JP2006294575A - Low-temperature charged particle beam treatment accelerator - Google Patents

Low-temperature charged particle beam treatment accelerator Download PDF

Info

Publication number
JP2006294575A
JP2006294575A JP2005137815A JP2005137815A JP2006294575A JP 2006294575 A JP2006294575 A JP 2006294575A JP 2005137815 A JP2005137815 A JP 2005137815A JP 2005137815 A JP2005137815 A JP 2005137815A JP 2006294575 A JP2006294575 A JP 2006294575A
Authority
JP
Japan
Prior art keywords
accelerator
ion
synchrotron
emittance
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005137815A
Other languages
Japanese (ja)
Inventor
Parkhomchuk Vasily
パルクホムチュック バシリー
Masayuki Kumada
雅之 熊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUMADA HITOMI
Original Assignee
KUMADA HITOMI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUMADA HITOMI filed Critical KUMADA HITOMI
Priority to JP2005137815A priority Critical patent/JP2006294575A/en
Publication of JP2006294575A publication Critical patent/JP2006294575A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-temperature charged particle beam treatment accelerator for reducing the weight of the component of an accelerator and reducing costs greatly by accelerating, storing, and taken out low-emittance beams that are strong "cold ion beams". <P>SOLUTION: A beam size is reduced greatly in an electron beam cooling device 6 by a low-emittance EBIS-type ion source or hollow beams. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この出願の発明は荷電粒子の電離作用による物理的・生物学的特性を利用して主に人体のがん細胞の増加を抑制することで、がんの治療装置に関する分野である。The invention of this application is a field related to a cancer treatment device by mainly suppressing the increase of cancer cells in the human body by utilizing physical and biological characteristics due to the ionization action of charged particles.

陽子や炭素イオンなどの荷電粒子線(以下イオンビームと呼ぶ)には一定以上のビーム断面積をもつ場合ブラッグピークと呼ばれる物理現象がある。これは水や人体などの物質にイオンビームを照射するとそのエネルギーに応じた深さで強いイオン化を起こす現象である。加速器物理学者のRobert Wilsonがこのブラッグピークを利用してイオンビームを深部がんに照射すれば外科手術の痛みや抗がん剤の副作用などのない理想的ながんの治療に使えると考えてこれを提案した。 これをうけカリフォルニア大学付属研究所のLaurence Berkley研究所の重イオンのシンクロトロン加速器で物理の研究のかたわら治療試験が行われたが、当初期待したほどの成果をだすまえにこの物理の実験装置はシャットダウンされてしまった。このあと日本の高エネルギー物理学研究所(現在の高エネルギー加速器研究機構)の陽子加速器の一部を物理実験のかたわら筑波大学が陽子線治療を行ってその効果が実証した。この陽子線治療とは独立に放射線医学総合研究所はがん治療専用の重粒子線治療装置(HIMACと呼ばれる)を建設し2005年はじめには2200人をこえるがん患者を治療した。その効果は目覚ましいもので他の治療法では困難ながんが炭素イオンでは完治する多数の事例をうることができた。この成果を受けて兵庫県でもHIMACの縮小版を建設して治療が開始された。その後重粒子線はたんにブラッグピークの物理的特性のほかに生物細胞への効果も大きいことがはっきりと認識されてきて、ヨーロッパでもその導入をしようとする国が現れてきた。なかでもドイツがもっとも炭素イオンの効果を明確に理解し、ハイデルブルグ大学でその建設がスタートした。重粒子線の治療効果が優れていることは理論的にもあきらかで臨床においても実証されてきた。これをうけて普及させようという動きが強くなってきたが、装置の巨大さとその価格の高さが大きな障害となっている。このコストとサイズの問題を技術的にどう解決するかが、重粒子線治療の普及への大きな課題であるが国家的プロジェクトがなされているにもかわわらず、この問題を解決する技術案はだれも提案がなされていないのが現状である。本発明によりこの問題を解決する最初の案を開示する。When charged particle beams (hereinafter referred to as ion beams) such as protons and carbon ions have a beam cross-sectional area exceeding a certain level, there is a physical phenomenon called Bragg peak. This is a phenomenon in which when a substance such as water or the human body is irradiated with an ion beam, strong ionization occurs at a depth corresponding to the energy. Accelerator physicist Robert Wilson believes that using this Bragg peak to irradiate a deep cancer with an ion beam can be used to treat the ideal cancer without surgical pain or side effects of anticancer drugs. Proposed this. In response to this, a therapeutic test was conducted in the heavy ion synchrotron accelerator of the Lawrence Berkeley Laboratory of the University of California attached research laboratory. It has been shut down. After this, a part of the proton accelerator of the Institute for High Energy Physics in Japan (currently the High Energy Accelerator Research Organization) was tested by the University of Tsukuba for proton experiments, and the effect was demonstrated. Independent of this proton therapy, the National Institute of Radiological Sciences built a heavy ion beam therapy device (referred to as HIMAC) dedicated to cancer treatment and treated more than 2200 cancer patients in early 2005. The effect was remarkable, and we were able to obtain many cases where cancer difficult to treat with other treatments was completely cured with carbon ions. In response to this result, Hyogo Prefecture also started treatment by constructing a reduced version of HIMAC. Since then, it has been clearly recognized that heavy particle beams have a great effect on biological cells in addition to the physical properties of Bragg Peak, and there are countries in Europe that are trying to introduce it. Above all, Germany understood the effects of carbon ions most clearly, and its construction started at the University of Heidelburg. The therapeutic effect of heavy particle beams has been demonstrated theoretically and clearly in clinical practice. Although there has been a strong movement to popularize this, the size of the device and its high price are a major obstacle. How to solve this problem of cost and size technically is a big issue for the spread of heavy ion radiotherapy, but who has a national project, who has a technical solution to solve this problem? However, no proposal has been made. An initial solution to this problem is disclosed by the present invention.

