JP2006289383A - Mold flux for continuous casting of steel - Google Patents

Mold flux for continuous casting of steel Download PDF

Info

Publication number
JP2006289383A
JP2006289383A JP2005109629A JP2005109629A JP2006289383A JP 2006289383 A JP2006289383 A JP 2006289383A JP 2005109629 A JP2005109629 A JP 2005109629A JP 2005109629 A JP2005109629 A JP 2005109629A JP 2006289383 A JP2006289383 A JP 2006289383A
Authority
JP
Japan
Prior art keywords
cao
sio
mold
mold flux
caf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005109629A
Other languages
Japanese (ja)
Other versions
JP4483662B2 (en
Inventor
Masafumi Hanao
方史 花尾
Masayuki Kawamoto
正幸 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005109629A priority Critical patent/JP4483662B2/en
Publication of JP2006289383A publication Critical patent/JP2006289383A/en
Application granted granted Critical
Publication of JP4483662B2 publication Critical patent/JP4483662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide mold flux with which the slow-cooling effect which has not been obtained in the conventional mold flux, is displayed while keeping lubricity in the mold and even in the case of performing the casting of a sub-peritectic steel, the vertical crack on a cast slab surface can be prevented. <P>SOLUTION: The mold flux contains CaO,SiO<SB>2</SB>and fluorine compound as basic components and further, 1.0-10mass% the total of one or more oxides among Cr,Mn,Fe,Co,Ni,Cu and Mo as transition metals and 1.1-1.9 value of a conversion factor of (CaO)h/(SiO<SB>2</SB>)h, 0.1-0.4 value of the conversion factor of (CaF<SB>2</SB>)h/ä(CaO)h+(SiO<SB>2</SB>)h+(CaF<SB>2</SB>)h} and 0-0.25 value of the conversion factor of (fluoride of alkali metal)h/ä(CaO)h+(SiO<SB>2</SB>)h+(fluoride of alkali metal)h}. Wherein, (CaO)h=W<SB>CaO</SB>-(CaF<SB>2</SB>)×0.718, (SiO<SB>2</SB>)h=W<SB>SiO2</SB>, (CaF<SB>2</SB>)h=(W<SB>F</SB>-W<SB>Li2O</SB>×1.27-W<SB>Na2O</SB>×0.613-W<SB>K2O</SB>×0.403)×2.05 and (fluoride of alkali metal)h=W<SB>Li2O</SB>×1.74+ W<SB>Na2O</SB>×1.35+W<SB>K2O</SB>×1.23. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鋳片表面における縦割れの発生を防止するためのモールドフラックスに関し、さらに詳しくは、亜包晶鋼のような鋳片表面割れを発生しやすい鋼種の鋳造においても、鋳型内の潤滑性を維持しながら優れた緩冷却効果を発揮するモールドフラックスに関する。   The present invention relates to a mold flux for preventing the occurrence of vertical cracks on the surface of a slab, and more specifically, lubrication within a mold even in the casting of a steel type that tends to cause slab surface cracks such as hypoperitectic steel. The present invention relates to a mold flux that exhibits an excellent slow cooling effect while maintaining its properties.

鋼の連続鋳造において、C含有率が0.08〜0.18質量%である亜包晶鋼は、鋳型内で溶鋼が凝固して形成する凝固殻の厚さが不均一になりやすく、この凝固殻の厚さの不均一に起因して、鋳片表面に縦割れを発生しやすい。   In the continuous casting of steel, the subperitectic steel having a C content of 0.08 to 0.18% by mass tends to have a non-uniform thickness of the solidified shell formed by solidification of the molten steel in the mold. Due to uneven thickness of the solidified shell, vertical cracks are likely to occur on the surface of the slab.

鋳型内の凝固殻の厚さを均一にするためには、凝固殻の先端部を緩やかに冷却すること(以下、「緩冷却」と記す)が有効であり、そのための手段として、モールドフラックスが利用されている。モールドフラックスは、鋳型内の溶鋼上へ供給され、溶鋼からの熱供給により溶融して、鋳型と凝固殻との間隙に流入し、フィルムを形成する。このフィルムは、鋳造開始直後に、鋳型による冷却によりガラス状に凝固するが、時間の経過とともにガラス中から結晶が析出する。このフィルムの結晶化を促進させると、フィルムの鋳型側表面の粗度が増大するため、鋳型とフィルムとの界面における熱的抵抗が増大する。また、フィルム中の輻射伝熱も抑制されるため、これらの効果により、フィルムに接した溶鋼および凝固殻が緩冷却される。   In order to make the thickness of the solidified shell in the mold uniform, it is effective to gently cool the tip of the solidified shell (hereinafter referred to as “slow cooling”). It's being used. The mold flux is supplied onto the molten steel in the mold, melted by supplying heat from the molten steel, flows into the gap between the mold and the solidified shell, and forms a film. This film solidifies into a glass shape by cooling with a mold immediately after the start of casting, but crystals precipitate from the glass with the passage of time. When the crystallization of the film is promoted, the roughness on the mold side surface of the film increases, so that the thermal resistance at the interface between the mold and the film increases. Moreover, since the radiation heat transfer in a film is also suppressed, the molten steel and solidified shell which touched the film are cooled slowly by these effects.

フィルム中に析出する一般的な結晶の種類はカスピダイン(cuspidine:3CaO・2SiO2・CaF2)と呼ばれるものである。フィルムの結晶化を促進する手段として、従来、下記の方法が公知である。 A common type of crystal that precipitates in the film is called cuspidine (3CaO.2SiO 2 .CaF 2 ). The following methods are conventionally known as means for promoting crystallization of a film.

モールドフラックスから形成される融体の凝固点を高めることは、結晶化を促進する有効な方法である。特許文献1には、中炭素鋼を連続鋳造するに際して、CaOとSiO2の質量含有率の比(以下、「塩基度」または「CaO/SiO2」とも記す)=1.0〜1.5の範囲で、Al23、Na2O、Li2O、Fおよび炭素粉含有率を調整し、1300℃における粘度が0.6〜2.5poiseであり、溶融温度T1と凝固温度T2が、1150℃≦T2≦1250℃、かつ40℃≦T2−T1≦75℃の関係を満足する連続鋳造用パウダーが開示されている。しかし、同文献中で指摘されているとおり、凝固点を1250℃以上に高めると、潤滑性が阻害されてブレークアウトが防止できないという問題があるとされている。 Increasing the freezing point of the melt formed from the mold flux is an effective method for promoting crystallization. In Patent Document 1, when continuously casting medium carbon steel, the ratio of mass content of CaO and SiO 2 (hereinafter also referred to as “basicity” or “CaO / SiO 2 ”) = 1.0 to 1.5 In this range, the content of Al 2 O 3 , Na 2 O, Li 2 O, F and carbon powder is adjusted, the viscosity at 1300 ° C. is 0.6 to 2.5 poise, the melting temperature T 1 and the solidification temperature T 2 discloses a powder for continuous casting in which 1150 ° C. ≦ T 2 ≦ 1250 ° C. and 40 ° C. ≦ T 2 −T 1 ≦ 75 ° C. are satisfied. However, as pointed out in the same document, if the freezing point is raised to 1250 ° C. or higher, there is a problem that the lubricity is hindered and breakout cannot be prevented.

