JP2006294121A - Magnetic recording medium and its manufacturing method - Google Patents

Magnetic recording medium and its manufacturing method Download PDF

Info

Publication number
JP2006294121A
JP2006294121A JP2005113284A JP2005113284A JP2006294121A JP 2006294121 A JP2006294121 A JP 2006294121A JP 2005113284 A JP2005113284 A JP 2005113284A JP 2005113284 A JP2005113284 A JP 2005113284A JP 2006294121 A JP2006294121 A JP 2006294121A
Authority
JP
Japan
Prior art keywords
film
recording medium
magnetic
magnetic recording
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005113284A
Other languages
Japanese (ja)
Inventor
Akira Yano
亮 矢野
Tetsunori Kanda
哲典 神田
Teruaki Takeuchi
輝明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2005113284A priority Critical patent/JP2006294121A/en
Publication of JP2006294121A publication Critical patent/JP2006294121A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a super high density magnetic recording medium which has excellent magnetic characteristics and thermal demagnetization resistance and wherein an FePt film is made to be a ordered alloy, an axis c to be an easily magnetized axis of an FePt crystal is preferentially oriented in a direction vertical to the surface of the film and the FePt magnetic film is physically separated in a film intra-surface direction. <P>SOLUTION: An underlayer consisting essentially of Fe and O and having a discontinuous form in a film intra-surface direction is provided on a substrate, a layer consisting essentially of Fe and a layer consisting essentially of Pt are layered in this order on the underlayer, then a layered film is heated at a prescribed temperature, alternate diffusion between the layer consisting essentially of Fe and the layer consisting essentially of Pt is made to occur and Fe and Pt are made to be an alloy. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、磁気記録媒体の製造方法に関する。   The present invention relates to a method for manufacturing a magnetic recording medium.

近年の高度情報化社会の進展に対応して、情報記録装置の大容量化・高密度化に対するニーズは高まる一方である。現在、情報記録装置の主力を担う磁気記録装置においても、その大容量化に対応して面記録密度の向上が進められている。記録ビットを微細に記録するためには、記録磁化方向を膜面に垂直に記録させる、いわゆる垂直磁気記録方式が知られている。垂直磁気記録膜の材料としては従来、Co−Cr系合金膜が用いられてきた。しかし今後さらに面記録密度を高めようとすると、磁性粒子を非常に微細にする必要がある。しかし、あまりに微細化すると、磁性粒子の磁気異方性エネルギー、すなわち磁性粒子の磁気異方性定数(Ku)と体積(V)の積(KuV)が、磁性粒子の熱振動エネルギーに接近し、磁化状態が熱的に不安定になって熱減磁を起きおこす。そこで、より一層高密度記録可能な磁気記録媒体を得るためには、記録層にCoCr系合金よりもさらに高い磁気異方性を有する磁性材料を用いる必要がある。
その材料としてたとえば、Fe−Pt合金膜が検討されている(例えば、非特許文献1参照)。この合金は規則相(L1相)を有する場合において、上述したCo−Cr系合金に比べて1桁以上高い磁気異方性を有する。規則相のFe−Pt合金を得るには、Fe−Pt合金を蒸着法又はスパッタ法などによって薄膜状に作製した後、600℃程度の温度で熱処理することが必要である。さらにその規則化と同時に、Fe−Pt膜を垂直磁気記録媒体として適用するためには、規則相合金結晶の磁化容易軸であるc軸を、膜面垂直方向に優先配向させなければならない。
Corresponding to the progress of the advanced information society in recent years, the need for larger capacity and higher density of information recording devices is increasing. At present, even in the magnetic recording apparatus that plays the main role of the information recording apparatus, the surface recording density is being improved in response to the increase in capacity. In order to record the recording bit finely, a so-called perpendicular magnetic recording system is known in which the recording magnetization direction is recorded perpendicularly to the film surface. Conventionally, a Co—Cr alloy film has been used as a material for the perpendicular magnetic recording film. However, in order to further increase the surface recording density in the future, it is necessary to make the magnetic particles very fine. However, if it is too fine, the magnetic anisotropy energy of the magnetic particles, that is, the product (KuV) of the magnetic anisotropy constant (Ku) and volume (V) approaches the thermal vibration energy of the magnetic particles, The magnetization state becomes thermally unstable and causes thermal demagnetization. Therefore, in order to obtain a magnetic recording medium capable of recording at a higher density, it is necessary to use a magnetic material having a higher magnetic anisotropy than the CoCr-based alloy for the recording layer.
For example, an Fe—Pt alloy film has been studied as the material (see, for example, Non-Patent Document 1). In case the alloy having regular phase (L1 0 phase), having a high magnetic anisotropy order of magnitude or more compared to the Co-Cr based alloy as described above. In order to obtain an ordered Fe—Pt alloy, it is necessary to heat-treat the Fe—Pt alloy at a temperature of about 600 ° C. after forming the Fe—Pt alloy into a thin film by vapor deposition or sputtering. Further, simultaneously with the ordering, in order to apply the Fe—Pt film as a perpendicular magnetic recording medium, the c axis, which is the easy axis of magnetization of the ordered phase alloy crystal, must be preferentially oriented in the direction perpendicular to the film surface.