文献1Reference 1

M.Kumada and V.V.Parkhomchuk,2005年米国Knoxvilleでの加速器国際会議で発表予定。2005年東京での粒子線ワークショプPTCOG42で発表予定。本発明の科学的論理付けの国外および国内での最初の学術論文と発表。M.M. Kumada and V.K. V. Parkhomchuk, to be announced at the 2005 International Conference on Accelerators in Knoxville, USA. It will be announced at the particle beam workshop PTCOG42 in Tokyo in 2005. First and international academic papers and presentations of the scientific logic of the present invention.

文献2Reference 2

V.V.Parkhomchuk.New insights in the theory of electron cooling.Nucl.Instr.Meth.Phys.Res.,A441(2000).
本発明で使用される電子冷却装置の学術論文。
V. V. Parkhomchuk. New insights in the theory of electro cooling. Nucl. Instr. Meth. Phys. Res. , A441 (2000).
An academic paper on the electronic cooling device used in the present invention.

文献3Reference 3

D.A.Swenson,Compact Injector Linacs for Proton Therapy Synchrotrons,
本発明で使用される入射器の詳細の論文。
D. A. Swenson, Compact Injector Linacs for Proton Therapy Synchrotrons,
A paper detailing the injectors used in the present invention.

文献4Reference 4

C.Bieth et al.,Recent results with SUPERNANOGAN ECR ion source for Hadrontherapy,PANTECHNIC,ISN Grenoble.
本発明で使用されるエミッタンスの小さいイオン源の販売元。
C. Bieth et al. , Reent results with SUPERNANOGAN ECR ion source for Hadrontherapy, PANTECHNIC, ISN Grenoble.
Distributor of ion source with low emittance used in the present invention.

文献5Reference 5

D.A Swenson“BNCT Neutrons from Carbon Ion Injector Linacs”,to bepublished in Proc.of PTCOG04.
本発明でオプションで可能となるBNCT治療法への入射器ライナックの応用についての学術論文。
D. A Swenson “BNCT Neutrons from Carbon Ion Injector Linacs”, to bepublished in Proc. of PTCOG04.
An academic paper on the application of the injector linac to the BNCT treatment that is optionally possible with the present invention.