また、モールドフラックス中の成分組成をコントロールすることにより結晶化を促進する方法として、モールドフラックス中の塩基度の上昇やMgO含有率の低減が有効である。特許文献2には、主成分がCaOおよびSiO2であり、CaO/SiO2が1.2〜1.6であって、MgO含有率が1.5質量%以下である鋼の連続鋳造用パウダーが開示されている。上記の成分組成のパウダーとすることにより、迅速溶解および高潤滑特性を維持しつつ、溶融パウダーの高い結晶化度が達成できるとされている。しかしながら、ここで開示された連続鋳造用パウダーの結晶生成温度は、最も高い例でも1145℃程度と低く、これでは十分な緩冷却効果が得られるとはいえない。 Further, as a method for promoting crystallization by controlling the component composition in the mold flux, it is effective to increase the basicity or reduce the MgO content in the mold flux. Patent Document 2 discloses a powder for continuous casting of steel whose main components are CaO and SiO 2 , CaO / SiO 2 is 1.2 to 1.6, and MgO content is 1.5 mass% or less. Is disclosed. It is said that a high crystallinity of the molten powder can be achieved while maintaining rapid dissolution and high lubrication characteristics by using a powder having the above component composition. However, the crystal formation temperature of the powder for continuous casting disclosed here is as low as about 1145 ° C. even in the highest example, and it cannot be said that a sufficient slow cooling effect is obtained.

一方、特許文献3には、中炭素鋼を連続鋳造するに当たり、モールドパウダーとして、溶融状態における輻射熱の吸収係数が100m-1以上を示すものを用いることを特徴とする中炭素鋼の連続鋳造方法が開示されている。そして、モールドパウダー中に鉄あるいは遷移金属の酸化物を添加することにより、モールドパウダーが形成するフィルム中の特に液相中の輻射伝熱を抑制する方法が記載されている。 On the other hand, Patent Document 3 discloses that a continuous casting method for medium carbon steel is characterized by using a mold powder having a radiant heat absorption coefficient of 100 m −1 or more as a mold powder when continuously casting medium carbon steel. Is disclosed. And the method of suppressing the radiant heat transfer especially in the liquid phase in the film which mold powder forms by adding the oxide of iron or a transition metal in mold powder is described.

しかしながら、特許文献3に開示された方法では、上記の酸化物を添加することにより、モールドフラックス中CaO、SiO2、CaF2の濃度が希釈される。特に、この方法において、輻射伝熱の抑制効果を十分に得るためには、同文献中の実施例に示されるとおり、鉄あるいは遷移金属の酸化物を合計で10質量%以上も含有させる必要がある。また、塩基度が1.0付近の組成においては、カスピダインが析出し難くなり、モールドフラックスの凝固点は低下する。同文献の実施例の表1中に示された適用例によれば、モールドフラックスの凝固点は1050℃程度以下である。 However, in the method disclosed in Patent Document 3, the concentrations of CaO, SiO 2 and CaF 2 in the mold flux are diluted by adding the above oxide. In particular, in this method, in order to sufficiently obtain the effect of suppressing radiant heat transfer, it is necessary to contain a total of 10% by mass or more of iron or transition metal oxides as shown in the examples in the document. is there. In addition, in a composition having a basicity of around 1.0, caspidine is difficult to precipitate, and the freezing point of the mold flux decreases. According to the application example shown in Table 1 of the example of the document, the freezing point of the mold flux is about 1050 ° C. or less.

亜包晶鋼の縦割れを防止するのに効果的なモールドフラックスの凝固点が、前記の特許文献1に記載されるとおり、1150〜1250℃程度であることを考慮すると、特許文献3に記載された凝固点は、亜包晶鋼の縦割れを防止するのに効果的なモールドフラックスの凝固点よりも100℃以上も低い。つまり、同文献に示された実施例の結果は、フィルムの結晶化が阻害される結果、鋳型とフィルムとの界面における熱抵抗の増大が阻害され、緩冷却効果が損なわれていることを示している。   In view of the fact that the freezing point of mold flux effective to prevent longitudinal cracking of hypoperitectic steel is about 1150 to 1250 ° C. as described in Patent Document 1, it is described in Patent Document 3. The freezing point is 100 ° C. or more lower than the freezing point of the mold flux effective for preventing the vertical cracking of the hypoperitectic steel. In other words, the results of the examples shown in the same document indicate that the increase in thermal resistance at the interface between the mold and the film is inhibited and the slow cooling effect is impaired as a result of inhibiting the crystallization of the film. ing.

亜包晶鋼の中でも、Mn含有率が例えば1.0質量%以上と高い場合、あるいは、Cu、Ni、Ti、Nb、V、Bなどの合金成分元素を含有する場合には、鋳片表面の縦割れがさらに発生しやすくなる。したがって、このように特に縦割れの発生しやすい亜包晶鋼に対しては、上記に開示されたようなモールドフラックスを用いても、縦割れの防止あるいはその抑制効果が十分に得られない場合がある。   Among hypoperitectic steels, when the Mn content is as high as 1.0% by mass or more, or when alloying elements such as Cu, Ni, Ti, Nb, V, and B are contained, the slab surface Longitudinal cracks are more likely to occur. Therefore, for subperitectic steels that are particularly prone to vertical cracks as described above, even when using a mold flux as disclosed above, prevention of vertical cracks or the suppression effect thereof cannot be sufficiently obtained. There is.

また、上述のとおり、実用上、使用可能なモールドフラックスの凝固点は1250℃程度以下とされてきたため、従来以上の緩冷却効果を得ようとしても、凝固点をそれ以上に上昇させることができず、緩冷却の抜本的改善を図ることはできなかった。   In addition, as described above, the freezing point of the mold flux that can be used practically has been about 1250 ° C. or lower, so even if trying to obtain a slower cooling effect than conventional, the freezing point can not be raised further, A drastic improvement in slow cooling could not be achieved.

特開平8−197214号公報(特許請求の範囲および段落[0009])JP-A-8-197214 (Claims and paragraph [0009]) 特開平8−141713号公報(特許請求の範囲、段落[0013]および表1)JP-A-8-141713 (Claims, paragraph [0013] and Table 1) 特開平7−185755号公報(特許請求の範囲、段落[0011]および表1)JP-A-7-185755 (Claims, paragraph [0011] and Table 1) 特開2001−179408号公報(特許請求の範囲、段落[0013]〜[0015])JP 2001-179408 A (claims, paragraphs [0013] to [0015]) ISIJ International、Vol.42(2002)、p489〜497ISIJ International, Vol. 42 (2002), p489-497

本発明は、上記の問題に鑑みてなされたものであり、その課題は、モールドフラックスの結晶化を安定化させることにより、遷移金属の酸化物を含有させることによる結晶化阻害の影響を受けにくくして、亜包晶鋼の鋳造時における鋳型内の潤滑性を維持しながら緩冷却効果を発揮し、鋳片表面縦割れを防止できるモールドフラックスを提供することにある。   The present invention has been made in view of the above-mentioned problems, and its problem is that the crystallization of the mold flux is stabilized, thereby being less susceptible to the influence of crystallization inhibition due to the inclusion of the transition metal oxide. An object of the present invention is to provide a mold flux capable of exhibiting a slow cooling effect while maintaining lubricity in the mold during casting of hypoperitectic steel and preventing vertical cracks on the slab surface.

本発明者らは、上述の課題を解決するために、従来の問題点を踏まえて、亜包晶鋼の鋳造時に鋳型内の潤滑性を維持しながら、しかも緩冷却効果を発揮し、鋳片表面縦割れを防止できるモールドフラックスについての検討を行い、下記の(a)〜(c)の知見を得て、本発明を完成させた。   In order to solve the above-mentioned problems, the present inventors have taken into account the conventional problems, and while maintaining the lubricity in the mold during casting of the hypoperitectic steel, they also exhibit a slow cooling effect, The present invention was completed by examining the mold flux capable of preventing surface vertical cracks and obtaining the following findings (a) to (c).

(a)CaO、SiO2およびCaF2の濃度の比を、カスピダインのCaO、SiO2およびCaF2の成分組成の比に一致させたモールドフラックスにおいて、NaF、Al23、MgOなどを添加して凝固点を調整する操作は、上記の成分を添加して、融点が1410℃の純粋なカスピダインを希釈することにより、モールドフラックスの凝固点を低下させることを意味し、希釈成分の増加にともない鋳型内の緩冷却作用も低下する。 (A) CaO, the ratio of the concentration of SiO 2 and CaF 2, CaO of Kasupidain in mold flux to match the ratio of the component composition of SiO 2 and CaF 2, NaF, Al 2 O 3, MgO or the like is added The operation of adjusting the freezing point means that by adding the above components and diluting pure caspidyne having a melting point of 1410 ° C., the freezing point of the mold flux is lowered. The slow cooling action is also reduced.

