JP2006289487A - Crystal grain control method for obtaining high hardness and high strength non-ferrous metal, in particular, magnesium alloy - Google Patents

Crystal grain control method for obtaining high hardness and high strength non-ferrous metal, in particular, magnesium alloy Download PDF

Info

Publication number
JP2006289487A
JP2006289487A JP2005143196A JP2005143196A JP2006289487A JP 2006289487 A JP2006289487 A JP 2006289487A JP 2005143196 A JP2005143196 A JP 2005143196A JP 2005143196 A JP2005143196 A JP 2005143196A JP 2006289487 A JP2006289487 A JP 2006289487A
Authority
JP
Japan
Prior art keywords
alloy
magnesium alloy
product
metal
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005143196A
Other languages
Japanese (ja)
Inventor
Manabu Matsumoto
学 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005143196A priority Critical patent/JP2006289487A/en
Publication of JP2006289487A publication Critical patent/JP2006289487A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which mechanical strength of a product can be enhanced and increased for various kinds of non-ferrous metal cast molding, by fining metal structure crystal grain in a cast product or by controlling growth-enlargement thereof, and the mechanical tensile strength of, in particular, magnesium alloy is greatly increased by extremely fining the crystal grain. <P>SOLUTION: A part of fine pieces of raw magnesium alloy dipped and dried in water having anti-oxidant effect or clean water containing useful microbial group generating anti-oxidant material or distilled water, is added and mixed into a magnesium alloy (AZ91D) ingot and melted to obtain molten metal. The molten metal is cast by a die casting method to obtain a product in which metal structure crystal grain size is extremely fine. According to the extremely fined metal structure crystal grain size, the mechanical tensile strength of the product is greatly improved. This extremely fine metal structure is held unchanged and also the mechanical strength is kept even when rolling-treatment is applied to the cast product. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

発明の詳細な説明Detailed Description of the Invention

マグネシウム合金、アルミニウム合金、亜鉛合金、銅合金、および/または真鍮の高強度鋳造成形のための結晶粒制御に関する。The present invention relates to grain control for high strength casting of magnesium alloys, aluminum alloys, zinc alloys, copper alloys, and / or brass.

マグネシウム合金の鋳造成形の技術について、本申請者は、既に超音波振動を鋳造中子に加振することにより、アト加工不要の鋳造方法を発明、開発した(特許出願中)。マグネシウム金属やマグネシウム合金の結晶系はHCP結晶系に属し、その軸比は理想球HCP構造の値、c/a=1.633に近く、このことはマグネシウム合金の金属組織結晶粒子の粒子径が小さいほど、その機械的強度が向上強化されることを示している。With regard to magnesium alloy casting technology, the present applicant has already invented and developed a casting method that does not require attraction by applying ultrasonic vibration to the casting core (patent pending). The crystal system of magnesium metal or magnesium alloy belongs to the HCP crystal system, and its axial ratio is close to the value of the ideal sphere HCP structure, c / a = 1.633, which means that the grain size of the metal structure crystal particles of the magnesium alloy is The smaller the value, the higher the mechanical strength.

これまでのマグネシウム合金の超音波加振鋳造の開発研究に際して、超音波加振の効果は、マグネシウム合金製品材料の組織中、結晶粒が整合的に揃う効果があることがわかった。しかし、内から超音波をかけた効果は、結晶粒が内から外に細かくなるものの、全体的には結晶粒径の大小を制御する効果はわずかに見られるのみである。マグネシウム合金製品の機械的強度を増強する見地から、その凝固時に圧力を加えて、マグネシウム合金組織の結晶粒度を小さい方向へ制御する研究が行われている(三重県科学技術振興センター、工業研究部業務報告書、工業研究部 金属研究室 金森陽一、柴田周治、2003年10月、インター・ネット)。その結果によれば、マグネシウム金属、およびマグネシウム合金の金属組織結晶粒径が小さいほど、鋳造製品の機械的強度が高くなることが報告されている。In the research and development of ultrasonic vibration casting of magnesium alloy so far, it was found that the effect of ultrasonic vibration has the effect of aligning crystal grains in the structure of magnesium alloy product material. However, although the effect of applying ultrasonic waves from the inside becomes finer from the inside to the outside, the effect of controlling the size of the crystal grain size is only slightly seen as a whole. From the standpoint of enhancing the mechanical strength of magnesium alloy products, research is underway to control the grain size of the magnesium alloy structure in a smaller direction by applying pressure during solidification (Mie Prefectural Science and Technology Promotion Center, Industrial Research Department) (Business report, Yoichi Kanamori, Shuji Shibata, Metals Laboratory, Industrial Research Department, October 2003, Internet). According to the results, it has been reported that the mechanical strength of the cast product increases as the metal structure crystal grain size of magnesium metal and magnesium alloy decreases.

従来の技術では、マグネシウム合金凝固物の結晶粒径を細かくする目的で、結晶微細化処理剤として、カルシウムシアミナド(CCN)を精錬用フラックスと混合したり、ワックス、弗化カルシウム、カーボン等の結晶微細化剤を電磁誘導撹拌等により溶湯へ混合することなどが考えられているが、それらの効果は顕著ではない。In the conventional technology, for the purpose of reducing the crystal grain size of the magnesium alloy solidified product, calcium cyanide (CCN 2 ) is mixed with a refining flux, wax, calcium fluoride, carbon as a crystal refining treatment agent. It is considered that a crystal refining agent such as the above is mixed into the molten metal by electromagnetic induction stirring or the like, but their effects are not remarkable.

このことから、鋳造、プレス、押し出し、鍛造、精密金型成形、チクソモールド法、セミソリッド鋳造法など、いずれの成形鋳造技術を問わず、すべて結晶微細化処理を有効に適用して粒度の小さい成形製品を製造し、機械的強度の高いマグネシウム合金製品を製造することが期待されている。Therefore, regardless of any casting technology such as casting, pressing, extrusion, forging, precision mold forming, thixo mold method, semi-solid casting method, etc., all of the crystal refinement treatment is effectively applied to reduce the particle size. It is expected to produce molded products and produce magnesium alloy products with high mechanical strength.

