために無機塩及び重金属を低減した高品質な目的チオカーバメート、及びその製造方法を提供するものである。 The present invention provides a high-quality target thiocarbamate with reduced inorganic salts and heavy metals for use as an active ingredient of pharmaceuticals, and a method for producing the same.
本発明者らは、目的チオカーバメートの金属含有量の低減について鋭意検討を重ねた結果、O−(5,6,7,8−テトラヒドロ−2−ナフチル)クロロチオホルメイトと2−メトキシ−6−メチルアミノピリジンの反応、又はN−メチル−N−(6−メトキシ−2−ピリジル)カルバモイルクロライドと5,6,7,8−テトラヒドロ−2−ナフトールの反応により得られた目的チオカーバメートを水洗、溶媒に溶解し、特定の孔径のフィルターを用いて不溶物をろ過した後、50〜70℃の温度範囲で1時間以上保持する条件下で再結晶化するという方法で、結晶中に含まれる無機塩の含有量が300ppm以下で、重金属の含有量も2ppm未満である目的チオカーバメートが得られることを見出し、本発明を完成するに至ったものである。 As a result of intensive studies on reducing the metal content of the target thiocarbamate, the present inventors have found that O- (5,6,7,8-tetrahydro-2-naphthyl) chlorothioformate and 2-methoxy-6. Washing the target thiocarbamate obtained by the reaction of -methylaminopyridine or the reaction of N-methyl-N- (6-methoxy-2-pyridyl) carbamoyl chloride with 5,6,7,8-tetrahydro-2-naphthol , By dissolving in a solvent, filtering insolubles using a filter with a specific pore size, and then recrystallizing under a condition of holding in a temperature range of 50 to 70 ° C. for 1 hour or longer. It has been found that a target thiocarbamate having an inorganic salt content of 300 ppm or less and a heavy metal content of less than 2 ppm can be obtained, and the present invention has been completed. That.
以下に本発明を詳細に説明する。 The present invention is described in detail below.
目的チオカーバメートの不純物として、従来用いられている目的チオカーバメートの無機塩の含有量は全て1000ppm以下あったが、下限は300ppmまでであり、本発明の目的チオカーバメートほどの高純度のものまでは要求されていなかった。 As the impurities of the target thiocarbamate, the content of the inorganic salt of the target thiocarbamate used in the past was all 1000 ppm or less, but the lower limit was up to 300 ppm. It was not requested.
本発明の目的チオカーバメートは一般金属類からなる無機塩の含有量が300ppm以下であり、特に100ppm以下のものが好ましい。 The object thiocarbamate of the present invention has an inorganic salt content of 300 ppm or less, particularly preferably 100 ppm or less.
更に、本発明の目的チオカーバメートに含まれる重金属の含有量は2ppm未満であることが好ましく、特に0.9ppm未満であることが好ましい。 Furthermore, the content of heavy metal contained in the object thiocarbamate of the present invention is preferably less than 2 ppm, particularly preferably less than 0.9 ppm.
次に本発明の目的チオカーバメートの製造方法について説明する。 Next, a method for producing the object thiocarbamate of the present invention will be described.
本発明の目的チオカーバメートは、O−(5,6,7,8−テトラヒドロ−2−ナフチル)クロロチオホルメイトと2−メトキシ−6−メチルアミノピリジンの反応、又はN−メチル−N−(6−メトキシ−2−ピリジル)カルバモイルクロライドと5,6,7,8−テトラヒドロ−2−ナフトールの反応によって得られる粗目的チオカーバメートを、水洗後、溶媒中に溶解し、不溶物をろ過した後、再結晶化を50〜70℃の温度範囲で1時間以上保持する条件で再結晶化させるものである。 The object thiocarbamate of the present invention is a reaction of O- (5,6,7,8-tetrahydro-2-naphthyl) chlorothioformate with 2-methoxy-6-methylaminopyridine, or N-methyl-N- ( 6-Methoxy-2-pyridyl) carbamoyl chloride and 5,6,7,8-tetrahydro-2-naphthol crude thiocarbamate obtained by washing with water, dissolving in a solvent, and filtering insoluble matter The recrystallization is performed under the condition that the recrystallization is maintained in a temperature range of 50 to 70 ° C. for 1 hour or more.
原料として用いるO−(5,6,7,8−テトラヒドロ−2−ナフチル)クロロチオホルメイト、N−メチル−N−(6−メトキシ−2−ピリジル)カルバモイルクロライド、2−メトキシ−6−メチルアミノピリジン、5,6,7,8−テトラヒドロ−2−ナフトールは公知の方法で製造することが出来る。(例えば特許第1364461号、特許第2086706号他参照)
これらの原料の反応条件は、従来の条件で良く、例えば、特許文献1、又は特許文献2に典型的な条件が例示されている。
O- (5,6,7,8-tetrahydro-2-naphthyl) chlorothioformate, N-methyl-N- (6-methoxy-2-pyridyl) carbamoyl chloride, 2-methoxy-6-methyl used as raw material Aminopyridine, 5,6,7,8-tetrahydro-2-naphthol can be produced by a known method. (For example, refer to Japanese Patent No. 1364461, Japanese Patent No. 2086706, etc.)
