JP2006293171A - Optical branching circuit - Google Patents
Optical branching circuit Download PDFInfo
- Publication number
- JP2006293171A JP2006293171A JP2005116104A JP2005116104A JP2006293171A JP 2006293171 A JP2006293171 A JP 2006293171A JP 2005116104 A JP2005116104 A JP 2005116104A JP 2005116104 A JP2005116104 A JP 2005116104A JP 2006293171 A JP2006293171 A JP 2006293171A
- Authority
- JP
- Japan
- Prior art keywords
- waveguide
- branch
- branching
- optical
- straight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
Description
本発明は、Y分岐導波路を用いた光分岐回路に関する。 The present invention relates to an optical branch circuit using a Y branch waveguide.
従来から、光通信システムなどにおいて光通信を行う際に入力信号光を複数に分岐させる手段としてY字型の分岐導波路(Y分岐導波路)を用いた光分岐回路が知られている。従来の光分岐回路の例を図13に示す。この光分岐回路91は、4段接続されたY分岐導波路93を用いることにより、入射導波路10に入力された光を16分岐して出射導波路14に出力する。入射導波路10と出射導波路14は互いに平行であり、出射導波路14は等間隔に並んでいる。そして、各Y分岐導波路93は対称に分岐しており、その対称中心軸も入射導波路10と出射導波路14に平行な配置をしている。各Y分岐導波路93は、分岐前の分岐前直線導波路93aに円弧からなる導波路を滑らかに接続して2分岐すると共に、2分岐した各円弧に逆向きの曲率を有する円弧を滑らかに接続したS字曲線状の導波路を形成し、次段の分岐前直線導波路93bにつなぐ形状となっている。この光分岐回路91は、入射導波路10から各出射導波路14までの導波路の長さ、すなわち各分岐光に対する導波路全長が同じとなっている。これは光分岐回路91の対称性に基づく。一般に光分岐回路では、光信号を互いに同期させるため、各分岐光に対する導波路全長を同じとされる。
2. Description of the Related Art Conventionally, an optical branching circuit using a Y-shaped branching waveguide (Y branching waveguide) is known as means for branching input signal light into a plurality of parts when performing optical communication in an optical communication system or the like. An example of a conventional optical branch circuit is shown in FIG. The
上述のように、各Y分岐導波路93の曲線部は、所定の曲率半径を持った円弧を組合せたS字曲線となっており、その形状は円弧の曲率半径と分岐後の導波路間隔によって決まる。また、上述の導波路全長は、入射導波路長、出射導波路長、S字曲線導波路長、及び分岐前直線導波路長の総和となる。
As described above, the curved portion of each Y-
導波路全長は、導波路材料による光の損失をなるべく小さくするため、極力短く設計され、光分岐回路全体の長さも短くされる。例えば、導波路曲線部の曲率半径を小さくして全長を短縮することが考えられるが、どの経路の導波路についても導波路全長を同じにするという条件下では、自ずと限界がある。そこで、図14に示すように、Y分岐導波路に替えて一度に3分岐する3分岐導波路94を用いることにより必要な分岐数を減らし、導波路全長に長短があるが全長を短縮した光分岐回路92が提案されている(例えば、特許文献1,2参照)。
しかしながら、上述した図13に示されるような光分岐回路では、導波路延長が長く、また上述した図14や特許文献1,2に示されるような3分岐導波路を用いる光分岐回路においては、波長による均一性の変動が幾分大きくなり、また、通信を上り下りの両方向で行う場合に上り方向の損失が経路によって異なってくるという問題がある。 However, in the optical branch circuit as shown in FIG. 13 described above, the waveguide extension is long, and in the optical branch circuit using the three-branch waveguide as shown in FIG. There is a problem that the variation in uniformity due to wavelength becomes somewhat large, and when communication is performed in both the upstream and downstream directions, the loss in the upstream direction varies depending on the route.
本発明は、上記課題を解消するものであって、経路によらずに導波路全長が略等しく、かつ導波路全長を短縮したY分岐導波路による光分岐回路を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described problems and to provide an optical branch circuit using a Y-branch waveguide in which the total length of the waveguide is substantially equal regardless of the path and the total length of the waveguide is shortened.
上記課題を達成するために、請求項1の発明は、光を導波するための互いに平行な直線状の入射導波路及び所定の間隔で並んだ複数の出射導波路を有し、前記入射導波路から前記各出射導波路へ光を導波する経路がY分岐導波路を多段接続して構成された光分岐回路において、前記Y分岐導波路は前記入射導波路側から順に第1、第2、及び第3のY分岐導波路を接続した3段構成とされ、前記各Y分岐導波路は分岐前に分岐前直線導波路を有すると共にその分岐部の直後の導波路は所定の曲率半径の円弧からなる曲線からなり、前記第1及び第3のY分岐導波路は、その分岐前直線導波路を前記入射導波路に平行に配置し、前記第1のY分岐導波路は、そのY分岐導波路の分岐点に滑らかに接続された所定曲率半径を有する円弧状の第1の円弧導波路を有し、前記第2のY分岐導波路は、前記第1の円弧導波路に滑らかに接続された所定長さの直線からなる分岐前直線導波路と、前記分岐前直線導波路に滑らかに接続され前記第1の円弧導波路と同じ曲率半径及び同じ屈曲方向を有する円弧状の第2の円弧導波路と、一端を前記第2の円弧導波路に滑らかに接続され、かつ、他端を前記第3のY分岐導波路の分岐前直線導波路に滑らかに接続され前記第2の円弧導波路と同じ曲率半径及び異なる屈曲方向を有する円弧状の第3の円弧導波路と、を備えて構成することにより、その分岐前直線導波路を前記入射導波路に対して傾斜して配置して8分岐回路を形成したものである。
In order to achieve the above object, an invention according to
請求項2の発明は、請求項1に記載の光分岐回路において、前記各Y分岐導波路は、その分岐前直線導波路から分岐する導波路がその分岐部の近傍において直線導波路によって形成されると共に、その分岐後の直線導波路が所定の曲率半径の円弧からなる曲線導波路に滑らかに移行するように形成されているものである。 According to a second aspect of the present invention, in the optical branch circuit according to the first aspect, each of the Y branch waveguides is formed by a straight waveguide in the vicinity of the branch portion. In addition, the straight waveguide after the branching is formed so as to smoothly transition to a curved waveguide formed of an arc having a predetermined radius of curvature.