課題を解決するための手段Means for solving the problem

一方鉱物堆積物に通水して活性化鉱水を製造し(特許公報平4−74074)、得られる活性化鉱水を固形状の被処理物に接触させて活性化鉱水の特性を発揮させようとする技術が開示されている(特開平7−328418)。その効果を発揮させようとする適用固形対象物は今後の研究にまかされ、いまだ明らかでない。On the other hand, activated mineral water is produced by passing water through mineral deposits (Patent Publication No. Hei 4-74074), and the activated mineral water obtained is brought into contact with a solid object to exert the characteristics of the activated mineral water. A technique for this is disclosed (Japanese Patent Laid-Open No. 7-328418). The applied solid object that tries to exert its effect is left to future research and is still unclear.

本特許申請者は、マグネシウム合金の溶解鋳造に,この活性化鉱水接触の技術を応用することを考案研究した。その結果抗酸化性の効力をもつ水が結晶粒微細化処理に有効に成立すること、従って金属組織の結晶粒度が非常に細かく、その機械的強度が非常に高いマグネシウム合金鋳造成形品を得るという顕著な結果を得ることが出来た。抗酸化性効果水の作用は未だ明らかでないが、抗酸化性効果水に接触した固体表面は、強い抗酸化作用を持つと想像される。
以下にその技術を述べる。
The applicant for this patent has devised and studied the application of this activated mineral water contact technology to melt casting of magnesium alloys. As a result, water having antioxidative efficacy is effectively established in the grain refinement treatment, and therefore a magnesium alloy cast molded product having a very fine metal structure and a very high mechanical strength is obtained. A remarkable result was obtained. Although the action of the antioxidant effect water is not yet clear, it is assumed that the solid surface in contact with the antioxidant effect water has a strong antioxidant action.
The technology is described below.

マグネシウム合金の細片(切子でも可)を抗酸化効果水に浸潤した後、乾燥させる。A magnesium alloy strip (or a face) is infiltrated with antioxidant water and then dried.

マグネシウム合金インゴットと当該抗酸化性水浸潤処理済みマグネシウム合金細片を混合し、該混合物を溶解炉坩堝へ投入する。The magnesium alloy ingot and the antioxidant water infiltrated magnesium alloy strip are mixed, and the mixture is put into a melting furnace crucible.

最後に、溶融溶湯を通常の方法に従って金型へ注入し鋳込む。以上の方法により、結晶粒径の非常に小さい凝固物組織が得られる。その機械的強度は、従来の凝固技術で得られるマグネシウム合金凝固物に比べて、比較できないほど高い。この溶湯注入の際、ダイカスト速度は早いほうが、凝固物組織の結晶粒径を小さくするには効果的である。Finally, the molten metal is poured into a mold and cast according to a normal method. By the above method, a solidified structure having a very small crystal grain size can be obtained. Its mechanical strength is incomparably higher than magnesium alloy solidified products obtained by conventional solidification techniques. When the molten metal is injected, a faster die casting speed is effective in reducing the crystal grain size of the solidified structure.

本発明では、0004項で述べた結晶微細化剤の代わりに、抗酸化効果水に接触させたマグネシウム合金細片をマグネシウム合金インゴットに混合すると考えてよい。In the present invention, instead of the crystal refining agent described in the section 0004, it may be considered that a magnesium alloy strip brought into contact with water having antioxidant effect is mixed with a magnesium alloy ingot.

0009項に述べた抗酸化性効果水浸潤処理済みマグネシウム合金細片とマグネシウム合金インゴットの混合物溶融溶湯であれば、ダイカスト鋳造のみでなく、0005項で述べたように、鋳造、プレス押し出し、鍛造、精密金型成形、チクソモールド法、セミソリッド鋳造法などの、いずれの凝固成形方法でも、本発明による凝固物組織の結晶粒微細化の効果が得られる。If it is a molten molten metal mixture of magnesium alloy strips and magnesium alloy ingots that have been subjected to water infiltration treatment as described in paragraph 0009, not only die casting but also casting, press extrusion, forging, Any solidification molding method such as precision mold molding, thixomolding method, semi-solid casting method, etc. can provide the effect of refining the crystal grain of the solidified structure according to the present invention.

マグネシウム合金にとどまらず、アルミニウム合金、亜鉛合金、銅合金、及び真鍮の金属組織結晶粒子の微細化、あるいは成長促進に、本発明の抗酸化性効果水浸潤処理の効果があることが予想される。Not only magnesium alloy but also aluminum alloy, zinc alloy, copper alloy, and brass metal structure crystal particles are expected to have the effect of the antioxidant effect water infiltration treatment in the refinement or growth promotion of the present invention. .

抗酸化効果水のかわりに、セラミックスや活性炭などを用いて水道水に吸着濾過処理を行い、特に塩素を取り除いた浄化水や、例えば蒸留によって水道水を脱塩精製した蒸留水を用いてもよい。また「有用微生物群」が生成する抗酸化物質を含む該浄化水、又は該蒸留水を使ってもよい。有用微生物群が生成する抗酸化物質を含む浄化水又は蒸留水とは、該浄化水や、該蒸留水に有用微生物群が生成した抗酸化物質を少量混ぜたものをいう。ここで有用微生物群とは、一般的には「EM(Effective Micro Organism)」と呼ばれる働きの異なる10属80種類以上の微生物群を云い、その主な細菌の種類は光合成微生物群、乳酸菌群、酵母菌群および放線菌群である。
以下に,その実施例とその結果を述べる。
Instead of antioxidant water, ceramics or activated carbon may be used to perform adsorption filtration treatment on tap water, and in particular, purified water from which chlorine has been removed, or distilled water obtained by desalting and purifying tap water by distillation, for example, may be used. . Further, the purified water containing the antioxidant substance produced by the “useful microorganism group” or the distilled water may be used. The purified water or distilled water containing the antioxidant substance produced by the useful microorganism group means a mixture of the purified water and the antioxidant substance produced by the useful microorganism group in the distilled water. Here, the useful microorganism group refers to a group of 80 or more microorganisms of 10 genera having different functions generally called “EM (Effective Micro Organism)”, and the main types of bacteria are a photosynthetic microorganism group, a lactic acid bacteria group, Yeast group and Actinomycete group.
The example and the result are described below.