(b)しかしながら、遷移金属であるCr、Mn、Fe、Co、Ni、CuまたはMoの酸化物をモールドフラックスに含有させた場合には、モールドフラックスの凝固点は低下するものの、鋳型内における熱流束の増大は防止されてほぼ一定レベルに維持され、凝固点が高い場合と同様の緩冷却効果を確保することができる。   (B) However, when oxides of transition metals such as Cr, Mn, Fe, Co, Ni, Cu or Mo are contained in the mold flux, the heat flux in the mold is reduced although the freezing point of the mold flux is lowered. Is prevented and maintained at a substantially constant level, and the same slow cooling effect as when the freezing point is high can be secured.

(c)上記(b)の緩冷却効果が得られる理由は、光の透過率が低下して、モールドフラックス中の輻射伝熱が抑制されることによると推察される。   (C) The reason why the slow cooling effect of (b) is obtained is presumed to be due to the fact that the light transmittance is reduced and the radiant heat transfer in the mold flux is suppressed.

本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記に示される鋼の連続鋳造用モールドフラックスにある。すなわち、
「CaO、SiO2およびフッ素化合物を基本成分とし、さらに、遷移金属であるCr、Mn、Fe、Co、Ni、CuおよびMoのうちの1種または2種以上の酸化物を合計で1.0〜10質量%含有し、かつ、下記(1)式、(2)式および(3)式により表される関係を満足することを特徴とする鋼の連続鋳造用モールドフラックス。
1.1≦f(1)≦1.9 ・・・(1)
0.1≦f(2)≦0.4 ・・・(2)
0≦f(3)≦0.25 ・・・(3)
f(1)=(CaO)h/(SiO2)h ・・・(イ)
f(2)=(CaF2)h/{(CaO)h+(SiO2)h+(CaF2)h} ・・・(ロ)
f(3)=(アルカリ金属のフッ化物)h/{(CaO)h+(SiO2)h+(アルカリ金属のフッ化物)h}・・・(ハ)
(CaO)h=WCaO−(CaF2)×0.718 ・・・(A)
(SiO2)h=WSiO2 ・・・(B)
(CaF2)h=(WF−WLi2O×1.27−WNa2O×0.613−WK2O×0.403)×2.05 ・・・(C)
(アルカリ金属のフッ化物)h=WLi2O×1.74+WNa2O×1.35+WK2O×1.23 ・・・(D)
ここで、WCaO、WSiO2、WF、WLi2O、WNa2OおよびWK2Oは、それぞれ、モールドフラックス中のCaO、SiO2、F、Li2O、Na2OおよびK2Oの含有率(質量%)である。
The present invention has been completed based on the above findings, and the gist thereof is the mold flux for continuous casting of steel shown below. That is,
“CaO, SiO 2 and a fluorine compound are basic components, and one or more oxides of Cr, Mn, Fe, Co, Ni, Cu and Mo, which are transition metals, are added in a total of 1.0. A mold flux for continuous casting of steel, characterized by containing 10 mass% to 10 mass% and satisfying the relationship represented by the following formulas (1), (2) and (3).
1.1 ≦ f (1) ≦ 1.9 (1)
0.1 ≦ f (2) ≦ 0.4 (2)
0 ≦ f (3) ≦ 0.25 (3)
f (1) = (CaO) h / (SiO 2 ) h (i)
f (2) = (CaF 2 ) h / {(CaO) h + (SiO 2 ) h + (CaF 2 ) h} (b)
f (3) = (alkali metal fluoride) h / {(CaO) h + (SiO 2 ) h + (alkali metal fluoride) h} (c)
(CaO) h = W CaO- (CaF 2 ) × 0.718 (A)
(SiO 2) h = W SiO2 ··· (B)
(CaF 2) h = (W F -W Li2O × 1.27-W Na2O × 0.613-W K2O × 0.403) × 2.05 ··· (C)
(Alkali metal fluoride) h = W Li2O × 1.74 + W Na2O × 1.35 + W K2O × 1.23 (D)
Here, W CaO , W SiO2 , W F , W Li2O , W Na2O and W K2O are the contents of CaO, SiO 2 , F, Li 2 O, Na 2 O and K 2 O in the mold flux, respectively ( Mass%).

本発明において、「CaO、SiO2およびフッ素化合物を基本成分とする」とは、対象とする各成分の含有率が、それぞれ少なくとも5質量%以上であり、また、合計含有率が70質量%以上であることを意味する。 In the present invention, “having CaO, SiO 2 and a fluorine compound as a basic component” means that the content of each target component is at least 5% by mass or more, and the total content is 70% by mass or more. It means that.

なお、以下の説明においては、「%」は、「質量%」を意味する。   In the following description, “%” means “mass%”.

本発明のモールドフラックスは、フィルム中における結晶化を安定化させることにより、遷移金属の酸化物を含有することに起因する結晶化阻害の影響を抑止し、鋳型内の潤滑性を維持しながら緩冷却効果を発揮することができる。したがって、本発明のモールドフラックスを用いることにより、表面割れの発生しやすい亜包晶鋼の鋳造時においても、鋳型内の良好な潤滑作用を維持しながら、かつ鋳片表面の縦割れを防止することができる。   The mold flux of the present invention stabilizes the crystallization in the film, thereby suppressing the influence of the crystallization inhibition due to the inclusion of the transition metal oxide, and relaxing while maintaining the lubricity in the mold. A cooling effect can be exhibited. Therefore, the use of the mold flux of the present invention prevents the vertical cracking of the slab surface while maintaining a good lubricating action in the mold even when casting a subperitectic steel that is prone to surface cracking. be able to.

本発明は、前記のとおり、CaO、SiO2およびフッ素化合物を基本成分とし、さらに、遷移金属であるCr、Mn、Fe、Co、Ni、CuおよびMoのうちの1種または2種以上の酸化物を合計で1.0〜10%含有し、かつ、前記(1)式、(2)式および(3)式により表される関係を満足することを特徴とする鋼の連続鋳造用モールドフラックスである。以下に、本発明の連続鋳造用モールドフラックスについてさらに詳しく説明する。 As described above, the present invention comprises CaO, SiO 2 and a fluorine compound as basic components, and further, oxidation of one or more of transition metals such as Cr, Mn, Fe, Co, Ni, Cu and Mo. A mold flux for continuous casting of steel characterized by containing 1.0 to 10% in total and satisfying the relationship represented by the above formulas (1), (2) and (3) It is. Hereinafter, the mold flux for continuous casting according to the present invention will be described in more detail.

1)鋳型内熱流束の上昇抑止作用
本発明者らは、モールドフラックスの結晶化を安定化することにより、遷移金属酸化物の添加による結晶化阻害の影響を受けにくくし、輻射伝熱の抑制効果を発揮させる方法について検討を行った。その結果、モールドフラックス組成をカスピダインの初晶領域内の組成に調整した上で、適量の遷移金属酸化物を含有させることにより、従来に類を見ない緩冷却効果を発揮させることが可能となった。
1) Inhibition of heat flux increase in the mold The present inventors have stabilized the crystallization of the mold flux, thereby making it less susceptible to crystallization inhibition due to the addition of transition metal oxides and suppressing radiant heat transfer. The method of exerting the effect was examined. As a result, after adjusting the mold flux composition to the composition within the primary crystal region of caspodyne, it is possible to exhibit an unprecedented slow cooling effect by containing an appropriate amount of transition metal oxide. It was.