請求項3の発明は、請求項1又は請求項2に記載の光分岐回路において、前記第2のY分岐導波路の分岐後の内側の導波路に接続される第3のY分岐導波路は、その分岐前直線導波路を前記入射導波路に対し傾斜させると共に入射導波路により近い位置に配置したものである。 According to a third aspect of the present invention, in the optical branch circuit according to the first or second aspect, the third Y branch waveguide connected to the inner waveguide after branching of the second Y branch waveguide is: The straight waveguide before branching is inclined with respect to the incident waveguide and disposed closer to the incident waveguide.
請求項4の発明は、請求項1又は請求項2に記載の光分岐回路において、前記第2のY分岐導波路の分岐後の内側の導波路が前記入射導波路と平行になるまで延伸され、前記延伸された導波路に前記第3のY分岐導波路の分岐前直線導波路を接続したものである。 According to a fourth aspect of the present invention, in the optical branch circuit according to the first or second aspect, the inner waveguide after branching of the second Y-branch waveguide is extended until it becomes parallel to the incident waveguide. The straight waveguide before branching of the third Y branching waveguide is connected to the stretched waveguide.
請求項5の発明は、請求項4に記載の光分岐回路において、前記各Y分岐導波路の分岐前直線導波路長は所定の長さに設定されており、前記延伸された導波路に接続された第3のY分岐導波路の分岐前直線導波路は前記所定の長さより長く形成したものである。 According to a fifth aspect of the present invention, in the optical branch circuit according to the fourth aspect, a straight waveguide length before branching of each of the Y branch waveguides is set to a predetermined length and is connected to the stretched waveguide. The pre-branch straight waveguide of the third Y branch waveguide is formed longer than the predetermined length.
請求項6の発明は、請求項1乃至請求項5のいずれかに記載の8分岐の光分岐回路を回路の一部に用いて16分岐以上の回路を形成した光分岐回路である。
The invention of claim 6 is an optical branch circuit in which a circuit having 16 branches or more is formed by using the 8-branch optical branch circuit according to any one of
このような構成の光分岐回路は、第2のY分岐導波路の分岐前直線導波路を傾斜させるので、S字曲線状の導波路部分を経由することなく第2のY分岐導波路を配置でき、従って、導波路全長と光分岐回路長を短縮でき、挿入損失を低減した光分岐回路を実現できる。 Since the optical branch circuit having such a configuration inclines the pre-branch straight waveguide of the second Y branch waveguide, the second Y branch waveguide is disposed without going through the S-shaped waveguide portion. Therefore, the total length of the waveguide and the length of the optical branch circuit can be shortened, and an optical branch circuit with reduced insertion loss can be realized.
以下、本発明の一実施形態に係るY分岐導波路を用いた光分岐回路について、図面を参照して説明する。図1は本発明の光分岐回路1を示し、図2(a)は従来の一例である光分岐回路90を示し、図2(b)は光分岐回路1と従来の光分岐回路90とを比較して示す。光分岐回路1は、図1に示すように、光を導波するための互いに平行な直線状の入射導波路10及び所定の一定間隔pで並んだ複数の出射導波路14を有し、入射導波路10から各出射導波路14へ光を導波する経路が入射導波路10側から順に第1、第2、及び第3のY分岐導波路21,22,23を接続した3段構成とされて8分岐回路を形成している。
Hereinafter, an optical branch circuit using a Y branch waveguide according to an embodiment of the present invention will be described with reference to the drawings. 1 shows an
各Y分岐導波路21,22,23は、分岐前に分岐前直線導波路11,12,13を有すると共にその分岐部の直後の導波路は所定の曲率半径の円弧からなる曲線からなっている。また、第1及び第3のY分岐導波路21,23は、その分岐前直線導波路11,13を入射導波路10に平行に配置され、第2のY分岐導波路22は、その分岐前直線導波路12を入射導波路10に対して傾斜して配置されている。
Each of the
上述の光分岐回路1を構成する導波路は互いに屈折率の異なるクラッドとコアによって形成されている。本明細書においては、光を導波する主たる構成要素である巨視的に見て線形状をしているコアの部分を光を導波する経路として図示している。また、導波路は、上述のように直線と曲線を滑らかに接続した経路からなり、経路上の幾何学的な変化点に適宜記号a,b,c等を付して経路上の点を参照する。また、入射導波路10から出射導波路14に向かう方向をx方向、導波路形成面内であってx方向に直交する方向をy方向として方向を参照する。
The waveguide constituting the
光分岐回路1は、入射導波路10(これは第1のY分岐導波路21の分岐前直線導波路11でもある)及びその延長線である入射光軸3に関して対称な構造を有している。本明細書では、入射光軸3に近い側を内側、遠い側を外側と呼ぶことにする。最外側の導波路における第3のY分岐導波路23の分岐前直線導波路13と入射光軸3との距離Wは、後述の説明において参照される。
The
ここで、従来の導波路を構成方法による8分岐の光分岐回路90を見ると、図2(a)に示すように、第2にY分岐導波路22の分岐前直線導波路12が入射導波路10と平行である。光分岐回路1と従来の光分岐回路90とを重ねて示すと、図2(b)に示すようになり、光分岐回路1の方が長さΔXだけ短く成っていることが分かる。これは、光分岐回路1において、第2のY分岐導波路22の分岐前直線導波路12を傾斜させたことの効果である。
Here, looking at the 8-branch
