JP2006292581A - Solublity displaying method - Google Patents

Solublity displaying method Download PDF

Info

Publication number
JP2006292581A
JP2006292581A JP2005114736A JP2005114736A JP2006292581A JP 2006292581 A JP2006292581 A JP 2006292581A JP 2005114736 A JP2005114736 A JP 2005114736A JP 2005114736 A JP2005114736 A JP 2005114736A JP 2006292581 A JP2006292581 A JP 2006292581A
Authority
JP
Japan
Prior art keywords
water
glucose
aqueous solution
solubility
monomolecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005114736A
Other languages
Japanese (ja)
Inventor
Kokichi Hanaoka
孝吉 花岡
Yukiaki Matsuo
至明 松尾
Ryoichi Otsubo
亮一 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005114736A priority Critical patent/JP2006292581A/en
Publication of JP2006292581A publication Critical patent/JP2006292581A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solubility displaying method useful for evaluating the solute solubility of water or an aqueous solution, especially the degree of dissociation of water for use in electrolytic water, drinking water, food processing, medicines, cosmetics, a detergent and the like. <P>SOLUTION: In the solubility displaying method, D-glucose is added to water or an aqueous solution held to predetermined pH and a predetermined temperature and the dissolving speed of D-glucose calculated from a change with time in the concentration of monomolecular D-glucose in the water or the aqueous solution is set as a parameter showing the solubility of the water or the aqueous solution being a measuring target. The pH of the water or the aqueous solution being the measuring target is preferably 5.5-9.5, the addition amount of D-glucose is 100-600 mg per 100 ml of the water or the aqueous solution and a measuring temperature is preferably 20-30°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、溶解性表示方法に関する。更に詳述すれば、本発明は、水又は水溶液への溶質の溶解性を評価するのに有用な溶解性表示方法に関する。特に、本発明の溶解性表示方法は、水又は水溶液中の水の解離度を表わす指標として有用である。   The present invention relates to a solubility display method. More specifically, the present invention relates to a solubility display method useful for evaluating the solubility of a solute in water or an aqueous solution. In particular, the solubility display method of the present invention is useful as an index representing the degree of dissociation of water in water or an aqueous solution.

本発明の溶解性表示方法は、水又は水溶液が電解生成水の場合特に好ましく適用できる。この電解生成水は、例えば、飲用、食品加工用、薬用、化粧品用、洗剤用等に使用される。また、本発明における上記の指標で、電解装置が製造する電解水がどの程度の解離度の電解水を製造できる能力を持っているかを定量的に表示できる。   The solubility display method of the present invention can be applied particularly preferably when the water or aqueous solution is electrolyzed water. This electrolyzed water is used, for example, for drinking, food processing, medicinal use, cosmetic use, detergent use, and the like. In addition, the above index of the present invention can quantitatively display the degree of dissociation of the electrolyzed water produced by the electrolyzer.

希薄な電解質水溶液を電解すると両極に電解生成水が生成する。陽極側の電解生成水は殺菌作用やアストリンゼント効果があるので、薬品や化粧品用に使用される。一方、陰極側の電解生成水は飲用や食品加工等に使用される。また、陰極側の電解生成水は油脂や蛋白質をよく溶かす特性があるので、食器洗浄用などにも使用される。これらの用途では、電解生成水の溶質溶解性を計測し、これを定量的に表示することが、製品製造用の電解生成水を選択する上で、或は製造工程を管理する上で重要である。   Electrolysis of a dilute electrolyte aqueous solution produces electrolyzed water at both electrodes. The electrolyzed water on the anode side is used for chemicals and cosmetics because it has a bactericidal action and an astringent effect. On the other hand, the electrolyzed water on the cathode side is used for drinking and food processing. Further, the electrolyzed water on the cathode side has a property of dissolving oils and fats and proteins well, so it is also used for washing dishes. In these applications, measuring the solute solubility of electrolyzed water and displaying it quantitatively is important in selecting electrolyzed water for product production or managing the manufacturing process. is there.

電解生成水の特性を表すパラメータとして、水素イオン濃度(pH)、酸化還元電位(ORP)、溶存酸素濃度(DO)或は電気伝導度(EC)が従来から知られている。しかしながら、これらのパラメータは全て溶質の濃度に依存するものであり、水自体の特性を表わすパラメータではない。このため、これらのパラメータでは電解生成水の溶質溶解性を正確には表示できない。例えば、従来水又は水溶液はpHが高い程溶質の溶解性が高いとされている。しかしながら、アルカリ性の陰極側電解生成水を酸により中和したものは、pHが比較的低いにもかかわらず水の解離が高く溶質の溶解性が高い。従って、pHは水又は水溶液の溶質溶解性を表すパラメータとしては適切でない。この場合と同様にpH以外の上記パラメータについても単独では水又は水溶液の溶質溶解性を表示することが難かしい。結局、水又は水溶液中の水自体の解離特性を加味しないと、水又は水溶液の溶質溶解性を正確に表示することが困難である。   As parameters representing the characteristics of electrolyzed water, hydrogen ion concentration (pH), oxidation-reduction potential (ORP), dissolved oxygen concentration (DO) or electrical conductivity (EC) are conventionally known. However, these parameters all depend on the concentration of the solute, and do not represent the characteristics of water itself. For this reason, the solute solubility of electrolyzed water cannot be accurately displayed with these parameters. For example, conventionally, water or an aqueous solution is considered to have higher solubility of solute as pH is higher. However, water obtained by neutralizing alkaline cathode-side electrolyzed water with an acid has high dissociation of water and high solubility of solutes even though the pH is relatively low. Accordingly, pH is not appropriate as a parameter representing the solute solubility of water or an aqueous solution. As in this case, it is difficult to display the solute solubility of water or an aqueous solution alone for the above parameters other than pH. After all, it is difficult to accurately display the solute solubility of water or an aqueous solution unless the dissociation characteristics of the water or the aqueous solution itself is taken into account.