The reaction conditions of these raw materials may be conventional conditions, and typical conditions are exemplified in Patent Document 1 or Patent Document 2, for example.
上記の反応で得られた粗結晶はまず水洗するが、水洗に用いられる水は、反応後得られた粗結晶を充分に分散して懸濁状態で洗える量が必要であり、得られた粗結晶に対して5倍量(重量比)以上であることが好ましい。一方、あまり多量の水を用いてもそれ以上の効果は得られず、また粗結晶の流出による収率低下の原因となるため、好ましくは6〜10倍量(重量比)の範囲で十分である。 The crude crystals obtained by the above reaction are first washed with water, but the water used for the water washing needs to have an amount that allows the crude crystals obtained after the reaction to be sufficiently dispersed and washed in a suspended state. The amount is preferably 5 times (weight ratio) or more with respect to the crystal. On the other hand, even if a large amount of water is used, no further effect can be obtained, and it may cause a decrease in yield due to the outflow of the crude crystals. Therefore, a range of 6 to 10 times the amount (weight ratio) is sufficient. is there.
次に水洗された粗結晶を溶媒中でろ過と再結晶によって精製するが、再結晶に用いられる溶媒は特に限定されず、例えば(1)C1〜C3の直鎖状及び側鎖を持つ鎖状脂肪族アルコール類、(2)C1〜C3の直鎖状及び側鎖を持つ鎖状脂肪族カルボン酸類とC1〜C3の直鎖状及び側鎖を持つ鎖状脂肪族アルコール類の組合せ、(3)C4〜C18の直鎖状及び側鎖を持つ鎖状脂肪族炭化水素類及とベンゼン、トルエン、o−,m−,p−キシレン、エチルベンゼン、等の芳香族炭化水素類との組合せ、(4)アセトニトリル等のニトリル類、等が好ましい溶媒として例示できる。これらの溶媒うち、本発明のチオカーバメートの再結晶における精製効果、及び工業的な入手及び単独成分で使用できる等の点から、特にC1〜C3アルコールを用いることが好ましい。 Next, the crude crystals washed with water are purified by filtration and recrystallization in a solvent, but the solvent used for the recrystallization is not particularly limited. For example, (1) linear chain having C1 to C3 and chain having side chains (2) a combination of a C1-C3 linear and side chain aliphatic carboxylic acid and a C1-C3 linear and side chain aliphatic alcohol (3) ) Combinations of C4-C18 linear and side chain aliphatic hydrocarbons and aromatic hydrocarbons such as benzene, toluene, o-, m-, p-xylene, ethylbenzene, 4) Nitriles such as acetonitrile can be exemplified as preferred solvents. Among these solvents, it is particularly preferable to use C1 to C3 alcohols from the viewpoints of the purification effect in recrystallization of the thiocarbamate of the present invention, industrial availability, and use as a single component.
用いる溶媒の量は、例えばC1〜C3アルコールの場合、精製する目的チオカーバメート結晶に対して4倍量(重量比)以上が好ましい。一方、溶媒をあまり多量に使用すると最終精製物の収量が減少するため経済的ではなく、4〜8倍量(重量比)が適当である。 For example, in the case of a C1-C3 alcohol, the amount of the solvent used is preferably four times (weight ratio) or more with respect to the target thiocarbamate crystals to be purified. On the other hand, if the solvent is used in a large amount, the yield of the final purified product is reduced, so it is not economical, and 4 to 8 times (weight ratio) is appropriate.
精製するチオカーバメート結晶を溶媒に溶解する温度は、用いる有機溶媒の種類及び沸点により異なるが、例えば溶媒がC1〜C3アルコールの場合、70℃以上でチオカーバメート結晶を全て溶解することが可能である。 The temperature at which the thiocarbamate crystals to be purified are dissolved in the solvent varies depending on the type and boiling point of the organic solvent to be used. For example, when the solvent is a C1-C3 alcohol, it is possible to dissolve all thiocarbamate crystals at 70 ° C. or higher. .
ろ過の方法は特に限定されないが、上記の溶解した溶液から結晶が晶析しない温度でグラスフィルター、メンブレンフィルター等のフィルターやろ過器等に付随の中空糸フィルター又はろ紙等を用いて不溶物のろ過が例示できる。フィルターの孔径は、20μm以下の孔径を有するもの、特に0.1〜1μmの孔径を有するものが好ましい。一方、20μmを越える大きな孔径を有するものは無機塩類の除去率が低下する。 The method of filtration is not particularly limited, but the insoluble matter is filtered using a hollow fiber filter or filter paper attached to a filter such as a glass filter or a membrane filter or a filter at a temperature at which crystals do not crystallize from the dissolved solution. Can be illustrated. The pore size of the filter is preferably 20 μm or less, particularly preferably 0.1 to 1 μm. On the other hand, those having a large pore diameter exceeding 20 μm decrease the removal rate of inorganic salts.