すなわち、図2(a)に示す従来の光分岐回路90においてS字曲線導波路15を経由して第2のY分岐導波路22が接続されているのとは異なり、光分岐回路1では、分岐前直線導波路12を傾斜させることによって、S字曲線導波路部分を経由することなく、第2のY分岐導波路22を第1のY分岐導波路21に接続可能となっている。これにより、導波路全長と光分岐回路長が短縮でき、挿入損失を低減した光分岐回路を実現できる。このような効果は、図2(a)に示す最外の導波路における2つのS字曲線導波路15,16が、光分岐回路1においては、その第2のY分岐導波路22の近傍にまとめられて1つのS字曲線導波路となっていることによる。
That is, unlike the conventional
次に、図3をさらに加えて、上述のS字曲線導波路の観点から光分岐回路1の導波路全長短縮について説明する。図3は第3のY分岐導波路23を示す。従来の導波路パターンを用いた光分岐回路90は、図2(a)に示したように、Y分岐導波路の中心線、従ってその分岐前直線導波路が常に入射導波路10と平行になっている。このため、分岐した後の曲線導波路が入射導波路10と平行になるまでS字曲線導波路を用いて戻すことが必要であり、これに起因して導波路が長くなる。そこで、Y分岐導波路の中心線、すなわち、分岐前直線導波路を入射導波路10に平行とすることなく、傾斜したままでY分岐導波路を配置することにより、導波路全長の短縮、ひいては光分岐回路の長さ短縮が可能と考えられる。
Next, further shortening of the total waveguide length of the optical branching
まず、第1のY分岐導波路21であるが、これは最初の分岐であるためわざわざ傾斜させる必要はなく、従来どおりの形状のままとする。次に、第3のY分岐導波路23であるが、これは8分岐の回路では最後の分岐になるため、傾斜させたとしても、図3に示すように、分岐後の2つの経路の長さが異なってしまい、外側経路23aが内側経路23bよりも長くなってしまう。この長さの違いを解消しようとすると、逆に、図2(a)に示すように対称にした場合よりも導波路長が長くなるため、やはり従来どおりの形状のままとする。以上のことから、8分岐の回路においては、第2のY分岐導波路22の分岐前直線導波路12を入射導波路10の方向に対して傾斜させたパターンで全長の短縮を図ることができる。なお、分岐前導波路を傾斜させることは、Y分岐導波路の全体を傾斜させることを意味する。これは、分岐後の2つの導波路が、導波光の品質を保持するために、分岐前直線導波路に関して対称となる必要があるからである。
First, the first Y-
一般的な光分岐回路は、図2(a)に示すように、出射導波路14の間隔が所定の一定間隔で並んでいる。ここで、入射導波路10が、出射導波路14のy方向の位置に関し、8本ある出射導波路14の外側から4本目と5本目の導波路の中間位置と一致する場合を想定する。入射導波路10から8本の出射導波路14への経路を考えると、x方向の移動距離は同じであり、y方向の移動距離は最も外側の出射導波路14について最大となっている。そこで、最外の出射導波路14への経路をできるだけ短くすることが重要になる。
In a general optical branch circuit, as shown in FIG. 2A, the intervals between the
次に、図4(a)(b)、図5をさらに加えて傾斜したY分岐導波路の構造を説明する。図4(a)は間隔Dを隔てて平行な導波路経路L1,L2を同一曲率の円弧によるS字曲線によって最短かつ滑らかに接続する様子を示し、図4(b)は図4(a)に示した導波路における円弧状の導波路部分に直線導波路を挿入して第2のY分岐導波路22を形成する様子を示し、図5は第2のY分岐導波路22のより詳細な形状を示す。導波路全長の短縮は、第3のY分岐導波路23が入射導波路10に対して平行に形成されることを考慮すれば、図2(a)に示す最外導波路上の点bから点fまでの経路を最短にするように行われる。第2のY分岐導波路22を傾斜させた場合、図1に示すように、点a−b、点c−d、点f−g、点h−i間が直線(分岐前直線導波路11,12,13及び出射導波路14に対応し、以下、これらを直線部11〜14とも称する)であり、点b−c間、点d−f間、点g−h間が円弧曲線であり、これらの組み合わせによって導波路全長が形成されている。
Next, the structure of the inclined Y-branch waveguide will be described by further adding FIGS. 4 (a), 4 (b), and 5. FIG. FIG. 4A shows a state in which the waveguide paths L1 and L2 that are parallel to each other with a distance D are connected in a shortest and smooth manner by an S-shaped curve with an arc having the same curvature, and FIG. FIG. 5 shows how the second Y-
第2のY分岐導波路22に関わる導波路の要素を、導波路上の幾何学的な変化点を示すa,b等の記号の組合せにより表して、導波路の構成をより詳細に説明する。第1のY分岐導波路21は、そのY分岐導波路の分岐点bに滑らかに接続された所定曲率半径(Rとする)を有する円弧状の第1の円弧導波路bcを有する。また、第2のY分岐導波路22は、第1の円弧導波路bcに滑らかに接続された所定直線長Lの分岐前直線導波路cd(12)と、分岐前直線導波路bcに滑らかに接続され第1の円弧導波路bcと同じ曲率半径R及び同じ屈曲方向(内側に凸)を有する円弧状の第2の円弧導波路deと、一端を第2の円弧導波路deに滑らかに接続され、かつ、他端を第3のY分岐導波路23の分岐前直線導波路fgに滑らかに接続され第2の円弧導波路deと同じ曲率半径R及び異なる屈曲方向(外側に凸)を有する円弧状の第3の円弧導波路efと、を備えている。点eは変曲点であり、第2の円弧導波路deと第3の円弧導波路efはS字曲線を形成する。
The waveguide elements related to the second Y-
図4(a)(b)は、上述の各導波路の要素(第1の円弧導波路bc等)決定の概念を示すものであり、これを説明する。図4(a)において、S字曲線b−e−fは、互いに接した半径Rの2つの円の一部からなり、間隔Dを隔てて平行な直線部L1,L2を滑らかに接続している。このとき、S字曲線の変曲点eにおける接線の傾きβは、β=atan((4RD−D2)1/2/(2R−D))、と決定される。また、点bから点fに至る曲線部のx方向直線距離Sxは、Sx=(4RD−D2)1/2、と決定される。 FIGS. 4A and 4B show the concept of determining the above-described waveguide elements (first arc waveguide bc, etc.), which will be described. In FIG. 4 (a), an S-shaped curve be-f is composed of a part of two circles having a radius R in contact with each other, and smoothly connects parallel linear portions L1 and L2 with a distance D therebetween. Yes. At this time, the tangent slope β at the inflection point e of the S-shaped curve is determined as β = atan ((4RD−D 2 ) 1/2 / (2R−D)). Further, the x-direction linear distance Sx of the curved portion from the point b to the point f is determined as Sx = (4RD−D 2 ) 1/2 .