また一方で、熱減磁の問題を低減する手法として、膜面内方向で物理的に分離した磁性ドットを配列させることにより磁性膜を構成する、パターンド媒体と呼ばれる記録媒体が検討されている。従来の磁気記録媒体では、記録膜は膜面方向で連続した層構造であり、記録の最小単位は通常、数十個の磁性粒子で形成される。この関係を表す模式図を図1に示す。この場合、熱減磁に対する耐性を担うのは個々の小さな磁性粒子のKuVである。これに対しパターンド媒体では、図2に示すように、記録の最小単位が磁性ドットそのものになり、熱減磁に対する耐性を担うのは磁性ドットのKuVになる。したがって、Kuが同じでも、Vが数十倍大きいパターンド媒体では熱減磁耐性が向上し、記録密度を高めることができる。パターンド媒体の磁性ドットを作製する手法としては、リソグラフィーや微細加工、材料自身がもつ自己集合的性質を利用した方法などが検討されているが、まだ実用化にはいたっていないのが現状である。   On the other hand, as a technique for reducing the problem of thermal demagnetization, a recording medium called a patterned medium, in which a magnetic film is formed by arranging magnetic dots physically separated in the in-plane direction, has been studied. . In a conventional magnetic recording medium, the recording film has a layer structure continuous in the film surface direction, and the minimum unit of recording is usually formed by several tens of magnetic particles. A schematic diagram showing this relationship is shown in FIG. In this case, it is the KuV of each small magnetic particle that bears resistance to thermal demagnetization. On the other hand, in the patterned medium, as shown in FIG. 2, the minimum recording unit is the magnetic dot itself, and it is KuV of the magnetic dot that bears the resistance to thermal demagnetization. Therefore, even with the same Ku, a patterned medium with V being several tens of times larger can improve thermal demagnetization resistance and increase the recording density. As methods for producing magnetic dots on patterned media, lithography, microfabrication, and methods that utilize the self-assembled properties of the materials themselves are being studied, but they are not yet in practical use. .