マグネシウム合金インゴット(AZ91D)5kgと有用微生物群が生成する抗酸化効果水浸潤を終えたマグネシウム合金細片の100gを混合したものを、溶解炉中の坩堝へ投入して溶解し、溶湯をダイキャスト鋳造金型へ注入し、通常の高速ダイカスト鋳造を行う。得られた鋳造製品の金属組織を第1図に示す。抗酸化効果水や有用微生物群生成の抗酸化物質を含む浄化水、又は該蒸留水への浸潤処理を施したマグネシウム細片を混入しないで、マグネシウム合金インゴットのみのダイカスト鋳造を行った鋳造製品の金属組織を比較して第2図に示す。Magnesium alloy ingot (AZ91D) 5kg and antioxidative effect produced by useful microorganisms 100g of magnesium alloy strips that have been infiltrated with water are put into a crucible in a melting furnace and melted, and the molten metal is die-cast. It is poured into a casting mold and normal high-speed die casting is performed. The metal structure of the obtained cast product is shown in FIG. A cast product made by die-casting only a magnesium alloy ingot without mixing purified water containing antioxidant effect water or antioxidants produced by useful microorganisms or magnesium flakes that have been infiltrated into the distilled water. The metal structures are compared and shown in FIG.

抗酸化効果水や有用微生物群生成の抗酸化物質を含む浄化水、又は該蒸留水への浸潤処理済みの細片を加えないで、通常の温度、高速度条件下でダイカスト鋳造を行ったマグネシウム合金製品の金属組織写真である第2図は、組織中結晶粒界が明確に撮影されている。結晶粒の粒径は30〜50μmの程度である。Magnesium that has been die cast under normal temperature and high speed conditions without adding purified water containing antioxidant water or antioxidants generated by useful microorganisms, or strips that have been infiltrated into distilled water In FIG. 2, which is a photograph of the metal structure of the alloy product, the grain boundaries in the structure are clearly photographed. The grain size of the crystal grains is about 30-50 μm.

第1図が、抗酸化効果水や有用微生物群生成の抗酸化物質を含む浄化水、又は該蒸留水への浸潤処理をしたマグネシウム合金細片をマグネシウム合金インゴットに混合して溶解を行い、通常の温度で高速ダイカスト鋳造を行った製品の金属組織写真である。第2図と同じ倍率で撮影してあり、金属組織は細かく結晶粒粒径は4〜5μmである。Fig. 1 is a mixture of purified water containing antioxidant water and antioxidants produced by useful microorganisms, or magnesium alloy strips that have been infiltrated into the distilled water, mixed into a magnesium alloy ingot and dissolved. It is the metal structure photograph of the product which performed high-speed die-casting at the temperature of. Photographed at the same magnification as in FIG. 2, the metal structure is fine, and the crystal grain size is 4-5 μm.

第1図と第2図に示す製品の機械的強度の差を知るために、両製品試料のビッカース硬度測定を行った。第3図にビッカース硬度測定点の試料位置を示す。In order to know the difference in mechanical strength between the products shown in FIG. 1 and FIG. 2, the Vickers hardness of both product samples was measured. FIG. 3 shows the sample position of the Vickers hardness measurement point.

断面がコの字型の鋳造製品の底面中央で、底面に垂直方向のビッカース硬度測定を行った。その測定位置を測定位置Aと名づける。これに対し、製品の側面中央で側面に垂直方向の測定位置を測定位置Bと名づける。測定は、試料表面を研磨した後、表面からの深さ数箇所で行った。The Vickers hardness measurement in the direction perpendicular to the bottom surface was performed at the center of the bottom surface of the U-shaped cast product. The measurement position is named measurement position A. On the other hand, a measurement position perpendicular to the side surface at the center of the side surface of the product is named measurement position B. The measurement was performed at several points from the surface after polishing the sample surface.

第4図に測定位置Aにおけるビッカース硬度の測定結果を示す。○印はマグネシウム合金インゴットへ抗酸化効果水浸潤処理をしたマグネシウム合金細片を加えてダイカスト鋳造を行った製品の測定点であり、●印はマグネシウム合金インゴットのみの製品の測定結果である。図から抗酸化効果水浸潤処理をしたマグネシウム合金細片を混合溶解した製品の硬度が非常に高いことが明白に読み取れる。FIG. 4 shows the measurement results of Vickers hardness at the measurement position A. The circles indicate the measurement points of the products cast by adding the magnesium alloy strips that have been treated with water infiltration with the antioxidant effect to the magnesium alloy ingots, and the circles indicate the measurement results of the products with only the magnesium alloy ingots. From the figure, it can be clearly seen that the hardness of the product obtained by mixing and dissolving the magnesium alloy strips subjected to water infiltration treatment with antioxidant effect is very high.

抗酸化効果水浸潤処理マグネシウム合金細片混合付加の効果は、硬度上昇が最小である表面からの深さ距離0.8mmでも、硬さは77HVから88HVへ11HVも上昇して14%の硬度改善の効果になる。最大の硬度上昇を示す深さ、表面から深さ0.4mm、では、42HVも上昇して(68HVから110HVへ上昇)、これは62%の硬度改善の効果になる。平均値で見ると30%の硬度改善が見られる(76HVから99HVへ上昇)。Anti-oxidation effect Water-infiltrated magnesium alloy strip added effect is 14% hardness improvement by 11HV from 77HV to 88HV even at a depth distance of 0.8mm from the surface where the increase in hardness is minimal It becomes the effect. At a depth showing the maximum hardness increase, 0.4 mm from the surface, 42HV also increases (increases from 68HV to 110HV), which has a 62% hardness improvement effect. The average value shows a 30% improvement in hardness (from 76 HV to 99 HV).