粒子線医療加速器は電子加速器と陽子・重粒子加速器の二種類に分けられる。このうち、本発明で提案しているブラッグピーク(Bragg Peak)を使ったものは、陽子・重粒子線形加速器(ライナック)と円形加速器に分けられる。ライナックだけで治療に必要なエネルギーにするにはコストが高すぎる。円形加速器はサイクロトロン、FFAG(Fixed Field Alternating Gradient accelerator)、シンクロトロンに大別される。このなかではサイクロトロンとFFAGは炭素イオンの加速をするには規模が大きくなりすぎて重粒子線治療には向いていない。重粒子線治療をより普及させるための解決すべき問題の一つはコスト削減である。コストを削減するには加速器を小型化するか、装置のコンポーネントの価格を下げる必要がある。前者の小型化を実現するためには円形加速器においては偏向電磁石の磁場強度を強くするしかない。ところが通常の電磁石では磁場強度が強くなると磁石材料の電磁石に磁気飽和の現象が起きて、加速器の性能が悪くなってしまいさらに電力の変換効率もおちてしまい不経済になる。現状ではこの具体的な解決案はどこにもない。ところが本発明ではその円形加速器の構成装置部品を大幅にさげることができる。
それは“冷たいイオンビーム”をもつ低温荷電粒子線治療加速器(CBS)を実現することで達成される。
There are two types of particle beam medical accelerators: electron accelerators and proton / heavy particle accelerators. Among these, those using the Bragg Peak proposed in the present invention are classified into a proton / heavy particle linear accelerator (linac) and a circular accelerator. The cost is too high for linac alone to make the energy needed for treatment. A circular accelerator is roughly classified into a cyclotron, a FFAG (Fixed Field Alternating Gradient accelerator), and a synchrotron. Of these, cyclotron and FFAG are too large to accelerate carbon ions and are not suitable for heavy ion radiotherapy. One of the problems to be solved in order to spread the heavy ion radiotherapy is cost reduction. To reduce costs, it is necessary to reduce the size of the accelerator or reduce the price of the components of the device. In order to realize the former miniaturization, there is no choice but to increase the magnetic field strength of the deflection electromagnet in the circular accelerator. However, in a normal electromagnet, when the magnetic field strength is increased, a phenomenon of magnetic saturation occurs in the electromagnet of the magnet material, the performance of the accelerator is deteriorated, and the power conversion efficiency is also lowered, which is uneconomical. At present, there is no concrete solution. However, in the present invention, the components of the circular accelerator can be greatly reduced.
It is achieved by implementing a cold charged particle beam therapy accelerator (CBS) with a “cold ion beam”.