ここで、図4(a)に示した円弧曲線be上の点d(その接線の角度をθとする)において、円弧beを分割し、図4(b)に示すように、点dにおける接線方向に沿って、点bを含む曲線部分を距離Lだけ平行移動する。図4(a)における直線部L1,L2をそれぞれ直線部12,13とし、点dから分離した点を新たに点cとすると、図4(b)に示す直線部12から、点b,c,d,e,f、を経由して直線部13に至る経路は、図1に示した導波路の直線部12から直線部13に至る経路に相似のものとなる。この経路を決定するには、直線長Lや傾斜角θ等のパラメータを決定しなければならない。なお、点dは、第2のY分岐導波路22の分岐点となり、点eから点uに向かう導波路が分岐する。
Here, the arc be is divided at the point d on the arc curve be shown in FIG. 4 (a) (the angle of the tangent is θ), and the tangent at the point d as shown in FIG. 4 (b). A curved portion including the point b is translated by a distance L along the direction. Assuming that the straight portions L1 and L2 in FIG. 4A are the
上述の経路を決定するパラメータは、図1において、点c−d間の直線部12の直線長L、同直線部の傾斜角θ、点b−f間の直線部13と入射導波路10の延長線(入射光軸3)との距離W、及び各円弧曲線の曲率半径Rである。
In FIG. 1, the parameters for determining the above-described path are the straight line length L of the
これらのパラメータのうち距離Wは、出射導波路14の間隔pから、W=3×p、により決まる。曲率半径Rは、導波路の断面形状や屈折率差から、曲げ損失の生じない最小の曲率半径として決定される。また、直線部12の直線長Lは、直線部12に接続された第2のY分岐導波路22における光分岐の割合が安定して1対1となるように、分岐部に入射する光の振動を減衰しておく目的で、所定長以上の長さとされる。そこで、直線長Lは、必要最小限の長さとして決定される。よって、点bから点fに至る経路を最短にするように、残りの傾斜角θを決定すれば、導波路の全体の形状が決定される。
Of these parameters, the distance W is determined by W = 3 × p from the interval p of the
上述のパラメータとして、例えば、p=250μmとすると、W=750μmとなる。そこで、点bから点fに至る間に導波路上の点のy方向変位が750μmとなるような条件下で、x方向長さが最小となる傾斜角θを決定する。ここで、y方向の変位は、直線c−d(直線部12)のy成分Ly、Ly=L・sinθと、曲線b−c,d−fのy成分とに分解される。曲線b−c、d−fは直線cdで分割されているが点c,dにおける傾きは同じであり、これらの曲線b−c,d−fを一体化させて考えれば、図4(a)に示すように、変曲点eを経由するS字曲線b−e−fとなる。 For example, if the parameter is p = 250 μm, W = 750 μm. Therefore, the inclination angle θ that minimizes the x-direction length is determined under the condition that the y-direction displacement of the point on the waveguide is 750 μm from the point b to the point f. Here, the displacement in the y direction is decomposed into y components Ly and Ly = L · sin θ of the straight line cd (straight line portion 12) and y components of the curves bc and df. The curves bc and df are divided by the straight line cd, but the slopes at the points c and d are the same. If these curves bc and df are considered to be integrated, FIG. ), An S-shaped curve be-f passes through the inflection point e.
図4(a)(b)に示されるように、距離Wは、W=L・sinθ+D、と表される。また、S字曲線b−e−fのx方向長さSxは、解析的に求められて、
Sx=(4RD−D2)1/2
=(4(W−L・sinθ)R−(W−L・sinθ)2)1/2
となる。また、直線c−dのx方向長さLxは、
Lx=L・cosθ
である。従って、Sx、Lxのいずれも傾斜角θが大きくなれば小さくなり、これらの和(Sx+Lx)も傾斜角の増大とともに小さく(短く)なる。Sxがθの増大とともに小さくなることを説明する。θが増大するときL・sinθが増大し、D=W−L・sinθが減少する。ここで、Sxを変形すると、Sx=(4R2−(2R−D)2)1/2、となるので、Dの減少により、(2R−D)2、が増大し、Sxが減少することになる。このようにx方向にのみ注目すれば、傾斜角θを大きくして第2のY分岐導波路22を大きく傾斜させるほど、点bから点fまでの距離を短くできることになる。しかしながら傾斜角θには上限があり、これを図5を参照して説明する。
As shown in FIGS. 4A and 4B, the distance W is expressed as W = L · sin θ + D. Further, the x-direction length Sx of the S-shaped curve bef is obtained analytically,
Sx = (4RD-D 2 ) 1/2
= (4 (W · L · sin θ) R− (W · L · sin θ) 2 ) 1/2
It becomes. Further, the length Lx in the x direction of the straight line cd is
Lx = L · cos θ
It is. Therefore, both Sx and Lx decrease as the inclination angle θ increases, and their sum (Sx + Lx) also decreases (shortens) as the inclination angle increases. It will be explained that Sx decreases as θ increases. When θ increases, L · sin θ increases, and D = W−L · sin θ decreases. Here, if Sx is deformed, Sx = (4R 2 − (2R−D) 2 ) 1/2 , and therefore, (2R−D) 2 increases due to a decrease in D, and Sx decreases. become. If attention is paid only to the x direction in this way, the distance from the point b to the point f can be shortened as the inclination angle θ is increased and the second Y-
ここで、第2のY分岐導波路22について、一般にY分岐導波路における分岐に際しての光の特性を考慮することからくる、分岐した導波路の形状に対する条件を説明する。第2のY分岐導波路22における曲線部は、図5に示すように、S字曲線の途中に長さLの直線部12が入り込んで、S字曲線を分割した形状になっている。図5において、各曲線部を形成する円弧の曲率半径はRであり、その曲率中心の方向が矢印Qによって示されている。直線部12の導波路は、分岐点dに接続された2本の円弧曲線によって分岐される。このように分岐された2つの導波路は、分岐点dから所定の距離までは、光信号の分岐比を1体1に保つため、Y分岐導波路22の分岐前直線導波路、つまり直線部12に関して対称な構造とする必要がある。所定の距離は、2本の導波路を伝搬する光が互いに影響しない間隔δまで離れる距離とされる。