抗酸化効果水や有用微生物群生成の抗酸化物質付加浄化水、又は該蒸留水への浸潤処理済みマグネシウム合金細片付加の効果は、製品の側面、すなわち測定位置B、では更に顕著である。第5図に測定位置Bでの測定結果を示す。○印、●印の意味は第4図と同様である。The effect of adding anti-oxidation effect water, anti-oxidant added purified water produced by useful microorganisms, or infiltrated magnesium alloy strips to the distilled water is even more remarkable on the side of the product, that is, at the measurement position B. FIG. 5 shows the measurement results at the measurement position B. The meanings of ○ and ● are the same as those in FIG.

測定位置Bでは、表面からの距離0.6mmでの硬さは浸潤処理済み細片付加では92HVであるのに対し、無処理マグネシウム合金インゴットのみのダイカスト製品では77HVであるから、最小の硬度上昇深さでも硬度は15HV上昇して19%の硬度改善の効果があり、最大の硬度改善効果を示す深さ、表面からの深さ0.2mm、では36HV、43%もの上昇がある(浸潤処理済み細片付加では119HV、無処理マグネシウム合金インゴットでは83HV)。平均値でみると、36%の硬度改善の効果がある(処理済み細片付加103HV、無処理76HV)。At the measurement position B, the hardness at a distance of 0.6 mm from the surface is 92 HV when the infiltrated strip is added, whereas it is 77 HV in the die-cast product with only the untreated magnesium alloy ingot, so the minimum increase in hardness is achieved. Even at depth, the hardness increases by 15 HV and has an effect of improving hardness by 19%, and at a depth of 0.2 mm from the surface where the maximum hardness improving effect is obtained, there is an increase of 36 HV by 43% (infiltration treatment) 119HV for added fine strips, 83HV for untreated magnesium alloy ingots). In terms of the average value, there is an effect of improving the hardness by 36% (treated strip added 103 HV, untreated 76 HV).

上記第4図と第5図はビッカース硬度を用いて機械的物性を調べているが、より直接的に機械的強度引っ張り強さで結晶粒子微細化の効果を見る必要がある。参考としてアルミニウム合金に就いてであるが、第6図にビッカース硬度と引っ張り強さを関係づけるグラフを示す。同図によれば、両物性値は比例関係にあるので、0024項および0026項に述べた硬度改善効果のパーセント数値は、そのまま機械的引っ張り強さの向上数値と見なしてよい。第6図を直接に引用すれば、第4図や第5図の抗酸化効果水や有用微生物群生成の抗酸化物質を含む浄化水、又は該蒸留水への浸潤処理細片を付加混合したダイカスト鋳造マグネシウム材料に普通にみられる90HVのビッカース硬度は、30kgf/mm(約300MPa)に対応する。この値は、建材、器物材として用いられる5005Al−Mg合金の約2倍の強さに相当する。In FIGS. 4 and 5, the mechanical properties are examined using the Vickers hardness. However, it is necessary to more directly observe the effect of crystal grain refinement by the mechanical strength and tensile strength. Although it is about aluminum alloy as a reference, FIG. 6 shows a graph relating Vickers hardness and tensile strength. According to the figure, since both physical property values are in a proportional relationship, the percentage value of the hardness improvement effect described in the paragraphs 0024 and 0026 may be regarded as the improvement value of the mechanical tensile strength as it is. To directly refer to FIG. 6, the purified water containing the antioxidant effect water of FIG. 4 and FIG. 5 and the antioxidant substance produced by the useful microorganism group, or the infiltration treated strip into the distilled water was added and mixed. The 90 HV Vickers hardness commonly found in die cast magnesium materials corresponds to 30 kgf / mm 2 (about 300 MPa). This value corresponds to about twice the strength of 5005Al-Mg alloy used as building materials and equipment.

さらに最後に、他の実施例を示す。この実施例は請求項6に関するもので、抗酸化効果水や有用微生物群生成抗酸化物質を含む浄化水への浸潤処理細片を付加混合してダイカスト鋳造したマグネシウム材料に、さらに圧延加工を加えた完成製品の金属組織結晶粒を調べた。Finally, another embodiment is shown. This embodiment relates to claim 6 and further adds a rolling process to the magnesium material die-casted by adding and mixing infiltration treatment pieces into purified water containing antioxidant water and useful microorganism group-generated antioxidant substances. The metallographic crystal grains of the finished product were examined.

第7図は、通常のダイカスト鋳造で得られたマグネシウム合金(AZ91D)の金属組織写真(倍率200×)であり、抗酸化効果水や有用微生物群生成抗酸化物質を含む浄化水への浸潤処理を終えたマグネシウム細片を混合しない原材料のダイカスト鋳造で得られたものである。FIG. 7 is a metallographic photograph (magnification 200 ×) of a magnesium alloy (AZ91D) obtained by ordinary die casting, infiltration treatment into purified water containing antioxidant water and useful microorganism group-generated antioxidants. It was obtained by die casting of raw materials that did not mix magnesium strips.