本発明の目的チオカーバメートを得るには、再結晶の温度制御が重要である。再結晶化の初期温度が50℃に達しない低温では晶析が急激に進み純度が低下するため、本発明の純度の目的チオカーバメートは得られない。一方、再結晶化の初期温度が100℃を超える高い温度では目的チオカーバメートが溶融して一部分解も生ずるため、不純物が取込まれ易く、また粒径も不揃いとなり易い。そこで本発明の目的チオカーバメートを得るためには再結晶化開始温度が50℃〜100℃の範囲から開始することが好ましい。 In order to obtain the object thiocarbamate of the present invention, temperature control of recrystallization is important. At low temperatures where the initial temperature of recrystallization does not reach 50 ° C., crystallization rapidly proceeds and purity decreases, so that the target thiocarbamate of the purity of the present invention cannot be obtained. On the other hand, when the initial temperature of recrystallization exceeds 100 ° C., the target thiocarbamate melts and partially decomposes, so that impurities are easily taken in, and the particle diameters are also likely to be uneven. Therefore, in order to obtain the object thiocarbamate of the present invention, it is preferable that the recrystallization start temperature starts from a range of 50 ° C to 100 ° C.
一方、本発明の方法は再結晶化を50〜70℃の温度範囲で1時間以上保持する条件で再結晶化させるものである。50〜70℃の温度範囲のある一定温度で1時間以上保持することにより目的チオカーバメートに含有される無機塩が低減される原因は明らかでないが、この温度領域で一定温度に保つことによって目的チオカーバメートは選択的に析出され、無機塩が低減される効果があるものと考えられる。保持温度は1時間以上あれば十分であるが、好ましくは2〜10時間程度までである。保持時間がこれ以上長くても、目的チオカーバメートの無機塩の低減効果は頭打ちとなり、なおかつ生産性が低くなるため、保持時間の上限は10〜50時間程度までである。 On the other hand, in the method of the present invention, recrystallization is performed under the condition that the recrystallization is maintained in a temperature range of 50 to 70 ° C. for 1 hour or more. Although it is not clear why the inorganic salt contained in the target thiocarbamate is reduced by holding at a certain temperature in the temperature range of 50 to 70 ° C. for 1 hour or more, the target thiocarbamate is maintained at this temperature range. It is considered that carbamate is selectively precipitated and has an effect of reducing inorganic salts. A holding temperature of 1 hour or more is sufficient, but it is preferably about 2 to 10 hours. Even if the holding time is longer than this, the effect of reducing the inorganic salt of the target thiocarbamate reaches a peak and the productivity is lowered, so the upper limit of the holding time is about 10 to 50 hours.
本発明の再結晶化において、一定温度保持する以外の降温速度の条件は特に限定はなく、本発明の温度制御を行う限り比較的高速で降温させても金属含有量の少ない目的チオカーバメートが得られる。50〜70℃での保持温度以外の室温までの降温時間はトータルで1〜20時間、2〜10時間程度で十分に金属含有量の少ない目的チオカーバメートを得ることができる。50〜70℃の温度範囲で1時間以上保持すれば、全体として急速降温処理しても構わない本発明の方法は、生産性の点からも優れる。 In the recrystallization of the present invention, there are no particular limitations on the temperature decrease rate other than maintaining a constant temperature, and the target thiocarbamate with a low metal content can be obtained even if the temperature is decreased at a relatively high rate as long as the temperature control of the present invention is performed. It is done. The target thiocarbamate with a sufficiently low metal content can be obtained when the temperature lowering time to room temperature other than the holding temperature at 50 to 70 ° C. is about 1 to 20 hours and 2 to 10 hours in total. The method of the present invention, which may be subjected to rapid temperature reduction as a whole, is excellent in terms of productivity as long as it is maintained in a temperature range of 50 to 70 ° C. for 1 hour or longer.
孔径の小さいフィルターを用いたろ過と一定温度範囲に維持した再結晶を組み合わせることにより、無機塩の含有量が300ppm以下、重金属含有量が2ppm未満の目的チオカーバメートが製造できる。無機塩類、重金属類の少ない目的チオカーバメートは、金属アレルギーのリスクのない医薬品原料として特に優れる。 By combining filtration using a filter having a small pore size and recrystallization maintained within a certain temperature range, a target thiocarbamate having an inorganic salt content of 300 ppm or less and a heavy metal content of less than 2 ppm can be produced. Thiocarbamate, which has few inorganic salts and heavy metals, is particularly excellent as a pharmaceutical raw material without risk of metal allergy.
以下に本発明を実施例で説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
得られた目的チオカーバメート中の無機イオン分析はイオンクロマトグラフィーを用い分析した。また、無機塩の確認には日本薬局方の強熱残分試験法を用い、重金属限度試験には日本薬局方の重金属試験法第4法を用いUVで確認した。更に、詳細な各重金属の分析はICP法を用いたが、測定時の各金属のICP法による検出限界は金属によって異なり、鉄とクロム及び銅ではそれぞれ0.5ppm、ニッケル、モリブデン、アルミニウム、鉛及び亜鉛ではそれぞれ1ppm、マンガンでは0.1ppmであった。尚、実施例における収量はいずれも単離収量を用いた。 The inorganic ions in the obtained thiocarbamate were analyzed using ion chromatography. The inorganic salt was confirmed by UV using the Japanese Pharmacopoeia ignition residue test method, and for the heavy metal limit test, the Japanese Pharmacopoeia heavy metal test method No. 4. Furthermore, the ICP method was used for detailed analysis of each heavy metal, but the detection limit of each metal at the time of measurement by the ICP method varies depending on the metal, and 0.5 ppm, nickel, molybdenum, aluminum, lead for iron, chromium, and copper, respectively. And zinc were 1 ppm, and manganese was 0.1 ppm. In all of the examples, the isolated yield was used.
