JP2006291036A - Adsorptive desulfurization of hydrocarbon oil - Google Patents

Adsorptive desulfurization of hydrocarbon oil Download PDF

Info

Publication number
JP2006291036A
JP2006291036A JP2005113651A JP2005113651A JP2006291036A JP 2006291036 A JP2006291036 A JP 2006291036A JP 2005113651 A JP2005113651 A JP 2005113651A JP 2005113651 A JP2005113651 A JP 2005113651A JP 2006291036 A JP2006291036 A JP 2006291036A
Authority
JP
Japan
Prior art keywords
hydrocarbon oil
sulfur
carbon disulfide
ppm
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005113651A
Other languages
Japanese (ja)
Other versions
JP4758670B2 (en
Inventor
Yasuhiro Toida
康宏 戸井田
Atsushi Sugiyama
淳 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU COMBINAT KODO TOGO UNEI
Research Association of Refinery Integration for Group Operation
Eneos Corp
Original Assignee
SEKIYU COMBINAT KODO TOGO UNEI
Japan Energy Corp
Research Association of Refinery Integration for Group Operation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU COMBINAT KODO TOGO UNEI, Japan Energy Corp, Research Association of Refinery Integration for Group Operation filed Critical SEKIYU COMBINAT KODO TOGO UNEI
Priority to JP2005113651A priority Critical patent/JP4758670B2/en
Publication of JP2006291036A publication Critical patent/JP2006291036A/en
Application granted granted Critical
Publication of JP4758670B2 publication Critical patent/JP4758670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for the adsorptive desulfurization of a hydrocarbon oil containing carbon disulfide. <P>SOLUTION: A hydrocarbon oil containing carbon disulfide is desulfurized by contacting the oil with an adsorbent containing ferrierite and/or mordenite as main components. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、二硫化炭素を含有する炭化水素油を吸着剤により脱硫する方法に関する。   The present invention relates to a method for desulfurizing a hydrocarbon oil containing carbon disulfide with an adsorbent.

21世紀の自動車及びその燃料においては環境問題への対応が大きな課題であり、地球温暖化ガスであるCO排出削減とNOx等のいわゆる自動車排出ガス削減との両方の観点から、燃料の硫黄分低減が益々求められている。具体的には、ガソリンの硫黄分は、近い将来サルファー・フリー(硫黄分10ppm以下)に規制され、さらに低硫黄分、すなわちゼロ・サルファー(硫黄分1ppm以下)の燃料油も求められている。また、オンボード改質方式燃料電池自動車等の燃料電池の普及によっては、さらに低硫黄の石油系液体燃料油が求められる可能性も有り、超低硫黄化のための脱硫技術が盛んに研究されている。一方、石油化学分野においても、微量の硫黄分が触媒反応などに影響を及ぼすことなどから、硫黄分の効率的除去が求められている。 In the automotive and fuel in the 21st century is a major challenge to respond to environmental problems, both in terms of a so-called vehicle emissions reductions CO 2 emissions reduction and NOx and the like are greenhouse gases, sulfur fuel Reduction is increasingly required. Specifically, the sulfur content of gasoline will be regulated to sulfur-free (sulfur content of 10 ppm or less) in the near future, and fuel oil having a low sulfur content, that is, zero sulfur (sulfur content of 1 ppm or less) is also required. Also, with the widespread use of fuel cells such as on-board reforming fuel cell vehicles, there is a possibility that low-sulfur petroleum-based liquid fuel oil may be required, and desulfurization technology for ultra-low sulfur has been actively researched. ing. On the other hand, in the petrochemical field, efficient removal of sulfur is required because a small amount of sulfur affects the catalytic reaction.

従来、主に用いられてきた脱硫技術である水素化脱硫方法をそのまま用い、ガソリンなどの燃料油に残存する硫黄化合物を除去して硫黄分10ppm以下、さらには1ppm以下にすることは、水素化脱硫が高温・高圧の反応であるため、エネルギー消費が大きく、また、膨大な触媒量と水素消費量などにより、多大なコストアップとなる。また、ガソリンについては、オレフィン分まで水素化されてしまうためにオクタン価のロスが大きい。   Conventionally, the hydrodesulfurization method, which is a desulfurization technique that has been mainly used, is used as it is, and sulfur compounds remaining in fuel oil such as gasoline are removed to make the sulfur content 10 ppm or less, and further 1 ppm or less. Since desulfurization is a high-temperature and high-pressure reaction, energy consumption is large, and the cost is greatly increased due to the huge amount of catalyst and hydrogen consumption. In addition, gasoline has a large octane loss because it is hydrogenated to the olefin content.

このように炭化水素油の低硫黄化のためには、2〜500ppm程度の硫黄分を含む炭化水素油を、エネルギー消費が少なく、簡便な設備・低い運転コストで脱硫する技術が必要とされている。吸着による脱硫方法は、水素を用いない緩やかな条件下で脱硫を行うため、加熱、加圧のためのエネルギーを省くことができ、簡便な設備・低い運転コストで、かつオクタン価の減少が少ないというメリットがある。   Thus, in order to reduce the sulfur content of hydrocarbon oils, a technology for desulfurizing hydrocarbon oils containing a sulfur content of about 2 to 500 ppm with low energy consumption, simple equipment and low operating costs is required. Yes. The desulfurization method by adsorption performs desulfurization under mild conditions that do not use hydrogen, saving energy for heating and pressurization, simple equipment, low operating costs, and low decrease in octane number. There are benefits.