Here, regarding the second Y-
上述の2つの導波路の間隔がδとなる点eまでは、内側(入射光軸3側)に凸の円弧形状とし、この点eを変曲点として、これを境に外側に凸の円弧形状に変更して、直線部12の傾斜を戻してゆく。このような形状の導波路とすると、この曲線部の最大傾斜を必要以上に大きくすることがない。分岐された2つの導波路の間隔を間隔δを越えて開くようにすると、曲線部の最大傾斜角が大きくなり、点fまでのx方向長さが延びることになる(後述)。そこで、曲線部の最大傾斜角を与える変曲点eが、上述のように、分岐された2つの導波路の間隔がδとなる点として決定される。
Up to the point e where the distance between the two waveguides becomes δ, the arc shape is convex on the inside (incident
図5に示すように、導波路上の点dから点eに至る間の曲線d−eの接線の傾き角の増分である角度α、及び変曲点eにおける曲線部の接線の角度である最大傾斜角度βが定義される。角度αは、R,δを用いて、
α=atan((4Rδ−δ2)1/2/(2R−δ)) ・・・(1)
と表される。また、角度βは、R,Dを用いて、
β=atan((4RD−D2)1/2/(2R−D)) ・・・(2)
と表される。また、傾斜角θは、α,β,θの関係式、
β=θ+α ・・・(3)
及び、D,W,L,θの関係式、
D=W−L・sinθ ・・・(4)
と前述の式を加えた4つの式(1)〜(4)からなる連立方程式を解くことにより求められる。
As shown in FIG. 5, the angle α, which is an increase in the inclination angle of the tangent line of the curve de, from the point d to the point e on the waveguide, and the tangent angle of the curved portion at the inflection point e. A maximum tilt angle β is defined. The angle α is calculated using R and δ.
α = atan ((4Rδ−δ 2 ) 1/2 / (2R−δ)) (1)
It is expressed. In addition, the angle β is determined using R and D,
β = atan ((4RD-D 2 ) 1/2 / (2R-D)) (2)
It is expressed. In addition, the inclination angle θ is a relational expression of α, β, θ,
β = θ + α (3)
And a relational expression of D, W, L, θ,
D = W−L · sin θ (4)
And solving the simultaneous equations consisting of four equations (1) to (4) to which the above equation is added.
上述の式(1)〜(4)、及び具体的な数値、例えばR=50mm、p=250μm、W=750μm、L=3mm、δ=100μmに基づいて求めた傾斜角θは、θ≒3.5度となる。また、これらの数値に基づく光分岐回路1の全長は、約27.6mmになる。従来パターンを用いた光分岐回路90の全長は約34.1mmであるので、7mm程度の短縮が図れたことになる。
The inclination angle θ obtained based on the above formulas (1) to (4) and specific numerical values such as R = 50 mm, p = 250 μm, W = 750 μm, L = 3 mm, and δ = 100 μm is θ≈3. .5 degrees. Further, the total length of the optical branching
次に、図6(a)(b)(c)を参照して、第2のY分岐導波路22の分岐前直線導波路の傾斜の大小による光分岐回路の最外導波路の導波路全長への影響を定性的に説明する。図6(a)、図6(b)、図6(c)、それぞれ第2のY分岐導波路22の分岐前直線導波路12の傾斜角θ1,θ2,θ3が、小さ過ぎる場合、最適の場合、大き過ぎる場合を示す。導波路の曲線部分を形成する円弧の曲率半径Rを一定とすると、分岐後の導波路間隔を所定間隔δ(不図示)だけ離すのに必要な距離は、傾斜角θ1,θ2,θ3によらずに一定である。従って、S字曲線の変曲点eにおける接線の傾きは、いずれも直線部12の傾斜角より、角度αだけ大きくなっている。ここで直線部12の傾斜角の関係は、θ1<θ2<θ3であり、変曲点eにおける接線の傾きも(θ1+α)<(θ2+α)<(θ3+α)の順に大きくなる。変曲点eの後は、導波路の傾斜を入射光軸3と平行になるように戻すのであるが、戻すために必要なx方向長さが傾斜角度に応じて長くなる。平行に戻した点を点f1とすると、点e−f1の長さは、傾斜角の大きいほど長くなる。
Next, with reference to FIGS. 6A, 6B, and 6C, the total waveguide length of the outermost waveguide of the optical branch circuit according to the inclination of the straight waveguide before branching of the second
つまり、図6(a)に示すように、傾斜角θ1の場合に、点e−f1の長さが最短となるが、「点f1の位置が入射光軸3からの距離W」という条件を満たしていないため、この条件を満たそうとすると、余分なS字曲線が必要となり、傾斜角θ2の場合よりも導波路全長が長くなってしまう。また、大きな傾斜角度の場合、図6(c)に示すように、傾斜角θ3が大きすぎて、「点f1の位置が入射光軸3からの距離W」という条件を満たすことができなく、やはり、余分なS字曲線が必要となる。結局、図6(b)に示すように、余分なS字曲線が追加されない傾斜角θ2の場合が最適な傾斜角度となる。この場合、点f1と点fが一致している。
That is, as shown in FIG. 6A, in the case of the inclination angle θ1, the length of the point e−f1 is the shortest, but the condition that “the position of the point f1 is the distance W from the incident
なお、図6(a)において、各点e−f2−f−gを経由する点線で示す導波路は、変曲点eに直線e−f2を接続してy方向に移動距離を確保し、その後の円弧曲線f2−fとともに、距離Wを確保している。このように、変曲点eに直線導波路部分を接続することにより、図6(a)に実線で示す経路よりも短い導波路経路を形成することができる。 In FIG. 6A, the waveguide indicated by the dotted line passing through each point e-f2-f-g connects the straight line e-f2 to the inflection point e to ensure a movement distance in the y direction. The distance W is secured together with the subsequent circular arc curve f2-f. Thus, by connecting the straight waveguide portion to the inflection point e, a waveguide path shorter than the path shown by the solid line in FIG. 6A can be formed.