実施例1
最初、ガラス製フラスコを用い、再結晶による無機塩の除去について検討した。
Example 1
First, removal of inorganic salts by recrystallization was examined using a glass flask.
2−メトキシ−6−メチルアミノピリジン14.0g(0.10モル)と炭酸ナトリウム10.6g(0.10モル)をイソプロピルアルコール285gと水15.0gの混合溶媒と一緒に入れ、撹拌しながらO−(5,6,7,8−テトラヒドロ−2−ナフチル)クロロチオホルメイト22.0g(0.097モル)を滴下した。次いで、ろ過して、水150gで洗浄後、粗精目的チオカーバメート87.7gを得た。得られた粗結晶は熱天秤で測定した結果、含水率65%であった。少量をサンプリングし乾燥の後、液体クロマトグラフィーより分析を行った結果、純度99.8%であった。また、イオンクロマトグラフィーによる無機イオン分析では、塩素イオンが460ppm、炭酸イオンが260ppm、ナトリウムイオンが370ppm含有されていた。 While stirring 14.0 g (0.10 mol) of 2-methoxy-6-methylaminopyridine and 10.6 g (0.10 mol) of sodium carbonate together with a mixed solvent of 285 g of isopropyl alcohol and 15.0 g of water, the mixture was stirred. 22.0 g (0.097 mol) of O- (5,6,7,8-tetrahydro-2-naphthyl) chlorothioformate was added dropwise. Next, after filtration and washing with 150 g of water, 87.7 g of a crude thiocarbamate was obtained. As a result of measuring the obtained crude crystal with a thermobalance, the water content was 65%. A small amount was sampled, dried, and analyzed by liquid chromatography. As a result, the purity was 99.8%. Moreover, in the inorganic ion analysis by ion chromatography, 460 ppm of chlorine ions, 260 ppm of carbonate ions, and 370 ppm of sodium ions were contained.
得られた粗精目的チオカーバメート87.7gを、そのまま含水ケークの約2.5倍量のイソプロピルアルコール215gに80℃で加熱溶解し、孔径0.5μmのフィルターを用いて熱時ろ過後、冷却して更に50℃〜60℃で1時間保持する条件で降温させた。その後、室温まで冷却し、遠心ろ過後、乾燥することにより目的チオカーバメート結晶30.0g(収率94%)を得た。 87.7 g of the obtained crude thiocarbamate was purified and dissolved in 215 g of isopropyl alcohol, which is about 2.5 times the amount of the water-containing cake, at 80 ° C., filtered while hot using a filter having a pore size of 0.5 μm, and cooled. The temperature was further lowered under the condition of holding at 50 ° C. to 60 ° C. for 1 hour. Thereafter, the mixture was cooled to room temperature, centrifuged and then dried to obtain 30.0 g of target thiocarbamate crystals (yield 94%).
得られた目的チオカーバメートについて液体クロマトグラフィーにより純度分析を行った結果、純度は99.9%であった。また、粗製品と精製品の塩素イオン濃度並びに、炭酸イオン濃度とナトリウムイオン濃度の測定結果を溶解操作及び冷却操作と共に表1に示す。 As a result of analyzing the purity of the obtained target thiocarbamate by liquid chromatography, the purity was 99.9%. Table 1 shows the measurement results of the chlorine ion concentration and the carbonate ion concentration and the sodium ion concentration of the crude product and the refined product together with the dissolving operation and the cooling operation.
実施例2
実施例1と同様の方法で反応し、ろ過して、水150gで洗浄後、粗精目的チオカーバメート60.0gを得た。得られた粗結晶は熱天秤で測定した結果、含水率48%であった。少量をサンプリングし乾燥の後、液体クロマトグラフィーより分析を行った結果、純度99.9%であった。また、イオンクロマトグラフィーによる無機イオン分析では、塩素イオンが530ppm、炭酸イオンが300ppm、ナトリウムイオンが410ppm含有されていた。
Example 2
The reaction was performed in the same manner as in Example 1, filtered, and washed with 150 g of water to obtain 60.0 g of a crude thiocarbamate. As a result of measuring the obtained crude crystal with a thermobalance, the water content was 48%. A small amount was sampled, dried, and analyzed by liquid chromatography. As a result, the purity was 99.9%. In addition, inorganic ion analysis by ion chromatography contained 530 ppm of chlorine ions, 300 ppm of carbonate ions, and 410 ppm of sodium ions.