例えば、ナフサ、灯油、軽油、さらに重質な油の熱分解によって得られる炭化水素油には、硫黄化合物として二硫化炭素が含まれることがある。炭化水素油に含まれる二硫化炭素を上述した吸着によって脱硫する方法として、活性炭、モレキュラーレシーブ、シリカゲル、樹脂を用いるものが知られている(特許文献1及び2)。これらの特許文献には、二硫化炭素を含む炭化水素油を、陰イオン交換樹脂と接触させることで除去することが示されている。しかし、その従来技術の記載には、活性炭、モレキュラーレシーブ、シリカゲルにて除去できることが示されているが、モレキュラーレシーブの具体的な種類まで明示するものではない。
特公平2−1809号公報 特開2002−20765号公報
For example, hydrocarbon oil obtained by thermal decomposition of naphtha, kerosene, light oil, and heavy oil may contain carbon disulfide as a sulfur compound. As a method for desulfurizing carbon disulfide contained in hydrocarbon oil by the above-described adsorption, one using activated carbon, molecular receive, silica gel, or resin is known (Patent Documents 1 and 2). These patent documents show that hydrocarbon oil containing carbon disulfide is removed by contacting with an anion exchange resin. However, the description of the prior art shows that it can be removed with activated carbon, molecular receive, or silica gel, but it does not clearly indicate the specific type of molecular receive.
Japanese Patent Publication No.2-1809 JP 2002-20765 A

ガソリンや石油化学の原料となる炭化水素油中に含まれる二硫化炭素を10ppm以下、さらには1ppm以下にゼオライトにより効率的に吸着脱硫する方法は、確立されていない点が多い。
そこで、本発明は、特定の吸着剤を用いて、ユーティリティやエネルギーの消費が少なく、二硫化炭素を含有する炭化水素油から硫黄分を効率よく除去する炭化水素油の吸着脱硫方法を提供することを課題とする。
A method for efficiently adsorbing and desulfurizing carbon disulfide contained in hydrocarbon oil, which is a raw material for gasoline and petrochemicals, to 10 ppm or less, and further to 1 ppm or less, has not been established.
Accordingly, the present invention provides a method for adsorptive desulfurization of hydrocarbon oil that uses a specific adsorbent and has low utility and energy consumption and efficiently removes sulfur from hydrocarbon oil containing carbon disulfide. Is an issue.

本発明者らは、上記課題を解決するために鋭意研究を進めた結果、二硫化炭素を含有する炭化水素油に対して、吸着剤として特定のゼオライトを用いることにより、効率的な吸着脱硫が可能であることを見出し、本発明に想到した。   As a result of diligent research to solve the above-mentioned problems, the present inventors have achieved efficient adsorptive desulfurization by using a specific zeolite as an adsorbent for hydrocarbon oil containing carbon disulfide. The inventors have found that this is possible and have come up with the present invention.

すなわち、本発明による炭化水素油の吸着脱硫方法は、二硫化炭素を含む炭化水素油を、フェリエライト及び/又はモルデナイトを主成分とする吸着剤と接触させることからなる炭化水素油の吸着脱硫方法である。   That is, the hydrocarbon oil adsorptive desulfurization method according to the present invention is a hydrocarbon oil adsorptive desulfurization method comprising contacting a hydrocarbon oil containing carbon disulfide with an adsorbent mainly composed of ferrierite and / or mordenite. It is.

本発明においては、常温付近にて液相状態の、二硫化炭素を含む炭化水素油を、特定の吸着剤と接触させることにより効率よく吸着脱硫することができる。このため、炭化水素油を加熱、加圧することなく、水素を消費することもないため、エネルギー消費が少なく、環境への負荷を低減した方法で、炭化水素油を脱硫することができる。   In the present invention, hydrocarbon desulfurization containing carbon disulfide in a liquid phase near normal temperature can be efficiently adsorbed and desulfurized by contacting with a specific adsorbent. For this reason, since hydrocarbon oil is not heated and pressurized and hydrogen is not consumed, hydrocarbon oil can be desulfurized by a method that consumes less energy and reduces the burden on the environment.

本発明による炭化水素油の吸着脱硫方法の対象となる炭化水素油は、二硫化炭素を含むものであれば特に限定されるものではないが、二硫化炭素を、0.1ppm以上含むものが好ましく、より好ましくは0.1〜500ppm、特に好ましくは0.1〜200ppm含むものである。また、吸着の効率を良くする上では、全硫黄化合物に対する二硫化炭素の重量割合が、例えば50%以上、好ましくは70%以上含む原料炭化水素油が好ましい。ここで、硫黄濃度は、炭化水素油に対する、有機硫黄化合物に含まれる硫黄原子の重量割合で定義され、例えば、紫外蛍光法、微量電量滴定酸化法、蛍光X線法、化学発光法などにより測定できる。   The hydrocarbon oil to be subjected to the hydrocarbon oil adsorptive desulfurization method according to the present invention is not particularly limited as long as it contains carbon disulfide, but preferably contains 0.1 ppm or more of carbon disulfide. More preferably, it contains 0.1 to 500 ppm, particularly preferably 0.1 to 200 ppm. Moreover, in order to improve the efficiency of adsorption, a raw material hydrocarbon oil containing, for example, 50% or more, preferably 70% or more of the weight ratio of carbon disulfide to the total sulfur compound is preferable. Here, the sulfur concentration is defined by the weight ratio of the sulfur atom contained in the organic sulfur compound to the hydrocarbon oil, and measured by, for example, the ultraviolet fluorescence method, the microcoulometric titration method, the fluorescent X-ray method, the chemiluminescence method, etc. it can.