水に対する溶質の溶解度は、一般に溶解温度が高いほど高くなる。この現象は、水分子の解離が高温度程顕著になることによる。電場、磁場等のエネルギーを水に加えると、水分子の解離が進み溶質を溶かしやすい性質に改質される。特に、電解生成水が溶質を溶かしやすい。   The solubility of solutes in water generally increases as the dissolution temperature increases. This phenomenon is due to the fact that the dissociation of water molecules becomes more prominent at higher temperatures. When energy such as an electric field or a magnetic field is added to water, the dissociation of water molecules proceeds and the solute is easily dissolved. In particular, electrolyzed water tends to dissolve solutes.

水分子の解離と溶質溶解速度との関係は、ある一定範囲においては比例的に成立する。また、超臨界水では水分子の解離が最大の状態に到達し、溶質の溶解が極限を示すと推察される。このように、水の解離度を計測することが水又は水溶液の溶質溶解性を表示するパラメータとして重要である。   The relationship between the dissociation of water molecules and the solute dissolution rate is proportionally established within a certain range. In supercritical water, the dissociation of water molecules reaches the maximum state, and it is assumed that the dissolution of solutes shows the limit. Thus, measuring the degree of dissociation of water is important as a parameter indicating the solute solubility of water or an aqueous solution.

塩化ナトリウムのような電解質の水溶液を電解すると、電解エネルギーに比例して水の解離が進むことが知られている(非特許文献1)。しかし、このような水溶液中の水の解離度を迅速に計測する方法は、未だ見出されていない。このため、電解質水溶液中の水の解離度の簡便計測方法、或は解離度に対応する溶解特性の簡便計測方法の開発が切望されている。
Biophysical Chemistry 107 (2004) 71-82
It is known that when an aqueous electrolyte solution such as sodium chloride is electrolyzed, dissociation of water proceeds in proportion to electrolytic energy (Non-patent Document 1). However, a method for rapidly measuring the degree of dissociation of water in such an aqueous solution has not yet been found. Therefore, development of a simple method for measuring the degree of dissociation of water in an aqueous electrolyte solution, or a simple method for measuring solubility characteristics corresponding to the degree of dissociation has been desired.
Biophysical Chemistry 107 (2004) 71-82

本発明は上記事情に鑑みなされたもので、その目的とするところは、水又は水溶液の溶質溶解性評価に有用な溶解性表示方法を提供することにある。特に、飲用、食品加工用、薬用、化粧品用、洗剤用等に用いられる水又は水溶液中の水の解離度に対応する溶解特性の簡便計測方法を提供することにある。   This invention is made | formed in view of the said situation, The place made into the objective is to provide the solubility display method useful for the solute solubility evaluation of water or aqueous solution. In particular, it is to provide a simple measurement method of solubility characteristics corresponding to the degree of dissociation of water in water or an aqueous solution used for drinking, food processing, medicinal use, cosmetic use, detergent use and the like.

本発明は以下に記載するものである。   The present invention is described below.

〔1〕 pHが5.5から9.5であり、所定温度に保たれた測定対象の水又は水溶液にD−グルコースを添加し、添加してから所定時間経過後に該水又は水溶液中に溶解する単分子状D−グルコース濃度を測定し、該濃度の測定結果から算出した単分子状D−グルコースの溶解速度を該水又は水溶液の溶質溶解性を示すパラメータとすることを特徴とする溶解性表示方法。
〔2〕水又は水溶液中に溶解する単分子状D−グルコース濃度を酵素電極法により測定する〔1〕に記載の溶解性表示方法。
〔3〕 酵素電極法が、フェリシアンイオンを添加してなる反応系を用いたグルコースオキシダーゼアンペロメトリー法である〔2〕に記載の溶解性表示方法。
〔4〕 水又は水溶液が電解生成水である〔1〕に記載の溶解性表示方法。
〔5〕 D−グルコースの添加量が測定対象の水又は水溶液100ml当たり100〜600mgである〔1〕に記載の溶解性表示方法。
〔6〕 所定温度が20〜30℃である〔1〕に記載の溶解性表示方法。
〔7〕 所定時間が1〜60分である〔1〕に記載の溶解性表示方法。
[1] pH is 5.5 to 9.5, and D-glucose is added to water or an aqueous solution to be measured which is kept at a predetermined temperature, and dissolved in the water or aqueous solution after a predetermined time has elapsed since the addition. The solubility is characterized by measuring the concentration of monomolecular D-glucose to be measured, and using the dissolution rate of monomolecular D-glucose calculated from the measurement result of the concentration as a parameter indicating the solute solubility of the water or aqueous solution. Display method.
[2] The solubility display method according to [1], wherein a monomolecular D-glucose concentration dissolved in water or an aqueous solution is measured by an enzyme electrode method.
[3] The solubility display method according to [2], wherein the enzyme electrode method is a glucose oxidase amperometry method using a reaction system in which ferricyan ions are added.
[4] The solubility indication method according to [1], wherein the water or the aqueous solution is electrolytically generated water.
[5] The solubility display method according to [1], wherein the amount of D-glucose added is 100 to 600 mg per 100 ml of water or an aqueous solution to be measured.
[6] The solubility indication method according to [1], wherein the predetermined temperature is 20 to 30 ° C.
[7] The solubility indication method according to [1], wherein the predetermined time is 1 to 60 minutes.