次に、前述の図1に加え、図7、図8を参照して、本発明の光分岐回路1におけるY分岐導波路の構造を説明する。光分岐回路1は、図1に示したように複数のY分岐導波路21,22,23を有している。これらのY分岐導波路21,22,23は、図7に示すように、その分岐前直線導波路2aから分岐する導波路2b,2bがその分岐部の近傍において直線導波路によって形成されると共に、その分岐後の直線導波路が所定の曲率半径の円弧からなる曲線導波路に滑らかに移行するように形成されている。
Next, referring to FIGS. 7 and 8 in addition to FIG. 1, the structure of the Y branch waveguide in the
ここで、導波路の製造について説明する。光分岐回路1の導波路は、例えば、リソグラフィ技術を用いて製造される。この製造技術の場合、導波路を形成する基板上に感光性樹脂を塗布した後、露光による一部硬化、現像による不要部分の除去して、感光性樹脂による導波路が形成される。これらの製造工程において、除去される樹脂量が現像時間によって変動するため、常に同じ形状の導波路が得られるとは限らず、導波路の幅(コア幅)に変動が生じ、従って、Y分岐部導波路の先端形状も変化する。図7において、実線で示した導波路コア部の狙い形状(設計形状)4に対して、破線で示した実績形状41では、コア幅が太くなっている。このようなコア幅の変動が発生したとしても、図7に示すような、分岐後の導波路として直線導波路を用いている場合には、分岐部先端の狙い角度γ1に対して、実績角度γ2は、γ2=γ1、という関係を保つことができる。従って分岐角度は一定であり、分岐損失や分岐割合(均一性)の増加や変動を抑制することができる。
Here, the manufacture of the waveguide will be described. The waveguide of the
他方、図8に示すように、円弧曲線を用いてY分岐導波路を形成する従来の導波路の場合、コア幅の変動が発生すると、分岐部先端の狙い角度γ1に対して、実績角度γ2が変動してしまい、γ2≠γ1、となる。すなわち、現像工程における製造ばらつきにより、Y分岐導波路における分岐角度が変わってしまうことになり、分岐損失の変動や、各導波路への分岐割合の変動が発生する可能性がある。 On the other hand, as shown in FIG. 8, in the case of a conventional waveguide in which a Y-branch waveguide is formed using a circular arc curve, when the core width fluctuates, the actual angle γ2 with respect to the target angle γ1 at the tip of the branching portion. Fluctuate and γ2 ≠ γ1. That is, due to manufacturing variations in the development process, the branch angle in the Y-branch waveguide changes, and there is a possibility that fluctuations in branching loss and branching ratios to each waveguide may occur.
上述のように、分岐前直線導波路から分岐する導波路がその分岐部の近傍において直線導波路によって形成されることにより、直線によって挟まれる角度、すなわちY分岐導波路部における分岐角度が一定となり、不適切な分岐角度によって派生する分岐損失や分岐割合の変動を抑制することができる。これは、分岐角度が曲線によって挟まれる角度から成る場合、その分岐角度が導波路製造プロセスにおけるプロセス条件変動などに起因して発生する曲線の曲率半径の変動によって変動するのに対し、直線によって挟まれて成る分岐角度は、直線の曲率半径が無限大であり、導波路製造プロセスにおけるプロセス条件変動に対して安定していることによる。 As described above, since the waveguide branched from the straight waveguide before branching is formed by the straight waveguide in the vicinity of the branched portion, the angle between the straight lines, that is, the branch angle in the Y-branch waveguide portion becomes constant. Therefore, it is possible to suppress a branch loss and a branch ratio fluctuation caused by an inappropriate branch angle. This is because when the branching angle is composed of an angle sandwiched by curves, the branching angle varies due to fluctuations in the radius of curvature of the curve caused by process condition variations in the waveguide manufacturing process. This branching angle is due to the fact that the radius of curvature of the straight line is infinite and is stable against process condition fluctuations in the waveguide manufacturing process.
次に、図9、図10を参照して、本発明の他の実施形態に係る光分岐回路1を説明する。図9に示す光分岐回路1は、第2のY分岐導波路22の分岐後の内側の導波路に接続される第3のY分岐導波路23が、その分岐前直線導波路13を入射導波路10に対し傾斜させると共に入射導波路10により近い位置に配置されている。このような構造の光分岐回路1では、外側よりも内側の導波路全長が長くなってしまうことを防止できるので、光分岐回路1の全長を短縮し、光分岐回路1の挿入損失を低減させることができる。
Next, an optical branching
さらに説明する。上述の図8までの光分岐回路1の説明においては、最外の出射導波路14に至る導波路全長を短くするように全長の短縮を図っている。これは、最外の出射導波路14ほどy方向に変位させる量が多いので、より内側の出射導波路14に比べてx方向長さの短縮が必要になる、という前提に基づいている。
Further explanation will be given. In the description of the optical branching
しかしながら、図10に示すように、第2のY分岐導波路22を傾斜させて、最外の出射導波路14への経路を優先的に短くすると、必ずしも内側の出射導波路14への経路が最外経路より短くなるとは限らない。第2のY分岐導波路22の傾斜角が大きいと内側の導波路への経路は、円で囲んだ領域Aに示すように、余分なS字曲線が挿入されるので、これによって導波路長が長くなる。そうすると、第3のY分岐導波路23開始位置が、最外経路の第3のY分岐導波路23開始位置よりも後ろへずれてしまう。従って、最外経路を短くしても、内側の経路長さに影響されて全長短縮の効果が得られないことになる。
However, as shown in FIG. 10, if the second Y-
そこで、図9に示すように、内側経路の第3のY分岐導波路23も傾斜させ、内側経路が最外経路より長くならないようにした。図10に示す光分岐回路ではS字曲線とその後の直線部が独立に存在していたが、図9に示す光分岐回路1では、直線部を傾斜して設け、第3のY分岐導波路23後にも曲線で間隔を広げる部分があるので、y方向の高さを揃えるのは第3の分岐以降とすることにより、余分なS字曲線部分の発生を防止できる。光分岐回路1は、このような導波路形状とすることで、外側よりも内側の導波路長さの方が長くなることを防止でき、光分岐回路1の全長を短縮し、挿入損失を低減させることができる。
Therefore, as shown in FIG. 9, the third Y-
次に、図11(a)(b)を参照して、本発明のさらに他の実施形態に係る光分岐回路1を説明する。図11(a)に示す光分岐回路1は、第2のY分岐導波路22の分岐後の内側の導波路が入射導波路10と平行になるまで延伸され、延伸された導波路13に第3のY分岐導波路23の分岐前直線導波路13を接続したものである。このような光分岐回路1においては、外側よりも内側の導波路全長が長くなってしまうことを防止できるので、光分岐回路1の全長を短縮し、光分岐回路1の挿入損失を低減させることができる。
Next, an
この光分岐回路1では、内側経路が最外経路より長くならないように、上述の図9に示した光分岐回路1と同様の構造としている。第2のY分岐導波路22の後の曲線が、入射光軸3と平行になった後に直線導波路部分を設け、第3のY分岐導波路23の後の曲線で間隔をy方向に広げるようにすれば、S字曲線部分を省略できる。ただし、この場合は、分岐前直線導波路13のy方向位置が、その後に続く2つの出射導波路の中間位置と一致しないので、この第3の分岐導波路23以降の出射導波路への経路は対称にはならない。しかしながら、図11(a)に示すような光分岐回路1の構造とすることにより、外側よりも内側の導波路長さの方が長くなることを防止でき、光分岐回路の全長を短縮し、挿入損失を低減させることができる。
The