原料の炭化水素油は、二硫化炭素を含有する炭化水素油であれば、特に制限されるものではないが、具体的には、製油所などで一般的に生産されるLPG留分、ガソリン留分、ナフサ留分などに相当する基材が好ましい。ガソリン留分は、一般に炭素数4〜11の炭化水素を主体とし、密度(15℃)0.783g/cm以下、10%留出温度が24℃以上、90%留出温度が180℃以下である。ナフサ留分は、ガソリン留分の構成成分(ホールナフサ、軽質ナフサ、重質ナフサ、又はそれらの水素化脱硫ナフサ)あるいはガソリン基材を製造する接触改質の原料(脱硫重質ナフサ)となる成分などの総称であり、沸点範囲がガソリン留分と殆ど同じ範囲か、ガソリン留分の沸点範囲に包含されるものである。ガソリン留分と同じ意味で用いられることも多い。LPG留分は、プロパン、プロピレン、ブタン、ブチレンなどを主成分とする燃料ガス及び工業用原料ガスである。通常は、加圧下の球状タンクに液相の状態で貯蔵されるか、大気圧に近い状態で、液相で低温貯蔵される。
また、原料の炭化水素油は、製油所などで生産されるものには限らず、石油化学から生産される同様な留分でも構わない。好ましい炭化水素油として、重質油を熱分解、又は接触分解して得られた炭化水素をさらに分留して、二硫化炭素を比較的多く含有するナフサ留分、特にはその軽質ナフサ留分が使用できる。
The hydrocarbon oil as a raw material is not particularly limited as long as it is a hydrocarbon oil containing carbon disulfide. Specifically, specifically, an LPG fraction and a gasoline fraction that are generally produced in refineries and the like are used. Substrates corresponding to naphtha fractions and the like are preferred. The gasoline fraction is mainly composed of hydrocarbons having 4 to 11 carbon atoms, with a density (15 ° C.) of 0.783 g / cm 3 or less, a 10% distillation temperature of 24 ° C. or more, and a 90% distillation temperature of 180 ° C. or less. It is. The naphtha fraction is a constituent of gasoline fraction (hole naphtha, light naphtha, heavy naphtha, or hydrodesulfurized naphtha thereof) or a raw material for catalytic reforming (desulfurized heavy naphtha) for producing a gasoline base. It is a general term for components and the like, and the boiling point range is almost the same as that of the gasoline fraction, or is included in the boiling point range of the gasoline fraction. Often used interchangeably with gasoline fraction. The LPG fraction is a fuel gas mainly composed of propane, propylene, butane, butylene, and industrial raw material gas. Usually, it is stored in a spherical state under pressure in a liquid phase or is stored in a liquid phase at a low temperature in a state close to atmospheric pressure.
Further, the hydrocarbon oil as a raw material is not limited to one produced in a refinery or the like, but may be a similar fraction produced from petrochemical. As a preferred hydrocarbon oil, a hydrocarbon obtained by pyrolysis or catalytic cracking of heavy oil is further fractionated to obtain a naphtha fraction containing a relatively large amount of carbon disulfide, particularly its light naphtha fraction. Can be used.

また、原料の炭化水素油は、全硫黄分に占める二硫化炭素の割合を多くさせるための操作、例えば蒸留分離、抽出、ソーダ洗浄などを経た炭化水素油でもよい。例えば、重質油熱分解装置からの炭化水素油を蒸留分離して得られる沸点範囲が34℃以上42℃以下の軽質留分や、重質油熱分解装置からの沸点範囲が24℃以上42℃以下の炭化水素油に含まれる二硫化炭素以外の硫黄化合物を、例えばフォージャサイト型ゼオライトなどの吸着処理などにより除去し、含まれる硫黄化合物の主成分を二硫化炭素とした炭化水素油が挙げられる。   The hydrocarbon oil as the raw material may be a hydrocarbon oil that has undergone operations for increasing the proportion of carbon disulfide in the total sulfur content, such as distillation separation, extraction, and soda washing. For example, a light fraction having a boiling point range of 34 ° C. or more and 42 ° C. or less obtained by distillation separation of hydrocarbon oil from a heavy oil pyrolysis device, or a boiling point range of 24 ° C. or more and 42 ° C. from a heavy oil pyrolysis device. A hydrocarbon oil in which a sulfur compound other than carbon disulfide contained in a hydrocarbon oil at ℃ or less is removed by, for example, adsorption treatment such as faujasite type zeolite, and the main component of the contained sulfur compound is carbon disulfide. Can be mentioned.