本発明の溶解性表示方法によれば、水又は水溶液の溶質溶解性を正確に評価できる。特に、本発明の溶解性表示方法を用いれば、飲用、食品加工用、薬用、化粧品用、洗剤用等の製造に用いる水又は水溶液を容易に選択できる。或はこれらの製品の製造工程を容易に管理できる。   According to the solubility display method of the present invention, the solute solubility of water or an aqueous solution can be accurately evaluated. In particular, if the solubility display method of the present invention is used, it is possible to easily select water or an aqueous solution used for production of drinks, food processing, medicinal products, cosmetics, detergents and the like. Alternatively, the manufacturing process of these products can be easily managed.

本発明の溶解性表示方法は、測定対象の水又は水溶液中の水の解離度を表わす指標として優れる。即ち、この指標で電解装置が製造する電解生成水(電解水)がどの程度の解離度の電解水を製造できる能力を持っているかを定量的に表示できる。   The solubility display method of the present invention is excellent as an index representing the degree of dissociation of water to be measured or water in an aqueous solution. That is, it is possible to quantitatively display the degree of dissociation of electrolyzed water (electrolyzed water) produced by the electrolyzer using this index.

(原理)
水又は水溶液への溶質の溶解速度は、水又は水溶液中の水の解離が大きいほど大きい。従って、水又は水溶液中の水の解離特性を計測できれば、水又は水溶液への溶質溶解性を評価することができる。
(principle)
The dissolution rate of a solute in water or an aqueous solution increases as the dissociation of water in the water or aqueous solution increases. Therefore, if the dissociation characteristics of water in water or aqueous solution can be measured, solute solubility in water or aqueous solution can be evaluated.

一般にグルコースは水に溶解すると水分子のH基とグルコース分子中の5つのOH基とが水素結合し、構造化して熱力学的に安定化する。グルコース分子にはいくつかの異性体が知られている。例えば、ピラノース型、フラノース型、開環型、α体、β体が知られている。水はこのような異性体を含むグルコース分子と構造化し、グルコース自身が保水する。この特性は保水性を示すという理由で化粧品に用いられている。   In general, when glucose is dissolved in water, the H group of the water molecule and the five OH groups in the glucose molecule are hydrogen-bonded and structured and thermodynamically stabilized. Several isomers are known for the glucose molecule. For example, pyranose type, furanose type, ring-opening type, α-form and β-form are known. Water is structured with glucose molecules containing such isomers, and glucose itself retains water. This property is used in cosmetics because it exhibits water retention.

上記グルコースの異性体のうち、右旋性のD−グルコースは、これを水に添加した場合、比較的迅速にクラスター(単分子に分離していない状態で水溶液中に溶解しているD−グルコース分子集合体)として水に溶解する。このクラスターは、水中で更に単分子状D−グルコース(単分子の状態で水溶液中に溶解し自由運動しているD−グルコース単分子)に変わるが、D−グルコースの単分子としての水への溶解速度は小さく、単分子として溶解するまでに長時間を要する。このD−グルコースが単分子になって水溶解するD−グルコースの溶解速度は、水の解離度に大きく依存する。本発明者は、このようなD−グルコース単分子の水への溶解速度の小さい特性を利用してこれを計測すれば、比較的簡単に水溶液中の水の解離度を示す指標として溶解特性で表示できることを見出した。   Of the above isomers of glucose, dextrorotatory D-glucose, when added to water, is relatively quickly clustered (D-glucose dissolved in an aqueous solution in a state where it is not separated into single molecules). It dissolves in water as a molecular assembly. This cluster is further converted into monomolecular D-glucose (D-glucose monomolecule which is dissolved in an aqueous solution in a monomolecular state and freely moves in water) in water. The dissolution rate is small, and it takes a long time to dissolve as a single molecule. The dissolution rate of D-glucose in which D-glucose becomes a single molecule and dissolves in water greatly depends on the degree of dissociation of water. If the present inventor measures this by utilizing such a characteristic that the D-glucose monomolecule has a low dissolution rate in water, it can be used as an index indicating the degree of dissociation of water in an aqueous solution relatively easily. I found that it can be displayed.

即ち、上記の性質を利用して、測定対象の水又は水溶液について任意の一定温度下で、単分子状D−グルコースの溶解速度を測定することにより、解離度を示す指標である溶解特性が求まる。具体的には、所定pHで、所定温度に保たれている測定対象の水又は水溶液に、所定量の固体状D−グルコースを添加し、正確に所定時間経過後に水又は水溶液中に溶解している単分子状D−グルコース濃度をクラスター濃度と区別して測定する。   That is, by utilizing the above-mentioned properties, the dissolution characteristics as an index indicating the degree of dissociation can be obtained by measuring the dissolution rate of monomolecular D-glucose at an arbitrary constant temperature for the water or aqueous solution to be measured. . Specifically, a predetermined amount of solid D-glucose is added to water or an aqueous solution to be measured which is maintained at a predetermined temperature at a predetermined pH, and is dissolved in water or an aqueous solution exactly after a predetermined time. The unimolecular D-glucose concentration is measured separately from the cluster concentration.