モールドフラックスの成分組成をカスピダインの初晶領域の成分組成に調整する方法として、例えば、特許文献4には、モールドフラックスの成分組成をCaO−SiO2−CaF2−NaFの4元系として取り扱い、その成分組成により出現する相がカスピダインの初晶領域に一致するように成分調整を行う方法が開示されている。そして、同文献において開示されたカスピダインの結晶化しやすい組成範囲は、その後に、非特許文献1に掲載されたカスピダインの初晶領域とも実質的に一致している。 As a method for adjusting the component composition of the mold flux to the component composition of the primary crystal region of caspodyne, for example, Patent Document 4 deals with the component composition of the mold flux as a quaternary system of CaO—SiO 2 —CaF 2 —NaF, A method is disclosed in which the component is adjusted so that the phase appearing by the component composition matches the primary crystal region of caspidine. And the composition range which is easy to crystallize the caspodyne disclosed in the literature is substantially in agreement with the primary crystal region of caspodyne published in Non-Patent Document 1 thereafter.

前記特許文献4に開示された相関係の調整方法は、CaO、SiO2およびCaF2の濃度の比の調整、ならびにNaF、さらにはAl23、MgOなどの成分濃度の調整から成る。CaO、SiO2およびCaF2の濃度比の調整は、それらの3成分の濃度の比をカスピダインの初晶領域内の組成とするための調整であり、NaF、Al23、MgOなどの濃度の調整は、凝固点、粘度などの物性を適正化するための調整である。 The method for adjusting the phase relationship disclosed in Patent Document 4 comprises adjusting the concentration ratio of CaO, SiO 2 and CaF 2 and adjusting the concentration of components such as NaF, further Al 2 O 3 and MgO. The adjustment of the concentration ratio of CaO, SiO 2 and CaF 2 is an adjustment for setting the ratio of the concentrations of these three components to the composition in the primary crystal region of caspodyne, and the concentration of NaF, Al 2 O 3 , MgO Is an adjustment for optimizing physical properties such as a freezing point and viscosity.

CaO、SiO2およびCaF2の濃度の比をカスピダインの成分組成の比に一致させたモールドフラックスにおいて、NaF、Al23、MgOなどにより凝固点を調整する操作は、融点が1410℃の純粋なカスピダインを、上記の各成分を添加することにより希釈し、モールドフラックスの凝固点を低下させる操作を意味する。したがって、上記の希釈成分の濃度が上昇すると、カスピダインの結晶量および凝固点が低下し、それにともなって、鋳型内の緩冷却効果も低下する。 The operation of adjusting the freezing point with NaF, Al 2 O 3 , MgO, etc. in a mold flux in which the ratio of the concentrations of CaO, SiO 2 and CaF 2 is made to match the ratio of the component composition of caspidine is pure. It means an operation of diluting caspodyne by adding each of the above components to lower the freezing point of the mold flux. Therefore, when the concentration of the above-mentioned dilution component increases, the amount of caspidyne crystals and the freezing point decrease, and accordingly, the slow cooling effect in the mold also decreases.

上記した従来のモールドフラックスの成分調整方法に対して、本発明者らは、鋳造試験を行って、新たに下記の知見を得た。すなわち、「モールドフラックスに、遷移金属であるMn、Cr、Fe、Co、Ni、CuまたはMoの酸化物を含有させることにより、NaF、Al23、MgOなどを含有させた場合と同様にモールドフラックスの凝固点は低下するものの、鋳型内の熱流束は増大させずに一定レベルを維持し、凝固点が高い場合と同様の緩冷却効果を得ることができること」を見出した。 With respect to the above-described conventional mold flux component adjustment method, the present inventors conducted a casting test and newly obtained the following knowledge. That is, “as in the case where NaF, Al 2 O 3 , MgO, or the like is added to the mold flux by including an oxide of Mn, Cr, Fe, Co, Ni, Cu or Mo, which are transition metals. Although the freezing point of the mold flux decreases, the heat flux in the mold is maintained at a constant level without increasing, and the same slow cooling effect as when the freezing point is high can be obtained.

カスピダインの初晶領域内の成分組成に調整されたCaO−SiO2−CaF2−NaF系の基本成分のモールドフラックスに対してMnOを添加することにより、種々のMnO含有率を有するモールドフラックスを作製し、これらのフラックスを用いて亜包晶鋼の連続鋳造試験を行った。ここで、MnOの配合原料としては、常温においてMnOよりも安定なMnO2を使用した。MnO2は、高温では分解してMnOとなる。 By adding MnO against mold flux of the basic components of CaO-SiO 2 -CaF 2 -NaF system which is adjusted to composition of the primary phase area of Kasupidain, prepared mold flux having a different MnO content Then, a continuous casting test of hypoperitectic steel was conducted using these fluxes. Here, MnO 2 that is more stable than MnO at room temperature was used as a raw material for MnO. MnO 2 decomposes into MnO at a high temperature.

図1は、モールドフラックスの凝固点と鋳型内熱流束との関係におよぼす添加成分の影響を示す図である。同図は、CaO:46.6%、SiO2:27.4%、F:11.0%、Na2O:6.0%およびMnO:0%の成分組成を有するモールドフラックスを基本成分組成(同図中の□印)として、△印はMnO含有率を1〜4%の範囲で変化させ、また、○印はNa2Oを添加してNa2O:8.0%およびF:12.0%とすることにより、換算値として所定のNaFを含有させた例である。 FIG. 1 is a diagram showing the influence of additive components on the relationship between the freezing point of mold flux and the heat flux in the mold. The figure shows a basic composition of a mold flux having component compositions of CaO: 46.6%, SiO 2 : 27.4%, F: 11.0%, Na 2 O: 6.0% and MnO: 0%. (Marked with □ in the figure), Δ mark changed the MnO content in the range of 1 to 4%, and ◯ mark added Na 2 O with Na 2 O: 8.0% and F: This is an example in which predetermined NaF is contained as a converted value by setting the content to 12.0%.

基本成分組成を有するモールドフラックスの凝固点は、約1260℃であり、各添加成分の含有率を変化させることにより、モールドフラックスの凝固点を変化させ、その時の鋳型内熱流束の変化を調査した。   The freezing point of the mold flux having the basic component composition is about 1260 ° C., and by changing the content of each additive component, the freezing point of the mold flux was changed, and the change of the heat flux in the mold at that time was investigated.

同図の結果によれば、基本成分組成のモールドフラックスに、さらにNaFを含有させた場合には、凝固点の低下にともなって、鋳型内の熱流束は増大している。これに対して、MnOを含有させた場合には、凝固点が低下しても、鋳型内熱流束は増大せず、基本成分組成のモールドフラックスと同等のレベルの値が維持されている。その結果、凝固点が1220〜1240℃の範囲においても、凝固点が1260℃の場合と同等の緩冷却効果が得られている。   According to the results shown in the figure, when NaF is further contained in the mold flux having the basic component composition, the heat flux in the mold increases as the freezing point decreases. On the other hand, when MnO is contained, even if the freezing point is lowered, the heat flux in the mold does not increase, and a value equivalent to the mold flux of the basic component composition is maintained. As a result, even in the range where the freezing point is 1220 to 1240 ° C., the same slow cooling effect as that when the freezing point is 1260 ° C. is obtained.

この結果は、潤滑性阻害のために使用が困難とされている凝固点が1250℃以上のモールドフラックスの有する優れた緩冷却効果を維持しながら、凝固点を一般的な温度範囲である1250℃以下としたモールドフラックスを製造することが可能であることを意味している。   This result shows that the solidification point is 1250 ° C. or less, which is a general temperature range, while maintaining the excellent slow cooling effect of the mold flux having a solidification point of 1250 ° C. or more which is considered difficult to use due to lubrication inhibition. This means that it is possible to produce a molded mold flux.