本発明の吸着剤は、フェリエライト、モルデナイト又はこれらの混合物を主成分とする吸着剤を用いる。フェリエライト及び/又はモルデナイトの含有量は、60重量%以上、特には70重量%以上であり、これら以外の成分が実質的に含まれていないことが好ましい。すなわちフェリエライト及びモルデナイト以外の成分の含有量は5重量%以下であることが好ましく、特には1重量%以下であることが好ましい。   The adsorbent of the present invention uses an adsorbent mainly composed of ferrierite, mordenite, or a mixture thereof. The content of ferrierite and / or mordenite is 60% by weight or more, particularly 70% by weight or more, and it is preferable that other components are not substantially contained. That is, the content of components other than ferrierite and mordenite is preferably 5% by weight or less, and particularly preferably 1% by weight or less.

本発明に使用される吸着剤は、フェリエライト、モルデナイト及びそれらの混合物を主成分とするものである。フェリエライト、モルデナイトは、それぞれフェリエライト(FER)構造、モルデナイト(MOR)構造を有するゼオライトである。ゼオライトは、一般式:xM2/nO・Al・ySiO・zHO(ここで、nは陽イオンMの価数、xは1以下の数、yは2以上の数、zは0以上の数)で表される結晶性含水アルミノシリケートである。ゼオライトの構造は、International Zeolite Association(IZA)のStructure Commisionのホームページhttp://www.iza-structure.org/などに詳しく示されているが、Siを中心とするSiO又はAlを中心とするAlOの四面体構造が三次元的に規則正しく配列した構造である。AlOの四面体構造は負に帯電しているので、アルカリ金属やアルカリ土類金属等の電荷補償陽イオンを細孔や空洞内に保持している。電荷補償陽イオンは、プロトン等の別の陽イオンと容易に交換することが可能である。 The adsorbent used in the present invention is mainly composed of ferrierite, mordenite, and a mixture thereof. Ferrierite and mordenite are zeolites having a ferrierite (FER) structure and a mordenite (MOR) structure, respectively. Zeolite has the general formula: xM 2 / n O · Al 2 O 3 · ySiO 2 · zH 2 O (where n is the valence of the cation M, x is a number of 1 or less, y is a number of 2 or more, z is a crystalline hydrous aluminosilicate represented by a number of 0 or more. The structure of the zeolite is shown in detail on the Structure Commision website http://www.iza-structure.org/ of the International Zeolite Association (IZA), but it is centered on SiO 4 or Al centered on Si. This is a structure in which the tetrahedral structure of AlO 4 is regularly arranged in three dimensions. Since the tetrahedral structure of AlO 4 is negatively charged, charge compensating cations such as alkali metals and alkaline earth metals are held in the pores and cavities. The charge compensating cation can be easily exchanged for another cation such as a proton.

フェリエライト(FER)は、その骨格構造の構成単位が5員環、6員環及び8員環である。ミクロ細孔は一次元構造であり、入口は10員環及び8員環で形成された楕円形で、結晶系は斜方晶である。フェリエライト型の天然ゼオライトであるフェリエライト石は、分子式(Mg,Na29・AlSi3072・18HOなどで表わされ、ミクロ細孔径が10員環で4.2×5.4Åの一次元構造と8員環で3.5×4.8Åの一次元構造の二つのチャンネルをもち、両者は連結している。単位胞の大きさは19.156×14.127×7.489Åである。本発明では、陽イオンMは特に限定されないものの、Kが主成分のKフェリエライトが好ましい。 Ferrierite (FER) has a 5-membered ring, a 6-membered ring, and an 8-membered ring as structural units of the skeleton structure. The micropore has a one-dimensional structure, the entrance is an ellipse formed of a 10-membered ring and an 8-membered ring, and the crystal system is orthorhombic. Ferrierite stone, which is a ferrierite-type natural zeolite, is represented by the molecular formula (Mg 2 , Na 2 ) 29 .Al 6 Si 30 O 72 .18H 2 O and the like, and the micropore diameter is 4.2 with a 10-membered ring. It has two channels of a one-dimensional structure of × 5.4 mm and an eight-membered ring and a one-dimensional structure of 3.5 × 4.8 mm, and they are connected. The size of the unit cell is 19.156 × 14.127 × 7.489 cm. In the present invention, the cation M is not particularly limited, but K ferrierite containing K as a main component is preferable.

モルデナイト(MOR)は、その骨格構造の構成単位が4員環、5員環及び8員環である。ミクロ細孔は一次元構造及び三次元構造であり、入口は非平面12員環及び8員環で形成された楕円形で、結晶系は斜方晶である。天然ゼオライトであるモルデナイトとしては、モルデンフッ石があり、分子式NaAlSi4096・24HOなどで表わされ、ミクロ細孔径が12員環で6.5×7.0Åの一次元構造と8員環で2.6×5.7Åの三次元構造の二つのチャンネルをもち、両者は連結している。単位胞の大きさは18.1×20.5×7.5Åである。モルデナイトは、合成ゼオライトとしても存在する。本発明では、陽イオンMは特に限定されないものの、Naモルデナイトが好ましい。 Mordenite (MOR) has 4-, 5- and 8-membered structural units in its skeleton structure. The micropores have a one-dimensional structure and a three-dimensional structure, the entrance is an ellipse formed of a non-planar 12-membered ring and an 8-membered ring, and the crystal system is orthorhombic. The mordenite is a natural zeolite, there are mordenite, expressed in such molecular formula Na 8 Al 8 Si 40 O 96 · 24H 2 O, one-dimensional 6.5 × 7.0 Å in micropore diameter of 12-membered ring The structure and the 8-membered ring have two channels of 2.6 × 5.7 mm three-dimensional structure, and both are connected. The size of the unit cell is 18.1 × 20.5 × 7.5 mm. Mordenite also exists as a synthetic zeolite. In the present invention, the cation M is not particularly limited, but Na mordenite is preferable.