単分子状D−グルコース濃度の測定は、公知の酵素電極法で行うことができる。特に、グルコースオキシターゼ(GOD)を用いる酵素電極法で行うことが好ましい。この方法では、GODとフェリシアン化カリウムを含むバイオセンサー内で単分子状に溶解しているD−グルコース分子のみがGODと特異的に反応し、グルコン酸と電子とを発生する。そして、フェリシアン化カリウムの一部がフェロシアン化カリウムとなる。この系に一定電圧を印加すると、生成したフェロシアン化カリウムが還元され再びフェリシアン化カリウムになる。このときの電流値が溶解している単分子状D−グルコースの濃度と比例することから、電流量を計測することによって単分子状D−グルコースの濃度を計測できる。この方法ではクラスター状のD−グルコースは計測されない。   The monomolecular D-glucose concentration can be measured by a known enzyme electrode method. In particular, the enzyme electrode method using glucose oxidase (GOD) is preferable. In this method, only D-glucose molecules dissolved in a single molecule in a biosensor containing GOD and potassium ferricyanide react specifically with GOD to generate gluconic acid and electrons. And a part of potassium ferricyanide turns into potassium ferrocyanide. When a constant voltage is applied to this system, the produced potassium ferrocyanide is reduced to become potassium ferricyanide again. Since the current value at this time is proportional to the concentration of dissolved monomolecular D-glucose, the concentration of monomolecular D-glucose can be measured by measuring the amount of current. With this method, clustered D-glucose is not measured.

以下にその反応式を示す。   The reaction formula is shown below.

6126 + 2[Fe(III)(CN)6]3- + H2
→ C6127 + 2[Fe(II)(CN)6]4- + 2H+ (1)
2[Fe(II)(CN)6]4- → 2[Fe(III)(CN)6]3- + 2e+ (2)
2H+ + 1/2O2 + 2e+ → H2O (3)
上記の酸化還元反応の式(2)、式(3)に示される生成電子(2e+)の量である電流値を計測することにより、水溶液中の単分子状D−グルコース量を計測することができる。
C 6 H 12 O 6 +2 [Fe (III) (CN) 6 ] 3- + H 2 O
→ C 6 H 12 O 7 +2 [Fe (II) (CN) 6 ] 4- + 2H + (1)
2 [Fe (II) (CN) 6 ] 4- → 2 [Fe (III) (CN) 6 ] 3- + 2e + (2)
2H + + 1 / 2O 2 + 2e + → H 2 O (3)
Measure the amount of monomolecular D-glucose in the aqueous solution by measuring the current value, which is the amount of the generated electrons (2e + ) shown in the above formulas (2) and (3) of the redox reaction. Can do.

GOD法により単分子状D−グルコースの濃度を計測する場合、pHの影響がどの程度であるかを予め把握しておく必要がある。本発明者は純水にNaOH或は塩酸を加えて種々のpHに調整した水溶液を用いて、単分子状D−グルコースの溶解速度のpHの依存性について検討した。その結果、pHが5.5から9.5の範囲ではD−グルコースの溶解速度が殆ど一定であることを見出した。従って、D−グルコースの溶解速度を測定する水又は水溶液のpHは5.5から9.5の範囲で計測することが好ましい。   When measuring the concentration of monomolecular D-glucose by the GOD method, it is necessary to know in advance how much the influence of pH is. The present inventor examined the pH dependence of the dissolution rate of monomolecular D-glucose using an aqueous solution adjusted to various pH by adding NaOH or hydrochloric acid to pure water. As a result, it was found that the dissolution rate of D-glucose was almost constant in the pH range of 5.5 to 9.5. Therefore, the pH of water or an aqueous solution for measuring the dissolution rate of D-glucose is preferably measured in the range of 5.5 to 9.5.

D−グルコース分子は、図1に示した構造式のものである。D−グルコースの水又は水溶液への溶解は、D−グルコース分子の両方の末端基が解離した水分子と作用して進行する。このため、単分子状D−グルコースの溶解速度を測定する際、水又は水溶液に添加するD−グルコースの量は、解離した水イオンの濃度を考慮して決めることが好ましい。即ち、添加するD−グルコースの量は、解離した水イオンの濃度により決まる単分子状D−グルコースの最大溶解濃度以下(最大計測範囲内)にすることが好ましい。例えば、最大計測範囲が600mg/dlの場合、測定対象水に添加するD−グルコースの量は300mg/ml程度(最大溶解濃度の1/2程度)とすることが好ましい。   The D-glucose molecule has the structural formula shown in FIG. Dissolution of D-glucose in water or an aqueous solution proceeds by acting with water molecules in which both end groups of the D-glucose molecule are dissociated. For this reason, when measuring the dissolution rate of monomolecular D-glucose, the amount of D-glucose added to water or an aqueous solution is preferably determined in consideration of the concentration of dissociated water ions. That is, it is preferable that the amount of D-glucose to be added is not more than the maximum dissolution concentration of monomolecular D-glucose determined by the concentration of dissociated water ions (within the maximum measurement range). For example, when the maximum measurement range is 600 mg / dl, the amount of D-glucose added to the water to be measured is preferably about 300 mg / ml (about 1/2 of the maximum dissolution concentration).