M.Watanabe and M.Homma:Jpn.J.Appl.phys.Vol.66,p.1692(1995)M.M. Watanabe and M.M. Hamma: Jpn. J. et al. Appl. phys. Vol. 66, p. 1692 (1995)

超高密度の垂直磁気記録媒体を得るには、Fe−Pt膜のような非常に高い磁気異方性をもつ材料でパターンド媒体を作製することが理想的である。本発明は、その場合に必要な、Fe−Ptの規則合金化、Fe−Pt結晶の磁化容易軸であるc軸の垂直配向、およびFe−Pt磁性膜を膜面内方向で物理的に分離する方法を提供し、磁気特性と熱耐性に優れた超高密度磁気記録媒体を提供することを目的とする。   In order to obtain an ultra-high density perpendicular magnetic recording medium, it is ideal to produce a patterned medium with a material having a very high magnetic anisotropy such as an Fe—Pt film. The present invention requires ordered Fe—Pt alloying, c-axis vertical orientation, which is the easy axis of magnetization of Fe—Pt crystal, and physical separation of the Fe—Pt magnetic film in the in-plane direction. It is an object of the present invention to provide an ultra-high density magnetic recording medium having excellent magnetic properties and heat resistance.

本発明者らは上記目的を実現するために種々検討した結果、基板上に、FeとOを主成分とし膜面内方向で不連続な形態の下地膜を設け、この上にFeを主成分とする層およびPtを主成分とする層をこの順に積層形成した後に、該積層膜を所定温度に加熱して、前記Feを主成分とする層およびPtを主成分とする層の間で相互拡散を生じさせ、FeおよびPtを合金化させることにより、該磁性膜が膜面内方向で不連続な島状の形態となって物理的に分離し、且つ同時に非常に高い垂直方向磁気異方性を発現することを見出した。本発明の磁気記録媒体の概略断面図を図3に示す。
本発明の方法によって、島状に分離したFe−Pt規則合金膜が得られる機構は以下のように考えられる。基板上に、FeとOからなるFe酸化物膜を非常に薄く形成すると、そのFe酸化物は、膜面内方向で連続した層状の形態にはならずに、膜面方向で不連続な島状の形態となる。その上にFe層とPt層を各々数nmの厚さで積層すると、それらは比較的厚いために層状の膜となる。次にこの積層膜を加熱すると、Fe層とPt層の原子は厚さ方向に相互に拡散するが、同時にこれらの原子は膜面内方向にも動こうとする。この時、Fe酸化物上に付着しいているFe原子は動き難く、基板表面に付着しているFe原子は動き易い。これは、FeとFe酸化物の親和性が高いのに対し、Feと基板表面との親和性は低いためである。この結果、島状のFe酸化物の上にFeとPtが集まり、基板上にはFeもPtもない部分が生じ、Fe−Pt合金膜が島状の形態となる。この形成機構を表した断面模式図を図4に示す。またこの加熱拡散時に、Fe酸化物の結晶配向が、FeとPtの結晶配向に影響を及ぼし、Fe−Pt合金膜のc軸が膜面垂直方向に優先配向する。このような機構によって本発明のFe−Pt膜は膜面内方向で不連続な島状の形態となって物理的に分離し、且つ同時に非常に高い垂直方向磁気異方性を発現すると考えられる。
FeとOを主成分とする膜の平均化した厚さは2nmより薄いことが望ましい。FeとOを主成分とする膜の厚さが2nmより厚くなると、Fe酸化物が層状の形態となって膜面内方向でのFeに対する親和性が均一になり、そのため加熱後のFe−Pt合金膜も膜面内方向で連続した膜となるためである。
また、図5に示した概略断面図のように、基板表面を改質しFeとの親和性を制御するために、FeとOを主成分とする膜の下に、SiとOを主成分とする下地層を設けることも有効である。
基板には、Feに対する親和性がFe酸化物よりも低い物質で構成された基板、例えばガラス基板などを用いることができる。SiとOからなる下地層を設ける場合には、Feとの親和性が高い基板も用いることができる。
(実施例1)
結晶化ガラス基板上に、FeとOとからなる膜(Fe−O膜)を形成し、その上にFe層を形成し、さらにその上にPt層を形成した。Fe−O膜は、ArとOの混合ガス中でFeターゲットをDCスパッタすることによって形成した。Fe−O層の平均化した厚さは1nmとした。Fe層とPt層は、Arガス中でFeまたはPtターゲットを各々DCスパッタすることによって形成した。Fe層とPt層の厚さは各々3nmとした。Fe−O膜のスパッタ時のガス圧は1.0Pa、Fe層およびPt層スパッタ時のガス圧はいずれも0.5Paとした。
このようにして形成した積層膜を、真空中で加熱処理し、Fe層とPt層の間に相互原子拡散を起こさせてFe−Pt規則合金薄膜を得た。加熱処理には赤外線ランプヒーターを用い、投入電力は1800W、加熱時間は30秒とした。加熱時の膜の到達最高温度は約650℃であった。
(実施例2)
Fe−O膜の平均化した厚さを1.5nmとした以外は実施例1と同様の方法でFe−Pt規則合金薄膜を作製した。
(実施例3)
Fe−0膜の下に、10nmの厚さでSiO層を形成した以外は実施例1と同様の方法でFe−Pt規則合金薄膜を作製した。SiO層は、SiOターゲットをArガス中でRFスパッタすることによって形成した。スパッタ時のガス圧は0.6Paとした。
(比較例1)
Fe−O膜を設けなかった以外は実施例1と同様の方法でFe−Pt規則合金薄膜を作製した。
(比較例2)
Fe−O膜の平均化した厚さを2nmとした以外は実施例1と同様の方法でFe−Pt規則合金薄膜を作製した。
実施例1〜3および比較例1〜2で作製したFe−Pt規則合金膜の磁気特性を、試料共振型磁力計を用いて測定した。膜面垂直方向と膜面内方向の磁気ヒステリシス曲線を測定し、それぞれの方向の保磁力(Hc)を算出した。膜面垂直方向のHcが大きく、面内方向のHcが小さいほど、優良な垂直磁化膜である。また、作製したFe−Pt規則合金膜の結晶構造を、X線回折装置を用いてθ−2θ曲線を測定することにより解析した。Fe−Pt結晶が規則合金化し、そのc軸が膜面垂直方向に優先配向している場合には、FePt(001)面とFePt(002)面からの回折のみが観測される。また作製したFePt規則合金膜の膜面内での組織形態を、透過型電子顕微鏡(TEM)を用いて平面観察し、膜が不連続な島状構造か連続的な層状構造であるかを評価した。
As a result of various investigations to achieve the above object, the present inventors have provided a base film having Fe and O as main components and a discontinuous form in the in-plane direction on the substrate, and Fe as the main component. And a layer containing Pt as a main component are formed in this order, and then the laminated film is heated to a predetermined temperature so that the layer containing Fe and the layer containing Pt as a main component are mutually connected. By causing diffusion and alloying Fe and Pt, the magnetic film is physically separated into discontinuous islands in the in-plane direction, and at the same time, a very high perpendicular magnetic anisotropy It was found that sex was expressed. A schematic cross-sectional view of the magnetic recording medium of the present invention is shown in FIG.
The mechanism by which the Fe—Pt ordered alloy film separated into islands can be obtained by the method of the present invention is considered as follows. When an Fe oxide film made of Fe and O is formed very thin on a substrate, the Fe oxide does not form a continuous layer in the in-plane direction, but is discontinuous in the film surface direction. It becomes the shape of the shape. When an Fe layer and a Pt layer are laminated on each of them to a thickness of several nanometers, they are relatively thick and become a layered film. Next, when this laminated film is heated, atoms in the Fe layer and the Pt layer diffuse to each other in the thickness direction, but at the same time, these atoms try to move in the in-plane direction. At this time, Fe atoms attached on the Fe oxide are difficult to move, and Fe atoms