JP2006291923A - Turbo-supercharger with rotary electric machine for internal combustion engine - Google Patents

Turbo-supercharger with rotary electric machine for internal combustion engine Download PDF

Info

Publication number
JP2006291923A
JP2006291923A JP2005116754A JP2005116754A JP2006291923A JP 2006291923 A JP2006291923 A JP 2006291923A JP 2005116754 A JP2005116754 A JP 2005116754A JP 2005116754 A JP2005116754 A JP 2005116754A JP 2006291923 A JP2006291923 A JP 2006291923A
Authority
JP
Japan
Prior art keywords
turbine shaft
magnet
lubricating liquid
turbine
turbocharger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005116754A
Other languages
Japanese (ja)
Other versions
JP4595640B2 (en
Inventor
Takayoshi Kitada
孝佳 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005116754A priority Critical patent/JP4595640B2/en
Priority to CN2006800120986A priority patent/CN101160462B/en
Priority to DE112006000639.8T priority patent/DE112006000639B4/en
Priority to PCT/JP2006/307873 priority patent/WO2006112372A1/en
Publication of JP2006291923A publication Critical patent/JP2006291923A/en
Application granted granted Critical
Publication of JP4595640B2 publication Critical patent/JP4595640B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • F02B37/10Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump at least one pump being alternatively or simultaneously driven by exhaust and other drive, e.g. by pressurised fluid from a reservoir or an engine-driven pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/005Exhaust driven pumps being combined with an exhaust driven auxiliary apparatus, e.g. a ventilator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a turbo-supercharger with a rotary electric machine exhibiting enhanced cooling efficiency of a rotor and protection efficiency of a magnet of the rotor, and advantageous for high speed rotation of a turbine shaft. <P>SOLUTION: In the turbo-supercharger 1 with the rotary electric machine wherein the magnet 14 is arranged on the turbine shaft 10 between a turbine 6 and an impeller 8, and the rotor 12 of the rotary electric machine 4 is constituted on the turbine shaft 10, a cylindrical member 20 is provided on the turbine shaft 10 wherein a magnet holding pipe 21 covering the magnet 14 from an outer periphery side and a sleeve 24 to be arranged on an inner periphery of a bearing 35 of the turbine shaft 10 are integrated. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、タービン軸上に回転電機が組み込まれた内燃機関のターボ過給機に関する。   The present invention relates to a turbocharger for an internal combustion engine in which a rotating electric machine is incorporated on a turbine shaft.

内燃機関用のターボ過給機として、タービン軸に回転電機を組み込み、タービン軸を電動駆動して過給効果を増加させ、あるいはタービン軸の回転を利用した発電を行って排気エネルギーから電力を回収する回転電機付きターボ過給機が知られている。この種のターボ過給機では、回転電機の作動時に回転子が渦電流で発熱し、タービン側が排気熱に晒されることと相俟って熱的負荷が厳しくなる。そこで、回転電機の発熱対策を講じることが検討されている。その一例として、固定子側の温度上昇を検知し、所定温度を超える場合に回転子に向かってオイルミストを吹き付けて回転子を冷却するターボ過給機が提案されている(特許文献1参照)。
特開平5−256155号公報
As a turbocharger for internal combustion engines, a rotating electric machine is built into the turbine shaft, and the turbine shaft is electrically driven to increase the supercharging effect, or power is generated using the rotation of the turbine shaft to recover power from exhaust energy. A turbocharger with a rotating electric machine is known. In this type of turbocharger, the rotor is heated by eddy current when the rotating electrical machine is operated, and the thermal load becomes severe in combination with the turbine side being exposed to the exhaust heat. Therefore, taking measures against heat generation in rotating electrical machines has been studied. As an example, a turbocharger that detects a temperature increase on the stator side and cools the rotor by spraying oil mist toward the rotor when a predetermined temperature is exceeded is proposed (see Patent Document 1). .
JP-A-5-256155

回転子が高温に晒された場合、回転子に組み込まれた磁石が減磁して回転電機の効率が低下するおそれがある。また、磁石は比較的脆い材料にて構成されているため、特に高温下ではタービン軸の高回転に伴う遠心力から磁石を保護する必要がある。一方、タービン軸を高速で回転させるためにはタービン軸及びその軸上に設けられるべき回転部品の軸剛性を高め、またタービン軸上に回転部品を取り付ける際のタービン軸の軸曲がりも抑える必要がある。これらの要求は回転子の発熱対策を行う場合にも無視できない。   When the rotor is exposed to a high temperature, the magnet incorporated in the rotor may be demagnetized and the efficiency of the rotating electrical machine may be reduced. Further, since the magnet is made of a relatively brittle material, it is necessary to protect the magnet from the centrifugal force accompanying the high rotation of the turbine shaft, particularly at high temperatures. On the other hand, in order to rotate the turbine shaft at high speed, it is necessary to increase the shaft rigidity of the turbine shaft and the rotating parts to be provided on the turbine shaft, and to suppress the bending of the turbine shaft when the rotating parts are mounted on the turbine shaft. is there. These requirements cannot be ignored when taking measures against heat generation of the rotor.

本発明は上述した事情に鑑みてなされたものであり、回転子の冷却効果及び回転子の磁石の保護効果が高く、しかもタービン軸の高速回転化にも有利な回転電機付きターボ過給機を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and provides a turbocharger with a rotating electric machine that has a high cooling effect on a rotor and a protective effect on a magnet of a rotor, and is advantageous for high-speed rotation of a turbine shaft. The purpose is to provide.

本発明は、タービンと圧縮機インペラとの間のタービン軸上に磁石が配置されて該タービン軸上に回転電機の回転子が構成された回転電機付きターボ過給機において、前記タービン軸上に、前記磁石を外周側から覆う磁石保持部と前記タービン軸の軸受の内周に配置されるべきスリーブ部とが一体化された筒状部材が設けられることにより、上述した課題を解決する(請求項1)。   The present invention relates to a turbocharger with a rotating electrical machine in which a magnet is disposed on a turbine shaft between a turbine and a compressor impeller, and a rotor of the rotating electrical machine is configured on the turbine shaft. The above-described problem is solved by providing a cylindrical member in which a magnet holding portion that covers the magnet from the outer peripheral side and a sleeve portion that is to be disposed on the inner periphery of the turbine shaft bearing are provided (invention). Item 1).