また、水又は水溶液中に固体状D−グルコースを添加した後、D−グルコース分子の大半が単分子状で溶解するのに要する時間は、25℃では70分程度である。このため、D−グルコースの溶解速度計測は、D−グルコースを測定対象の水又は水溶液に添加してから60分以内とすることが好ましい。   In addition, after adding solid D-glucose to water or an aqueous solution, the time required for most of the D-glucose molecules to dissolve in a monomolecular form is about 70 minutes at 25 ° C. For this reason, the dissolution rate measurement of D-glucose is preferably within 60 minutes after adding D-glucose to the water or aqueous solution to be measured.

例えば、電解生成水を測定対象の水又は水溶液に選び、この電解生成水100mlを25℃に保ち、これに300mg/dl以下の濃度となるようD−グルコースを添加し、添加後30分以内にGDO法により単分子状D−グルコース濃度を計測する。同時に電解生成水のpHを測定しておく。   For example, electrolytically generated water is selected as water to be measured or an aqueous solution, 100 ml of electrolytically generated water is kept at 25 ° C., and D-glucose is added thereto so as to have a concentration of 300 mg / dl or less, and within 30 minutes after the addition. The monomolecular D-glucose concentration is measured by the GDO method. At the same time, the pH of electrolyzed water is measured.

一方、純水にNaOHやHClを添加して電解することなく上記の電解生成水と同一のpHに調整した水溶液に対する単分子状D−グルコースの溶解速度を測定し、両者の溶解速度と比較することにより同一pHでの電解生成水と非電解生成水の溶質溶解性を評価できる。   On the other hand, the dissolution rate of monomolecular D-glucose in an aqueous solution adjusted to the same pH as the electrolytically generated water is measured without adding NaOH or HCl to pure water and compared with the dissolution rate of both. Thus, the solute solubility of electrolyzed water and non-electrolyzed water at the same pH can be evaluated.

尚、本発明の溶解性表示方法では、測定対象の水又は水溶液に添加する溶質としてD−グルコースを用いる。D−グルコース以外の糖類として、果糖(単糖類)、乳糖(二糖類)、蔗糖(二糖類)及び澱粉(多糖類)がある。しかし、これらの糖類の水又は水溶液中濃度は酵素電極法では定量できないので、本発明の溶質としては採用できない。この他、L−アスコルビン酸については、酵素電極法での濃度測定が可能であるが、水又は水溶液への溶解速度が速すぎて本発明では採用できない。   In the solubility display method of the present invention, D-glucose is used as a solute added to the water or aqueous solution to be measured. Examples of sugars other than D-glucose include fructose (monosaccharide), lactose (disaccharide), sucrose (disaccharide), and starch (polysaccharide). However, the concentration of these saccharides in water or aqueous solution cannot be quantified by the enzyme electrode method and cannot be used as the solute of the present invention. In addition, L-ascorbic acid can be measured by the enzyme electrode method, but cannot be employed in the present invention because the dissolution rate in water or an aqueous solution is too fast.

次に、実施例により本発明を具体的に説明するが、本発明はこれに限定されるものではない。   Next, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.

尚、単分子状D−グルコースの溶解速度は、下式により算出した。   The dissolution rate of monomolecular D-glucose was calculated by the following equation.

Y=(Dn−Di)/θ
但し、Yは単分子状D−グルコース溶解速度(mg/dl・20min)、DiはD−グルコース添加前の測定対象の水又は水溶液中の単分子状D−グルコース濃度(mg/dl)、Dnは20分経過後の測定対象の水又は水溶液中の単分子状D−グルコース濃度(mg/dl)、θはD−グルコース添加からの経過時間(20min)である。
Y = (Dn−Di) / θ
Where Y is the monomolecular D-glucose dissolution rate (mg / dl · 20 min), Di is the monomolecular D-glucose concentration (mg / dl) in the water or aqueous solution to be measured before the addition of D-glucose, Dn Is the monomolecular D-glucose concentration (mg / dl) in the water or aqueous solution to be measured after 20 minutes, and θ is the elapsed time (20 min) from the addition of D-glucose.

(実施例1)
導電率が0.3μS/cmの純水を市販の連続電解式アルカリ電解水生成装置(株式会社リバーストーン社製)を用いて、電解強度レンジ1の設定にて流速毎分2リットルとしての電解を行い電解生成水を得た。この電解生成水のうち陰極側電解生成水を測定対象の水として、その溶解性を以下の通り評価した。
Example 1
Electrolysis with pure water having a conductivity of 0.3 μS / cm at a flow rate of 2 liters per minute at a setting of electrolytic strength range 1 using a commercially available continuous electrolytic alkaline electrolyzed water generator (manufactured by Reverse Tone Co., Ltd.) The electrolyzed water was obtained. Among the electrolyzed water, the cathode side electrolyzed water was used as the water to be measured, and its solubility was evaluated as follows.

先ず、得られた陰極側電解生成水(原水)を正確に100mlビーカーに採取し、ウォーターバス内にて25℃に保持した。次いで、固体状(粉状)D−グルコース250mgをビーカー内に添加し、測定を開始した。マグネティックスターラーとテフロン(登録商標)被覆回転子を用いてビーカー内溶液を撹拌した。約20秒間撹拌した結果、透明なD−グルコース溶液(クラスター状で溶解)となった。引き続き、撹拌しながら25℃にて19分間保持した。更に、グルコカードダイアメーター(株式会社アークレイファクトリー社製)を用いてバイオセンサーをセットし、D−グルコースを電解生成水に加えてから19分40秒経過した時点で、このD−グルコース溶液をマイクロピペットにて100μl採取し、スチロール樹脂板上に滴下した。更に、D−グルコース添加から20分経過した時点で計測を開始し、単分子状D−グルコースの濃度を測定した。得られた単分子状D−グルコース濃度は214mg/dlであった。尚、陰極側電解生成水(測定対象の水)のpHは8.1であった。これらの結果及び単分子状D−グルコース溶解速度の算出結果を表1に示す。   First, the obtained cathode side electrolysis generated water (raw water) was accurately collected in a 100 ml beaker and kept at 25 ° C. in a water bath. Next, 250 mg of solid (powdered) D-glucose was added into the beaker, and measurement was started. The solution in the beaker was agitated using a magnetic stirrer and a Teflon-coated rotor. As a result of stirring for about 20 seconds, a transparent D-glucose solution (dissolved in a cluster) was obtained. Subsequently, the mixture was kept at 25 ° C. for 19 minutes with stirring. Furthermore, when a biosensor is set using a gluco card diameter (manufactured by Arkray Factory Co., Ltd.) and D-glucose is added to the electrolyzed water, 19 minutes and 40 seconds elapses. 100 μl was collected with a pipette and dropped onto a styrene resin plate. Furthermore, measurement was started when 20 minutes had elapsed from the addition of D-glucose, and the concentration of monomolecular D-glucose was measured. The resulting monomolecular D-glucose concentration was 214 mg / dl. In addition, pH of cathode side electrolysis production | generation water (water of measurement object) was 8.1. These results and the calculation results of the monomolecular D-glucose dissolution rate are shown in Table 1.

(実施例2〜4)
連続電解式アルカリ電解水生成装置の電解強度設定をレンジ2〜4に変えて得られた陰極側電解生成水をそれぞれ測定対象の水とした以外は実施例1と同様に単分子状D−グルコースの濃度とpHを測定した。これらの結果及び単分子状D−グルコース溶解速度の算出結果を表1に示す。
(Examples 2 to 4)
Monomolecular D-glucose as in Example 1 except that the cathode-side electrolyzed water obtained by changing the electrolytic strength setting of the continuous electrolysis alkaline electrolyzed water generator to ranges 2 to 4 was used as the water to be measured. The concentration and pH were measured. These results and the calculation results of the monomolecular D-glucose dissolution rate are shown in Table 1.

(参考例1)
実施例1で用いた導電率が0.3μS/cmの純水を電解することなくそのまま測定対象の水として用いた以外は実施例1と同様に単分子状D−グルコースの濃度とpHを測定した。これらの結果及び単分子状D−グルコース溶解速度の算出結果を表1に示す。
(Reference Example 1)
The concentration and pH of monomolecular D-glucose were measured in the same manner as in Example 1 except that the pure water having an electrical conductivity of 0.3 μS / cm used in Example 1 was used as the water to be measured without electrolysis. did. These results and the calculation results of the monomolecular D-glucose dissolution rate are shown in Table 1.

本発明においては、水又は水溶液中の水の解離度を表わす指標として表1の溶解速度で水又は水溶液の特性を表示するものである。   In the present invention, the characteristics of water or aqueous solution are displayed at the dissolution rate shown in Table 1 as an index representing the degree of dissociation of water in water or aqueous solution.

即ち、この指標で電解装置が製造する電解水がどの程度の解離度の電解水を製造できる能力を持っているかを定量的に表示することができる。   That is, it is possible to quantitatively display the degree of dissociation of the electrolyzed water produced by the electrolyzer using this index.

(参考例2〜3)
導電率が0.3μS/cmの純水に試薬特級の希塩酸を加えてpHを5.6及び6.7に調節した塩酸水溶液を得た。これらの水溶液を測定対象の水として用いた以外は実施例1と同様に単分子状D−グルコースの濃度とpHとを測定した。これらの結果及び単分子状D−グルコース溶解速度の算出結果を表1に示す。
(Reference Examples 2-3)
An aqueous hydrochloric acid solution having pH adjusted to 5.6 and 6.7 by adding reagent-grade dilute hydrochloric acid to pure water having a conductivity of 0.3 μS / cm was obtained. The concentration and pH of monomolecular D-glucose were measured in the same manner as in Example 1 except that these aqueous solutions were used as measurement target water. These results and the calculation results of the monomolecular D-glucose dissolution rate are shown in Table 1.

(参考例4〜8)
導電率が0.3μS/cmの純水に試薬特級のNaOH水溶液を加えてpHを8.3、9.4、10.1、10.6及び11.1に調節した水酸化ナトリウム水溶液を得た。これらの水溶液を測定対象水として用いた以外は実施例1と同様に単分子状D−グルコースの濃度とpHを測定した。これらの結果及び単分子状D−グルコース溶解速度の算出結果を表1に示す。
(Reference Examples 4 to 8)
A sodium hydroxide aqueous solution whose pH is adjusted to 8.3, 9.4, 10.1, 10.6, and 11.1 by adding a reagent-grade NaOH aqueous solution to pure water having a conductivity of 0.3 μS / cm is obtained. It was. The concentration and pH of monomolecular D-glucose were measured in the same manner as in Example 1 except that these aqueous solutions were used as measurement target water. These results and the calculation results of the monomolecular D-glucose dissolution rate are shown in Table 1.

Figure 2006292581
(実施例と参考例についての考察)
表1に示した実施例1から4と参考例1から8のpH値(横軸)とD−グルコース濃度(縦軸)との相関図を図2に示す。図2中、Range 1〜4(◆印で図示)はそれぞれ実施例1から4の結果を示す。また。参考例1〜8の結果を●印で示す。同一のpHで両者を比較すると(図2中の破線参照)陰極側電解生成水を用いた実施例のD−グルコース濃度は、何れも参考例のD−グルコース濃度よりも高濃度であり陰極側電解生成水の溶質溶解性が優れていることを的確に表示している。
Figure 2006292581
(Consideration of Examples and Reference Examples)
FIG. 2 shows a correlation diagram between pH values (horizontal axis) and D-glucose concentrations (vertical axis) in Examples 1 to 4 and Reference Examples 1 to 8 shown in Table 1. In FIG. 2, Ranges 1 to 4 (shown by ♦) indicate the results of Examples 1 to 4, respectively. Also. The results of Reference Examples 1 to 8 are indicated by ●. When both were compared at the same pH (see the broken line in FIG. 2), the D-glucose concentration of the example using the cathode side electrolyzed water was higher than the D-glucose concentration of the reference example, and the cathode side It clearly indicates that the solute solubility of electrolyzed water is excellent.

(実施例5及び参考例9)
実施例2で得られた陰極側電解生成水(pH=8.3)200mlに緑茶5gを加え、25℃で2分間撹拌し、更に1分間静置し、生成水の色調を観察した。一方、参考例として、純水にNaOHを加えてpHを8.3(上記陰極側電解生成水と同じ値)に調整した水酸化ナトリウム水溶液200mlに緑茶5gを加え、25℃で2分間撹拌し、更に1分間静置し、水溶液の色調を比較観察した。その結果、陰極側電解生成水の方が水酸化ナトリウム水溶液よりも明確に濃厚な緑色を呈していることが観察された。この比較から、本発明の溶媒の溶解性表示方法によれば、水への緑茶成分の溶解速度を正確に評価できることが明らかである。
(Example 5 and Reference Example 9)
5 g of green tea was added to 200 ml of the cathode side electrolytically produced water (pH = 8.3) obtained in Example 2, stirred for 2 minutes at 25 ° C., and allowed to stand for 1 minute, and the color tone of the produced water was observed. On the other hand, as a reference example, 5 g of green tea was added to 200 ml of sodium hydroxide aqueous solution adjusted to pH 8.3 (same value as the above-mentioned cathode side electrolysis generated water) by adding NaOH to pure water, and stirred at 25 ° C. for 2 minutes. Further, the mixture was allowed to stand for 1 minute, and the color tone of the aqueous solution was comparatively observed. As a result, it was observed that the cathode-side electrolyzed water had a clearer green color than the sodium hydroxide aqueous solution. From this comparison, it is clear that according to the solvent solubility display method of the present invention, the dissolution rate of the green tea component in water can be accurately evaluated.

(参考例10)
(GOD法による糖類の検討)
D−グルコース、果糖(単糖類)、乳糖(二糖類)、蔗糖(二糖類)及び澱粉(多糖類)をそれぞれ250mg精秤し、各々を25℃に保持した純水100mlに添加して溶解させた。添加してから70分経過後に、各々の水溶液を採取し、それぞれの濃度をGOD法により計測した。その結果を表2に示す。
(Reference Example 10)
(Examination of saccharides by GOD method)
250 mg each of D-glucose, fructose (monosaccharide), lactose (disaccharide), sucrose (disaccharide) and starch (polysaccharide) are precisely weighed and added to 100 ml of pure water kept at 25 ° C. and dissolved. It was. 70 minutes after the addition, each aqueous solution was collected, and each concentration was measured by the GOD method. The results are shown in Table 2.

Figure 2006292581
表2の結果から、本発明の溶解性表示方法に用いる糖類として、D−グルコースが優れることが判る。
Figure 2006292581
From the results in Table 2, it can be seen that D-glucose is excellent as a saccharide used in the solubility display method of the present invention.

D−グルコース分子の構造式を示す図である。It is a figure which shows the structural formula of a D-glucose molecule | numerator. 実施例1〜4と参考例1〜8の各測定対象の水又は水溶液について測定したpH値と所定時間経過後の単分子状D−グルコース濃度との相関を示すグラフである。It is a graph which shows the correlation with the pH value measured about the water or aqueous solution of each measuring object of Examples 1-4 and Reference Examples 1-8, and the monomolecular D-glucose density | concentration after progress for a predetermined time.

Claims (7)

pHが5.5から9.5であり、所定温度に保たれた測定対象の水又は水溶液にD−グルコースを添加し、添加してから所定時間経過後に該水又は水溶液中に溶解する単分子状D−グルコース濃度を測定し、該濃度の測定結果から算出した単分子状D−グルコースの溶解速度を該水又は水溶液の溶質溶解性を示すパラメータとすることを特徴とする溶解性表示方法。 A single molecule having a pH of 5.5 to 9.5 and dissolved in the water or aqueous solution after the addition of D-glucose to the water or aqueous solution to be measured kept at the predetermined temperature and after the addition. A solubility display method characterized by measuring the concentration of solid D-glucose and using the dissolution rate of monomolecular D-glucose calculated from the measurement result of the concentration as a parameter indicating the solute solubility of the water or aqueous solution. 水又は水溶液中に溶解する単分子状D−グルコース濃度を酵素電極法により測定する請求項1に記載の溶解性表示方法。 The solubility display method according to claim 1, wherein the concentration of monomolecular D-glucose dissolved in water or an aqueous solution is measured by an enzyme electrode method. 酵素電極法が、フェリシアンイオンを添加してなる反応系を用いたグルコースオキシダーゼアンペロメトリー法である請求項2に記載の溶解性表示方法。 The solubility display method according to claim 2, wherein the enzyme electrode method is a glucose oxidase amperometry method using a reaction system to which ferricyan ions are added. 水又は水溶液が電解生成水である請求項1に記載の溶解性表示方法。 The solubility display method according to claim 1, wherein the water or the aqueous solution is electrolytically generated water. D−グルコースの添加量が測定対象の水又は水溶液100ml当たり100〜600mgである請求項1に記載の溶解性表示方法。 The solubility display method according to claim 1, wherein the amount of D-glucose added is 100 to 600 mg per 100 ml of water or an aqueous solution to be measured. 所定温度が20〜30℃である請求項1に記載の溶解性表示方法。 The solubility display method according to claim 1, wherein the predetermined temperature is 20 to 30 ° C. 所定時間が1〜60分である請求項1に記載の溶解性表示方法。
The solubility display method according to claim 1, wherein the predetermined time is 1 to 60 minutes.
JP2005114736A 2005-04-12 2005-04-12 Solublity displaying method Pending JP2006292581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005114736A JP2006292581A (en) 2005-04-12 2005-04-12 Solublity displaying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005114736A JP2006292581A (en) 2005-04-12 2005-04-12 Solublity displaying method

Publications (1)

Publication Number Publication Date
JP2006292581A true JP2006292581A (en) 2006-10-26

Family

ID=37413298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005114736A Pending JP2006292581A (en) 2005-04-12 2005-04-12 Solublity displaying method

Country Status (1)

Country Link
JP (1) JP2006292581A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1916532A2 (en) 2006-10-27 2008-04-30 Kabushiki Kaisha Toshiba Generating device for trigger signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1916532A2 (en) 2006-10-27 2008-04-30 Kabushiki Kaisha Toshiba Generating device for trigger signal

Similar Documents

Publication Publication Date Title
Bergmann et al. The occurrence of perchlorate during drinking water electrolysis using BDD anodes
Bergmann et al. Studies on electrochemical disinfectant production using anodes containing RuO 2
Pauliukaitė et al. Characterization and applications of a bismuth bulk electrode
Hui et al. Sucrose quantitative and qualitative analysis from tastant mixtures based on Cu foam electrode and stochastic resonance
Devasenathipathy et al. Electrodeposition of gold nanoparticles on a pectin scaffold and its electrocatalytic application in the selective determination of dopamine
Haghighi et al. Fabrication of a nonenzymatic glucose sensor using Pd-nanoparticles decorated ionic liquid derived fibrillated mesoporous carbon
KR20060073500A (en) Fabrication of mesoporous metal electrodes in non-liquid-crystalline phase and its application
Pandurangachar et al. Simultaneous determination of dopamine, ascorbic acid and uric acid at poly (Patton and Reeder’s) modified carbon paste electrode
Poltorak et al. Electrochemical characterization of liquid-liquid micro-interfaces modified with mesoporous silica
Peng et al. Sensitive electrochemical detection of melamine based on gold nanoparticles deposited on a graphene doped carbon paste electrode
Jiang et al. Electroanalysis of dopamine at RuO2 modified vertically aligned carbon nanotube electrode
Nasirizadeh et al. Developing a sensor for the simultaneous determination of dopamine, acetaminophen and tryptophan in pharmaceutical samples using a multi-walled carbon nanotube and oxadiazole modified glassy carbon electrode
Vieira et al. Tuning electrochemical and morphological properties of Prussian blue/carbon nanotubes films through scan rate in cyclic voltammetry
JP2006292581A (en) Solublity displaying method
Arndt et al. Reactor Design for the Direct Electrosynthesis of Periodate
Urban et al. Deterioration of Aqueous n‐Octanoate Electrolysis with Electrolytic Conductivity Collapse Caused by the Formation of n‐Octanoic Acid/n‐Octanoate Agglomerates
JP6312981B2 (en) Method for producing mesoporous iridium oxide, method for producing water oxidation catalyst, and method for producing mesoporous iridium oxide electrode
Shankar et al. Acetanilide modified carbon paste electrode for the electrochemical detection of dopamine: a cyclic voltammetric study
Shankar et al. Simultaneous determination of dopamine, ascorbic acid and uric acid at poly (crystal violet) modified carbon paste electrode
Gligor et al. Graphite electrode modified with a new phenothiazine derivative and with carbon nanotubes for NADH electrocatalytic oxidation
Rondinini et al. Reactivity of halo sugars on silver cathodes
He et al. Cu and Ni nanoparticles deposited on ITO electrode for nonenzymatic electrochemical carbohydrates sensor applications
Kodera et al. Detection of hypochlorous acid using reduction wave during anodic cyclic voltammetry
Makarova et al. Planar sensors for determination of polyoxyethylated compounds
Vidya et al. Selective detection of dopamine and ascorbic acid at purified carbon nanotubes/Tween-20 modified carbon paste electrode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108