また、上記のMnと同様に、Cr、Fe、Co、Ni、CuまたはMoの酸化物を含有させた場合においても同様の作用、効果を得ることができることを確認した。   Moreover, it was confirmed that similar actions and effects can be obtained even when an oxide of Cr, Fe, Co, Ni, Cu, or Mo is contained as in the case of Mn.

上述した遷移金属酸化物を含有させた場合に、モールドフラックスの凝固点が低下するにも拘わらず、鋳型内熱流束が増大せずにほぼ一定に維持される理由は、光の透過率が低下し、輻射伝熱が抑制されることによると推察される。   When the above-mentioned transition metal oxide is contained, the heat flux in the mold is maintained almost constant without increasing the solidification point of the mold flux, but the light transmittance decreases. It is presumed that radiant heat transfer is suppressed.

2)発明の範囲の限定理由および好ましい範囲
本発明の連続鋳造用モールドフラックスの範囲を前記のとおり限定した理由、および本発明の好ましい範囲について以下に説明する。
2) Reasons for limiting the scope of the invention and preferable ranges The reasons for limiting the range of the mold flux for continuous casting of the present invention as described above and the preferable ranges of the present invention will be described below.

(a)CaO、SiO2およびフッ素化合物を基本成分とし、好適態様としてアルカリ金属酸化物を含有:
CaO、SiO2およびフッ素化合物は、結晶化を担うカスピダインの必須構成成分として含有させる必要がある。また、アルカリ金属の酸化物は、フラックスの凝固点の調整を比較的容易とする作用を有することから、含有させることが好ましい。
(A) CaO, SiO 2 and a fluorine compound as basic components, and a preferred embodiment containing an alkali metal oxide:
CaO, SiO 2 and a fluorine compound must be contained as essential constituents of caspodyne responsible for crystallization. The alkali metal oxide is preferably contained because it has an effect of making the adjustment of the freezing point of the flux relatively easy.

CaO、SiO2およびフッ素化合物の各含有率ならびに好適態様としてのアルカリ金属酸化物の各含有率を、カスピダインの晶出しやすい下記(1)〜(3)式により表される範囲に調整する。
1.1≦f(1)≦1.9 ・・・(1)
0.1≦f(2)≦0.4 ・・・(2)
0≦f(3)≦0.25 ・・・(3)
f(1)=(CaO)h/(SiO2)h ・・・(イ)
f(2)=(CaF2)h/{(CaO)h+(SiO2)h+(CaF2)h} ・・・(ロ)
f(3)=(アルカリ金属のフッ化物)h/{(CaO)h+(SiO2)h+(アルカリ金属のフッ化物)h}・・・(ハ)
(CaO)h=WCaO−(CaF2)×0.718 ・・・(A)
(SiO2)h=WSiO2 ・・・(B)
(CaF2)h=(WF−WLi2O×1.27−WNa2O×0.613−WK2O×0.403)×2.05 ・・・(C)
(アルカリ金属のフッ化物)h=WLi2O×1.74+WNa2O×1.35+WK2O×1.23 ・・・(D)
上記(1)〜(3)式の範囲を満足するように各成分の含有率を調整することにより、モールドフラックスの組成をカスピダインの初晶の組成範囲に維持することが可能となる。
CaO, each content of alkali metal oxide as the content and preferred embodiment of SiO 2 and fluorine compounds, out easily following (1) crystals Kasupidain adjusted to the range represented by - (3) below.
1.1 ≦ f (1) ≦ 1.9 (1)
0.1 ≦ f (2) ≦ 0.4 (2)
0 ≦ f (3) ≦ 0.25 (3)
f (1) = (CaO) h / (SiO 2 ) h (i)
f (2) = (CaF 2 ) h / {(CaO) h + (SiO 2 ) h + (CaF 2 ) h} (b)
f (3) = (alkali metal fluoride) h / {(CaO) h + (SiO 2 ) h + (alkali metal fluoride) h} (c)
(CaO) h = W CaO- (CaF 2 ) × 0.718 (A)
(SiO 2) h = W SiO2 ··· (B)
(CaF 2) h = (W F -W Li2O × 1.27-W Na2O × 0.613-W K2O × 0.403) × 2.05 ··· (C)
(Alkali metal fluoride) h = W Li2O × 1.74 + W Na2O × 1.35 + W K2O × 1.23 (D)
By adjusting the content of each component so as to satisfy the range of the above formulas (1) to (3), the composition of the mold flux can be maintained in the composition range of the primary crystal of cuspidyne.

なお、f(1)の好ましい範囲は1.2〜1.7であり、さらに好ましい範囲は1.3〜1.5である。また、f(2)の好ましい範囲は0.1〜0.3であり、さらに好ましい範囲は0.15〜0.25である。そして、f(3)の好ましい範囲は0.05〜0.20であり、さらに好ましい範囲は0.10〜0.20である。   In addition, the preferable range of f (1) is 1.2-1.7, and a more preferable range is 1.3-1.5. Moreover, the preferable range of f (2) is 0.1-0.3, and a more preferable range is 0.15-0.25. And the preferable range of f (3) is 0.05-0.20, and a more preferable range is 0.10-0.20.

(b)遷移金属であるCr、Mn、Fe、Co、Ni、CuおよびMoのうちの1種以上の酸化物を含有:
遷移金属であるCr、Mn、Fe、Co、Ni、CuおよびMoの酸化物は、いずれも
光の透過率を低下させ、輻射伝熱を抑制する作用により、モールドフラックスの凝固点が低下した場合においても、鋳型内の熱流束の上昇を防止してほぼ一定レベルに維持する作用を有する。
(B) Contains one or more oxides of transition metals such as Cr, Mn, Fe, Co, Ni, Cu and Mo:
Transition metals such as Cr, Mn, Fe, Co, Ni, Cu and Mo oxides all reduce the light transmittance and suppress the radiant heat transfer, thereby reducing the freezing point of the mold flux. Also, the heat flux in the mold is prevented from rising and maintained at a substantially constant level.

この効果を得るためには、上記の遷移金属の酸化物を合計で1.0%以上含有させる必要がある。しかし、その含有率が10%を超えて高くなると、これらの酸化物はカスピダインの晶出を妨げる。これらの理由から、上記の遷移金属の酸化物の合計含有率の適正範囲を1.0〜10%とした。   In order to obtain this effect, it is necessary to contain a total of 1.0% or more of the above transition metal oxides. However, these oxides prevent the crystallization of caspidyne when its content exceeds 10%. For these reasons, the appropriate range of the total content of the transition metal oxides is set to 1.0 to 10%.

遷移金属には多くの種類の元素があるが、Cr、Mn、Fe、Co、Ni、CuおよびMoの酸化物が上述した作用を有する。これらの酸化物のうちで、特に、Mn、CrおよびFeの酸化物は比較的安価であり、モールドフラックスの配合原料として使用しやすい。また、フラックスの基材となる原料の種類によっては、MnOやFeOなどが不純物として含まれる場合があるが、その原料を配合しても、同様の効果が得られる。   There are many types of elements in transition metals, but oxides of Cr, Mn, Fe, Co, Ni, Cu, and Mo have the above-described action. Among these oxides, oxides of Mn, Cr and Fe are relatively inexpensive and easy to use as a raw material for mold flux. Further, depending on the type of raw material used as the base material of the flux, MnO, FeO, and the like may be contained as impurities.

(c)その他の酸化物の含有:
モールドフラックスの凝固点、粘度などの物性を調整するために、MgO、Al23、BaO、B23などを含有させてもよい。これらの成分は、いずれもモールドフラックスの凝固点を低下させる作用を有する。また、Al23は粘度を上昇させる作用を有し、MgO、BaOおよびB23はいずれも粘度を低下させる。
(C) Containing other oxides:
In order to adjust physical properties such as the freezing point and viscosity of the mold flux, MgO, Al 2 O 3 , BaO, B 2 O 3 and the like may be included. These components all have an action of lowering the freezing point of the mold flux. Al 2 O 3 has an effect of increasing the viscosity, and MgO, BaO and B 2 O 3 all decrease the viscosity.

しかしながら、カスピダインの晶出を促進するためには、これらの成分の含有率は低くするのが好ましく、合計含有率で15%未満とすることが好ましい。通常のモールドフラックス用原料を使用する場合には、不可避的に含有されるこれらの合計含有率は2〜5%であるが、プリメルト基材などの人工原料を使用することにより、それ以下の値とすることもできる。   However, in order to promote crystallization of caspidine, the content of these components is preferably low, and the total content is preferably less than 15%. When using normal mold flux raw materials, the total content of these unavoidable contents is 2 to 5%, but by using artificial raw materials such as a premelt base material, a value lower than that is used. It can also be.

本発明の連続鋳造用モールドフラックスの効果を確認するため、下記のとおり連続鋳造試験を行って、その結果を評価した。   In order to confirm the effect of the mold flux for continuous casting of the present invention, a continuous casting test was performed as follows, and the result was evaluated.

表1および表2に示される化学成分組成、凝固点および粘度を有する種々のモールドフラックスを作製し、これらのモールドフラックスを使用して、亜包晶鋼の連続鋳造試験を行った。各試験に使用したモールドフラックスは、ポルトランドセメント、珪砂、蛍石、ソーダ灰などの原料を配合して、CaO、SiO2およびFを基本成分とし、Na2O、MnO、Cr23、FeOなどを添加した。また、別途、モールドフラックスを溶融凝固させた試料を用いてX線回折試験を行い、本発明例においては析出した主な結晶がカスピダインであることを確認した。 Various mold fluxes having the chemical composition, freezing point and viscosity shown in Table 1 and Table 2 were prepared, and using these mold fluxes, a continuous casting test of hypoperitectic steel was performed. The mold flux used in each test is blended with raw materials such as Portland cement, silica sand, fluorite, soda ash, CaO, SiO 2 and F as basic components, Na 2 O, MnO, Cr 2 O 3 , FeO. Etc. were added. Separately, an X-ray diffraction test was performed using a sample obtained by melting and solidifying a mold flux, and in the present invention example, it was confirmed that the main crystals precipitated were cuspidyne.

Figure 2006289383
Figure 2006289383

Figure 2006289383
Figure 2006289383

なお、表1における換算指標欄のf(1)、f(2)およびf(3)は、それぞれ、前記の(イ)式、(ロ)式および(ハ)式により算出される値を示し、また、表2における粘度は、1300℃におけるモールドフラックスの粘度を示す。   In addition, f (1), f (2), and f (3) in the conversion index column in Table 1 indicate values calculated by the above-described formulas (a), (b), and (c), respectively. Moreover, the viscosity in Table 2 shows the viscosity of the mold flux at 1300 ° C.

各鋳造試験では、垂直曲げ型連続鋳造機を用いて、表3に示す化学成分組成を有する亜包晶鋼を1.3m/分の鋳造速度で鋳造し、幅2300mm、厚さ240mmのスラブとした。   In each casting test, using a vertical bending type continuous casting machine, hypoperitectic steel having the chemical composition shown in Table 3 was cast at a casting speed of 1.3 m / min, and a slab having a width of 2300 mm and a thickness of 240 mm was obtained. did.

Figure 2006289383
Figure 2006289383

上記の鋳造試験により得られた鋳片についてその表面の縦割れを調査し、下記のとおり、評価した。すなわち、鋳片の長さ1m当たりの表面の縦割れの発生長さの合計値が20mm未満の場合を評価○とし、同合計値が20mm以上200mm/m未満の場合を評価△とし、そして、同合計値が200mm以上の場合を評価×とした。これらの基準による評価結果を表2中の評価欄に示した。
試験番号1〜4および試験番号8〜10は、本発明で規定する成分組成の範囲を満足するモールドフラックスを用いた本発明例についての試験であり、また、試験番号5〜7および試験番号11〜14は、本発明で規定する成分組成の範囲を満たさないモールドフラックスを使用した比較例についての試験である。
The slab obtained by the above casting test was examined for vertical cracks on the surface and evaluated as follows. That is, a case where the total value of occurrence length of vertical cracks on the surface per 1 m of the slab is less than 20 mm is evaluated as ◯, a case where the total value is 20 mm or more and less than 200 mm / m is evaluated as △, and The case where the same total value was 200 mm or more was evaluated as x. The evaluation results based on these criteria are shown in the evaluation column of Table 2.
Test Nos. 1 to 4 and Test Nos. 8 to 10 are tests on examples of the present invention using a mold flux that satisfies the range of the component composition defined in the present invention, and Test Nos. 5 to 7 and Test No. 11 -14 is a test about the comparative example using the mold flux which does not satisfy | fill the range of the component composition prescribed | regulated by this invention.

試験番号1〜4は、遷移金属の酸化物としてMnOを含有する本発明例の試験であり、凝固点は最高で1240℃前後であるにも拘わらず、結晶化が安定化して熱流束の上昇が防止され、ほぼ 1.2〜1.5MW/m2で一定に維持されている。その結果、鋳片表面の縦割れは発生せず、良好な表面品質の鋳片が得られた。また、遷移金属の酸化物としてCr23またはFeOを含有させた本発明例である試験番号8および9、ならびにアルカリ金属酸化物を実質的に含有しない本発明例である試験番号10においても、同様に熱流束の上昇が防止され、鋳片表面の縦割れの発生のない表面品質の良好な鋳片が得られた。 Test Nos. 1 to 4 are examples of the present invention containing MnO as an oxide of a transition metal, and although the freezing point is around 1240 ° C. at the maximum, the crystallization is stabilized and the heat flux is increased. And is kept constant at approximately 1.2 to 1.5 MW / m 2 . As a result, vertical cracks on the surface of the slab did not occur, and a slab having good surface quality was obtained. Also in Test Nos. 8 and 9 which are examples of the present invention containing Cr 2 O 3 or FeO as transition metal oxides, and in Test No. 10 which is an example of the present invention containing substantially no alkali metal oxide. Similarly, an increase in heat flux was prevented, and a slab having a good surface quality free from vertical cracks on the slab surface was obtained.

これらに対して、CaO含有率が低く、換算指標f(1)の値が低い比較例である試験番号5、ならびに遷移金属の酸化物の合計含有率が本発明で規定する範囲を外れた比較例である試験番号6および7では、いずれも結晶化が阻害されて熱流束が上昇した結果、鋳片表面にディプレッションあるいは縦割れが発生し、鋳片の表面品質は不良となった。また、換算指標f(1)の値が高い比較例である試験番号11、フッ素化合物の含有率が適正でないために、換算指標f(2)の値が本発明で規定する範囲を外れた比較例である試験番号12および13、ならびにアルカリ金属のフッ化物の含有率が高いために、換算指標f(3)の値が本発明で規定する範囲を超えた比較例である試験番号14においても、鋳片表面にディプレッションあるいは縦割れが発生した。   On the other hand, the test number 5 which is a comparative example with a low CaO content and a low value of the conversion index f (1), and a comparison in which the total content of transition metal oxides is outside the range defined in the present invention. In Test Nos. 6 and 7 as examples, crystallization was hindered and the heat flux increased. As a result, depletion or vertical cracks occurred on the surface of the slab, resulting in poor surface quality of the slab. Further, test number 11 which is a comparative example having a high value of the conversion index f (1), a comparison in which the value of the conversion index f (2) is out of the range defined in the present invention because the content of the fluorine compound is not appropriate. Also in test numbers 12 and 13, which are examples, and test number 14, which is a comparative example in which the value of the conversion index f (3) exceeds the range defined in the present invention because the content of alkali metal fluoride is high. Depression or vertical cracks occurred on the slab surface.