本発明のターボ過給機においては、磁石保持部にて磁石を覆うことにより、タービン軸の高速回転時に遠心力が作用しても磁石をタービン軸上に拘束して磁石を保護することができる。磁石保持部とスリーブ部とが一体化されているので、磁石保持部とスリーブ部との間の熱伝導に対する抵抗が小さく、回転子の熱を磁石保持部からスリーブ部へと効率よく逃がし、さらにスリーブ部に伝えられた熱を軸受の冷却系を利用して排熱することができる。このため、回転子の冷却効果を高め、回転子の発熱を抑えることができる。磁石保持部とスリーブ部とが一体化されることにより筒状部材の軸剛性を高めることができる。タービン軸上に装着されるべき回転部品の部品点数が削減されるため、タービン軸上に回転部品を組み付ける際に、回転部品の形状誤差、あるいは組み立て誤差といった各種の誤差に起因して生じる軸曲がりを抑えることができる。これにより、タービンの高速回転化の妨げとなる要素を減らして高速回転化に有利な構造のターボ過給機を実現することができる。   In the turbocharger of the present invention, by covering the magnet with the magnet holding portion, the magnet can be constrained on the turbine shaft and protected even if centrifugal force is applied during high-speed rotation of the turbine shaft. . Since the magnet holding part and the sleeve part are integrated, the resistance to heat conduction between the magnet holding part and the sleeve part is small, and the heat of the rotor is efficiently released from the magnet holding part to the sleeve part. The heat transferred to the sleeve portion can be exhausted using the bearing cooling system. For this reason, the cooling effect of a rotor can be improved and the heat_generation | fever of a rotor can be suppressed. The axial rigidity of the cylindrical member can be increased by integrating the magnet holding portion and the sleeve portion. Since the number of rotating parts to be mounted on the turbine shaft is reduced, when the rotating parts are assembled on the turbine shaft, the shaft bending caused by various errors such as shape errors or assembly errors of the rotating parts. Can be suppressed. Accordingly, it is possible to realize a turbocharger having a structure that is advantageous for high-speed rotation by reducing elements that hinder high-speed rotation of the turbine.

本発明の一形態において、前記スリーブ部と前記磁石保持部との間に潤滑液が付着するようにターボ過給機が構成されてもよい(請求項2)。この形態によれば、磁石保持部からスリーブ部に熱が伝わる途中の位置で筒状部材を潤滑液により冷却することができる。従って、回転子の冷却効果をさらに高めることができる。この場合の潤滑液としては、例えば軸受に供給される潤滑液を利用することができる(請求項3)。軸受の潤滑液であれば、スリーブ部と磁石保持部との間に比較的容易に潤滑液を導いて筒状部材の冷却に使用することができる。   In one embodiment of the present invention, the turbocharger may be configured such that a lubricating liquid adheres between the sleeve portion and the magnet holding portion (Claim 2). According to this aspect, the cylindrical member can be cooled by the lubricating liquid at a position where heat is transferred from the magnet holding portion to the sleeve portion. Therefore, the cooling effect of the rotor can be further enhanced. As the lubricating liquid in this case, for example, a lubricating liquid supplied to the bearing can be used. If it is the lubricating liquid of a bearing, a lubricating liquid can be guide | induced comparatively easily between a sleeve part and a magnet holding part, and it can be used for cooling of a cylindrical member.

前記筒状部材の外周には前記回転子の回転により前記回転電機の固定子に向かって潤滑液を飛散させるように潤滑液飛散部が設けられてもよい(請求項4)。これにより、回転子のみならず固定子をも潤滑液で冷却して回転電機の発熱を抑えることができる。この場合、前記磁石保持部と前記スリーブ部との間には前記磁石を端面側から覆う端面被覆部が設けられ、前記端面被覆部に前記潤滑液飛散部が設けられてもよい(請求項5)。磁石保持部は固定子と回転子の磁石との間に介在するため、回転電機の効率からみてその肉厚はなるべく薄く設定することが望ましい。一方、磁石保持部に作用する遠心力はタービン軸の回転数の変化に応じて増減を繰り返すため、磁石保持部については繰り返し応力に対する疲労強度を十分に確保する必要がある。このため、磁石保持部の設計にあたっては肉厚がなるべく小さく、しかも応力集中が生じにくいようにその形状も単純化することが望ましい。これに対して端面被覆部は磁石の端面側に配置されるために磁石保持部と比較して肉厚の確保が容易であり、遠心力に伴う繰り返し応力に対して強度に十分に余裕を持たせることができる。このため、端面被覆部に潤滑液飛散部を設けた場合には筒状部材の強度を損なうことなく、潤滑液飛散部の形状、大きさ、あるいは位置を目的に合わせて適当に設定して、回転子に効果的に潤滑液を飛散させることができる。さらに、端面被覆部の一部を除去することにより、タービン軸及びその軸上の回転部品によって構成される回転体アッセンブリの回転バランス(軸線周りの質量の釣り合い)の調整を行うことも容易に行える。   A lubricating liquid scattering portion may be provided on the outer periphery of the cylindrical member so that the lubricating liquid is scattered toward the stator of the rotating electrical machine by the rotation of the rotor. As a result, not only the rotor but also the stator can be cooled with the lubricating liquid, and heat generation of the rotating electrical machine can be suppressed. In this case, an end surface covering portion that covers the magnet from the end surface side may be provided between the magnet holding portion and the sleeve portion, and the lubricating liquid scattering portion may be provided on the end surface covering portion. ). Since the magnet holding part is interposed between the stator and the magnet of the rotor, it is desirable to set the thickness as thin as possible in view of the efficiency of the rotating electrical machine. On the other hand, since the centrifugal force acting on the magnet holding portion repeatedly increases and decreases according to the change in the rotational speed of the turbine shaft, it is necessary to sufficiently ensure fatigue strength against repeated stress for the magnet holding portion. For this reason, in designing the magnet holding part, it is desirable to simplify the shape so that the thickness is as small as possible and stress concentration does not easily occur. On the other hand, since the end face covering part is arranged on the end face side of the magnet, it is easy to ensure the thickness compared to the magnet holding part, and has a sufficient margin for the strength against repeated stress caused by centrifugal force. Can be made. For this reason, when the lubricating liquid scattering portion is provided in the end surface covering portion, the shape, size, or position of the lubricating liquid scattering portion is appropriately set according to the purpose without impairing the strength of the cylindrical member, Lubricating liquid can be effectively scattered on the rotor. Furthermore, by removing a part of the end surface covering portion, it is possible to easily adjust the rotational balance (balance of mass around the axis) of the rotating body assembly constituted by the turbine shaft and the rotating parts on the shaft. .