発明が解決しようとした問題The problem the invention was trying to solve

重イオン加速器のコスト削減が解決したい課題であるので円形加速器としてシンクロトロンを想定する。コスト削減には主要構成部品である電磁石を小さくしたい。電磁石の大きさは磁場の強さとイオンビームを加速・蓄積する真空槽を納める磁極空隙(ギャップ)の長さと幅を短くすればよい。つまりイオンビームの大きさを小さくすればよい。イオンビームの大きさは加速器のビーム工学で決められるベータ関数(ツイスパラメター)、分散関数、そして、平衡軌道歪み(Closed Orbit Distortion,COD)等の要素とイオンビーム自身のもつ性質であるビームエミッタンス(beam emittance)とエネルギー広がりで決まってしまう。このemittanceは通常は小さければ小さいほどよい。イオンシンクロトロンのようにイオン源、入射器、主シンクロトロン、高エネルギービーム輸送系、そしてビーム照射系などのように多段の複合装置の場合、このビームエミッタンスはこれをビームのエネルギーできまる規格化エミッタンスで考えた場合、最初のイオン源の出口できまった値を超えることはない。これは物理の基本法則で決められている。本発明での解決法の第一番目の方法は得られるイオン源のなかでもっともエミッタンスの小さいものを選ぶことである。得られるエミッタンスのもっとも小さいものはEBIS型イオン源でこれによって本発明があきららにした装置の低コストかの問題は大幅に軽減される。第二番目の解決法はイオン源からでた後で、ビーム冷却法によって、ビームエミッタンスを減少させることである。これにはstochastic cooling(統計的冷却法)、レーザー冷却、電子ビーム冷却法などがある。ビーム冷却法はさきのエミッタンス保存法則を人知による巧妙な方法で避けるものである。このうち最も良い方法はParkhomchukの発明したホロービームを使った特殊な電子ビーム冷却法である。その理由は冷却時間が短いことそして大強度のイオンビームを冷却できることである。このホロービーム電子冷却法では縦方向・横方向の両方向のビームエミッタンスの冷却が可能となる。(縦方向は運動量の位相空間の面積で横方向は水平・垂直の位相空間の面積である。)As cost reduction of heavy ion accelerator is an issue to be solved, synchrotron is assumed as a circular accelerator. To reduce costs, we want to make the electromagnet, which is the main component, smaller. The size of the electromagnet can be reduced by shortening the magnetic field strength and the length and width of the magnetic pole gap (gap) that houses the vacuum chamber for accelerating and accumulating the ion beam. That is, the size of the ion beam may be reduced. The size of the ion beam depends on factors such as the beta function (twice parameter), dispersion function, and equilibrium orbit distortion (COD) determined by the beam engineering of the accelerator, and the beam emittance that is a property of the ion beam itself ( beam energy) and energy spread. In general, the smaller the emission, the better. In the case of a multi-stage compound device such as an ion source, injector, main synchrotron, high energy beam transport system, and beam irradiation system such as an ion synchrotron, this beam emittance is normalized by the energy of the beam. When considering emittance, the value at the outlet of the first ion source is not exceeded. This is determined by the basic laws of physics. The first solution of the present invention is to select the ion source having the smallest emittance from among the obtained ion sources. The lowest emittance obtained is an EBIS type ion source, which greatly reduces the low cost problem of the device that the present invention has revealed. The second solution is to reduce the beam emittance by beam cooling after leaving the ion source. These include stochastic cooling, statistical cooling, and electron beam cooling. The beam cooling method avoids the previous emittance conservation law in a clever way by human knowledge. Of these, the best method is a special electron beam cooling method using a hollow beam invented by Parkhomchuk. The reason is that the cooling time is short and a high-intensity ion beam can be cooled. With this hollow beam electron cooling method, it is possible to cool the beam emittance in both the vertical and horizontal directions. (The vertical direction is the area of the momentum phase space, and the horizontal direction is the area of the horizontal and vertical phase spaces.)

発明の効果The invention's effect

本発明でいうところの冷たいイオンビームを発生するCBSを用いることで、加速器の構成要素の大きさを極端に小さくすることが可能となりその結果、装置全体のコストを大幅にさげることができる。ビームエミッタンスの減少量は加速するビーム強度に依存する。たとえば、横方向ビームエミッタンスを1/25まで冷却した場合は、イオンビームの大きさは水平・垂直方向でそれぞれ1/10になる。この場合、磁石の空隙は1/5、磁石の横幅も1/5となる。その結果、同じ磁場強度をだすのに必要な電流量は1/5でよいことになる。この場合電磁石の断面積も1/10程度まで減少できる。その結果、電磁石の重量は1/10となり、これを励磁する大電力の電磁石の電源は1/5の電力ですむ。このおかげで受変電設備の規模も小さくすることが可能となり、初期コストの軽減に貢献する。典型的な普及型の重粒子シンクロトロンの偏向電磁石電源の電流電圧で4kA,1.2kVでその電力は4.8MVAであり、四極電磁石等を含めると磁石関連だけでも5MVAを超える。シンクロトロンからとりだされたイオンビームはシンクロトロンと同程度かそれ以上の長さの磁石のストリングからなり電力消費量も同等のレベルである。本発明の重粒子イオン装置これらの電力が大幅に減少するので運転維持費で大きな比率を電力代の減少が可能となる。
CBSの冷たい大強度イオンビームはさらに以下のようなさまざまな利益をもたらす。
(1)イオンビームをとりだすときにビームサイズが小さいことから取り出し装置のギャップを小さくすることが可能となり、従来は困難であった高エネルギーでのビームの取り出しを容易にする。
(2)従来、装置の重量が重すぎて設計と製作が困難であった回転ガントリーの磁石の軽量化を可能にする。
By using the CBS that generates a cold ion beam as referred to in the present invention, it is possible to extremely reduce the size of the components of the accelerator, and as a result, the cost of the entire apparatus can be greatly reduced. The amount of beam emittance reduction depends on the beam intensity to be accelerated. For example, when the lateral beam emittance is cooled to 1/25, the size of the ion beam becomes 1/10 in the horizontal and vertical directions. In this case, the gap of the magnet is 1/5, and the lateral width of the magnet is also 1/5. As a result, the amount of current required to produce the same magnetic field strength may be 1/5. In this case, the cross-sectional area of the electromagnet can be reduced to about 1/10. As a result, the weight of the electromagnet becomes 1/10, and the power source of the high-power electromagnet that excites the electromagnet requires 1/5 power. Thanks to this, it is possible to reduce the size of the substation equipment, which contributes to the reduction of the initial cost. The current voltage of the deflection electromagnet power source of a typical popular heavy particle synchrotron is 4 kA and 1.2 kV, and the power is 4.8 MVA. If a quadrupole electromagnet or the like is included, the magnet-related alone exceeds 5 MVA. The ion beam extracted from the synchrotron consists of a string of magnets that is as long as or longer than the synchrotron and has the same level of power consumption. The heavy particle ion apparatus of the present invention significantly reduces the electric power, so that the power cost can be reduced by a large proportion of the operation and maintenance cost.
CBS's cold intense ion beam also provides various benefits, including:
(1) Since the beam size is small when the ion beam is extracted, it is possible to reduce the gap of the extraction device, and facilitate the extraction of the beam with high energy, which has been difficult in the past.
(2) It is possible to reduce the weight of the magnet of the rotating gantry, which has conventionally been difficult to design and manufacture because the device is too heavy.