原料の炭化水素油の吸着は、公知の吸着操作で行うことができる。例えば、固定層による吸着(炭化水素油中に一定時間、吸着剤を浸漬後、炭化水素油を抜き取る方式、炭化水素油の流通下において吸着剤の固定層と接触させる方式)、移動層や流動層による吸着、擬似移動層による吸着などで行うことができる。炭化水素油量、吸着剤量、炭化水素油の流通速度、吸着剤との接触時間、温度などの吸着条件の調整することにより、炭化水素油の二硫化炭素濃度を50ppm以下、特に10ppm以下、さらには1ppm以下とすることができる。通常、吸着温度は100℃以下、特に吸着剤の吸着容量が大きくできるより低温が好ましいが、経済的な理由から常温付近が好ましい。また、炭化水素油は、気相、液相のどちらでも構わない。   The adsorption of the raw material hydrocarbon oil can be performed by a known adsorption operation. For example, adsorption by a fixed layer (method of removing hydrocarbon oil after dipping the adsorbent in hydrocarbon oil for a certain period of time, method of contacting with the fixed layer of adsorbent in the flow of hydrocarbon oil), moving bed or fluidization Adsorption by a layer, adsorption by a pseudo moving layer, or the like can be performed. By adjusting the adsorption conditions such as the amount of hydrocarbon oil, the amount of adsorbent, the flow rate of hydrocarbon oil, the contact time with the adsorbent, and the temperature, the carbon disulfide concentration of the hydrocarbon oil is 50 ppm or less, particularly 10 ppm or less, Furthermore, it can be 1 ppm or less. Usually, the adsorption temperature is preferably 100 ° C. or less, and in particular, a lower temperature than the adsorption capacity of the adsorbent can be increased. Further, the hydrocarbon oil may be either a gas phase or a liquid phase.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はそれに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

炭化水素油として、石油系重質油の熱分解装置からのナフサ(硫黄濃度:約2000ppm、窒素濃度:約30ppm)を蒸留分離することによって得られた軽質留分(蒸留性状:10%留出温度=35.5℃、90%留出温度=38.5℃)を用いた。この軽質留分は全硫黄濃度が26ppmであり、主に含まれる硫黄化合物は二硫化炭素であり、それに基づく硫黄濃度は25ppmであった。   Light fraction obtained by distilling naphtha (sulfur concentration: about 2000 ppm, nitrogen concentration: about 30 ppm) from a petroleum heavy oil pyrolysis unit as hydrocarbon oil (distillation properties: 10% distillation) Temperature = 35.5 ° C., 90% distillation temperature = 38.5 ° C.). This light fraction had a total sulfur concentration of 26 ppm, the sulfur compound contained mainly was carbon disulfide, and the sulfur concentration based on it was 25 ppm.

ゼオライト吸着剤となる東ソー株式会社製Kフェリエライト粉末HSZ−720KOA(SiO/Al比:18.2mol/mol、KO(乾燥ベース):5.5wt%、NaO(乾燥ベース):1.3wt%、比表面積:170m/g)を用意した。ゼオライト吸着剤は前処理として400℃で3時間の加熱処理を行った。上述の軽質留分10gに、ゼオライト1.0gを5〜10℃にて2日浸漬した後、上澄み液を分取した。上澄み液の硫黄濃度をASTM−D5453−93の紫外蛍光法により準拠して測定した結果、硫黄濃度は1ppmであり、硫黄は95%除去された。また、二硫化炭素に基づく硫黄分は0.5ppmであり、98%除去された。 K Ferrierite powder HSZ-720KOA (SiO 2 / Al 2 O 3 ratio: 18.2 mol / mol, K 2 O (dry basis): 5.5 wt%, Na 2 O (dry) Base): 1.3 wt%, specific surface area: 170 m 2 / g). The zeolite adsorbent was pretreated at 400 ° C. for 3 hours. After 10 g of zeolite was immersed in 10 g of the light fraction described above at 5 to 10 ° C. for 2 days, the supernatant was collected. As a result of measuring the sulfur concentration of the supernatant liquid according to the ultraviolet fluorescence method of ASTM-D5453-93, the sulfur concentration was 1 ppm, and 95% of the sulfur was removed. The sulfur content based on carbon disulfide was 0.5 ppm, and 98% was removed.