これに比べ、第8図は、抗酸化効果水や有用微生物群生成抗酸化物質を含む浄化水への浸潤処理を終えたマグネシウム細片をマグネシウムインゴットに混合した原マグネシウム材料からダイカスト鋳造で得られた試料の金属顕微鏡写真である。第7図では径40〜50μm程度の結晶粒が全体を占めているのに対し、第8図ではそのような結晶粒は全然認められない。0016項と0017項に述べた前実施例の結晶粒微細化の効果が、本実施例でも明確に認められる。Compared to this, Fig. 8 is obtained by die casting from raw magnesium material mixed with magnesium ingot with magnesium strips that have been infiltrated into purified water containing antioxidant water and useful microbial group-generated antioxidants. 2 is a metallographic micrograph of a sample. In FIG. 7, crystal grains having a diameter of about 40 to 50 μm occupy the whole, whereas in FIG. 8, such crystal grains are not recognized at all. The effect of the grain refinement of the previous embodiment described in the paragraphs 0016 and 0017 is clearly recognized also in this embodiment.

第7図と第8図の試料は、いずれも固体製品に未だ圧延処理を加えないものである。当該固体試料に数回の圧延処理(厚さ5mmt→2mmt)を加えて製品の金属組織を観察した。第9図に圧延処理後の第7図試料の金属組織写真を示す。圧延によって第7図に見られた巨大結晶粒子が横方向に細く伸びて一方向異方性を示しており、圧延により微細化効果が認められる。The samples in FIGS. 7 and 8 are both samples that have not been subjected to rolling treatment yet. Several rolling processes (thickness 5 mmt → 2 mmt) were added to the solid sample, and the metal structure of the product was observed. FIG. 9 shows a metallographic photograph of the FIG. 7 sample after the rolling process. The giant crystal grains seen in FIG. 7 by rolling extend thinly in the lateral direction and exhibit unidirectional anisotropy, and a refinement effect is recognized by rolling.

第10図は、第8図の試料、すなわち抗酸化効果水や有用微生物群生成抗酸化物質を含む浄化水への浸潤処理を終えたマグネシウム細片をマグネシウムインゴットに混合した原マグネシウム材料からダイカスト鋳造で得られた固体試料へ、上述の圧延処理(厚さ5mmt→2mmt)を加えた製品の金属組織写真である。第8図と比べると、該圧延処理によって結晶粒は、第10図ではさらに微細化されている。FIG. 10 shows die casting from the raw magnesium material in which the magnesium ingot mixed with the magnesium ingot in the sample of FIG. 8, that is, the infiltrating treatment into the purified water containing antioxidant effect water and useful microorganism group-generated antioxidants. It is the metal structure photograph of the product which added the above-mentioned rolling process (thickness 5mmt-> 2mmt) to the solid sample obtained by (1). Compared to FIG. 8, the crystal grains are further refined in FIG. 10 by the rolling process.

以上第10図を他の3枚の写真と比較すると、抗酸化効果水や有用微生物群生成抗酸化物質を含む浄化水、又は蒸留水への浸潤処理を終えたマグネシウム細片をマグネシウムインゴットに混合する効果は、そのダイカスト鋳造製品の金属組織結晶粒子を細分化することに加え、更には該製品に圧延処理を加えてもその圧延製品の金属組織結晶粒径を細かくすることが明らかになった。当該効果は、圧延のみならず、プレス、押し出し、鍛造、精密金型成形、チクソモールド法、セミソリッド鋳造法などの諸固体成形方法に有効であると考えられる。Comparing Figure 10 with the other three photographs, magnesium strips that have been infiltrated into purified water or distilled water containing antioxidant water and useful microorganisms are mixed with magnesium ingots. In addition to subdividing the metallographic crystal grains of the die-cast product, it has also become clear that the metallographic crystal grain size of the rolled product can be reduced even if the product is subjected to a rolling treatment. . This effect is considered to be effective not only for rolling but also for various solid molding methods such as pressing, extrusion, forging, precision die molding, thixo molding method, semi-solid casting method and the like.

ダイカスト鋳造に際して、マグネシウム合金細片を抗酸化効果水や有用微生物群生成抗酸化物質を含む浄化水、又は蒸留水へ浸潤して、これの一部を原マグネシウム合金インゴットに混合して溶解するときの製品結晶粒微細化への効果は顕著である。結晶粒微細化をもたらす抗酸化効果水や有用微生物群生成抗酸化物質を含む浄化水、又は蒸留水の働きは未だ不明であるが、抗酸化効果をもつ原料金属材料や、有用微生物群が生成する抗酸化物質には、微量のナトリウム原子をはじめとする灰分が含有され、これらの含有成分が凝固結晶核となって一斉に析出し、第1図や第8図にみられる極微細化結晶粒組織が出現するのではないかと考えている。又、ダイカスト鋳造時の試料温度上昇時が(ダイカスト鋳造時には、試料の温度が750℃〜850℃近くまで上昇することが認められた。)、結晶粒微細化効果が附加され、圧倒的な結晶粒の微細化を引き起こしたとも考えられる。During die casting, when magnesium alloy strips are infiltrated into purified water containing distilled water with antioxidant effect water or useful microbial group-generated antioxidants, or a portion of this is mixed with the original magnesium alloy ingot and dissolved. The effect on the refinement of product crystal grains is remarkable. Antioxidant water that brings about crystal grain refinement and purified microorganisms containing useful microorganisms or the action of distilled water are still unknown, but raw metal materials with antioxidant effects and useful microorganisms are produced. The antioxidants contain a small amount of ash, including sodium atoms, and these components are precipitated as solidified crystal nuclei at the same time, resulting in ultrafine crystals as shown in FIGS. I think that grain structure may appear. In addition, when the sample temperature rises during die casting (when the die is cast, it is recognized that the temperature of the sample rises to 750 ° C. to 850 ° C.). It is also thought that it caused the grain refinement.