実施形態Embodiment

本出願による発明の低温ビーム粒子線治療加速器(CBS)は図1のように実施される。The inventive cold beam particle beam therapy accelerator (CBS) according to the present application is implemented as shown in FIG.

図1はビームラインの一部を含めた全体像を示す。全体を構成する各の装置は: 1.イオン源 2.RFQ(Radio Frequency Quadrupole) 3.RFI(Radio frequency Inter digital) 4.電子冷却装置(Electron cooler) 5.ブースターシンクロトロン(Booster Synchrotron) 6.主シンクロトロン 7.重粒子線ビームライン 等から構成される。イオン源にはふたつのオプションがある。電子冷却なしでもいける場合は冷たい強いイオンビームが得られる完全電離の炭素イオンを発生するEBIS型イオン源を使用する。この場合は主加速器に単一ビーム入射法(single turn injection)を行う。すなわち主加速器の一サイクルあたりその入射器から一パルス分のイオンビームを打ち込む。電子冷却を使う場合は、PANTECNIC社製のSUPERNANOGUNかあるいは同等品以上の四荷の炭素イオンビームを使用する。これは空間電荷効果を抑制してビーム強度を増加することが目的である。そして一パルスあたり0.1秒程度の時間で電子冷却をして、ビームを細くして、空いた隙間に次のパルスを入射してまた冷却し、このサイクルを繰り返して、約2.5x1010/サイクルまでの炭素イオンを入射、加速、蓄積、取り出しを行う。この図1には他の重粒子線シンクロトロンとは異なる構成となっている。それは入射器ライナックと主シンクロトロンのあいだにブースターシンクロトロンがあることである。ブースターシンクロトロンをいれて最終エネルギーでのビーム強度をあげる方法は既知の知見でありこのような構成を採用することで主加速器の空間電荷制限を緩めて性能をあげることを可能としているが、本発明では、炭素イオンビームと陽子線ビームの二種類の加速を主シンクロトロンの一周期の中で行うことを可能にする。本装置では入射器としてライナックシステム社のRFIを導入していることから、CBSの運転条件で大強度陽子と炭素イオンの加速が可能であり、オプションとして陽子線の治療とさらにもうひとつの有力な夢のがん治療法BNCT(中性子捕獲治療法)を少ない追加予算で可能とする。FIG. 1 shows the whole image including a part of the beam line. Each device constituting the whole is: Ion source 2. 2. RFQ (Radio Frequency Quadrupole) RFI (Radio frequency Inter digital) 4. Electronic cooler 5. Booster Synchrotron Main synchrotron 7. It consists of a heavy particle beam line. There are two options for the ion source. In the case where electron cooling can be performed, an EBIS type ion source that generates fully ionized carbon ions that can obtain a cold intense ion beam is used. In this case, a single beam injection method is performed on the main accelerator. That is, an ion beam for one pulse is injected from the injector per cycle of the main accelerator. When using electronic cooling, use SUPERNANOGUN manufactured by PANTECNIC or an equivalent or higher carbon ion beam. The purpose is to suppress the space charge effect and increase the beam intensity. Then, the electron cooling is performed at a time of about 0.1 second per pulse, the beam is narrowed, the next pulse is incident on the vacant gap, the cooling is performed again, and this cycle is repeated to obtain about 2.5 × 10 10. / Inject, accelerate, store, and extract carbon ions up to the cycle. FIG. 1 shows a configuration different from that of other heavy particle beam synchrotrons. That is, there is a booster synchrotron between the injector linac and the main synchrotron. The method of increasing the beam intensity at the final energy by inserting a booster synchrotron is a known knowledge, and adopting such a configuration makes it possible to relax the space charge limit of the main accelerator and improve the performance. The invention makes it possible to perform two types of acceleration of a carbon ion beam and a proton beam in one cycle of the main synchrotron. The RINAC system RFI is introduced as an injector in this equipment, so it is possible to accelerate high-intensity protons and carbon ions under CBS operating conditions. The dream cancer treatment BNCT (neutron capture therapy) is made possible with a small additional budget.