端面被覆部を設ける形態においては、前記潤滑液飛散部として、前記端面被覆部の外周に突出する突起部を設けてもよい(請求項6)。この形態によれば筒状部材の表面に付着した潤滑液を遠心力により突起部に導き、その突起部から回転子の周囲(好適には固定子)へと飛散させることができる。また、突起部の一部を除去することにより回転体アッセンブリの回転バランスを調整することができる。   In the embodiment in which the end surface covering portion is provided, a projection that protrudes from the outer periphery of the end surface covering portion may be provided as the lubricating liquid scattering portion. According to this aspect, the lubricating liquid adhering to the surface of the cylindrical member can be guided to the protrusion by centrifugal force and scattered from the protrusion to the periphery of the rotor (preferably the stator). Moreover, the rotational balance of the rotating body assembly can be adjusted by removing a part of the protrusion.

本発明の一形態のターボ過給機においては、前記軸受に供給される潤滑液を前記タービン軸を貫いて前記タービン側に導く潤滑液経路を備えてもよい(請求項7)。この形態によれば、タービンから回転子側へ伝わる熱を潤滑液で冷却し、それにより回転子の発熱をさらに効果的に抑えることができる。   The turbocharger according to an aspect of the present invention may include a lubricating liquid path that guides the lubricating liquid supplied to the bearing to the turbine side through the turbine shaft. According to this aspect, the heat transmitted from the turbine to the rotor side is cooled by the lubricating liquid, and thereby heat generation of the rotor can be further effectively suppressed.

以上に説明したように、本発明によれば、回転子の磁石を覆う磁石保持部と軸受のスリーブ部とを一体化した筒状部材をタービン軸上に設けているため、磁石を遠心力から確実に保護しつつ回転子の熱をスリーブ部へ効率よく逃がしてその熱を軸受の冷却系に排熱し、さらにはタービン軸上に組み付けられる回転部品を減らし、回転体アッセンブリの軸剛性を高めるとともに軸曲がりを抑え、それにより、高速回転化に有利な構造のターボ過給機を実現することができる。   As described above, according to the present invention, since the cylindrical member that integrates the magnet holding portion that covers the magnet of the rotor and the sleeve portion of the bearing is provided on the turbine shaft, the magnet is removed from the centrifugal force. While ensuring protection, the heat of the rotor is efficiently released to the sleeve, and the heat is exhausted to the cooling system of the bearings. Further, the rotating parts assembled on the turbine shaft are reduced, and the shaft rigidity of the rotating body assembly is increased. It is possible to realize a turbocharger having a structure that is advantageous for high-speed rotation by suppressing shaft bending.

図1は本発明を自動車用内燃機関のターボ過給機に適用した一形態を示す。ターボ過給機1は、排気タービン部2と、コンプレッサ部3と、それらの間に配置された回転電機4とを備えている。排気タービン部2は、内燃機関の排気通路の一部を構成するように設けられるタービンハウジング5と、そのタービンハウジング5の内部に設けられたタービン6とを備えている。一方、コンプレッサ部3は、内燃機関の吸気通路の一部を構成するように設けられるコンプレッサハウジング7と、そのコンプレッサハウジング7の内部に設けられるインペラ(圧縮機インペラ)8とを備えている。タービンハウジング5とコンプレッサハウジング7との間にはベアリングハウジング9が設けられている。タービン6の一端にはタービン軸10が一体回転可能かつ軸線方向に分離不能に設けられている。タービン軸10はベアリングハウジング9を貫いてコンプレッサハウジング7の内部に達し、その先端部にインペラ8が一体回転可能に取り付けられている。但し、タービン6、インペラ8及びタービン軸10の連結構造は図示のものに限らず適宜に変更してよい。タービンハウジング5、コンプレッサハウジング7及びベアリングハウジング9はそれぞれ別部品として構成され、これらが組み合わされて過給機ハウジング11が構成される。図1ではハウジング5、7、9の接合位置を明示していないが、それらは適宜に設定してよい。   FIG. 1 shows an embodiment in which the present invention is applied to a turbocharger of an automobile internal combustion engine. The turbocharger 1 includes an exhaust turbine section 2, a compressor section 3, and a rotating electrical machine 4 disposed therebetween. The exhaust turbine section 2 includes a turbine housing 5 provided so as to constitute a part of an exhaust passage of the internal combustion engine, and a turbine 6 provided inside the turbine housing 5. On the other hand, the compressor unit 3 includes a compressor housing 7 provided so as to constitute a part of the intake passage of the internal combustion engine, and an impeller (compressor impeller) 8 provided inside the compressor housing 7. A bearing housing 9 is provided between the turbine housing 5 and the compressor housing 7. A turbine shaft 10 is provided at one end of the turbine 6 so as to be integrally rotatable and not separable in the axial direction. The turbine shaft 10 passes through the bearing housing 9 and reaches the inside of the compressor housing 7, and an impeller 8 is attached to the tip of the turbine shaft 10 so as to be integrally rotatable. However, the connection structure of the turbine 6, the impeller 8 and the turbine shaft 10 is not limited to the illustrated one and may be changed as appropriate. The turbine housing 5, the compressor housing 7, and the bearing housing 9 are configured as separate parts, and the turbocharger housing 11 is configured by combining them. In FIG. 1, the joining positions of the housings 5, 7, and 9 are not clearly shown, but they may be set as appropriate.

回転電機4は、タービン軸10上に設けられた回転子12と、ベアリングハウジング9の内部に取り付けられた固定子13とを備えている。回転子12はタービン軸10の外周にタービン軸10と一体回転可能に磁石14を取り付けることによって構成されている。固定子13はステータコア15とそのステータコア15の両端に配置されるコイル巻線部16とを備えている。ステータコア15は磁石14を外側から取り囲むように配置され、コイル巻線部16は磁石14よりも排気タービン部2及びコンプレッサ部3に幾らか偏って配置されている。ベアリングハウジング9には、ステータコア15よりも外周側に位置するようにして水通路17が設けられており、その水通路17にはターボ過給機1を冷却するための冷却水が導入される。   The rotating electrical machine 4 includes a rotor 12 provided on the turbine shaft 10 and a stator 13 attached inside the bearing housing 9. The rotor 12 is configured by attaching a magnet 14 to the outer periphery of the turbine shaft 10 so as to be rotatable integrally with the turbine shaft 10. The stator 13 includes a stator core 15 and coil winding portions 16 disposed at both ends of the stator core 15. The stator core 15 is arranged so as to surround the magnet 14 from the outside, and the coil winding part 16 is arranged somewhat biased to the exhaust turbine part 2 and the compressor part 3 rather than the magnet 14. A water passage 17 is provided in the bearing housing 9 so as to be positioned on the outer peripheral side of the stator core 15, and cooling water for cooling the turbocharger 1 is introduced into the water passage 17.