ゼオライト吸着剤として、東ソー株式会社製Naモルデナイト粉末HSZ−642NAA(SiO/Al比:18.3mol/mol、比表面積:360m/g)を用いた以外、実施例1と同様に浸漬を行った。ゼオライト吸着剤は前処理として乾燥空気気流下400℃で3時間の加熱処理を行った。上澄み液の硫黄濃度を測定した結果、硫黄濃度は4ppmであり、85%除去された。また、二硫化炭素に基づく硫黄分は3ppmであり、88%除去された。 The same as in Example 1 except that Na mordenite powder HSZ-642NAA (SiO 2 / Al 2 O 3 ratio: 18.3 mol / mol, specific surface area: 360 m 2 / g) manufactured by Tosoh Corporation was used as the zeolite adsorbent. Immersion was performed. The zeolite adsorbent was pretreated at 400 ° C. for 3 hours under a dry air stream. As a result of measuring the sulfur concentration of the supernatant, the sulfur concentration was 4 ppm, and 85% was removed. Moreover, the sulfur content based on carbon disulfide was 3 ppm, and 88% was removed.

比較例1Comparative Example 1

ゼオライト吸着剤として、フォージャサイト型ゼオライトとしてNaX型ゼオライト(Zeolite, Synthetic, F-9, Powder, through 75um (200mesh)(和光純薬工業(株)製))(比表面積:528m/g)を用いた以外、同様に浸漬を行った。ゼオライト吸着剤は前処理として400℃で3時間の加熱処理を行った。上澄み液の硫黄濃度を測定した結果より、硫黄濃度は18ppmであり、31%除去された。また、二硫化炭素に基づく硫黄分は18ppmであり、28%除去された。 As a zeolite adsorbent, NaX type zeolite (Zeolite, Synthetic, F-9, Powder, through 75um (200mesh) (manufactured by Wako Pure Chemical Industries, Ltd.)) as a faujasite type zeolite (specific surface area: 528 m 2 / g) Immersion was performed in the same manner except that was used. The zeolite adsorbent was pretreated at 400 ° C. for 3 hours. From the result of measuring the sulfur concentration of the supernatant, the sulfur concentration was 18 ppm, and 31% was removed. Moreover, the sulfur content based on carbon disulfide was 18 ppm, and 28% was removed.

実施例1、2と比較例1との比較より、フェリエライト型ゼオライト、及びモルデナイト型ゼオライトが、炭化水素油に含まれる二硫化炭素の吸着脱硫において、有効であることがわかる。   From comparison between Examples 1 and 2 and Comparative Example 1, it can be seen that ferrierite-type zeolite and mordenite-type zeolite are effective in the adsorption desulfurization of carbon disulfide contained in hydrocarbon oil.

炭化水素油として、二硫化炭素及びノルマルデカンの試薬を用い、二硫化炭素を含むノルマルデカン(硫黄濃度:5200ppm、二硫化炭素に基づく硫黄濃度:5200ppm)を調製した。
ゼオライト吸着剤となる東ソー株式会社製Kフェリエライト粉末HSZ−720KOA(SiO/Al比:18.2mol/mol、比表面積:170m/g)を用意した。ゼオライト吸着剤は前処理として400℃で3時間の加熱処理を行った。上述の油7gに、ゼオライト0.5gを10℃にて5日浸漬した後、上澄み液を分取した。
上澄み液の硫黄濃度を測定した結果、全硫黄濃度は3600ppmであり、31%除去された。
As the hydrocarbon oil, normal decane containing carbon disulfide (sulfur concentration: 5200 ppm, sulfur concentration based on carbon disulfide: 5200 ppm) was prepared using carbon disulfide and normal decane reagents.
K ferrierite manufactured by Tosoh Corporation becomes zeolite adsorbent powder HSZ-720KOA (SiO 2 / Al 2 O 3 ratio: 18.2 mol / mol, specific surface area: 170m 2 / g) was prepared. The zeolite adsorbent was pretreated at 400 ° C. for 3 hours. After 0.5 g of zeolite was immersed in 7 g of the oil at 10 ° C. for 5 days, the supernatant liquid was collected.
As a result of measuring the sulfur concentration of the supernatant, the total sulfur concentration was 3600 ppm, and 31% was removed.

ゼオライト吸着剤として、東ソー株式会社製Naモルデナイト粉末HSZ−642NAA(SiO/Al比:18.3mol/mol、比表面積:360m/g)を用いた以外、実施例3と同様に浸漬を行った。ゼオライト吸着剤は前処理として400℃で3時間の加熱処理を行った。
上澄み液の硫黄濃度を測定した結果、全硫黄濃度は2700ppmであり、48%除去された。
As Zeolite adsorbent, the same as in Example 3, except that Na Mordenite powder HSZ-642NAA (SiO 2 / Al 2 O 3 ratio: 18.3 mol / mol, specific surface area: 360 m 2 / g) manufactured by Tosoh Corporation was used. Immersion was performed. The zeolite adsorbent was pretreated at 400 ° C. for 3 hours.
As a result of measuring the sulfur concentration of the supernatant, the total sulfur concentration was 2700 ppm, and 48% was removed.

比較例2Comparative Example 2

ゼオライト吸着剤として、東ソー株式会社製KL型ゼオライト粉末HSZ−500KOA(SiO/Al比:6.1mol/mol、比表面積:280m/g)を用いた以外、実施例3と同様に浸漬を行った。ゼオライト吸着剤は前処理として400℃で3時間の加熱処理を行った。
上澄み液の硫黄濃度を測定した結果、全硫黄濃度は、5200ppmであり、硫黄は除去されなかった。
As the zeolite adsorbent, manufactured by Tosoh Corp. KL-type zeolite powder HSZ-500KOA (SiO 2 / Al 2 O 3 ratio: 6.1mol / mol, specific surface area: 280m 2 / g) except for using, as in Example 3 Soaked. The zeolite adsorbent was pretreated at 400 ° C. for 3 hours.
As a result of measuring the sulfur concentration of the supernatant, the total sulfur concentration was 5200 ppm, and sulfur was not removed.

比較例3Comparative Example 3

吸着剤として、アルコア社製活性アルミナF−200(比表面積:350m/g)を用いた以外、実施例3と同様に浸漬を行った。活性アルミナは前処理として250℃で3時間の加熱処理を行った。
上澄み液の硫黄濃度を測定した結果、硫黄は除去されなかった。
Dipping was performed in the same manner as in Example 3 except that activated alumina F-200 (specific surface area: 350 m 2 / g) manufactured by Alcoa was used as the adsorbent. The activated alumina was pretreated at 250 ° C. for 3 hours.
As a result of measuring the sulfur concentration of the supernatant liquid, sulfur was not removed.

比較例4Comparative Example 4

吸着剤として、Aldrich社製不定形活性炭粉末Darco KB(比表面積:1,500m/g)を用いた以外、実施例3と同様に浸漬を行った。活性アルミナは前処理として150℃で3時間の加熱処理を行った。
上澄み液の硫黄濃度を測定した結果、全硫黄濃度は5000ppmであり、殆ど除去されなかった。
Immersion was performed in the same manner as in Example 3 except that Aldrich amorphous activated carbon powder Darco KB (specific surface area: 1,500 m 2 / g) was used as the adsorbent. The activated alumina was heat-treated at 150 ° C. for 3 hours as a pretreatment.
As a result of measuring the sulfur concentration of the supernatant liquid, the total sulfur concentration was 5000 ppm and was hardly removed.

比較例5Comparative Example 5

吸着剤として、和光純薬工業社製シリカゲルWAKOGEL−G(比表面積:687m/g)を用いた以外、実施例3と同様に浸漬を行った。活性アルミナは前処理として150℃で3時間の加熱処理を行った。
上澄み液の硫黄濃度を測定した結果、硫黄は除去されなかった。
Dipping was performed in the same manner as in Example 3 except that silica gel WAKOGEL-G (specific surface area: 687 m 2 / g) manufactured by Wako Pure Chemical Industries, Ltd. was used as the adsorbent. The activated alumina was heat-treated at 150 ° C. for 3 hours as a pretreatment.
As a result of measuring the sulfur concentration of the supernatant liquid, sulfur was not removed.

比較例6Comparative Example 6

吸着剤として、フォージャサイト型ゼオライトである和光純薬工業社製NaX型ゼオライト粉末F−9(SiO/Al比:2.5mol/mol、比表面積:591m/g)を用いた以外、実施例3と同様に浸漬を行った。活性アルミナは前処理として400℃で3時間の加熱処理を行った。
上澄み液の硫黄濃度を測定した結果、硫黄は除去されなかった。
Use (591m 2 / g SiO 2 / Al 2 O 3 ratio:: 2.5 mol / mol, specific surface area) as adsorbent, faujasite zeolite is a product of Wako Pure Chemical Industries, Ltd. NaX type zeolite powder F-9 Immersion was performed in the same manner as in Example 3 except that. The activated alumina was heat-treated at 400 ° C. for 3 hours as a pretreatment.
As a result of measuring the sulfur concentration of the supernatant liquid, sulfur was not removed.

比較例7Comparative Example 7

吸着剤として、フォージャサイト型ゼオライトである東ソー株式会社製NaY型ゼオライト粉末HSZ−320NAA(SiO/Al比:5.5mol/mol、比表面積:700m/g)を用いた以外、実施例3と同様に浸漬を行った。活性アルミナは前処理として400℃で3時間の加熱処理を行った。
上澄み液の硫黄濃度を測定した結果、硫黄は除去されなかった。
Except for using NaF type zeolite powder HSZ-320NAA (SiO 2 / Al 2 O 3 ratio: 5.5 mol / mol, specific surface area: 700 m 2 / g) manufactured by Tosoh Corporation, which is a faujasite type zeolite, as the adsorbent. The immersion was performed in the same manner as in Example 3. The activated alumina was heat-treated at 400 ° C. for 3 hours as a pretreatment.
As a result of measuring the sulfur concentration of the supernatant liquid, sulfur was not removed.

実施例3及び実施例4、比較例2〜比較例7の比較より、二硫化炭素を含む炭化水素油の吸着脱硫において、フェリエライト型ゼオライト、及びモルデナイト型ゼオライトが有効であることがわかる。   From the comparison of Example 3 and Example 4 and Comparative Examples 2 to 7, it can be seen that ferrilite-type zeolite and mordenite-type zeolite are effective in the adsorption desulfurization of hydrocarbon oil containing carbon disulfide.

本発明によれば、ガソリンや石油化学の原料となる炭化水素油に含まれる二硫化炭素を、吸着により脱硫することができ、しかも、従来の水素化脱硫と比較して、加熱、加圧のためのエネルギーが少なく、簡便な設備・低い運転コストで脱硫することが可能となる。   According to the present invention, carbon disulfide contained in hydrocarbon oil as a raw material for gasoline and petrochemicals can be desulfurized by adsorption, and compared with conventional hydrodesulfurization, it can be heated and pressurized. Therefore, desulfurization can be performed with a simple facility and low operating cost.

Claims (1)

二硫化炭素を含む炭化水素油を、フェリエライト及び/又はモルデナイトを主成分とする吸着剤と接触させることを特徴とする炭化水素油の吸着脱硫方法。   A method for adsorptive desulfurization of hydrocarbon oil, comprising contacting a hydrocarbon oil containing carbon disulfide with an adsorbent mainly composed of ferrierite and / or mordenite.
JP2005113651A 2005-04-11 2005-04-11 Method for adsorptive desulfurization of hydrocarbon oil Active JP4758670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005113651A JP4758670B2 (en) 2005-04-11 2005-04-11 Method for adsorptive desulfurization of hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005113651A JP4758670B2 (en) 2005-04-11 2005-04-11 Method for adsorptive desulfurization of hydrocarbon oil

Publications (2)

Publication Number Publication Date
JP2006291036A true JP2006291036A (en) 2006-10-26
JP4758670B2 JP4758670B2 (en) 2011-08-31

Family

ID=37411953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005113651A Active JP4758670B2 (en) 2005-04-11 2005-04-11 Method for adsorptive desulfurization of hydrocarbon oil

Country Status (1)

Country Link
JP (1) JP4758670B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04106194A (en) * 1990-08-27 1992-04-08 Kawasaki Steel Corp Process for refining coke oven gas
JPH07118668A (en) * 1993-10-20 1995-05-09 Tokyo Gas Co Ltd Method for removing sulfur compound in sulfur-containing gas
JP2002020765A (en) * 2000-07-04 2002-01-23 Idemitsu Petrochem Co Ltd Removal of carbon disulfide from hydrocarbons
JP2005002317A (en) * 2003-03-20 2005-01-06 Japan Energy Corp Desulfurization method of liquid hydrocarbon containing organic sulfur compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04106194A (en) * 1990-08-27 1992-04-08 Kawasaki Steel Corp Process for refining coke oven gas
JPH07118668A (en) * 1993-10-20 1995-05-09 Tokyo Gas Co Ltd Method for removing sulfur compound in sulfur-containing gas
JP2002020765A (en) * 2000-07-04 2002-01-23 Idemitsu Petrochem Co Ltd Removal of carbon disulfide from hydrocarbons
JP2005002317A (en) * 2003-03-20 2005-01-06 Japan Energy Corp Desulfurization method of liquid hydrocarbon containing organic sulfur compound

Also Published As

Publication number Publication date
JP4758670B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP5048495B2 (en) Hydrocarbon oil desulfurization method
JP5252674B2 (en) Hydrocarbon oil desulfurization method
Xiong et al. Metal‐free boron nitride adsorbent for ultra‐deep desulfurization
Xiao et al. Effects of aromatics, diesel additives, nitrogen compounds, and moisture on adsorptive desulfurization of diesel fuel over activated carbon
Tian et al. Enhanced adsorption desulfurization performance over hierarchically structured zeolite Y
Velu et al. Selective adsorption for removing sulfur from jet fuel over zeolite-based adsorbents
Duan et al. Adsorption, co-adsorption, and reactions of sulfur compounds, aromatics, olefins over Ce-exchanged Y zeolite
Ma et al. Deep desulfurization of gasoline by selective adsorption over nickel-based adsorbent for fuel cell applications
Wang et al. Desulfurization of liquid fuels by adsorption on carbon-based sorbents and ultrasound-assisted sorbent regeneration
Ullah et al. One-pot cation–anion double hydrolysis derived Ni/ZnO–Al2O3 absorbent for reactive adsorption desulfurization
Dastanian et al. Desulfurization of gasoline over nanoporous nickel-loaded Y-type zeolite at ambient conditions
Xu et al. Adsorptive desulfurization of liquid Jet-A fuel at ambient conditions with an improved adsorbent for on-board fuel treatment for SOFC applications
JP4758670B2 (en) Method for adsorptive desulfurization of hydrocarbon oil
JP5294927B2 (en) Hydrocarbon oil desulfurization method and fuel cell system
JP5196391B2 (en) Method for producing low sulfur hydrocarbon oil
JP2008539296A5 (en)
Yang et al. Core–Shell Zeolite Composite with Silicalite-1/NaY Structure for the Adsorption Desulfurization of Dimethyl Disulfide from Methyl tert-Butyl Ether
Gao et al. Thiophenic compounds adsorption on Na (I) Y and rare earth exchanged Y zeolites: a density functional theory study
Al-Otaibi et al. Alkaline-impregnated activated carbon: synthesis and application in crude oil desulfurization
CN104017602A (en) Reformed pre-hydrogenated topped oil preprocessing method
Lee Liquid Phase Adsorptive Desulfurization using Modified Zeolites for Transportation and Fuel Cell Applications
JP2005330306A (en) Method for adsorptive desulfurization of naphtha
CN1286955C (en) Method for decreasing sulfur content of hydrocarbon
Santos et al. NaY zeolites impregnated with nickel for adsorption of sulfur compounds from fuel model mixture
Tang et al. Low-temperature hydrothermal modification of waste paper fiber adsorbent to enhance removal benzothiophene sulfide efficiency from oil: kinetics and equilibrium study

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100416

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4758670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250