得られた粗製目的チオカーバメートを、そのまま含水ケークの約6.3倍量のイソプロピルアルコール375gに75℃で加熱溶解し、孔径0.5μmのフィルターを用いて熱時ろ過後、冷却して更に45℃〜65℃で2時間保持する条件で降温させた。その後、室温まで冷却し、ろ過後、乾燥することにより目的チオカーバメート結晶30.2g(収率95%)を得た。 The obtained crude target thiocarbamate was dissolved as it was in 375 g of isopropyl alcohol, which was approximately 6.3 times the amount of the water-containing cake, at 75 ° C., filtered while hot using a filter having a pore size of 0.5 μm, cooled and further cooled to 45 The temperature was lowered under the condition of maintaining at 650C to 65C for 2 hours. Thereafter, the mixture was cooled to room temperature, filtered and dried to obtain 30.2 g (yield 95%) of the desired thiocarbamate crystals.
得られた目的チオカーバメートについて液体クロマトグラフィーにより純度分析を行った結果、純度は99.9%であった。また、粗製品と精製品の塩素イオン濃度並びに、炭酸イオン濃度とナトリウムイオン濃度の測定結果を溶解操作及び冷却操作と共に表1に示す。 As a result of analyzing the purity of the obtained target thiocarbamate by liquid chromatography, the purity was 99.9%. Table 1 shows the measurement results of the chlorine ion concentration and the carbonate ion concentration and the sodium ion concentration of the crude product and the refined product together with the dissolving operation and the cooling operation.
実施例3
次に工業的スケールでの検討結果を示した。
Example 3
Next, the examination results on an industrial scale are shown.
2−メトキシ−6−メチルアミノピリジン39kg(283モル)と炭酸ナトリウム28.7kg(271モル)をイソプロピルアルコール793kgと水42kgの混合溶媒と一緒に入れ、撹拌しながらO−(5,6,7,8−テトラヒドロ−2−ナフチル)クロロチオホルメイト61kg(269モル)を滴下した。次いで、遠心ろ過して、水1,226kgで洗浄後、得られた粗精目的チオカーバメート107.0kgを、そのままイソプロピルアルコール573kgに72℃で加熱溶解し、孔径0.5μmのフィルターを用いて熱時ろ過後、冷却して更に55℃〜65℃で1時間保持する条件で降温させた。その後、室温まで冷却し、ろ過後、乾燥することにより目的チオカーバメート結晶77.1kg(収率87%)を得た。 39 kg (283 mol) of 2-methoxy-6-methylaminopyridine and 28.7 kg (271 mol) of sodium carbonate were put in a mixed solvent of 793 kg of isopropyl alcohol and 42 kg of water, and O- (5,6,7 with stirring. , 8-Tetrahydro-2-naphthyl) chlorothioformate 61 kg (269 mol) was added dropwise. Subsequently, after centrifugal filtration and washing with 1,226 kg of water, 107.0 kg of the resulting crude thiocarbamate was heated and dissolved in 573 kg of isopropyl alcohol at 72 ° C. and heated using a filter having a pore size of 0.5 μm. After time filtration, the mixture was cooled and further cooled under a condition of maintaining at 55 to 65 ° C. for 1 hour. Thereafter, the mixture was cooled to room temperature, filtered and dried to obtain 77.1 kg (yield 87%) of the desired thiocarbamate crystals.
得られた目的チオカーバメートについて液体クロマトグラフィーにより純度分析を行った結果、純度は99.9%であった。また、強熱残分並びに重金属限度試験の結果を冷却操作と共に表2に示す。更に、詳細な重金属の分析結果を表3に示す。 As a result of analyzing the purity of the obtained target thiocarbamate by liquid chromatography, the purity was 99.9%. Further, Table 2 shows the results of the ignition residue and the heavy metal limit test together with the cooling operation. Further, detailed analysis results of heavy metals are shown in Table 3.
強熱残分の結果から、無機塩の除去が確認された。また、重金属も2ppm未満であることが確認された。 From the result of the ignition residue, removal of inorganic salts was confirmed. Moreover, it was confirmed that heavy metal is also less than 2 ppm.
実施例4
実施例3と同様の方法で反応し、遠心ろ過して、水1,217kgで洗浄後、得られた粗精目的チオカーバメート111.0kgを、そのままイソプロピルアルコール573kgに74℃で加熱溶解し、孔径0.5μmのフィルターを用いて熱時ろ過後、冷却して更に57℃〜70℃で1.3時間保持する条件で降温させた。その後、室温まで冷却し、ろ過後、乾燥することにより目的チオカーバメート75.2kg(収率85%)を得た。
Example 4
The reaction was carried out in the same manner as in Example 3, centrifugally filtered, washed with 1,217 kg of water, and 111.0 kg of the resulting crude thiocarbamate was dissolved in 573 kg of isopropyl alcohol by heating at 74 ° C. After hot filtration using a 0.5 μm filter, the mixture was cooled and further cooled down at 57 ° C. to 70 ° C. for 1.3 hours. Thereafter, the mixture was cooled to room temperature, filtered and dried to obtain 75.2 kg (yield 85%) of the desired thiocarbamate.
得られた目的チオカーバメートについて液体クロマトグラフィーにより純度分析を行った結果、純度は99.9%であった。また、強熱残分並びに重金属限度試験の結果を冷却操作と共に表2に示す。更に、詳細な重金属の分析結果を表3に示す。 As a result of analyzing the purity of the obtained target thiocarbamate by liquid chromatography, the purity was 99.9%. Further, Table 2 shows the results of the ignition residue and the heavy metal limit test together with the cooling operation. Further, detailed analysis results of heavy metals are shown in Table 3.