また、光分岐回路1の各Y分岐導波路の分岐前直線導波路長は所定の長さに設定されており、図11(b)に示す光分岐回路1は、図11(a)に示した光分岐回路1の延伸された導波路に接続された第3のY分岐導波路23の分岐前直線導波路13が、所定の長さより長く形成されているものである。このような光分岐回路1においては、上述の図11(a)に示した光分岐回路1のように、第3のY分岐導波路23の位置を前後に移動する余裕が発生した状況のもとで、分岐前直線導波路13の長さを所定長よりも長くすることにより、分岐部に入射する光の振動をより抑制して分岐割合の変動を低減させることができる。
Further, the pre-branch straight waveguide length of each Y branch waveguide of the
一般に、曲線導波路や導波路の分岐部を通過した光は、導波路内で振動しながら伝搬する。このように振動している光が直線導波路を伝搬すると、この振動をある程度減衰させることができる。また、Y分岐導波路に振動する光が入射すると、分岐割合が変動してしまう。そこで、Y分岐導波路前に直線導波路が配置される。これにより、分岐割合(均一性)が変動しにくくなり、導波特性が向上する。均一性だけに注目すると、直線導波路部はできるだけ長い方がよい。しかしながら、直線導波路部を長くすると、導波路全長が長くなってしまうので、挿入損失が悪くなる。図11(b)に示す光分岐回路1の場合、内側の導波路だけであるが、第3のY分岐導波路23の分岐前直線導波路の長さを長くすることができるので、この経路における光の振動を減衰させて分岐割合(均一性)を安定化させることができる。
In general, light that has passed through a curved waveguide or a branching portion of the waveguide propagates while vibrating in the waveguide. When light oscillating in this way propagates through the straight waveguide, this vibration can be attenuated to some extent. Further, when the vibrating light is incident on the Y branch waveguide, the branching ratio is changed. Therefore, a straight waveguide is disposed in front of the Y branch waveguide. This makes it difficult for the branching ratio (uniformity) to fluctuate and improves the waveguide characteristics. If attention is paid only to the uniformity, the straight waveguide portion should be as long as possible. However, if the straight waveguide portion is lengthened, the entire length of the waveguide is lengthened, so that the insertion loss is deteriorated. In the case of the
次に、図12を参照して、本発明のさらに他の実施形態に係る16分岐した光分岐回路1を説明する。この光分岐回路1は、上述した8分岐の光分岐回路1を回路の一部に用いて16分岐の回路を形成したものである。このような光分岐回路1によれば、上述の8分岐の光分岐回路と同様に導波路全長及び光分岐回路長を短縮する効果が得られるので、光分岐回路の挿入損失を低減させることができる。この16分岐の光分岐回路1は、8分岐の光分岐回路における第1のY分岐導波路の前にY分岐導波路20を設け、Y分岐導波路20に2つの8分岐の光分割回路を接続している。この場合、Y分岐導波路20によって分岐した導波路は必要最小限の距離だけ離しておく。また、第2のY分岐導波路22の分岐前直線導波路の傾斜は、図中に丸Bと四角Cで示すように、外側ほど傾斜を大きくして入射導波路10に向けて傾斜させる。
Next, with reference to FIG. 12, a 16-branched optical branching
なお、本発明は、上記構成に限られることなく種々の変形が可能である。上記では、8分岐と16分岐の例を示したが、本発明によれば、他の分岐数の光分岐回路も構成することができる。入射導波路10に関して対称な光分岐回路に限らず、非対称な光分岐回路も構成することができる。
The present invention is not limited to the above-described configuration, and various modifications can be made. In the above, examples of 8 branches and 16 branches have been shown. However, according to the present invention, optical branch circuits having other numbers of branches can be configured. Not only a symmetric optical branch circuit with respect to the
1 光分岐回路
10 入射導波路
11,12,13 分岐前直線導波路
14 出射導波路
20,21,22,23 Y分岐導波路
bc,de,ef 円弧導波路
DESCRIPTION OF
Claims (6)
前記Y分岐導波路は前記入射導波路側から順に第1、第2、及び第3のY分岐導波路を接続した3段構成とされ、前記各Y分岐導波路は分岐前に分岐前直線導波路を有すると共にその分岐部の直後の導波路は所定の曲率半径の円弧からなる曲線からなり、
前記第1及び第3のY分岐導波路は、その分岐前直線導波路を前記入射導波路に平行に配置し、
前記第1のY分岐導波路は、そのY分岐導波路の分岐点に滑らかに接続された所定曲率半径を有する円弧状の第1の円弧導波路を有し、
前記第2のY分岐導波路は、前記第1の円弧導波路に滑らかに接続された所定長さの直線からなる分岐前直線導波路と、前記分岐前直線導波路に滑らかに接続され前記第1の円弧導波路と同じ曲率半径及び同じ屈曲方向を有する円弧状の第2の円弧導波路と、一端を前記第2の円弧導波路に滑らかに接続され、かつ、他端を前記第3のY分岐導波路の分岐前直線導波路に滑らかに接続され前記第2の円弧導波路と同じ曲率半径及び異なる屈曲方向を有する円弧状の第3の円弧導波路と、を備えて構成することにより、その分岐前直線導波路を前記入射導波路に対して傾斜して配置して8分岐回路を形成したことを特徴とする光分岐回路。 A path for guiding light from the incident waveguide to each of the output waveguides has a linear incident waveguide parallel to each other for guiding light and a plurality of output waveguides arranged at predetermined intervals. In an optical branch circuit configured by connecting Y branch waveguides in multiple stages,
The Y branch waveguide has a three-stage configuration in which the first, second, and third Y branch waveguides are connected in order from the incident waveguide side, and each Y branch waveguide is linearly guided before branching before branching. The waveguide having a waveguide and immediately after the branch portion is composed of a curve made of an arc having a predetermined radius of curvature,
The first and third Y-branch waveguides are arranged such that the straight waveguide before branching is parallel to the incident waveguide,
The first Y-branch waveguide has an arc-shaped first arc waveguide having a predetermined radius of curvature smoothly connected to a branch point of the Y-branch waveguide;