発明の効果The invention's effect

以上述べたように、ダイカスト鋳造に際して、マグネシウム合金細片(合金名:AZ91D)を抗酸化効果水や有用微生物群生成抗酸化物質を含む浄化水、又は蒸留水へ浸潤して、これの一部を原マグネシウム合金インゴットに混合して溶解するときの効果は、凝固製品のマグネシウム結晶粒の粒度を非常に細かくする。先の0003項で述べた凝固時に加圧を加える実験でも、最小の結晶粒径は30μm〜60μmの程度であった(三重県科学技術振興センター、工業研究部業務報告書)。これにくらべ、本発明では、平均4〜5μmの結晶粒径極細分化が見られる。このことは、製品の機械的引っ張り強さに直ちに反映し、マグネシウム細片を抗酸化効果水や有用微生物群生成抗酸化物質を含む浄化水、又は蒸留水に浸潤して、これを一部マグネシウム合金インゴットに混合し溶解鋳造することにより、製品の機械的強度が平均30%〜35%の引っ張り強さの改善上昇、最大で43%〜62%の改善上昇が見られた。As described above, at the time of die casting, a magnesium alloy strip (alloy name: AZ91D) is infiltrated into purified water containing antioxidant effect water, useful microorganism group-generated antioxidant substance, or distilled water, and a part thereof The effect of mixing and melting the raw magnesium alloy ingot makes the magnesium crystal grains of the solidified product very fine. Even in the experiment of applying pressure during solidification described in the previous section 0003, the minimum crystal grain size was about 30 μm to 60 μm (Mie Prefectural Science and Technology Promotion Center, Industrial Research Department Business Report). On the other hand, in the present invention, an average fine grain size of 4 to 5 μm is observed. This is immediately reflected in the mechanical tensile strength of the product. Magnesium strips are infiltrated with purified water or water containing antioxidants and useful microorganism-generated antioxidants. By mixing and melting and casting in an alloy ingot, the mechanical strength of the product was improved by 30% to 35% on average in tensile strength and increased by 43% to 62% at maximum.

また、抗酸化効果水や有用微生物群生成抗酸化物質を含む浄化水、又は蒸留水に浸潤して、これを一部マグネシウム合金インゴットに混合溶解しダイカスト鋳造したマグネシウム合金固体材料に圧延処理を加えると、当該製品の金属組織結晶粒は、同等、或いは更に細分化する傾向を示し、その機械的強度が向上強化することを示している。In addition, it infiltrates into purified water containing distilled water with antioxidant effect water or useful microbial group-generated antioxidants, and a rolling treatment is applied to the magnesium alloy solid material that is partly mixed and dissolved in a magnesium alloy ingot and die-cast. And the metallographic crystal grains of the product show a tendency to be equal or further subdivided, indicating that the mechanical strength is improved and strengthened.

非鉄金属材料の一部に抗酸化効果水、又は有用微生物群生成抗酸化物質を含む浄化水、蒸留水に浸潤処理を加え、これを当該原金属原材料と混合溶解した溶湯を使用することは、ダイカスト鋳造にとどまらず、鋳造、プレス、押し出し、圧延、鍛造、精密金型成形、チクソモールと法、セミソリッド鋳造法等の固体製品製造法による製品中の結晶粒子粒度を減少させる、又は増大させる、両方向へ粒度を制御する有効な方法を提供する。これは製造製品の機械的強度を増大改善するための本質的に有効な方法を与える。Using a molten metal in which a part of non-ferrous metal material is subjected to an infiltration treatment in purified water containing distilled water or an antioxidant effect water or a useful microbial group-forming antioxidant substance, and this is mixed and dissolved with the raw metal raw material. Reduce or increase crystal grain size in products by solid product manufacturing methods such as casting, pressing, extrusion, rolling, forging, precision mold forming, thixomol and method, semi-solid casting method, etc. It provides an effective way to control grain size in both directions. This provides an essentially effective way to increase and improve the mechanical strength of the manufactured product.

抗酸化効果水や有用微生物群生成抗酸化物質を含む浄化水、又は蒸留水浸漬処理をしたマグネシウム合金細片を混合付加して溶解した溶湯の高速ダイカスト鋳造マグネシウム合金製品の金属組織写真、×200倍。Metal structure photograph of high-speed die-casting magnesium alloy product of molten metal mixed and added with purified water containing antioxidant effect water and antioxidants produced by useful microorganisms or distilled water soaked in distilled water, × 200 Double. マグネシウム合金AZ91Dのみを通常の高速ダイキャスト鋳造した製品の金属組織写真、×200倍。A metal structure photograph of a product obtained by casting only a magnesium alloy AZ91D by ordinary high-speed die casting, × 200 magnification. 製品のビッカース硬度測定位置、測定位置A:製品の底面、 測定位置B:製品の側面Vickers hardness measurement position of product, measurement position A: bottom of product, measurement position B: side of product 測定位置Aの種々の深さにおけるビッカース硬度測定結果、○ : 抗酸化効果水や有用微生物群生成抗酸化物質を含む浄化水、又は蒸留水の浸漬処理した細片の混合付加試料、高速ダイカスト鋳造 ● : 抗酸化効果水浸漬処理細片の混合付加なし、高速ダイカスト鋳造Vickers hardness measurement results at various depths at measurement position A, ○: Mixed added sample of strips treated by immersion in purified water or distilled water containing antioxidant water or useful microorganism group-generated antioxidants, high-speed die casting ●: Antioxidation effect Water immersion treatment No mixing of strips, high speed die casting 測定位置Bの種々の深さにおけるビッカース硬度測定結果、○ : 抗酸化効果水や有用微生物群生成抗酸化物質を含む浄化水、又は蒸留水の浸漬処理した細片の混合付加試料、高速ダイカスト鋳造。 ● : 抗酸化効果水浸漬処理細片の混合付加なし、高速ダイカスト鋳造。Vickers hardness measurement results at various depths at measurement position B, ○: Mixed addition sample of strips treated by immersion in purified water or distilled water containing antioxidant water or useful microorganism group-generated antioxidants, high-speed die casting . ●: Antioxidation effect Water immersion treatment No mixed addition of strips, high speed die casting. ビッカース硬度と機械的引っ張り強さとの関係、: アルミニウム合金。Relationship between Vickers hardness and mechanical tensile strength: Aluminum alloy. マグネシウム合金(AZ91D)インゴットのダイカスト鋳造製品の金属組織写真、(倍率200×)、抗酸化効果水や有用微生物群生成抗酸化物質を含む浄化水、又は蒸留水の浸漬処理した細片の混合付加なし。Metal structure photograph of magnesium alloy (AZ91D) ingot die-cast product, (200x magnification), mixed addition of strips treated by immersion in distilled water or purified water containing antioxidant water or useful microorganism group-generated antioxidants None. 抗酸化効果水や有用微生物群生成抗酸化物質を含む浄化水、又は蒸留水の浸漬処理をした細片を付加混合したマグネシウム合金(AZ91D)インゴットのダイカスト鋳造製品の金属組織写真、(倍率200×)。Metal structure photograph of a magnesium alloy (AZ91D) ingot die cast product in which strips subjected to immersion treatment of purified water or distilled water containing antioxidant water and useful microorganism group-generated antioxidants are added and mixed (magnification 200 × ). マグネシウム合金(AZ91D)インゴットのダイカスト鋳造製品へ圧延処理(5mmt→2mmt)を加えた製品の金属組織写真、(倍率200×)。マグネシウム合金(AZ91D)インゴットへの抗酸化効果水浸漬処理細片の混合付加なし。圧延処理前の試料は、第7図の試料に同じ。The metal structure photograph of the product which added the rolling process (5mmt-> 2mmt) to the die-casting product of the magnesium alloy (AZ91D) ingot (magnification 200x). Antioxidation effect to magnesium alloy (AZ91D) ingot No mixing addition of water soaked strips. The sample before the rolling process is the same as the sample in FIG. 抗酸化効果水や有用微生物群生成抗酸化物質を含む浄化水、又は蒸留水の浸漬処理をした細片を付加混合したマグネシウム合金(AZ91D)インゴットのダイカスト鋳造製品に圧延処理(5mmt→2mmt)を加えた 圧延製品の金属組織写真、(倍率200×)。Rolling treatment (5mmt → 2mmt) to die-cast products of magnesium alloy (AZ91D) ingots, which are added and mixed with purified water containing antioxidant water and useful microorganism group-generated antioxidants, or distilled water-immersed strips The metal structure photograph of the added rolled product (magnification 200 ×).

Claims (9)

マグネシウム合金の細片に抗酸化効果をもつ水の浸漬処理を加えて、対応するマグネシウム合金インゴットにこれを混合して溶融し、該溶湯をダイカスト鋳造して、金属組織結晶粒子を極微細化する結晶微細化の方法。Add a water immersion treatment with antioxidant effect to the magnesium alloy strip, mix and melt it in the corresponding magnesium alloy ingot, die cast the molten metal, and make the metallographic crystal grains finer Crystal refinement method. マグネシウム合金の細片に抗酸化効果をもつ水の浸漬処理を加えて、マグネシウム合金インゴットにこれを混合して溶融し、該溶湯をダイカスト鋳造して、金属組織結晶粒子を極微細化する結晶微細化の方法において、得られるマグネシウム合金のダイカスト鋳造製品の機械的強度を向上増強する方法。Add a water immersion treatment with an antioxidant effect to a magnesium alloy strip, mix and melt it in a magnesium alloy ingot, die cast the molten metal, and refine the metallographic crystal grains A method for improving and enhancing the mechanical strength of the obtained magnesium alloy die-cast product. アルミニウム金属、アルミニウム合金、亜鉛合金、銅合金、またはチタン合金の細片に抗酸化効果をもつ水の浸漬処理を加え、これを対応する各種金属インゴットに混合して溶融しこの溶湯を鋳造する、金属組織結晶粒子粒子径の大小を制御する結晶粒子径制御の方法。Add water immersion treatment with antioxidant effect to aluminum metal, aluminum alloy, zinc alloy, copper alloy, or titanium alloy strip, mix this with various metal ingots, melt and cast this molten metal, A method of controlling the crystal particle size, which controls the size of the metal structure crystal particle size. マグネシウム金属、マグネシウム合金、アルミニウム合金、亜鉛合金、銅合金、または、チタン合金の細片に抗酸化効果をもつ水の浸漬処理を加え、これを対応する各種金属インゴットに混合して溶融しこの溶湯に、プレス・押し出し、および/又は、圧延を施し該製品の金属組織結晶粒子径の大小を制御する結晶粒子制御の方法。This metal melt is prepared by adding a water immersion treatment with an antioxidant effect to a strip of magnesium metal, magnesium alloy, aluminum alloy, zinc alloy, copper alloy, or titanium alloy, mixing it with the corresponding metal ingots, and melting it. And a method of controlling crystal grains in which the size of the crystal grain diameter of the metal structure of the product is controlled by pressing, extruding, and / or rolling. マグネシウム金属、マグネシウム合金、アルミニウム合金、亜鉛合金、銅合金、またはチタン合金の細片に抗酸化効果をもつ水の浸漬処理を加え、これを対応する各種金属インゴットに混合して溶融しこの溶湯を鋳造し、これに鍛造を加えて該製品の金属組織結晶粒子径の大小を制御する結晶粒子制御の方法。Add magnesium metal, magnesium alloy, aluminum alloy, zinc alloy, copper alloy, or titanium alloy strips with anti-oxidant water so that they can be mixed and melted in various metal ingots. A method of controlling crystal grains in which the size of the crystal grain diameter of the metal structure of the product is controlled by casting and forging. マグネシウム金属、マグネシウム合金、アルミニウム合金、亜鉛合金、銅合金、またはチタン合金の細片に抗酸化効果をもつ水の浸漬処理を加え、これを対応する各種金属インゴットに混合し溶融してこの溶湯を鋳造した鋳造製品および成型品に、押し出し、圧延、および/又は、鍛造を加えて、該製品の金属組織結晶粒子径の大小を制御し、その機械的強度を向上増強させる方法。Add magnesium oxide, magnesium alloy, aluminum alloy, zinc alloy, copper alloy, or titanium alloy strips with an anti-oxidation effect, mix them with the corresponding metal ingots, melt and melt the molten metal. A method in which extrusion, rolling, and / or forging is added to a cast product and a molded product that have been cast to control the size of the metallographic crystal particle diameter of the product, thereby improving and enhancing its mechanical strength. マグネシウム合金、アルミニウム合金、亜鉛合金、銅合金、またはチタン合金の細片に抗酸化効果をもつ水の浸漬処理を加え、これを対応する各種金属インゴットに混合し溶融してこの溶湯に、精密金型成形鋳造を施し、該製品の金属組織結晶粒子径を制御する結晶粒子制御の方法。A magnesium alloy, aluminum alloy, zinc alloy, copper alloy, or titanium alloy strip is subjected to water immersion treatment that has an antioxidant effect, mixed with the corresponding metal ingots, melted, A method for controlling crystal grains, in which mold casting is performed and the crystal grain diameter of the metallographic structure of the product is controlled. マグネシュウム合金の細片に効酸化効果を持つ水の浸漬処理を加え、チクソモールド機のホッパーより投入し、チクソモールドを行い、該製品の金属組織結晶粒子径を制御する結晶粒子制御の方法。A method of controlling crystal grains in which a magnesium alloy strip is subjected to a water immersion treatment having an oxidizing effect, and is introduced from a hopper of a thixo mold machine to perform thixo molding to control the crystal grain size of the metallographic structure of the product. マグネシュウム合金、アルミニウム合金の細片に抗酸化効果を持つ水の浸漬処理を加え、これを対応する各種金属インコットに混入してビレットを作り、セミソリッド鋳造機にてセミソリッド鋳造を施し、該製品の金属組織結晶粒子径を制御する結晶粒子制御の方法。Add a water immersion treatment with antioxidant effect to a small piece of magnesium alloy or aluminum alloy, mix it with various metal incots to make billets, and perform semi-solid casting with a semi-solid casting machine. A crystal grain control method for controlling the crystal grain diameter of a metal structure.
JP2005143196A 2005-04-12 2005-04-12 Crystal grain control method for obtaining high hardness and high strength non-ferrous metal, in particular, magnesium alloy Pending JP2006289487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005143196A JP2006289487A (en) 2005-04-12 2005-04-12 Crystal grain control method for obtaining high hardness and high strength non-ferrous metal, in particular, magnesium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005143196A JP2006289487A (en) 2005-04-12 2005-04-12 Crystal grain control method for obtaining high hardness and high strength non-ferrous metal, in particular, magnesium alloy

Publications (1)

Publication Number Publication Date
JP2006289487A true JP2006289487A (en) 2006-10-26

Family

ID=37410643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005143196A Pending JP2006289487A (en) 2005-04-12 2005-04-12 Crystal grain control method for obtaining high hardness and high strength non-ferrous metal, in particular, magnesium alloy

Country Status (1)

Country Link
JP (1) JP2006289487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111041265A (en) * 2019-11-11 2020-04-21 北京科技大学 Preparation of degradable magnesium alloy sliding sleeve fracturing ball and method for controlling degradation rate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111041265A (en) * 2019-11-11 2020-04-21 北京科技大学 Preparation of degradable magnesium alloy sliding sleeve fracturing ball and method for controlling degradation rate

Similar Documents

Publication Publication Date Title
US10329651B2 (en) Method of refining metal alloys
Zhao et al. Microstructure and mechanical properties of rheo-diecasted A390 alloy
Zhang et al. Microstructure and mechanical properties of rheo-squeeze casting AZ91-Ca magnesium alloy prepared by gas bubbling process
CN101405098A (en) Process for manufacturing cast aluminum alloy plate
Canyook et al. The effects of heat treatment on microstructure and mechanical properties of rheocasting ADC12 aluminum alloy
Shaji et al. Development of a high strength cast aluminium alloy for possible automotive applications
Dwivedi et al. Machining of LM13 and LM28 cast aluminium alloys: Part I
JPH11335760A (en) Aluminum-bismuth bearing alloy and its continuous casting method
Saha et al. Effect of overageing conditions on microstructure and mechanical properties in Al–Si–Mg alloy
JP6811768B2 (en) Composite material with improved mechanical properties at high temperatures
Wang et al. Self-modification in direct electrolytic Al–Si alloys (DEASA) and its structural inheritance
JP2006289487A (en) Crystal grain control method for obtaining high hardness and high strength non-ferrous metal, in particular, magnesium alloy
US7201210B2 (en) Casting of aluminum based wrought alloys and aluminum based casting alloys
Singh et al. Review of the latest developments in grain refinement
CN106756180B (en) A kind of calcium/magnesia grain refiner and its preparation method and application
JP2003138328A (en) Method of producing graphite-containing aluminum alloy, and sliding member
JP2005329459A (en) Crystal grain fining agent for casting and its manufacturing method
Siclari et al. Micro-shrinkage in ductile iron/mechanism & solution
KR20160078789A (en) Aluminium alloy casting and method for manufacturing the same
Zheng et al. Microstructures and mechanical properties of AZ31-0.1 Ca magnesium alloy produced by soft-contact electromagnetic casting and hot extrusion
CN102888534A (en) Heterogeneous enhanced ZZnAl4Y die cast zinc alloy and preparation method thereof
Kummari et al. Grain refinement of Al-3.5 FeNb-1.5 C master alloy on pure Al and Al-9.8 Si-3.4 Cu alloy
CN1132951C (en) Process for smelting and processing Mg-alloy particles used for thixotropic injection moulding
Saleh Characteristics of oxide layer formed on the aluminium (LM6) alloy and aluminium (ADC12) alloy during in-situ melting
Zhiqiang et al. Effects of low frequency electromagnetic field on surface quality, microstructure and hot-tearing tendency of semi-continuous casting ZK60 magnesium alloy billets.