attached to the substrate surface are easy to move. This is because the affinity between Fe and the Fe oxide is high while the affinity between Fe and the substrate surface is low. As a result, Fe and Pt are collected on the island-shaped Fe oxide, and a portion having neither Fe nor Pt is generated on the substrate, and the Fe—Pt alloy film has an island shape. A schematic cross-sectional view showing this formation mechanism is shown in FIG. Further, during this heat diffusion, the crystal orientation of the Fe oxide affects the crystal orientation of Fe and Pt, and the c-axis of the Fe—Pt alloy film is preferentially oriented in the direction perpendicular to the film surface. By such a mechanism, it is considered that the Fe—Pt film of the present invention is physically separated into a discontinuous island shape in the in-plane direction, and at the same time, exhibits a very high perpendicular magnetic anisotropy. .
The average thickness of the film containing Fe and O as main components is preferably less than 2 nm. When the thickness of the film containing Fe and O as a main component becomes thicker than 2 nm, the Fe oxide becomes a layered form and the affinity for Fe in the in-plane direction becomes uniform. This is because the alloy film also becomes a continuous film in the in-plane direction.
Further, as shown in the schematic cross-sectional view shown in FIG. 5, in order to modify the substrate surface and control the affinity with Fe, Si and O as main components are provided under the film containing Fe and O as main components. It is also effective to provide an underlayer.
As the substrate, a substrate made of a substance having a lower affinity for Fe than Fe oxide, such as a glass substrate, can be used. When a base layer made of Si and O is provided, a substrate having high affinity with Fe can also be used.
Example 1
A film made of Fe and O (Fe—O film) was formed on the crystallized glass substrate, an Fe layer was formed thereon, and a Pt layer was further formed thereon. The Fe—O film was formed by DC sputtering of an Fe target in a mixed gas of Ar and O 2 . The average thickness of the Fe—O layer was 1 nm. The Fe layer and the Pt layer were formed by DC sputtering each of an Fe or Pt target in Ar gas. The thicknesses of the Fe layer and the Pt layer were 3 nm each. The gas pressure during sputtering of the Fe—O film was 1.0 Pa, and the gas pressure during sputtering of the Fe layer and the Pt layer was both 0.5 Pa.
The laminated film thus formed was heat-treated in a vacuum to cause mutual atomic diffusion between the Fe layer and the Pt layer, thereby obtaining an Fe—Pt ordered alloy thin film. An infrared lamp heater was used for the heat treatment, the input power was 1800 W, and the heating time was 30 seconds. The maximum temperature reached by the film during heating was about 650 ° C.
(Example 2)
A Fe—Pt ordered alloy thin film was produced in the same manner as in Example 1 except that the average thickness of the Fe—O film was 1.5 nm.
(Example 3)
An Fe—Pt ordered alloy thin film was produced in the same manner as in Example 1 except that a SiO 2 layer having a thickness of 10 nm was formed under the Fe-0 film. The SiO 2 layer was formed by RF sputtering a SiO 2 target in Ar gas. The gas pressure during sputtering was 0.6 Pa.
(Comparative Example 1)
An Fe—Pt ordered alloy thin film was produced in the same manner as in Example 1 except that the Fe—O film was not provided.
(Comparative Example 2)
An Fe—Pt ordered alloy thin film was produced in the same manner as in Example 1 except that the average thickness of the Fe—O film was 2 nm.
The magnetic properties of the Fe—Pt ordered alloy films prepared in Examples 1 to 3 and Comparative Examples 1 to 2 were measured using a sample resonance magnetometer. The magnetic hysteresis curves in the direction perpendicular to the film surface and the direction in the film surface were measured, and the coercive force (Hc) in each direction was calculated. The higher the Hc in the direction perpendicular to the film surface and the smaller the Hc in the in-plane direction, the better the perpendicular magnetization film. Moreover, the crystal structure of the produced Fe—Pt ordered alloy film was analyzed by measuring a θ-2θ curve using an X-ray diffractometer. When the Fe—Pt crystal is ordered and its c-axis is preferentially oriented in the direction perpendicular to the film surface, only diffraction from the FePt (001) plane and the FePt (002) plane is observed. In addition, the structure of the prepared FePt ordered alloy film within the film surface is observed on a plane using a transmission electron microscope (TEM) to evaluate whether the film has a discontinuous island structure or a continuous layer structure. did.