符号の説明Explanation of symbols

1.イオン源
2.RFQ
3.RFI
4.ブースターシンクロトロン
5.陽子線ビームライン
6.電子冷却装置(Electron Cooler)
7.重粒子線ビームライン
1. Ion source 2. RFQ
3. RFI
4). 4. Booster synchrotron 5. Proton beam line Electronic cooling device (Electron Cooler)
7). Heavy particle beam line

Claims (4)

荷電粒子の電離作用により物理的・生物学的特性を利用して主に人体のがん細胞の増加を抑制することで、がんの治療装置にてビームエミッタンスの小さい冷たいイオンビームを用いることで、加速器のコンポーネントの体積を大幅に小さくするイオンビーム供給の方法。By using a cold ion beam with a small beam emittance in a cancer treatment device by suppressing the increase of cancer cells in the human body mainly by utilizing physical and biological characteristics by the ionization action of charged particles. A method of ion beam supply that significantly reduces the volume of accelerator components. 請求項1において中空のホロー(hollow)電子ビームを生成することで、大強度のイオンビームの加速・貯蔵・取り出しを可能にする方法。  2. The method of claim 1, wherein a hollow electron beam is generated to enable acceleration, storage, and extraction of a high intensity ion beam. 請求項1において入射器ライナックと主加速器シンクロトロンの間にブースターシンクロトロンを挿入することで、炭素イオン治療と陽子線治療を独立の治療室でほぼ同時に可能にする方法。  2. The method according to claim 1, wherein a booster synchrotron is inserted between the injector linac and the main accelerator synchrotron, so that carbon ion therapy and proton beam therapy can be performed almost simultaneously in an independent treatment room. 請求項1、2、3においてその組み合わせによって、炭素イオンのビーム強度を従来の加速器の10倍のビーム強度により、治療室の数も10倍にすることを可能とし、治療装置のコストパーフォーマンスも大幅に向上させる方法である。  The combination of claims 1, 2, and 3 makes it possible to increase the beam intensity of carbon ions by 10 times that of a conventional accelerator, thereby increasing the number of treatment rooms by 10 times, and the cost performance of the treatment apparatus. This is a way to improve significantly.
JP2005137815A 2005-04-08 2005-04-08 Low-temperature charged particle beam treatment accelerator Pending JP2006294575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005137815A JP2006294575A (en) 2005-04-08 2005-04-08 Low-temperature charged particle beam treatment accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005137815A JP2006294575A (en) 2005-04-08 2005-04-08 Low-temperature charged particle beam treatment accelerator

Publications (1)

Publication Number Publication Date
JP2006294575A true JP2006294575A (en) 2006-10-26

Family

ID=37414893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005137815A Pending JP2006294575A (en) 2005-04-08 2005-04-08 Low-temperature charged particle beam treatment accelerator

Country Status (1)

Country Link
JP (1) JP2006294575A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238375A (en) * 2009-03-30 2010-10-21 Hitachi Ltd Particle beam treatment system, and method of operating synchrotron
JP2010251275A (en) * 2009-04-20 2010-11-04 Masayuki Kumada Ion collective accelerator and application thereof
JP2011194196A (en) * 2010-03-23 2011-10-06 Masayuki Kumada Corpuscular second speed radiation method
WO2017145259A1 (en) * 2016-02-23 2017-08-31 三菱電機株式会社 Heavy particle radiation therapy apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1083900A (en) * 1996-09-06 1998-03-31 Toshiba Corp Bending magnet and particle accelerator
JPH11176599A (en) * 1997-12-08 1999-07-02 Mitsubishi Electric Corp Charged particle irradiation apparatus
JP2000208300A (en) * 1999-01-14 2000-07-28 Mitsubishi Heavy Ind Ltd Accelerator capable of highly accurate alignment and highly accurate alignment method in this accelerator
JP2005011750A (en) * 2003-06-20 2005-01-13 Toshiba Corp Electron beam cooling device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1083900A (en) * 1996-09-06 1998-03-31 Toshiba Corp Bending magnet and particle accelerator
JPH11176599A (en) * 1997-12-08 1999-07-02 Mitsubishi Electric Corp Charged particle irradiation apparatus
JP2000208300A (en) * 1999-01-14 2000-07-28 Mitsubishi Heavy Ind Ltd Accelerator capable of highly accurate alignment and highly accurate alignment method in this accelerator
JP2005011750A (en) * 2003-06-20 2005-01-13 Toshiba Corp Electron beam cooling device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238375A (en) * 2009-03-30 2010-10-21 Hitachi Ltd Particle beam treatment system, and method of operating synchrotron
JP2010251275A (en) * 2009-04-20 2010-11-04 Masayuki Kumada Ion collective accelerator and application thereof
JP2011194196A (en) * 2010-03-23 2011-10-06 Masayuki Kumada Corpuscular second speed radiation method
WO2017145259A1 (en) * 2016-02-23 2017-08-31 三菱電機株式会社 Heavy particle radiation therapy apparatus
JPWO2017145259A1 (en) * 2016-02-23 2018-07-12 三菱電機株式会社 Heavy ion radiotherapy equipment

Similar Documents

Publication Publication Date Title
Amaldi et al. Accelerators for hadrontherapy: From Lawrence cyclotrons to linacs
US5073913A (en) Apparatus for acceleration and application of negative ions and electrons
JP2006294575A (en) Low-temperature charged particle beam treatment accelerator
Shornikov et al. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities
CN110418667A (en) Rotary irradiation device, rotary irradiation method and rotary irradiation therapeutic device
JP2010251275A (en) Ion collective accelerator and application thereof
Becker Modern options for hadron therapy of tumors
Lee et al. IH-DTL design with KONUS beam dynamics for KHIMA project
Balbekov et al. Muon ring cooler for the MUCOOL experiment
Coutrakon Accelerators for heavy-charged-particle radiation therapy
Schippers Proton accelerators
Takayama et al. Heavy ion beam factory for material science based on the KEK digital accelerator
Wang et al. Superconducting cyclotron for flash therapy
Wei Particle accelerator development: Selected examples
Degiovanni Future trends in linacs
Vostrikov et al. Electron cooling application for hadron therapy
JP2006313713A (en) Charged particle beam extraction method by low-temperature charged particle beam medical treatment accelerator (cbs)
Pandit Cyclotrons: Past, present and future
Shwartz et al. Overview of the BINP accelerator complex
Shi et al. Slow extraction design of HIMM
Lennox et al. A compact proton linac for fast neutron cancer therapy
JP2002110400A (en) Charged particle accelerating magnet using permanent magnet and high magnetic field circular charged particle accelerator.
Molodozhentsev et al. The focusing structure of the Prague proton synchrotron for hadron therapy
Gotoh Development status of next-generating high magnetic field superconducting proton therapy systems
Kumada et al. The CBS-the most cost effective and high performance carbon beam source dedicated for a new generation cancer therapy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080404

A521 Written amendment

Effective date: 20080610

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090325

A977 Report on retrieval

Effective date: 20100621

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109