本発明のモールドフラックスは、フィルム中における結晶化を安定化させることにより、遷移金属の酸化物を含有することに起因する結晶化阻害の影響を抑止し、鋳型内の潤滑性を維持しながら、しかも緩冷却効果を発揮することができる。したがって、本発明のモールドフラックスは、特に表面割れの発生しやすい亜包晶鋼の鋳造時においても、鋳型内の良好な潤滑作用を維持しながら鋳片表面の縦割れの発生を防止することができ、緩冷却を必要とする鋼の連続鋳造分野において広範に適用できる。   The mold flux of the present invention stabilizes the crystallization in the film, thereby suppressing the influence of the crystallization inhibition due to the inclusion of the transition metal oxide, while maintaining the lubricity in the mold, In addition, a slow cooling effect can be exhibited. Therefore, the mold flux of the present invention can prevent the occurrence of vertical cracks on the surface of the slab while maintaining a good lubricating action in the mold even when casting a subperitectic steel that is particularly prone to surface cracks. It can be widely applied in the field of continuous casting of steel requiring slow cooling.

モールドフラックスの凝固点と鋳型内熱流束との関係におよぼす添加成分の影響を示す図である。It is a figure which shows the influence of the addition component on the relationship between the freezing point of mold flux, and the heat flux in a casting_mold | template.

Claims (1)

CaO、SiO2およびフッ素化合物を基本成分とし、さらに、遷移金属であるCr、Mn、Fe、Co、Ni、CuおよびMoのうちの1種または2種以上の酸化物を合計で1.0〜10質量%含有し、かつ、下記(1)式、(2)式および(3)式により表される関係を満足することを特徴とする鋼の連続鋳造用モールドフラックス。
1.1≦f(1)≦1.9 ・・・(1)
0.1≦f(2)≦0.4 ・・・(2)
0≦f(3)≦0.25 ・・・(3)
f(1)=(CaO)h/(SiO2)h ・・・(イ)
f(2)=(CaF2)h/{(CaO)h+(SiO2)h+(CaF2)h} ・・・(ロ)
f(3)=(アルカリ金属のフッ化物)h/{(CaO)h+(SiO2)h+(アルカリ金属のフッ化物)h}・・・(ハ)
(CaO)h=WCaO−(CaF2)×0.718 ・・・(A)
(SiO2)h=WSiO2 ・・・(B)
(CaF2)h=(WF−WLi2O×1.27−WNa2O×0.613−WK2O×0.403)×2.05 ・・・(C)
(アルカリ金属のフッ化物)h=WLi2O×1.74+WNa2O×1.35+WK2O×1.23 ・・・(D)
ここで、WCaO、WSiO2、WF、WLi2O、WNa2OおよびWK2Oは、それぞれ、モールドパウダ中のCaO、SiO2、F、Li2O、Na2OおよびK2Oの含有率(質量%)である。
CaO, SiO 2 and a fluorine compound as basic components, and in addition, one or more oxides of Cr, Mn, Fe, Co, Ni, Cu and Mo, which are transition metals, are 1.0 to 2 in total. A mold flux for continuous casting of steel, characterized by containing 10% by mass and satisfying the relationship expressed by the following formulas (1), (2) and (3).
1.1 ≦ f (1) ≦ 1.9 (1)
0.1 ≦ f (2) ≦ 0.4 (2)
0 ≦ f (3) ≦ 0.25 (3)
f (1) = (CaO) h / (SiO 2 ) h (i)
f (2) = (CaF 2 ) h / {(CaO) h + (SiO 2 ) h + (CaF 2 ) h} (b)
f (3) = (alkali metal fluoride) h / {(CaO) h + (SiO 2 ) h + (alkali metal fluoride) h} (c)
(CaO) h = W CaO- (CaF 2 ) × 0.718 (A)
(SiO 2) h = W SiO2 ··· (B)
(CaF 2) h = (W F -W Li2O × 1.27-W Na2O × 0.613-W K2O × 0.403) × 2.05 ··· (C)
(Alkali metal fluoride) h = W Li2O × 1.74 + W Na2O × 1.35 + W K2O × 1.23 (D)
Here, W CaO , W SiO2 , W F , W Li2O , W Na2O and W K2O are the contents of CaO, SiO 2 , F, Li 2 O, Na 2 O and K 2 O in the mold powder ( Mass%).
JP2005109629A 2005-04-06 2005-04-06 Mold flux for continuous casting of steel. Active JP4483662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005109629A JP4483662B2 (en) 2005-04-06 2005-04-06 Mold flux for continuous casting of steel.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005109629A JP4483662B2 (en) 2005-04-06 2005-04-06 Mold flux for continuous casting of steel.

Publications (2)

Publication Number Publication Date
JP2006289383A true JP2006289383A (en) 2006-10-26
JP4483662B2 JP4483662B2 (en) 2010-06-16

Family

ID=37410548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005109629A Active JP4483662B2 (en) 2005-04-06 2005-04-06 Mold flux for continuous casting of steel.

Country Status (1)

Country Link
JP (1) JP4483662B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142876A (en) * 2007-12-17 2009-07-02 Sumitomo Metal Ind Ltd Method for continuously casting steel
JP2011031281A (en) * 2009-08-03 2011-02-17 Shinagawa Refractories Co Ltd Mold powder for continuous casting of steel
JP2011147979A (en) * 2010-01-22 2011-08-04 Sumitomo Metal Ind Ltd Mold flux for continuous casting of steel
JP2012213784A (en) * 2011-03-31 2012-11-08 Nippon Steel Corp Continuous casting method of copper
JP2013066913A (en) * 2011-09-22 2013-04-18 Nippon Steel & Sumitomo Metal Corp Mold flux for continuous casting of steel and continuous casting method
CN103495714A (en) * 2013-10-23 2014-01-08 武汉钢铁(集团)公司 Peritectic steel covering slag containing cobaltous oxide and preparation method thereof
JP2014184463A (en) * 2013-03-22 2014-10-02 Nippon Steel & Sumitomo Metal Mold flux for continuous casting of steel
JP2015016493A (en) * 2013-07-11 2015-01-29 株式会社神戸製鋼所 Continuous casting method
WO2015122602A1 (en) * 2014-02-13 2015-08-20 주식회사 포스코 Mold flux, continuous casting method using same, and slab manufactured using same
WO2016038725A1 (en) * 2014-09-11 2016-03-17 新日鐵住金株式会社 Mold flux for continuous casting of steel
JP2016059948A (en) * 2014-09-19 2016-04-25 新日鐵住金株式会社 MOLD FLUX FOR CONTINUOUS CASTING OF Al-CONTAINING STEEL AND CONTINUOUS CASTING METHOD OF Al-CONTAINING STEEL
KR20160130648A (en) 2015-05-04 2016-11-14 주식회사 포스코 Mold Flux and the continuous casting method using the same and the casting steel for manufacturing by them
KR20170003642A (en) 2014-06-10 2017-01-09 신닛테츠스미킨 카부시키카이샤 MOLD FLUX FOR CONTINUOUS CASTING OF Ti-CONTAINING SUB-PERITECTIC STEEL AND CONTINUOUS CASTING METHOD
KR20180079380A (en) * 2015-11-05 2018-07-10 신닛테츠스미킨 카부시키카이샤 Continuous Casting Mold Flux and Continuous Casting Method
CN109175279A (en) * 2018-11-26 2019-01-11 攀钢集团攀枝花钢铁研究院有限公司 YQ450NQR1 Yi shape steel bloom continuous casting production method
WO2019103494A1 (en) * 2017-11-24 2019-05-31 주식회사 포스코 Mold flux, steel material and steel material manufacturing method
JP2019155441A (en) * 2018-03-14 2019-09-19 日本製鉄株式会社 Mold flux for continuous casting and continuous casting method of steel
KR20210028496A (en) * 2019-09-04 2021-03-12 주식회사 포스코 Mold flux and casting method