The second Y-branch waveguide is smoothly connected to the pre-branch straight waveguide consisting of a straight line having a predetermined length and smoothly connected to the first arcuate waveguide, and to the first branch straight waveguide. An arcuate second arcuate waveguide having the same radius of curvature and the same bending direction as the one arcuate waveguide, one end smoothly connected to the second arcuate waveguide, and the other end to the third arcuate waveguide An arc-shaped third arc waveguide that is smoothly connected to the pre-branch straight waveguide of the Y branch waveguide and has the same radius of curvature and a different bending direction as the second arc waveguide; An optical branch circuit comprising an 8-branch circuit in which the straight waveguide before branching is inclined with respect to the incident waveguide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005116104A JP2006293171A (en) | 2005-04-13 | 2005-04-13 | Optical branching circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005116104A JP2006293171A (en) | 2005-04-13 | 2005-04-13 | Optical branching circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006293171A true JP2006293171A (en) | 2006-10-26 |
Family
ID=37413798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005116104A Pending JP2006293171A (en) | 2005-04-13 | 2005-04-13 | Optical branching circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006293171A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010049255A (en) * | 2008-08-25 | 2010-03-04 | Fujitsu Ltd | Optical beam splitter |
CN114371532A (en) * | 2021-08-16 | 2022-04-19 | 北京工业大学 | Branched waveguide interactive regulation and control ultrafast all-optical switch based on phase change material |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01105904U (en) * | 1987-12-29 | 1989-07-17 | ||
JP2001208925A (en) * | 2000-01-26 | 2001-08-03 | Furukawa Electric Co Ltd:The | Y branched optical waveguide circuit |
JP2003029067A (en) * | 2001-07-13 | 2003-01-29 | Nhk Spring Co Ltd | Multi branching optical waveguide |
-
2005
- 2005-04-13 JP JP2005116104A patent/JP2006293171A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01105904U (en) * | 1987-12-29 | 1989-07-17 | ||
JP2001208925A (en) * | 2000-01-26 | 2001-08-03 | Furukawa Electric Co Ltd:The | Y branched optical waveguide circuit |
JP2003029067A (en) * | 2001-07-13 | 2003-01-29 | Nhk Spring Co Ltd | Multi branching optical waveguide |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010049255A (en) * | 2008-08-25 | 2010-03-04 | Fujitsu Ltd | Optical beam splitter |
CN114371532A (en) * | 2021-08-16 | 2022-04-19 | 北京工业大学 | Branched waveguide interactive regulation and control ultrafast all-optical switch based on phase change material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2013122493A (en) | Optical branching element and optical branching circuit | |
JP2005055690A (en) | Optical branch waveguide | |
CN108020889B (en) | Coupler and optical module | |
US7587106B2 (en) | Optical crossover in thin silicon | |
KR100431481B1 (en) | Wavelength division demultiplexing apparatus | |
JP6572175B2 (en) | Waveguide type optical coupler | |
EP1530736A1 (en) | Improved optical splitter with taperd multimode interference waveguide | |
JP2012181498A (en) | Wavelength selection switch | |
KR100785786B1 (en) | Silicon arrayed waveguide grating device for reducing effective refractive index variation of optical waveguide according to temperature | |
JP2003014962A (en) | Optical multiplexer/demultiplexer | |
JP2011090223A (en) | Crossing optical waveguide | |
JP2006201298A (en) | Optical waveguide and optical communication component using the same | |
JP2006091785A (en) | Optical waveguide plate | |
US20020154861A1 (en) | Arrayed waveguide grating optical multiplexer/demultiplexer | |
JP2006293171A (en) | Optical branching circuit | |
US20230259017A1 (en) | Photomask, Optical-Waveguide, Optical Circuit and Method of Manufacturing an Optical-Waveguide | |
JP2001124945A (en) | Y-branching waveguide | |
JP2005181748A (en) | Y-branching optical waveguide device | |
WO2012063562A1 (en) | Optical waveguide and arrayed waveguide grating | |
JP2010008838A (en) | Optical resonator and laser light source | |
KR19990038669A (en) | Integrated optical power splitter and manufacturing method thereof | |
JP2012133223A (en) | Optical waveguide and array waveguide diffraction grating | |
JP2024061993A (en) | Substrate-type optical waveguide element and optical communication device | |
JP2010085564A (en) | Optical waveguide circuit and optical circuit device | |
JP2002090561A (en) | Optical multiplexer/demultiplexer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071211 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100126 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100615 |