タービン軸10の外周には筒状部材20が嵌め合わされている。図2に詳しく示したように、筒状部材20は磁石14を覆う円筒状の磁石保持管(磁石保持部)21と、その磁石保持管21の両端を塞ぐようにして磁石保持管21と一体に接合される一対の軸端管22とを有している。各軸端管22は、磁石保持管21の両端を塞いで磁石14を端面側から覆う端面被覆部23と、その端面被覆部23から軸線方向外側に向かって一体に連なる小径のスリーブ部24とを備えている。端面被覆部23の外径はスリーブ部24に向かって漸次絞られている。換言すれば、端面被覆部23の外周面はスリーブ部24に向かって徐々に縮径するテーパ面状に形成されている。スリーブ部24は外径一定の円筒状に形成されている。   A cylindrical member 20 is fitted on the outer periphery of the turbine shaft 10. As shown in detail in FIG. 2, the cylindrical member 20 is integrated with the magnet holding tube 21 so as to close both ends of the cylindrical magnet holding tube (magnet holding portion) 21 covering the magnet 14 and the magnet holding tube 21. And a pair of shaft end tubes 22 joined to each other. Each shaft end tube 22 includes an end surface covering portion 23 that covers both ends of the magnet holding tube 21 and covers the magnet 14 from the end surface side, and a small-diameter sleeve portion 24 that continuously extends from the end surface covering portion 23 toward the outside in the axial direction. It has. The outer diameter of the end surface covering portion 23 is gradually reduced toward the sleeve portion 24. In other words, the outer peripheral surface of the end surface covering portion 23 is formed in a tapered surface shape that gradually decreases in diameter toward the sleeve portion 24. The sleeve portion 24 is formed in a cylindrical shape having a constant outer diameter.

磁石保持管21は端面被覆部23の外周に一体に接合されている。磁石保持管21は、磁石14の発熱に耐えかつタービン軸10の高速回転に伴う遠心力に抗して磁石14を保持できる剛性を備えている必要があり、好適にはステンレス、チタン等の耐熱材料によって構成される。軸端管22は鋼管等の各種のパイプ材から形成してよいが、なるべくは熱伝導率が良好でかつ軽量の材料で構成するとよい。磁石保持管21と軸端管22との一体化(接合)には例えば溶接、ロウ付け、圧入等の各種の接合方法を用いてよい。端面被覆部23及びスリーブ部24は共通の素材から一体に成形されてもよいし、溶接、ロウ付け、圧入等の接合方法によって一体化されてもよい。いずれにせよ、筒状部材20は、タービン軸10に組み付けられた状態において、磁石保持管21と少なくとも一方のスリーブ部24とが分解不可能なように一体化された単一の筒状の部品として存在していればよい。   The magnet holding tube 21 is integrally joined to the outer periphery of the end surface covering portion 23. The magnet holding tube 21 needs to have rigidity capable of withstanding the heat generation of the magnet 14 and holding the magnet 14 against the centrifugal force accompanying the high-speed rotation of the turbine shaft 10, and preferably has a heat resistance such as stainless steel or titanium. Consists of materials. The shaft end tube 22 may be formed of various pipe materials such as a steel tube, but it is preferable that the shaft end tube 22 be made of a light material having a good thermal conductivity. For the integration (joining) of the magnet holding tube 21 and the shaft end tube 22, various joining methods such as welding, brazing, and press fitting may be used. The end surface covering portion 23 and the sleeve portion 24 may be integrally formed from a common material, or may be integrated by a joining method such as welding, brazing, or press fitting. In any case, the cylindrical member 20 is a single cylindrical component in which the magnet holding tube 21 and at least one sleeve portion 24 are integrated so that they cannot be disassembled when assembled to the turbine shaft 10. As long as it exists.

筒状部材20のタービン6側の端部はタービン軸10の拡大部10aに突き当てられている。筒状部材20のインペラ8側の端部にはスラストカラー25が突き当てられ、そのスラストカラー25の反対側にシールリングカラー26及びインペラ8が順次装着され、さらにインペラ8がナット27にて軸線方向に締め込まれることにより、タービン軸10上にこれらの回転部品、すなわち磁石14、筒状部材20、スラストカラー25、シールリングカラー26及びインペラ8がタービン軸10に対して一体回転可能かつ軸線方向には移動不能に取り付けられる。これらの回転部品とタービン6及びタービン軸10とによってターボ過給機1の回転体アッセンブリ28が構成される。なお、タービン軸10の拡大部10a及びシールリングカラー26のそれぞれの外周にはシールリング30、31が取り付けられる。それらのシールリング30、31は過給機ハウジング11と全周に亘って接触し、これによりタービンハウジング5及びコンプレッサハウジング7のそれぞれの内部と、ベアリングハウジング9の内部との間がシールされる。また、過給機ハウジング11には円板状のスラスト軸受32が取り付けられ、そのスラスト軸受32がスラストカラー25の外周と噛み合うことにより、過給機ハウジング11に対する回転体アッセンブリ28の軸線方向の移動が規制される。   The end of the tubular member 20 on the turbine 6 side is abutted against the enlarged portion 10 a of the turbine shaft 10. A thrust collar 25 is abutted against an end portion of the cylindrical member 20 on the impeller 8 side, a seal ring collar 26 and an impeller 8 are sequentially mounted on the opposite side of the thrust collar 25, and the impeller 8 is axially connected with a nut 27. By tightening in the direction, these rotating parts, that is, the magnet 14, the cylindrical member 20, the thrust collar 25, the seal ring collar 26, and the impeller 8 can be integrally rotated with respect to the turbine shaft 10 on the turbine shaft 10. It is mounted immovably in the direction. These rotating parts, the turbine 6 and the turbine shaft 10 constitute a rotating body assembly 28 of the turbocharger 1. Seal rings 30 and 31 are attached to the outer circumferences of the enlarged portion 10 a of the turbine shaft 10 and the seal ring collar 26. The seal rings 30, 31 are in contact with the supercharger housing 11 over the entire circumference, thereby sealing between the inside of the turbine housing 5 and the compressor housing 7 and the inside of the bearing housing 9. Further, a disc-shaped thrust bearing 32 is attached to the supercharger housing 11, and the thrust bearing 32 meshes with the outer periphery of the thrust collar 25, so that the rotating body assembly 28 moves in the axial direction relative to the supercharger housing 11. Is regulated.