実施例1〜3および比較例1〜2で作製したFe−Pt規則合金膜のSiO2層の厚さ、Fe−O膜の平均化した厚さ、垂直方向のHc,面内方向のHc,X線回折で観測された回折ピーク、Fe−Pt膜の形態を表1に示す。実施例の試料ではいずれも、10kOeを超える大きな垂直方向のHcを示し、一方、垂直面内方向のHcは3kOe未満で小さい。また、X線回折ではFePt(001)とFePt(002)からの回折のみが観測され、TEM観察からはFePt膜が島状の形態であることが観察された。したがって実施例では、Fe−Pt膜が規則合金化して、そのc軸が膜面垂直方向に優先配向していること、それに所以する高い垂直磁気異方性を備えること、且つ膜面内で不連続な島状の形態の磁気記録媒体が形成されていることがわかる。
比較例1では、垂直方向のHcと面内方向のHcの差が小さくなり、X線回折ではFePt(001)とFePt(002)以外に、FePt(111)の回折も観測される。これは、FePt膜のc軸の垂直配向性が低下して、垂直磁気異方性が低下していることを示す。また比較例2では、FePtが島状の形態にならず、膜面内で連続した層状の形態になっている。
The thicknesses of the SiO 2 layers of the Fe—Pt ordered alloy films prepared in Examples 1 to 3 and Comparative Examples 1 and 2, the average thickness of the Fe—O film, Hc in the vertical direction, Hc, X in the in-plane direction Table 1 shows diffraction peaks observed by line diffraction and the morphology of the Fe—Pt film. The samples of the examples all show large vertical Hc exceeding 10 kOe, while the vertical in-plane Hc is small at less than 3 kOe. Further, in X-ray diffraction, only diffraction from FePt (001) and FePt (002) was observed, and from TEM observation, it was observed that the FePt film was in the form of islands. Therefore, in the example, the Fe—Pt film is ordered alloyed, and the c-axis is preferentially oriented in the direction perpendicular to the film surface, has a high perpendicular magnetic anisotropy, and is not defective in the film surface. It can be seen that a continuous island-shaped magnetic recording medium is formed.
In Comparative Example 1, the difference between Hc in the vertical direction and Hc in the in-plane direction becomes small, and in X-ray diffraction, in addition to FePt (001) and FePt (002), diffraction of FePt (111) is also observed. This indicates that the perpendicular orientation of the c-axis of the FePt film is lowered and the perpendicular magnetic anisotropy is lowered. In Comparative Example 2, FePt is not in the form of islands, but is in the form of layers that are continuous within the film plane.