強熱残分の結果から、無機塩の除去が確認された。また、重金属も2ppm未満であることが確認された。 From the result of the ignition residue, removal of inorganic salts was confirmed. Moreover, it was confirmed that heavy metal is also less than 2 ppm.
実施例5
実施例3と同様の方法で反応し、遠心ろ過して、水1,317kgで洗浄後、得られた粗精目的チオカーバメート110.5kgを、そのままイソプロピルアルコール573kgに70℃で加熱溶解し、孔径0.5μmのフィルターを用いて熱時ろ過後、冷却して更に57℃〜65℃で1時間保持する条件で降温させた。その後、室温まで冷却し、ろ過後、乾燥することにより目的チオカーバメート結晶75.0kg(収率85%)を得た。
Example 5
After reacting in the same manner as in Example 3, centrifugal filtration, washing with 1,317 kg of water, 110.5 kg of the crude thiocarbamate obtained was directly dissolved in 573 kg of isopropyl alcohol by heating at 70 ° C. After hot filtration using a 0.5 μm filter, the mixture was cooled and further cooled under a condition of maintaining at 57 ° C. to 65 ° C. for 1 hour. Thereafter, the mixture was cooled to room temperature, filtered and dried to obtain 75.0 kg (yield 85%) of the desired thiocarbamate crystals.
得られた目的チオカーバメートについて液体クロマトグラフィーにより純度分析を行った結果、純度は99.9%であった。また、強熱残分並びに重金属限度試験の結果を冷却操作と共に表2に示す。更に、詳細な重金属の分析結果を表3に示す。 As a result of analyzing the purity of the obtained target thiocarbamate by liquid chromatography, the purity was 99.9%. Further, Table 2 shows the results of the ignition residue and the heavy metal limit test together with the cooling operation. Further, detailed analysis results of heavy metals are shown in Table 3.
強熱残分の結果から、無機塩の除去が確認された。また、重金属も2ppm未満であることが確認された。 From the result of the ignition residue, removal of inorganic salts was confirmed. Moreover, it was confirmed that heavy metal is also less than 2 ppm.
実施例6
実施例3と同様の方法で反応し、遠心ろ過して、水1,217kgで洗浄後、得られた粗精目的チオカーバメート110.7kgを、そのままイソプロピルアルコール573kgに70℃で加熱溶解し、孔径0.5μmのフィルターを用いて熱時ろ過後、冷却して更に65℃付近で1時間保持する条件で降温させた。その後、室温まで冷却し、ろ過後、乾燥することにより目的チオカーバメート結晶75.1kg(収率85%)を得た。
Example 6
Reaction was carried out in the same manner as in Example 3, centrifugal filtration was performed, and after washing with 1,217 kg of water, 110.7 kg of the crude thiocarbamate obtained was directly dissolved in 573 kg of isopropyl alcohol at 70 ° C. After hot filtration using a 0.5 μm filter, it was cooled and further cooled down under the condition of holding at around 65 ° C. for 1 hour. Thereafter, the mixture was cooled to room temperature, filtered and dried to obtain 75.1 kg (yield 85%) of the desired thiocarbamate crystals.
得られた目的チオカーバメートについて液体クロマトグラフィーにより純度分析を行った結果、純度は99.9%であった。また、強熱残分並びに重金属限度試験の結果を冷却操作と共に表2に示す。更に、詳細な重金属の分析結果を表3に示す。 As a result of analyzing the purity of the obtained target thiocarbamate by liquid chromatography, the purity was 99.9%. Further, Table 2 shows the results of the ignition residue and the heavy metal limit test together with the cooling operation. Further, detailed analysis results of heavy metals are shown in Table 3.
強熱残分の結果から、無機塩の除去が確認された。また、重金属も2ppm未満であることが確認された。 From the result of the ignition residue, removal of inorganic salts was confirmed. Moreover, it was confirmed that heavy metal is also less than 2 ppm.
比較例1
実施例1と同様の方法で反応し、ろ過して、水150gで洗浄後、粗精目的チオカーバメート70.0gを得た。得られた粗結晶は熱天秤で測定した結果、含水率56%であった。少量をサンプリングし乾燥の後、液体クロマトグラフィーより分析を行った結果、純度99.8%であった。また、イオンクロマトグラフィーによる無機イオン分析では、塩素イオンが520ppm、炭酸イオンが280ppm、ナトリウムイオンが380ppm含有されていた。
Comparative Example 1
The reaction was conducted in the same manner as in Example 1, filtered, and washed with 150 g of water to obtain 70.0 g of a crude thiocarbamate. As a result of measuring the obtained crude crystal with a thermobalance, the water content was 56%. A small amount was sampled, dried, and analyzed by liquid chromatography. As a result, the purity was 99.8%. Moreover, in the inorganic ion analysis by ion chromatography, 520 ppm of chlorine ions, 280 ppm of carbonate ions, and 380 ppm of sodium ions were contained.