ベアリングハウジング9の内部には筒状部材20のスリーブ部24を取り囲むようにしてリング状の軸受35が設けられている。タービン6側の軸受35は一対の止め輪36に挟み込まれることにより、ベアリングハウジング9に対して軸線方向定位置に拘束され、コンプレッサ側の軸受35は止め輪36及びスラストカラー25に挟み込まれることにより、ベアリングハウジング9に対して軸線方向定位置に拘束されている。軸受35の内径はスリーブ部24の外径よりも幾らか大きく、従って、軸受35とスリーブ部24との間には幾らかの半径方向隙間が空いている。それらの半径方向隙間は端面被覆部23の外周に向かって開いている。   A ring-shaped bearing 35 is provided inside the bearing housing 9 so as to surround the sleeve portion 24 of the cylindrical member 20. The turbine 35 side bearing 35 is sandwiched between a pair of retaining rings 36, thereby being restrained at a fixed position in the axial direction with respect to the bearing housing 9, and the compressor side bearing 35 is sandwiched between the retaining ring 36 and the thrust collar 25. The bearing housing 9 is restrained at a fixed position in the axial direction. The inner diameter of the bearing 35 is somewhat larger than the outer diameter of the sleeve portion 24, and therefore there is some radial clearance between the bearing 35 and the sleeve portion 24. These radial gaps open toward the outer periphery of the end surface covering portion 23.

ベアリングハウジング9には、その表面から軸受35の外周に向かって潤滑液を導く潤滑液流路40が形成されている。各軸受35にはその潤滑液流路40に通じる半径方向の貫通孔35a(図2参照)が形成されている。従って、潤滑液流路40に導入された潤滑液は貫通孔35aを介して軸受35とスリーブ部24との隙間に供給され、その潤滑液が膜を形成することによりスリーブ部24が半径方向に支持される。過給機ハウジング11には、軸受35に供給された潤滑液を排出するためのドレン路41、42がさらに形成されている。   The bearing housing 9 is formed with a lubricating liquid flow path 40 that guides the lubricating liquid from the surface toward the outer periphery of the bearing 35. Each bearing 35 is formed with a radial through hole 35 a (see FIG. 2) that communicates with the lubricating liquid flow path 40. Accordingly, the lubricating liquid introduced into the lubricating liquid flow path 40 is supplied to the gap between the bearing 35 and the sleeve portion 24 through the through-hole 35a, and the lubricating liquid forms a film so that the sleeve portion 24 is radially formed. Supported. Drain passages 41 and 42 for discharging the lubricating liquid supplied to the bearing 35 are further formed in the supercharger housing 11.

以上のように構成されたターボ過給機1によれば、磁石14をその外周側から筒状部材20の磁石保持管21で覆っているので、タービン軸10が高速回転しても遠心力で磁石14がタービン軸10から分離することなく、タービン軸10上に磁石14を確実に拘束することができる。回転子12で発生した熱は磁石保持管21から端面被覆部23を経てスリーブ部24に逃げ、そのスリーブ部24まで導かれた熱は軸受35の潤滑液に逐次排熱される。磁石保持管21、端面被覆部23及びスリーブ部24は一体構造であるため、それらの間の熱伝導率も高い。従って、回転子12に熱が溜りにくく、回転子12の冷却効率が高まる。また、軸受35とスリーブ部24との隙間が端面被覆部23の外周に向かって開いているので、軸受35に供給された潤滑液は端面被覆部23に逃げてその表面に付着し、その付着した潤滑液で筒状部材20がさらに冷却されて回転子12の冷却効率がさらに高まる。端面被覆部23の表面に付着した潤滑液はタービン軸10の回転に伴う遠心力で端面被覆部23の外周の角部23a(図2参照)に移動し、そこから固定子13のコイル巻線部16へ飛散する。つまり、ターボ過給機1においては、端面被覆部23の外周の角部23aが潤滑液飛散部として機能する。これにより、コイル巻線部16も潤滑液にて冷却され、回転電機4の発熱がさらに効果的に抑制される。   According to the turbocharger 1 configured as described above, since the magnet 14 is covered with the magnet holding tube 21 of the cylindrical member 20 from the outer peripheral side, even if the turbine shaft 10 rotates at high speed, centrifugal force is applied. The magnet 14 can be reliably restrained on the turbine shaft 10 without separating the magnet 14 from the turbine shaft 10. The heat generated in the rotor 12 escapes from the magnet holding tube 21 through the end surface covering portion 23 to the sleeve portion 24, and the heat guided to the sleeve portion 24 is sequentially exhausted to the lubricating liquid of the bearing 35. Since the magnet holding tube 21, the end surface covering portion 23, and the sleeve portion 24 have an integral structure, the thermal conductivity therebetween is also high. Therefore, heat hardly accumulates in the rotor 12, and the cooling efficiency of the rotor 12 increases. Further, since the gap between the bearing 35 and the sleeve portion 24 opens toward the outer periphery of the end surface covering portion 23, the lubricating liquid supplied to the bearing 35 escapes to the end surface covering portion 23 and adheres to the surface, and the adhesion The cylindrical member 20 is further cooled by the lubricating liquid thus obtained, and the cooling efficiency of the rotor 12 is further increased. The lubricating liquid adhering to the surface of the end surface covering portion 23 moves to the corner 23a (see FIG. 2) on the outer periphery of the end surface covering portion 23 by centrifugal force accompanying the rotation of the turbine shaft 10, and from there the coil winding of the stator 13 Spatter to part 16. That is, in the turbocharger 1, the corner portion 23 a on the outer periphery of the end surface covering portion 23 functions as a lubricant scattering portion. Thereby, the coil winding part 16 is also cooled by the lubricating liquid, and the heat generation of the rotating electrical machine 4 is further effectively suppressed.

また、筒状部材20は磁石保持管21からスリーブ部24までが一体化された構造であるため、筒状部材20それ自身の剛性は高い。しかも、スリーブ部24と筒状部材20とを別部品としてタービン軸10上に組み付ける場合と比較して回転体アッセンブリ28を構成する回転部品の点数が減少する。そして、回転部品の点数が減少することから、回転部品の形状誤差(例えば、タービン軸10の回転軸線に対する回転部品端面の垂直度のずれ)、あるいは、回転部品の組み立て誤差に起因する軸曲がりも抑えられる。これにより、タービン軸10の高速回転化に対するターボ過給機1の適応性も高められる。   Moreover, since the cylindrical member 20 has a structure in which the magnet holding tube 21 to the sleeve portion 24 are integrated, the rigidity of the cylindrical member 20 itself is high. Moreover, the number of rotating parts constituting the rotating body assembly 28 is reduced as compared with the case where the sleeve portion 24 and the cylindrical member 20 are assembled on the turbine shaft 10 as separate parts. Further, since the number of rotating parts is reduced, the shape error of the rotating parts (for example, the deviation of the perpendicularity of the rotating part end surface with respect to the rotating axis of the turbine shaft 10), or the shaft bending caused by the assembling error of the rotating parts may also occur. It can be suppressed. Thereby, the adaptability of the turbocharger 1 to the high speed rotation of the turbine shaft 10 is also improved.