Figure 2006294121
Figure 2006294121

本発明によると、膜面内方向で物理的に分離した不連続な島状の形態で、且つ同時に非常に高い垂直方向磁気異方性を有する、超高密度記録媒体に適する優れた特性のFePt規則合金膜が得られる。
According to the present invention, FePt having excellent characteristics suitable for an ultra-high density recording medium having a discontinuous island shape physically separated in the in-plane direction and simultaneously having a very high perpendicular magnetic anisotropy. An ordered alloy film is obtained.

従来の記録媒体の磁性粒子と最小記録単位の関係を示す模式図。The schematic diagram which shows the relationship between the magnetic particle of the conventional recording medium, and the minimum recording unit. パターンド媒体の磁性ドットと最小記録単位の関係を示す模式図。The schematic diagram which shows the relationship between the magnetic dot of a patterned medium, and the minimum recording unit. 本発明の磁気記録媒体(実施例1および実施例2)の概略断面図。1 is a schematic cross-sectional view of a magnetic recording medium (Example 1 and Example 2) of the present invention. 本発明の磁気記録媒体の形成機構を表した断面模式図。FIG. 3 is a schematic cross-sectional view showing the formation mechanism of the magnetic recording medium of the present invention. 本発明の磁気記録媒体(実施例3)の概略断面図。FIG. 3 is a schematic cross-sectional view of a magnetic recording medium (Example 3) of the present invention.

Claims (7)

基板上に、FeとOを主成分とする下地膜、およびこの上に形成されたFeとPtを主成分とする合金磁性膜を備え、該磁性膜が膜面内方向で不連続な形態であることを特徴とする磁気記録媒体。   On the substrate, a base film mainly composed of Fe and O and an alloy magnetic film mainly composed of Fe and Pt formed thereon are provided, and the magnetic film is in a discontinuous form in the in-plane direction. A magnetic recording medium comprising: 基板上に、FeとOを主成分とし膜面方向で不連続な形態の下地膜を設け、この上にFeを主成分とする層およびPtを主成分とする層をこの順に積層形成した後に、該積層膜を所定温度に加熱して、前記Feを主成分とする層およびPtを主成分とする層の間で相互拡散を生じさせ、FeおよびPtを合金化させたことを特徴とする磁気記録媒体。   After a base film having Fe and O as main components and a discontinuous form in the film surface direction is provided on a substrate, and a layer containing Fe as a main component and a layer containing Pt as a main component are stacked on the substrate in this order. The laminated film is heated to a predetermined temperature to cause mutual diffusion between the layer containing Fe as a main component and the layer containing Pt as a main component, and Fe and Pt are alloyed. Magnetic recording medium. 基板上に、FeとOを主成分とし膜面方向で不連続な形態の下地膜を設け、この上にFeを主成分とする層およびPtを主成分とする層をこの順に積層形成した後に、該積層膜を所定温度に加熱して、前記Feを主成分とする層およびPtを主成分とする層の間で相互拡散を生じさせ、FeおよびPtを合金化させることを特徴とする磁気記録媒体の製造方法。   After a base film having Fe and O as main components and a discontinuous form in the film surface direction is provided on a substrate, and a layer containing Fe as a main component and a layer containing Pt as a main component are stacked on the substrate in this order. The magnetic film is characterized in that the laminated film is heated to a predetermined temperature to cause mutual diffusion between the layer containing Fe as a main component and the layer containing Pt as a main component so that Fe and Pt are alloyed. A method for manufacturing a recording medium. 請求項1または請求項2に記載の磁気記録媒体において、該FeとOを主成分とする層の平均化した厚さが2nmより薄いことを特徴とする磁気記録媒体。   3. The magnetic recording medium according to claim 1, wherein the average thickness of the layer mainly composed of Fe and O is less than 2 nm. 請求項3記載の磁気記録媒体の製造方法において、該FeとOを主成分とする層の平均化した厚さを2nmより薄くすることを特徴とする磁気記録媒体の製造方法。   4. The method of manufacturing a magnetic recording medium according to claim 3, wherein the average thickness of the layer mainly composed of Fe and O is made thinner than 2 nm. 請求項1または請求項2、請求項4に記載の磁気記録媒体において、該FeとOを主成分とする層の下に、SiとOを主成分とする層を設けたことを特徴とする磁気記録媒体。   5. The magnetic recording medium according to claim 1, wherein a layer mainly composed of Si and O is provided under the layer mainly composed of Fe and O. Magnetic recording medium. 請求項3または5に記載の磁気記録媒体の製造方法において、該FeとOを主成分とする層の下に、SiとOを主成分とする層を設けることを特徴とする磁気記録媒体の製造方法。
6. The method of manufacturing a magnetic recording medium according to claim 3, wherein a layer mainly composed of Si and O is provided below the layer mainly composed of Fe and O. Production method.
JP2005113284A 2005-04-11 2005-04-11 Magnetic recording medium and its manufacturing method Withdrawn JP2006294121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005113284A JP2006294121A (en) 2005-04-11 2005-04-11 Magnetic recording medium and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005113284A JP2006294121A (en) 2005-04-11 2005-04-11 Magnetic recording medium and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006294121A true JP2006294121A (en) 2006-10-26

Family

ID=37414528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005113284A Withdrawn JP2006294121A (en) 2005-04-11 2005-04-11 Magnetic recording medium and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006294121A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007164845A (en) * 2005-12-09 2007-06-28 Hitachi Maxell Ltd Magnetic recording medium and manufacturing method
US7776388B2 (en) 2007-09-05 2010-08-17 Hitachi Global Storage Technologies Netherlands, B.V. Fabricating magnetic recording media on patterned seed layers
JP2012128934A (en) * 2010-11-26 2012-07-05 Toshiba Corp Magnetic recording medium, manufacturing method therefor, and magnetic recording and reproduction apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007164845A (en) * 2005-12-09 2007-06-28 Hitachi Maxell Ltd Magnetic recording medium and manufacturing method
JP4673735B2 (en) * 2005-12-09 2011-04-20 日立マクセル株式会社 Magnetic recording medium and method for manufacturing the same
US7776388B2 (en) 2007-09-05 2010-08-17 Hitachi Global Storage Technologies Netherlands, B.V. Fabricating magnetic recording media on patterned seed layers
JP2012128934A (en) * 2010-11-26 2012-07-05 Toshiba Corp Magnetic recording medium, manufacturing method therefor, and magnetic recording and reproduction apparatus
US8703308B2 (en) 2010-11-26 2014-04-22 Kabushiki Kaisha Toshiba Magnetic recording medium, method of manufacturing the same, and magnetic recording/reproduction apparatus

Similar Documents

Publication Publication Date Title
JP4074181B2 (en) Perpendicular magnetic recording medium
JP3950838B2 (en) High density magnetic recording medium using FePtC thin film and method of manufacturing the same
Mosendz et al. Ultra-high coercivity small-grain FePt media for thermally assisted recording
JP5137087B2 (en) Manufacturing method of L1o regular perpendicular recording medium
JP6439869B2 (en) Method for manufacturing magnetic recording medium
JP6083163B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
US9899050B2 (en) Multiple layer FePt structure
JP5575172B2 (en) Magnetic recording medium, magnetic recording / reproducing apparatus, and method of manufacturing magnetic recording medium
CN100510190C (en) Method for preparing c-shaft vertically aligned L10 phase FePt magnetic recording film
JP2004362746A (en) Magnetic recording medium, magnetic storage device, and method of producing magnetic recording medium
JP2008091024A (en) Perpendicular magnetic recording medium
JP4810360B2 (en) Magnetic thin film
US20160225393A1 (en) Perpendicular magnetic recording medium and method for producing the same
JP2006294121A (en) Magnetic recording medium and its manufacturing method
JP6260742B2 (en) Magnetic recording medium
CN100578626C (en) Method for manufacturing perpedicular magnetic recording medium, perpendicular magnetic recording medium, and perpendicular magnetic recording/reproducing apparatus
JP4136590B2 (en) Alignment film, magnetic recording medium using alignment film, and magnetic recording / reproducing apparatus
JP5535293B2 (en) Method for manufacturing magnetic recording medium
JP4673735B2 (en) Magnetic recording medium and method for manufacturing the same
JP4491768B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
Kaewrawang et al. Self-assembled strontium ferrite dot array on Au underlayer
JP2005190506A (en) Perpendicular magnetic recording medium and its manufacturing method
JP2006202451A (en) Magnetic recording medium and its manufacturing method
JP2006344336A (en) Recording medium and manufacturing method of the recording medium
TWI384503B (en) Magnetic material with ordered phase of fept alloyed nano-particles and the method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701