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142876A (en) * 2007-12-17 2009-07-02 Sumitomo Metal Ind Ltd Method for continuously casting steel
JP2011031281A (en) * 2009-08-03 2011-02-17 Shinagawa Refractories Co Ltd Mold powder for continuous casting of steel
JP2011147979A (en) * 2010-01-22 2011-08-04 Sumitomo Metal Ind Ltd Mold flux for continuous casting of steel
JP2012213784A (en) * 2011-03-31 2012-11-08 Nippon Steel Corp Continuous casting method of copper
JP2013066913A (en) * 2011-09-22 2013-04-18 Nippon Steel & Sumitomo Metal Corp Mold flux for continuous casting of steel and continuous casting method
JP2014184463A (en) * 2013-03-22 2014-10-02 Nippon Steel & Sumitomo Metal Mold flux for continuous casting of steel
JP2015016493A (en) * 2013-07-11 2015-01-29 株式会社神戸製鋼所 Continuous casting method
CN103495714A (en) * 2013-10-23 2014-01-08 武汉钢铁(集团)公司 Peritectic steel covering slag containing cobaltous oxide and preparation method thereof
CN103495714B (en) * 2013-10-23 2016-01-13 武汉钢铁(集团)公司 Containing the peritectic steel covering slag and preparation method thereof of cobalt oxide
WO2015122602A1 (en) * 2014-02-13 2015-08-20 주식회사 포스코 Mold flux, continuous casting method using same, and slab manufactured using same
EP3127632A4 (en) * 2014-06-10 2017-11-29 Nippon Steel & Sumitomo Metal Corporation MOLD FLUX FOR CONTINUOUS CASTING OF Ti-CONTAINING SUB-PERITECTIC STEEL AND CONTINUOUS CASTING METHOD
US10328488B2 (en) 2014-06-10 2019-06-25 Nippon Steel & Sumitomo Metal Corporation Mold flux for continuous-casting Ti-containing hypo-peritectic steel and method therefor
KR101898367B1 (en) 2014-06-10 2018-09-12 신닛테츠스미킨 카부시키카이샤 MOLD FLUX FOR CONTINUOUS CASTING OF Ti-CONTAINING SUB-PERITECTIC STEEL AND CONTINUOUS CASTING METHOD
KR20170003642A (en) 2014-06-10 2017-01-09 신닛테츠스미킨 카부시키카이샤 MOLD FLUX FOR CONTINUOUS CASTING OF Ti-CONTAINING SUB-PERITECTIC STEEL AND CONTINUOUS CASTING METHOD
CN106457369A (en) * 2014-06-10 2017-02-22 新日铁住金株式会社 Mold flux for continuous casting of Ti-containing sub-peritectic steel and continuous casting method
EP3192594A4 (en) * 2014-09-11 2018-04-25 Nippon Steel & Sumitomo Metal Corporation Mold flux for continuous casting of steel
WO2016038725A1 (en) * 2014-09-11 2016-03-17 新日鐵住金株式会社 Mold flux for continuous casting of steel
KR20170033389A (en) 2014-09-11 2017-03-24 신닛테츠스미킨 카부시키카이샤 Mold flux for continuous casting of steel
US10315245B2 (en) 2014-09-11 2019-06-11 Nippon Steel & Sumitomo Metal Corporation Mold flux for continuous-casting steel
JP2016059948A (en) * 2014-09-19 2016-04-25 新日鐵住金株式会社 MOLD FLUX FOR CONTINUOUS CASTING OF Al-CONTAINING STEEL AND CONTINUOUS CASTING METHOD OF Al-CONTAINING STEEL
WO2016178461A3 (en) * 2015-05-04 2017-05-18 주식회사 포스코 Mold flux and continuous casting method using same, and slab manufactured using same
KR101742077B1 (en) * 2015-05-04 2017-05-31 주식회사 포스코 Mold Flux and the continuous casting method using the same and the casting steel for manufacturing by them
JP2018520004A (en) * 2015-05-04 2018-07-26 ポスコPosco Mold flux, continuous casting method using the same, and slab manufactured by the same
KR20160130648A (en) 2015-05-04 2016-11-14 주식회사 포스코 Mold Flux and the continuous casting method using the same and the casting steel for manufacturing by them
KR20180079380A (en) * 2015-11-05 2018-07-10 신닛테츠스미킨 카부시키카이샤 Continuous Casting Mold Flux and Continuous Casting Method
US11453048B2 (en) 2015-11-05 2022-09-27 Nippon Steel Corporation Mold flux for continuous casting and continuous casting method
KR102073318B1 (en) 2015-11-05 2020-02-03 닛폰세이테츠 가부시키가이샤 Mold flux for continuous casting and continuous casting method
KR102034424B1 (en) * 2017-11-24 2019-10-18 주식회사 포스코 Mold Flux, steel product, and Method for manufacturing steel product
KR20190060469A (en) * 2017-11-24 2019-06-03 주식회사 포스코 Mold Flux, steel product, and Method for manufacturing steel product
WO2019103494A1 (en) * 2017-11-24 2019-05-31 주식회사 포스코 Mold flux, steel material and steel material manufacturing method
JP2019155441A (en) * 2018-03-14 2019-09-19 日本製鉄株式会社 Mold flux for continuous casting and continuous casting method of steel
JP7027979B2 (en) 2018-03-14 2022-03-02 日本製鉄株式会社 Mold flux for continuous casting and continuous casting method of steel
CN109175279B (en) * 2018-11-26 2021-02-09 攀钢集团攀枝花钢铁研究院有限公司 YQ450NQR 1B-shaped steel bloom continuous casting production method
CN109175279A (en) * 2018-11-26 2019-01-11 攀钢集团攀枝花钢铁研究院有限公司 YQ450NQR1 Yi shape steel bloom continuous casting production method
KR20210028496A (en) * 2019-09-04 2021-03-12 주식회사 포스코 Mold flux and casting method
KR102326860B1 (en) * 2019-09-04 2021-11-16 주식회사 포스코 Mold flux and casting method

Also Published As

Publication number Publication date
JP4483662B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
JP4483662B2 (en) Mold flux for continuous casting of steel.
JP5370929B2 (en) Mold flux for continuous casting of steel
JP6269831B2 (en) Mold flux and continuous casting method for continuous casting of Ti-containing subperitectic steel
JP6284017B2 (en) Mold flux for continuous casting of Al-containing steel
JP3649153B2 (en) Mold powder for continuous casting
JP5708690B2 (en) Mold flux for continuous casting of steel
JP5704030B2 (en) Mold flux for continuous casting of steel
JP6901696B1 (en) Mold powder
WO2016038725A1 (en) Mold flux for continuous casting of steel
JP6674093B2 (en) Mold powder for continuous casting of steel and continuous casting method
JP4513737B2 (en) Mold flux for continuous casting of steel
JP5585347B2 (en) Mold powder for continuous casting of steel
JP5136994B2 (en) Continuous casting method of steel using mold flux
JP2017013082A (en) Mold powder for continuous casting of steel, and continuous casting method for steel
JP4665785B2 (en) Mold powder for continuous casting of steel
JP6354411B2 (en) Mold flux for continuous casting
JP2002239693A (en) Mold powder for continuous casting
JP2010125457A (en) Mold flux for continuous casting
JP6510342B2 (en) Continuous casting powder for Al-containing steel and continuous casting method
JP2003326342A (en) Mold powder for continuous casting of steel
KR100252483B1 (en) Mold powder for continuous casting of molten steel
JP5617704B2 (en) Steel continuous casting method
JP6424713B2 (en) Mold flux for continuous casting
JP6613811B2 (en) Mold powder for continuous casting and method for continuous casting of molten metal
JP2023070304A (en) Mold powder for continuous casting, and continuous casting method for steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R150 Certificate of patent or registration of utility model

Ref document number: 4483662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350