さらに、端面被覆部23には磁石保持管21と比べて十分な肉厚が確保されているので、図2及び図3に示すように、端面被覆部23の外周角部23aの一部に切欠部23bを設けることにより、筒状部材20の強度を損なうことなく、回転体アッセンブリ28の回転バランスを修正することもできる。これにより、タービン軸10の高速回転化に対するターボ過給機1の適応性をさらに高めることができる。磁石保持管21については、磁石14とステータコア15との隙間を必要以上に増加させないようにその肉厚が制限される。また、タービン軸10の回転速度の変化に応じて遠心力が増減することにより磁石保持管21には繰り返し応力が作用することから、磁石保持管21の形状も応力集中が生じにくいように単純化する必要がある。このような事情から磁石保持管21に切欠部23bを形成するよりも端面被覆部23に切欠部23bを設ける方が遙かに制限が少なく、回転バランスの修正もそれだけ容易に行える。なお、切欠部23bは角部23aに限らず、図3に破線で示したように端面被覆部23の適宜の位置に設けてよい。   Further, since the end face covering portion 23 has a sufficient thickness as compared with the magnet holding tube 21, as shown in FIGS. 2 and 3, a part of the outer peripheral corner portion 23a of the end face covering portion 23 is notched. By providing the portion 23b, the rotational balance of the rotating body assembly 28 can be corrected without impairing the strength of the tubular member 20. Thereby, the adaptability of the turbocharger 1 to the high speed rotation of the turbine shaft 10 can be further enhanced. The thickness of the magnet holding tube 21 is limited so as not to increase the gap between the magnet 14 and the stator core 15 more than necessary. Also, since the stress is repeatedly applied to the magnet holding tube 21 as the centrifugal force increases / decreases in accordance with the change in the rotational speed of the turbine shaft 10, the shape of the magnet holding tube 21 is simplified so that stress concentration is less likely to occur. There is a need to. For this reason, it is much less restrictive to provide the notch portion 23b in the end surface covering portion 23 than to form the notch portion 23b in the magnet holding tube 21, and the rotation balance can be easily corrected accordingly. Note that the notch portion 23b is not limited to the corner portion 23a, and may be provided at an appropriate position of the end surface covering portion 23 as shown by a broken line in FIG.

本発明は以上の形態に限定されず、種々の形態にて実施してよい。例えば、端面被覆部23についてはテーパ状に限らず、図4に示すように軸線方向の肉厚がほぼ一定な円板状に形成してもよい。また、同図に示すように、潤滑液飛散部として端面被覆部23の外周に突起部23cを設けてもよい。突起部23cは端面被覆部23の全周に亘って連続的に設けてもよいし、複数の突起部23cを周方向に適当なピッチで離して設けてもよい。このような突起部23cを設けた場合には筒状部材20の表面に付着した潤滑液を遠心力を利用して突起部23cに集中させ、固定子13のコイル巻線部16に潤滑液を効率よく飛ばしてその冷却を促進することができる。さらに、回転バランスの修正においても突起部23cの一部を切除することによりこれを容易に実現することができる。なお、以上の形態では筒状部材20の端面被覆部23の表面に軸受35の潤滑液を導いているが、これとは別の位置から潤滑液を端面被覆部23の表面に導いてもよい。   This invention is not limited to the above form, You may implement with a various form. For example, the end face covering portion 23 is not limited to a tapered shape, and may be formed in a disk shape having a substantially constant thickness in the axial direction as shown in FIG. Further, as shown in the figure, a protruding portion 23c may be provided on the outer periphery of the end surface covering portion 23 as a lubricating liquid scattering portion. The protrusions 23c may be provided continuously over the entire circumference of the end surface covering part 23, or a plurality of protrusions 23c may be provided at an appropriate pitch in the circumferential direction. When such a protrusion 23c is provided, the lubricating liquid adhering to the surface of the cylindrical member 20 is concentrated on the protrusion 23c using centrifugal force, and the lubricating liquid is applied to the coil winding part 16 of the stator 13. The cooling can be promoted efficiently. Furthermore, this can be easily realized by cutting off a part of the protrusion 23c in correcting the rotation balance. In the above embodiment, the lubricating liquid of the bearing 35 is guided to the surface of the end surface covering portion 23 of the cylindrical member 20, but the lubricating liquid may be guided to the surface of the end surface covering portion 23 from a different position. .

図5は、タービン6側のスリーブ部24に半径方向の貫通孔24aを形成し、これに対応して、タービン軸10には、貫通孔24aを通過した潤滑液をタービン6側に導く潤滑液経路45を設けた例である。潤滑液経路45は、一例として、タービン軸10を周方向に一周する液溜め溝45aと、両端が液溜め溝45aに開口する第1の半径方向通路45bと、タービン軸10の軸線上に設けられて一端が貫通孔45bに通じる軸方向通路45cと、その軸方向通路45cと通じ、両端が拡大部10aの外周に開口する第2の半径方向通路45dとからなる。このような潤滑液経路45を設けることにより、軸受35の潤滑液にてタービン軸10のタービン6側の端部を冷却し、それによりタービン6から回転子12への熱伝導を抑えて回転子12の冷却効率をさらに高めることができる。   In FIG. 5, a radial through hole 24 a is formed in the sleeve portion 24 on the turbine 6 side. Correspondingly, on the turbine shaft 10, the lubricating liquid that guides the lubricating liquid that has passed through the through hole 24 a to the turbine 6 side. This is an example in which a path 45 is provided. As an example, the lubricating fluid path 45 is provided on the axis of the turbine shaft 10, a liquid reservoir groove 45 a that makes one turn in the circumferential direction of the turbine shaft 10, a first radial passage 45 b that opens to the liquid reservoir groove 45 a at both ends. Thus, an axial passage 45c having one end communicating with the through-hole 45b and a second radial passage 45d communicating with the axial passage 45c and having both ends opened to the outer periphery of the enlarged portion 10a. By providing such a lubricating liquid path 45, the end of the turbine shaft 10 on the turbine 6 side is cooled by the lubricating liquid of the bearing 35, thereby suppressing heat conduction from the turbine 6 to the rotor 12 and the rotor. The cooling efficiency of 12 can be further increased.

回転体アッセンブリ28の構成は一例であり、磁石保持管21から少なくとも一方のスリーブ部24までが一体化された構造の筒状部材20を有する限りにおいて、回転体アッセンブリ28の構成は適宜に変更してよい。タービン軸10に対するタービン6及びインペラ8の連結構造も適宜に変更してよく、タービン軸10を軸線方向に位置決めするための構造も適宜に変更してよい。   The configuration of the rotating body assembly 28 is an example, and the configuration of the rotating body assembly 28 may be changed as appropriate as long as the cylindrical member 20 has a structure in which the magnet holding tube 21 to at least one sleeve portion 24 are integrated. It's okay. The structure for connecting the turbine 6 and the impeller 8 to the turbine shaft 10 may be changed as appropriate, and the structure for positioning the turbine shaft 10 in the axial direction may be changed as appropriate.