得られた粗精目的チオカーバメート87.7gを、そのままイソプロピルアルコール215gに80℃で加熱溶解し、孔径0.5μmのフィルターを用いて熱時ろ過後、そのまま、50〜70℃の範囲で保持することなく、連続的に降温させた。20℃まで1時間で冷却し、遠心ろ過後、乾燥することにより目的チオカーバメート結晶30.1g(収率94%)を得た。 87.7 g of the resulting crude thiocarbamate is heated and dissolved as it is in 215 g of isopropyl alcohol at 80 ° C., and after hot filtration using a filter having a pore size of 0.5 μm, it is kept in the range of 50 to 70 ° C. Without lowering the temperature continuously. After cooling to 20 ° C. in 1 hour, centrifugal filtration and drying, 30.1 g of target thiocarbamate crystals (yield 94%) was obtained.
得られた目的チオカーバメートについて液体クロマトグラフィーにより純度分析を行った結果、純度は99.8%であった。また、塩素イオンと炭酸イオンイオン及びナトリウムイオンについてイオンクロマトグラフィー分析を行ったところ、それぞれ80ppmと200ppm及び140ppmであり、多量の無機塩の残存が認められた。粗製品と精製品の塩素イオン濃度並びに、炭酸イオン濃度とナトリウムイオン濃度の測定結果を溶解操作及び冷却操作と共に表1に示す。 As a result of analyzing the purity of the obtained target thiocarbamate by liquid chromatography, the purity was 99.8%. Further, when ion chromatography analysis was performed on chlorine ion, carbonate ion and sodium ion, they were 80 ppm, 200 ppm and 140 ppm, respectively, and a large amount of inorganic salt was observed. Table 1 shows the measurement results of the chlorine ion concentration, carbonate ion concentration and sodium ion concentration of the crude product and the refined product, together with the dissolving operation and the cooling operation.
比較例2
実施例1と同様、原料2−メトキシ−6−メチルアミノピリジン24.8g(0.180モル)とO−(5,6,7,8−テトラヒドロ−2−ナフチル)クロロチオホルメイト38.7g(0.171モル)を炭酸ナトリウム18.2g(0.171モル)存在下、イソプロピルアルコール241gと水15.3gの混合溶媒中で滴下しながら反応し、ろ過して粗結晶を得た。得られた粗結晶をイソプロピルアルコール280gと水980gで洗浄、イソプロピルアルコール196gに溶解し、活性炭2gを加えて80℃付近で孔径0.5μmのフィルタを用いて熱時ろ過後、50〜70℃の範囲で保持することなく、連続的に放冷状態で再結晶し、目的チオカーバメート48.4g(収率86.3%)を得た。
Comparative Example 2
As in Example 1, 24.8 g (0.180 mol) of raw materials 2-methoxy-6-methylaminopyridine and 38.7 g of O- (5,6,7,8-tetrahydro-2-naphthyl) chlorothioformate (0.171 mol) was reacted in the presence of 18.2 g (0.171 mol) of sodium carbonate in a mixed solvent of 241 g of isopropyl alcohol and 15.3 g of water and filtered to obtain crude crystals. The obtained crude crystals were washed with 280 g of isopropyl alcohol and 980 g of water, dissolved in 196 g of isopropyl alcohol, added with 2 g of activated carbon, and filtered while hot using a filter having a pore size of 0.5 μm around 80 ° C. Without maintaining the range, it was continuously recrystallized in a cooled state to obtain 48.4 g (yield: 86.3%) of the desired thiocarbamate.
得られた目的チオカーバメートについて液体クロマトグラフィーにより純度分析を行った結果、純度は99.8%であった。また、強熱残分並びに重金属限度試験の結果を冷却操作と共に表2に示す。 As a result of analyzing the purity of the obtained target thiocarbamate by liquid chromatography, the purity was 99.8%. Further, Table 2 shows the results of the ignition residue and the heavy metal limit test together with the cooling operation.
強熱残分の結果から、無機塩の残存が認められた。また、重金属含有量も実施例と比較して高く、充分なものではなかった。 From the result of the ignition residue, the inorganic salt remained. Also, the heavy metal content was high compared to the examples and was not sufficient.
Claims (4)
The production method according to claim 3, wherein the pore size of the filter is less than 1 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005123847A JP2006298832A (en) | 2005-04-21 | 2005-04-21 | High-purity o-(5,6,7,8-tetrahydro-2-naphthyl)-n-(6-methoxy-2-pyridyl)-n-methylthiocarbamate and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005123847A JP2006298832A (en) | 2005-04-21 | 2005-04-21 | High-purity o-(5,6,7,8-tetrahydro-2-naphthyl)-n-(6-methoxy-2-pyridyl)-n-methylthiocarbamate and its preparation method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006298832A true JP2006298832A (en) | 2006-11-02 |
Family
ID=37467328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005123847A Pending JP2006298832A (en) | 2005-04-21 | 2005-04-21 | High-purity o-(5,6,7,8-tetrahydro-2-naphthyl)-n-(6-methoxy-2-pyridyl)-n-methylthiocarbamate and its preparation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006298832A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104402810A (en) * | 2014-11-27 | 2015-03-11 | 天方药业有限公司 | Preparation method of liranaftate |
CN106632018A (en) * | 2016-12-30 | 2017-05-10 | 山东辰龙药业有限公司 | Preparation method of liranaftate |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0215065A (en) * | 1988-07-04 | 1990-01-18 | Tosoh Corp | Production of high-purity o-5,6,7,8-tetrahydronaphthyl-n-methyl-n-(6-methoxy-2-pyridyl)thiocarbamate |
JPH04282369A (en) * | 1991-03-08 | 1992-10-07 | Tosoh Corp | Production of high-purity thiocarbamate |
JPH0532629A (en) * | 1991-07-29 | 1993-02-09 | Tosoh Corp | Production of highly pure methyl carbamate |
JP2005350447A (en) * | 2004-05-12 | 2005-12-22 | Tosoh Corp | O-(5,6,7,8-tetrahydro-2-naphthyl)-n-(6-methoxy-2-pyridyl)-n-methylthiocarbamate and method for producing the same |
-
2005
- 2005-04-21 JP JP2005123847A patent/JP2006298832A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0215065A (en) * | 1988-07-04 | 1990-01-18 | Tosoh Corp | Production of high-purity o-5,6,7,8-tetrahydronaphthyl-n-methyl-n-(6-methoxy-2-pyridyl)thiocarbamate |
JPH04282369A (en) * | 1991-03-08 | 1992-10-07 | Tosoh Corp | Production of high-purity thiocarbamate |
JPH0532629A (en) * | 1991-07-29 | 1993-02-09 | Tosoh Corp | Production of highly pure methyl carbamate |
JP2005350447A (en) * | 2004-05-12 | 2005-12-22 | Tosoh Corp | O-(5,6,7,8-tetrahydro-2-naphthyl)-n-(6-methoxy-2-pyridyl)-n-methylthiocarbamate and method for producing the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104402810A (en) * | 2014-11-27 | 2015-03-11 | 天方药业有限公司 | Preparation method of liranaftate |
CN106632018A (en) * | 2016-12-30 | 2017-05-10 | 山东辰龙药业有限公司 | Preparation method of liranaftate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8394961B2 (en) | Method for the preparation of dabigatran | |
CN105153016B (en) | A kind of Mo Fanselin preparation method | |
EP3828170A1 (en) | Method for safely preparing pimavanserin and tartrate salt thereof using triphosgene | |
JP2010090174A (en) | New nateglinide crystal | |
CN104884427A (en) | Compounds useful in the synthesis of benzamide compounds | |
CN107635969A (en) | The manufacture method of the miscellaneous Shandong amine crystal form of grace | |
CN103848795B (en) | A kind of 1,2,5-diazole-2-oxide Antibiotic FR 901228 and its preparation method and application | |
JP2006298832A (en) | High-purity o-(5,6,7,8-tetrahydro-2-naphthyl)-n-(6-methoxy-2-pyridyl)-n-methylthiocarbamate and its preparation method | |
EP2940002B1 (en) | Halogenated aniline and method for producing same | |
WO2017082430A1 (en) | High-purity fluorescein sodium | |
CN106632312A (en) | Apixaban related substance, intermediate, preparation method and applications thereof | |
KR101170123B1 (en) | O-(5, 6, 7, 8-tetrahydro-2-naphthyl)-n-(6-methoxy-2-pyridyl)-n-methyl thiocarbamate and producing process | |
CN105753733A (en) | AHU377 crystal form and preparation method and uses thereof | |
DE69715230T2 (en) | BIS (ACRIDINECARBOXAMIDE) AND BIS (PHENAZINE ECARBOXAMIDE) AS ANTICROBIAL AGENTS | |
JP4982963B2 (en) | O- (5,6,7,8-tetrahydro-2-naphthyl) -N- (6-methoxy-2-pyridyl) -N-methylthiocarbamate and process for producing the same | |
JP4849374B2 (en) | (±) 2- (Dimethylamino) -1-{[O- (m-methoxyphenethyl) phenoxy] methyl} ethyl hydrogen succinate hydrochloride mixed crystal of Form I and Form II crystals | |
CN104402815A (en) | Control method of piperaquine phosphate impurity | |
KR102662895B1 (en) | Method for preparing high purity tropicamide | |
CN105315204B (en) | (2H) ketone derivatives of 7 amino, 1,4 dihydro-isoquinoline 3 and its preparation method and use | |
TW201700458A (en) | Method for producing dicarboxylic acid compound | |
CN103242215A (en) | Preparation method of lenalidomide intermediate | |
JP2018535240A (en) | Method for purifying benzopyran derivative, crystal form of benzopyran derivative and method for producing crystal form of benzopyran derivative | |
JP5010713B2 (en) | Method for producing camostat hydrochloride | |
WO2015129603A1 (en) | High-purity crystals of active blood coagulation factor x (fxa) inhibitor | |
JP5612977B2 (en) | Process for producing 6-bromo-N-methyl-2-naphthamide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080312 |
|
A131 | Notification of reasons for refusal |
Effective date: 20110628 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20110824 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Effective date: 20111122 Free format text: JAPANESE INTERMEDIATE CODE: A02 |