本発明の一形態に係るターボ過給機の軸線方向断面図。1 is an axial sectional view of a turbocharger according to an embodiment of the present invention. タービン軸上に取り付けられる筒状部材及びその軸受部分の断面図。Sectional drawing of the cylindrical member and its bearing part attached on a turbine shaft. 筒状部材の一端側の様子を示す斜視図。The perspective view which shows the mode of the one end side of a cylindrical member. 筒状部材の磁石保持部の両側に潤滑液飛散部としての突起部を設けた形態を示す断面図。Sectional drawing which shows the form which provided the projection part as a lubricating liquid scattering part on the both sides of the magnet holding part of a cylindrical member. 軸受に供給された潤滑液をタービン側に導く潤滑液経路をさらに追加した形態を示す図。The figure which shows the form which further added the lubricating fluid path | route which guides the lubricating fluid supplied to the bearing to the turbine side.

符号の説明Explanation of symbols

1 ターボ過給機
2 排気タービン部
3 コンプレッサ部
4 回転電機
6 タービン
8 インペラ
10 タービン軸
11 過給機ハウジング
12 回転子
13 固定子
14 磁石
15 ステータコア
16 コイル巻線部
20 筒状部材
21 磁石保持管(磁石保持部)
22 軸端管
23 端面被覆部
23a 角部(潤滑液飛散部)
23b 切欠部
23c 突起部(潤滑液飛散部)
24 スリーブ部
28 回転体アッセンブリ
35 軸受
45 潤滑液経路
DESCRIPTION OF SYMBOLS 1 Turbocharger 2 Exhaust turbine part 3 Compressor part 4 Rotating electric machine 6 Turbine 8 Impeller 10 Turbine shaft 11 Supercharger housing 12 Rotor 13 Stator 14 Magnet 15 Stator core 16 Coil winding part 20 Cylindrical member 21 Magnet holding tube (Magnet holding part)
22 Shaft end tube 23 End face covering portion 23a Corner portion (lubricating liquid scattering portion)
23b Notch 23c Protrusion (lubricant spray)
24 Sleeve portion 28 Rotating body assembly 35 Bearing 45 Lubricating fluid path

Claims (7)

タービンと圧縮機インペラとの間のタービン軸上に磁石が配置されて該タービン軸上に回転電機の回転子が構成された回転電機付きターボ過給機において、
前記タービン軸上に、前記磁石を外周側から覆う磁石保持部と前記タービン軸の軸受の内周に配置されるべきスリーブ部とが一体化された筒状部材が設けられていることを特徴とする内燃機関の回転電機付きターボ過給機。
In a turbocharger with a rotating electric machine in which a magnet is disposed on a turbine shaft between a turbine and a compressor impeller and a rotor of the rotating electric machine is configured on the turbine shaft,
A cylindrical member in which a magnet holding portion that covers the magnet from the outer peripheral side and a sleeve portion that should be disposed on the inner periphery of the turbine shaft bearing is integrated on the turbine shaft. A turbocharger with a rotating electric machine for an internal combustion engine.
前記スリーブ部と前記磁石保持部との間に潤滑液が付着するように構成されていることを特徴とする請求項1に記載のターボ過給機。   The turbocharger according to claim 1, wherein a lubricant is attached between the sleeve portion and the magnet holding portion. 前記潤滑液として、前記軸受に供給される潤滑液が利用されることを特徴とする請求項2に記載のターボ過給機。   The turbocharger according to claim 2, wherein a lubricating liquid supplied to the bearing is used as the lubricating liquid. 前記筒状部材の外周には前記回転子の回転により前記回転電機の固定子に向かって潤滑液を飛散させるように潤滑液飛散部が設けられていることを特徴とする請求項2に記載のターボ過給機。   The lubricating liquid scattering part is provided in the outer periphery of the said cylindrical member so that a lubricating liquid may be scattered toward the stator of the said rotary electric machine by rotation of the said rotor. Turbocharger. 前記磁石保持部と前記スリーブ部との間には前記磁石を端面側から覆う端面被覆部が設けられ、前記端面被覆部に前記潤滑液飛散部が設けられていることを特徴とする請求項4に記載のターボ過給機。   The end face covering portion that covers the magnet from the end face side is provided between the magnet holding portion and the sleeve portion, and the lubricating liquid scattering portion is provided in the end face covering portion. Turbocharger as described in. 前記潤滑液飛散部として、前記端面被覆部の外周に突出する突起部が設けられていることを特徴とする請求項5に記載のターボ過給機。   6. The turbocharger according to claim 5, wherein a protrusion that protrudes from an outer periphery of the end surface covering portion is provided as the lubricant scattering portion. 前記軸受に供給される潤滑液を前記タービン軸を貫いて前記タービン側に導く潤滑液経路を備えたことを特徴とする請求項1〜3のいずれか一項に記載のターボ過給機。   The turbocharger according to any one of claims 1 to 3, further comprising a lubricating liquid path that guides the lubricating liquid supplied to the bearing to the turbine side through the turbine shaft.
JP2005116754A 2005-04-14 2005-04-14 Turbocharger with rotating electric machine for internal combustion engine Expired - Fee Related JP4595640B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005116754A JP4595640B2 (en) 2005-04-14 2005-04-14 Turbocharger with rotating electric machine for internal combustion engine
CN2006800120986A CN101160462B (en) 2005-04-14 2006-04-07 Turbosupercharger having rotary electric machine of internal combustion engine
DE112006000639.8T DE112006000639B4 (en) 2005-04-14 2006-04-07 Turbocharger with an electric rotary machine of an internal combustion engine
PCT/JP2006/307873 WO2006112372A1 (en) 2005-04-14 2006-04-07 Turbosupercharger having rotary electric machine of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005116754A JP4595640B2 (en) 2005-04-14 2005-04-14 Turbocharger with rotating electric machine for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006291923A true JP2006291923A (en) 2006-10-26
JP4595640B2 JP4595640B2 (en) 2010-12-08

Family

ID=36589156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005116754A Expired - Fee Related JP4595640B2 (en) 2005-04-14 2005-04-14 Turbocharger with rotating electric machine for internal combustion engine

Country Status (4)

Country Link
JP (1) JP4595640B2 (en)
CN (1) CN101160462B (en)
DE (1) DE112006000639B4 (en)
WO (1) WO2006112372A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169463A1 (en) * 2011-06-08 2012-12-13 三菱電機株式会社 Structure and method for adjusting balance of supercharger built into electric motor
KR20150003850A (en) * 2012-04-30 2015-01-09 보르그워너 인코퍼레이티드 Bearing system for a turbocharger with an internal electric motor
JP2017101593A (en) * 2015-12-01 2017-06-08 トヨタ紡織株式会社 Motor and electric supercharger with the same
JP2018062920A (en) * 2016-10-14 2018-04-19 トヨタ自動車株式会社 Spacer and electric supercharger
JP2019513935A (en) * 2016-04-07 2019-05-30 ボーグワーナー インコーポレーテッド Electrical charging device using rotor cooling

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5529714B2 (en) * 2010-11-12 2014-06-25 三菱重工業株式会社 Electric supercharger rotating shaft support structure
CN102312723A (en) * 2011-09-23 2012-01-11 优华劳斯汽车系统(上海)有限公司 Turbocharger
KR101429846B1 (en) * 2013-02-06 2014-08-12 한승주 Air Charger driven by Rotating Magnetic Field
KR101429848B1 (en) * 2013-02-13 2014-08-12 한승주 Air Expander driven by Rotating Magnetic Field
GB2530508B (en) * 2014-09-24 2019-02-20 Ford Global Tech Llc A turbocharged engine and a method of making same
US10330002B2 (en) 2016-12-12 2019-06-25 Garrett Transportation I Inc. Turbocharger assembly
US10550849B2 (en) 2016-12-12 2020-02-04 Garrett Transportation I Inc. Turbocharger assembly
US10495097B2 (en) * 2016-12-12 2019-12-03 Garrett Transporation I Inc. Turbocharger assembly
US10677253B2 (en) * 2016-12-12 2020-06-09 Garrett Transportation I Inc. Turbocharger assembly
FR3064134B1 (en) * 2017-03-15 2019-03-22 Valeo Systemes De Controle Moteur ELECTRICAL POWER COMPRESSOR WITH MAGNET HOLDER
KR102552016B1 (en) * 2018-03-15 2023-07-05 현대자동차 주식회사 Rotor assembly for motor
DE102021122339B3 (en) 2021-08-30 2022-11-03 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Electrically assisted turbomachine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000145469A (en) * 1998-11-09 2000-05-26 Isuzu Motors Ltd Assembling method for turbocharger having generator/ motor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248926A (en) * 1987-04-04 1988-10-17 Isuzu Motors Ltd Shaft structure for turbocharger
JPH02241339A (en) * 1989-03-14 1990-09-26 Hitachi Ltd Permanent magnet rotor for turbo-charger directly-connecting rotary machine
JPH03115736A (en) * 1989-09-28 1991-05-16 Isuzu Motors Ltd Turbocharger with rotary motor
JPH03115739A (en) * 1989-09-28 1991-05-16 Isuzu Motors Ltd Turbocharger with rotary electric machine
US6085527A (en) * 1997-05-15 2000-07-11 Turbodyne Systems, Inc. Magnet assemblies for motor-assisted turbochargers
US6305169B1 (en) * 1999-02-22 2001-10-23 Ralph P. Mallof Motor assisted turbocharger
JP2002349277A (en) * 2001-05-24 2002-12-04 Isuzu Motors Ltd Bearing part oil film rigidity control device of turbocharger
US6845617B1 (en) * 2003-12-20 2005-01-25 Honeywell International Inc Center housing design for electric assisted turbocharger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000145469A (en) * 1998-11-09 2000-05-26 Isuzu Motors Ltd Assembling method for turbocharger having generator/ motor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169463A1 (en) * 2011-06-08 2012-12-13 三菱電機株式会社 Structure and method for adjusting balance of supercharger built into electric motor
JP2012255355A (en) * 2011-06-08 2012-12-27 Mitsubishi Electric Corp Structure and method for adjusting balance of supercharger built into electric motor
CN103620182A (en) * 2011-06-08 2014-03-05 三菱重工业株式会社 Structure and method for adjusting balance of supercharger built into electric motor
KR20150003850A (en) * 2012-04-30 2015-01-09 보르그워너 인코퍼레이티드 Bearing system for a turbocharger with an internal electric motor
KR102013371B1 (en) * 2012-04-30 2019-10-21 보르그워너 인코퍼레이티드 Bearing system for a turbocharger with an internal electric motor
JP2017101593A (en) * 2015-12-01 2017-06-08 トヨタ紡織株式会社 Motor and electric supercharger with the same
JP2019513935A (en) * 2016-04-07 2019-05-30 ボーグワーナー インコーポレーテッド Electrical charging device using rotor cooling
JP7093724B2 (en) 2016-04-07 2022-06-30 ボーグワーナー インコーポレーテッド Electric compression device using rotor cooling
JP2018062920A (en) * 2016-10-14 2018-04-19 トヨタ自動車株式会社 Spacer and electric supercharger
US10480396B2 (en) 2016-10-14 2019-11-19 Toyota Jidosha Kabushiki Kaisha Spacer and electric supercharger

Also Published As

Publication number Publication date
JP4595640B2 (en) 2010-12-08
DE112006000639B4 (en) 2021-03-04
WO2006112372A1 (en) 2006-10-26
CN101160462A (en) 2008-04-09
CN101160462B (en) 2011-06-08
DE112006000639T5 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP4595640B2 (en) Turbocharger with rotating electric machine for internal combustion engine
JP4671177B2 (en) Electric turbocharger
JP4372511B2 (en) Supercharger with rotating electric machine having a cylindrical member extending between bearings
JP3125227B2 (en) Turbocharger bearing device
JP4661598B2 (en) Variable capacity turbocharger
EP2375089B1 (en) Dynamic foil gas bearing
JP5569113B2 (en) Turbocharger
EP1979579B1 (en) Vtg mechanism assembly using wave spring
JP2005248953A (en) Turbo machine with small roller bearing
JP2007023858A (en) Bearing structure for turbocharger
JP6650037B2 (en) Turbine housing, exhaust turbine, and supercharger
JP2007309101A (en) Cooling structure of supercharger with electric motor
JP4367628B2 (en) Electric motor integrated turbocharger
WO2015094463A1 (en) Seal runner
US7232289B2 (en) Shroud for an air turbine starter
JP6550947B2 (en) Rotating machine
FR3057029A1 (en) TURBOPROPULSEUR COMPRISING AN INTEGRATED ELECTRICITY GENERATOR
JP5771919B2 (en) Turbocharger using rolling bearing
JP2011220240A (en) Turbocharger apparatus
JP2010138753A (en) Bearing device for supercharger
WO2019166703A1 (en) Turboprop comprising an incorporated electricity generator
JP2004232532A (en) Micro gas turbine
JP4678337B2 (en) Rotating shaft structure and electric supercharger
JP4426259B2 (en) Gas turbine equipment and gas turbine power generation equipment
JP6111260B2 (en) Exhaust gas turbocharger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees