JP2006289326A - Denitration method of boiler waste gas - Google Patents

Denitration method of boiler waste gas Download PDF

Info

Publication number
JP2006289326A
JP2006289326A JP2005137688A JP2005137688A JP2006289326A JP 2006289326 A JP2006289326 A JP 2006289326A JP 2005137688 A JP2005137688 A JP 2005137688A JP 2005137688 A JP2005137688 A JP 2005137688A JP 2006289326 A JP2006289326 A JP 2006289326A
Authority
JP
Japan
Prior art keywords
boiler
waste gas
gas
urea water
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005137688A
Other languages
Japanese (ja)
Other versions
JP4766915B2 (en
Inventor
Hirotaka So
裕隆 曹
Masaaki Susa
真明 須佐
Yoshio Iida
義男 飯田
Yasuo Kojima
康雄 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Tokyo Gas Co Ltd
Tokyo Gas Engineering Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Tokyo Gas Co Ltd
Tokyo Gas Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd, Tokyo Gas Co Ltd, Tokyo Gas Engineering Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2005137688A priority Critical patent/JP4766915B2/en
Publication of JP2006289326A publication Critical patent/JP2006289326A/en
Application granted granted Critical
Publication of JP4766915B2 publication Critical patent/JP4766915B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a denitration method of a boiler waste gas by achieving the effective control of injection amount of urine-water. <P>SOLUTION: In the denitration method of the boiler waste gas, urea within the range of 0.5 to 1.5 mol with respect to 1 mol of nitrogen oxide in combustion gas is introduced in the combustion gas in the space between a combustion chamber and a smoke pipe chamber in a boiler of a furnace-tube, as a urine-water, at the temperatures of 600 to 900°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ボイラー廃ガスの脱硝処理方法に関するものである。詳しく述べると、特に炉筒煙管ボイラーの特定の箇所に尿素水を供給して、廃ガス中の窒素酸化物を還元してなる廃ガスの脱硝処理方法に関するものである。   The present invention relates to a denitration method for boiler waste gas. More specifically, the present invention relates to a denitration treatment method for waste gas obtained by supplying urea water to a specific portion of a furnace flue tube boiler and reducing nitrogen oxides in the waste gas.

ガスタービン、ガスエンジン、ディーゼルエンジン、加熱炉および各種ボイラー等から排出される廃ガスから窒素酸化物を除去する方法としては、アンモニアを還元剤として用いる選択還元脱硝方法が廃ガス中の酸素濃度の影響を受けずに、窒素酸化物を選択的に高効率で除去できるために、これまでに各種の固定発生源の脱硝プロセスに適用されてきた。アンモニアは、液体アンモニア、アンモニア水等の形で供給される。   As a method for removing nitrogen oxides from waste gas discharged from gas turbines, gas engines, diesel engines, heating furnaces, various boilers, etc., a selective reduction denitration method using ammonia as a reducing agent is used to reduce the oxygen concentration in the waste gas. Since it can selectively remove nitrogen oxides with high efficiency without being affected, it has been applied to denitration processes of various fixed sources. Ammonia is supplied in the form of liquid ammonia, ammonia water or the like.

近年、ガスタービン、ガスエンジンおよびディーゼルエンジンを駆動源とするコージェネレーションシステムが地球環境保全や経済性の面から臨海部および都市部において急速に増加する傾向にあり、それに伴い脱硝プロセスもビル内や居住地域内に設置されることが必要となる。この場合、還元剤として使用される液体アンモニアおよびアンモニア水は毒物及び劇物取締法、高圧ガス保安法、消防法等の規制により使用が制限されている上、悪臭の漏洩を防ぐために、その取り扱い、輸送、貯蔵などに特別の注意を払う必要がある。   In recent years, cogeneration systems driven by gas turbines, gas engines, and diesel engines have been rapidly increasing in coastal and urban areas from the viewpoints of global environmental conservation and economic efficiency. It needs to be installed in the residential area. In this case, liquid ammonia and aqueous ammonia used as reducing agents are restricted by the regulations of the Poisonous and Deleterious Substances Control Law, the High Pressure Gas Safety Law, the Fire Service Law, etc. Special attention should be paid to transportation, storage, etc.

上記問題点を解決するためには、アンモニアに代わって取り扱いが安易で安定性の高い還元剤を用いることが必要である。安定性が高く取り扱いが容易な還元剤として、尿素、メラミン、シアヌル酸等の固体還元剤を固体または液体の状態で用いたNOx除去方法が開示されている(特許文献1〜4)。
特開平02−194817号公報 特許第3513162号公報 特許第3513163号公報 特許第3499576号公報
In order to solve the above problems, it is necessary to use a reducing agent that is easy to handle and highly stable in place of ammonia. NOx removal methods using solid reducing agents such as urea, melamine, and cyanuric acid in a solid or liquid state are disclosed as reducing agents that are stable and easy to handle (Patent Documents 1 to 4).
Japanese Patent Laid-Open No. 02-194817 Japanese Patent No. 3513162 Japanese Patent No. 3513163 Japanese Patent No. 3499576

しかしながら、これらの方法では、ボイラー、特に炉筒煙管ボイラーにおいては、還元剤の分解、混合の観点から適した注入点がなく、燃焼ガスへの水溶液の混合が不充分となり、また分解温度が低くなるという問題点があった。   However, in these methods, boilers, particularly furnace tube boilers, do not have a suitable injection point from the viewpoint of decomposition and mixing of the reducing agent, resulting in insufficient mixing of the aqueous solution into the combustion gas and a low decomposition temperature. There was a problem of becoming.

したがって、本発明の目的は、ボイラー廃ガスの新規な脱硝処理方法を提供することにある。   Accordingly, an object of the present invention is to provide a novel denitration method for boiler waste gas.

本発明の他の目的は、ボイラー、特に炉筒煙管ボイラーに尿素水を供給して廃ガス中の窒素酸化物を還元してなる廃ガスの新規な脱硝処理方法を提供することにある。   Another object of the present invention is to provide a novel denitration treatment method for waste gas obtained by supplying urea water to a boiler, in particular, a flue tube boiler, to reduce nitrogen oxides in the waste gas.

上記諸目的は、炉筒煙管ボイラーにおける燃焼室と煙管室との間の空間の燃焼ガス中に、600〜900℃の温度で該燃焼ガス中の窒素酸化物1モルに対して尿素を0.5〜1.5モルの範囲で尿素水として導入することを特徴とするボイラー廃ガスの脱硝処理方法により達成される。   The above-mentioned objects are obtained by adding urea to the combustion gas in the space between the combustion chamber and the smoke tube chamber in the furnace flue boiler at a temperature of 600 to 900 ° C. with respect to 1 mol of nitrogen oxide in the combustion gas. This is achieved by a denitration method for boiler waste gas, which is introduced as urea water in a range of 5 to 1.5 mol.

また、上記諸目的は、廃ガスを循環させて用いる炉筒煙管ボイラーにおける燃焼室と煙管室との間の空間の燃焼ガス中に、600〜900℃の温度で該燃焼ガス中の窒素酸化物1モルに対して尿素を0.5〜1.5モルの範囲で尿素水として導入することを特徴とするボイラー廃ガスの脱硝処理方法によっても達成される。   Further, the above-mentioned objects are to provide nitrogen oxides in the combustion gas at a temperature of 600 to 900 ° C. in the combustion gas in the space between the combustion chamber and the smoke tube chamber in a furnace flue tube boiler that circulates waste gas. This is also achieved by a denitration treatment method for boiler waste gas, wherein urea is introduced as urea water in a range of 0.5 to 1.5 mol per mol.

上記のように、本発明によるボイラー廃ガスの脱硝処理方法は、炉筒煙管ボイラーにおける燃焼室と煙管室との間の空間の燃焼ガス中に、600〜900℃の温度で該燃焼ガス中の窒素酸化物1モルに対して尿素を0.5〜1.5モルの範囲で尿素水として導入することを特徴とするものであるから、尿素の加水分解によるアンモニアの発生により、廃ガス中の窒素酸化物を還元することができる。特に、600℃を超える領域では、還元剤であるアンモニアの一部は、無触媒で窒素酸化物の還元に寄与するものと、高温により自らが酸化されて窒素酸化物になるものがあるため、温度に応じてこれらの量を適切に制御に組み込むことで、無駄のない尿素水の注入量制御を実現することができる。   As described above, the method of denitrating a boiler waste gas according to the present invention includes the combustion gas in the combustion gas in the space between the combustion chamber and the smoke tube chamber in the furnace flue boiler at a temperature of 600 to 900 ° C. Since urea is introduced as urea water in a range of 0.5 to 1.5 moles per mole of nitrogen oxides, generation of ammonia by hydrolysis of urea causes generation of ammonia in waste gas. Nitrogen oxides can be reduced. In particular, in a region exceeding 600 ° C., some of the ammonia as a reducing agent contributes to the reduction of nitrogen oxides without a catalyst, and some of them are oxidized to nitrogen oxides by high temperatures, By appropriately incorporating these amounts into the control in accordance with the temperature, it is possible to realize a waste water injection amount control without waste.

つぎに、図面を参照しながら、本発明をさらに詳細に説明する。   Next, the present invention will be described in more detail with reference to the drawings.

図1は、本発明方法による炉筒煙管ボイラーにおける廃ガスの脱硝処理方法の一実施態様を示すフローチャートである。   FIG. 1 is a flowchart showing an embodiment of a method for denitrating waste gas in a furnace flue boiler according to the method of the present invention.

すなわち、図1に示す炉筒煙管ボイラー10において、空気1は、必要により加熱器(熱交換器)11を通して加熱されて導管12より供給されている空気と混合され、導管2よりバーナー5に供給される。一方、燃料1、例えば都市ガスは、導管4よりバーナー5に供給され、前記炉筒煙管ボイラー10の炉筒7の燃焼室8内で燃焼して火炎6を形成し、その燃焼ガスは、該燃焼室8と煙管室13との間の空間である後煙室9に至る。   That is, in the flue tube boiler 10 shown in FIG. 1, the air 1 is heated through a heater (heat exchanger) 11 if necessary and mixed with the air supplied from the conduit 12 and supplied to the burner 5 from the conduit 2. Is done. On the other hand, the fuel 1, for example city gas, is supplied to the burner 5 through the conduit 4, and burns in the combustion chamber 8 of the furnace tube 7 of the furnace tube flue boiler 10 to form a flame 6, and the combustion gas is It reaches the rear smoke chamber 9 which is a space between the combustion chamber 8 and the smoke tube chamber 13.

該後煙室9には、尿素水タンク18内に貯蔵されている尿素水をポンプ20より導管21を経て混合器16に送り、加圧空気14を導管15より混合器16に送って、この空気混合尿素水をノズル17より後煙室9内に噴霧して燃焼ガス中に混合する。後煙室9に噴霧された尿素水は、燃焼室8から排出される燃焼ガスと600〜900℃、好ましくは750〜900℃で接触して加水分解し、アンモニアを発生し、これが後煙室で混合され、かつさらに煙管室13を通過する間にチューブ22内の水を加熱するとともにアンモニアはさらによく混合されて出口部23より脱硝触媒24の層を通過して、アンモニアの作用により燃焼ガス中の窒素酸化物が還元されて窒素と水を生成する。   In the rear smoke chamber 9, urea water stored in the urea water tank 18 is sent from the pump 20 through the conduit 21 to the mixer 16, and the pressurized air 14 is sent from the conduit 15 to the mixer 16. Air mixed urea water is sprayed into the rear smoke chamber 9 from the nozzle 17 and mixed into the combustion gas. The urea water sprayed in the rear smoke chamber 9 is brought into contact with the combustion gas discharged from the combustion chamber 8 at 600 to 900 ° C., preferably 750 to 900 ° C. to hydrolyze to generate ammonia, which is the rear smoke chamber. In addition, the water in the tube 22 is heated while passing through the smoke tube chamber 13 and ammonia is further mixed and passed through the layer of the denitration catalyst 24 from the outlet 23, and the combustion gas is produced by the action of ammonia. The nitrogen oxides inside are reduced to produce nitrogen and water.

すなわち、尿素の加水分解によって生成したアンモニアと廃ガス中の窒素酸化物(NOx)とを脱硝触媒上で反応させることによりNOxを、次式に示すように窒素に還元させるものである。   That is, NOx is reduced to nitrogen as shown in the following equation by reacting ammonia produced by hydrolysis of urea with nitrogen oxides (NOx) in waste gas on a denitration catalyst.

Figure 2006289326
Figure 2006289326

炉筒煙管ボイラーに上記脱硝設備を付設するに当たっては、尿素水の注入点温度が問題となる。ガスタービンにおける尿素水注入点は300〜400℃の雰囲気下に設置できるのに対し、炉筒煙管ボイラーではその計画注入点である後煙室の温度は900℃に達する。そのため尿素の加水分解反応によって生成したアンモニアが、高温雰囲気下で自ら酸化してNOxになることが予想され、効率的な脱硝ができない恐れがあった。   When the denitration facility is attached to the furnace tube smoke boiler, the temperature at which the urea water is injected becomes a problem. The urea water injection point in the gas turbine can be installed in an atmosphere of 300 to 400 ° C., whereas the temperature of the rear smoke chamber, which is the planned injection point, reaches 900 ° C. in a furnace flue boiler. For this reason, ammonia generated by the hydrolysis reaction of urea is expected to be oxidized by itself under a high temperature atmosphere to become NOx, and there is a possibility that efficient denitration cannot be performed.

一方、高温雰囲気では、アンモニアが脱硝触媒層に到達する前に、無触媒条件下にてNOxを還元するという反応が進行する。この還元反応は、前述した自己酸化反応と並行して進行しうる。   On the other hand, in a high temperature atmosphere, a reaction of reducing NOx under non-catalytic conditions proceeds before ammonia reaches the denitration catalyst layer. This reduction reaction can proceed in parallel with the autoxidation reaction described above.

本発明において、尿素水の噴霧温度は、600〜900℃、好ましくは750〜900℃である。すなわち、600℃未満では、燃焼廃ガスの一部をバーナーに再循環するボイラーの運転方式において、アンモニアが自己酸化により窒素酸化物になる割合が高くなり、一方、900℃を超えると、尿素が加水分解して生成したアンモニアが酸化されてNOx濃度がむしろ増大するからである。   In this invention, the spray temperature of urea water is 600-900 degreeC, Preferably it is 750-900 degreeC. That is, at a temperature lower than 600 ° C., the ratio of ammonia becoming nitrogen oxides by auto-oxidation increases in a boiler operation system in which a part of the combustion waste gas is recirculated to the burner. This is because the ammonia produced by hydrolysis is oxidized and the NOx concentration rather increases.

使用する尿素水中の濃度は、8〜40質量%、好ましくは20〜40質量%である。すなわち、8質量%未満では、尿素水タンクが無駄に大きくなり、一方、40質量%を超えると、ノズルの閉塞を起こしやすくなるからである。   The concentration in the urea water to be used is 8 to 40% by mass, preferably 20 to 40% by mass. That is, when the amount is less than 8% by mass, the urea water tank becomes unnecessarily large. On the other hand, when the amount exceeds 40% by mass, the nozzle is likely to be blocked.

脱硝触媒24の層を通過して脱硝処理された廃ガスは、必要により加熱器(熱交換器)11を通過して、燃焼室8に供給される空気またはボイラーのチューブ22に供給される水を加熱したのち、煙道25より系外に排出される。   The waste gas that has passed through the layer of the denitration catalyst 24 and denitrated, passes through the heater (heat exchanger) 11 as necessary, and is supplied to the combustion chamber 8 or water supplied to the boiler tube 22. After being heated, it is discharged out of the system through the flue 25.

また、リークアンモニアについては当然のことながらそれを排出しないようにしなければならない。煙道における触媒層直前のアンモニア比率(窒素酸化物1モルに対するアンモニアの比率(NH/NOx))が1を越えた時点から増加し始めることが確認されているので、リークアンモニアを出さないためには、いかなるボイラーロードにおいても触媒層直前のアンモニア比率が1を超えないような制御をすればよいことになる。 Moreover, it is necessary to make sure that the leaked ammonia is not discharged. Since it has been confirmed that the ammonia ratio immediately before the catalyst layer in the flue (ratio of ammonia to 1 mol of nitrogen oxide (NH 3 / NOx)) starts to increase from 1, it does not emit leaked ammonia. Therefore, control should be performed so that the ammonia ratio immediately before the catalyst layer does not exceed 1 in any boiler load.

これまでの知見を統括すると、触媒層直前アンモニア比率は以下の計算式によって求められる。なお、この式中で重要なことは、注入した尿素水からのアンモニアは、温度に依存した常に一定の割合だけ自己酸化および無触媒脱硝に使われるという点である。言い換えれば、還元剤であるアンモニアの総量に係わらず、自己酸化割合および無触媒脱硝割合は注入点温度に対して固有の値を示すのである。この法則から以下の式が導き出される。   To summarize the knowledge so far, the ammonia ratio immediately before the catalyst layer can be obtained by the following calculation formula. The important point in this formula is that ammonia from the injected urea water is used for auto-oxidation and non-catalytic denitration at a constant ratio always depending on the temperature. In other words, regardless of the total amount of ammonia as the reducing agent, the autooxidation ratio and the non-catalytic denitration ratio show specific values with respect to the injection point temperature. From this law, the following equation is derived.

Figure 2006289326
Figure 2006289326

(1)式は、目標脱硝率を任意に設定したときに、最適とされる注入時アンモニア比率の求め方を示している。この式を制御に組み込むことにより、最適な尿素水注入量を選択することができる。   Equation (1) shows how to obtain the optimal ammonia ratio during injection when the target denitration rate is arbitrarily set. By incorporating this equation into the control, an optimal urea water injection amount can be selected.

尿素水注入量の算出方法を以下に模式的に示す(図3参照)。ここで尿素水注入量は、以下のように、廃ガス総量、廃ガスNOx濃度、注入時アンモニア比率および尿素水係数の積によって表現される。ここで、尿素水係数とは、尿素水の濃度、比重に依存する値である。   A method for calculating the urea water injection amount is schematically shown below (see FIG. 3). Here, the urea water injection amount is expressed by the product of the total amount of waste gas, the waste gas NOx concentration, the ammonia ratio during injection, and the urea water coefficient as follows. Here, the urea water coefficient is a value depending on the concentration and specific gravity of urea water.

Figure 2006289326
Figure 2006289326

また、(1)式に示す自己酸化割合および無触媒脱硝割合については、これまでの試験から、燃料ガス量(ボイラーロード)に対し固有の値を示すことが確認されたので、自己酸化割合および無触媒脱硝割合(注入した還元剤(アンモニア)総量に対する割合)は、それぞれ燃料ガス量の関数で表わされることになる。   In addition, the autooxidation ratio and the non-catalytic denitration ratio shown in the formula (1) were confirmed to show specific values for the amount of fuel gas (boiler load) from the previous tests. The non-catalytic denitration ratio (ratio to the total amount of injected reducing agent (ammonia)) is expressed as a function of the amount of fuel gas.

つぎに、図2は、本発明の他の実施態様を示すものである。すなわち、同図は、図1の方法において、出口部123より導管126を経てアンモニアを含有して燃焼ガスの一部をバーナー105へ循環した例である。なお、同図において、図1の符号に100をプラスした符号は、図1における部材と同一の部材を表わす。このように、燃焼ガスの一部を循環使用することにより、燃料使用量を削減し、サーマルNOx発生を抑制することができる。   Next, FIG. 2 shows another embodiment of the present invention. That is, this figure is an example in which a part of the combustion gas containing ammonia is circulated to the burner 105 from the outlet 123 through the conduit 126 in the method of FIG. In the figure, the reference numeral obtained by adding 100 to the reference numeral in FIG. 1 represents the same member as that in FIG. In this way, by using part of the combustion gas in a circulating manner, the amount of fuel used can be reduced and the generation of thermal NOx can be suppressed.

そして、該バーナーに循環される燃焼ガスの量は、1〜20容量%、好ましくは5〜15容量%である。すなわち、5容量%未満では、サーマルNOxの発生を抑制する効果が小さくなる。一方、15容量%を超えると、バーナーの燃焼性が悪くなり、不完全燃焼を起こす恐れがある。   The amount of the combustion gas circulated through the burner is 1 to 20% by volume, preferably 5 to 15% by volume. That is, if it is less than 5% by volume, the effect of suppressing the generation of thermal NOx becomes small. On the other hand, if it exceeds 15% by volume, the burnability of the burner will deteriorate and incomplete combustion may occur.

脱硝触媒としては、通常使用される脱硝触媒であればいずれも使用できるが、一例を挙げると、例えばアルミナ、チタン酸化物等を主成分とする基材に、バナジウム、タングステン、モリブデン等の活性成分を担持した脱硝触媒を使用することができる。チタン酸化物としては、酸化チタンの他、チタン−タングステン、チタン−シリカ、チタン−シリカ−タングステン、チタン−モリブデン、チタン−シリカ−モリブデンなどの複合酸化物を用いてもよい。また、バナジウム、タングステン、モリブデンなどの活性成分の含有量は、酸化物として、0.1〜25%のものが好適に用いられ、残りはチタン酸化物であるが、その他として有機・無機の成形助剤を使用することもできる。   As the denitration catalyst, any denitration catalyst that is usually used can be used. For example, for example, an active component such as vanadium, tungsten, or molybdenum on a base material mainly composed of alumina, titanium oxide, or the like. Can be used. As the titanium oxide, composite oxides such as titanium-tungsten, titanium-silica, titanium-silica-tungsten, titanium-molybdenum, and titanium-silica-molybdenum may be used in addition to titanium oxide. In addition, the content of active components such as vanadium, tungsten, and molybdenum is preferably 0.1 to 25% as an oxide, and the rest is titanium oxide. Auxiliaries can also be used.

触媒の形状としては、ハニカム状、球状、円柱状、円筒状、板状などに成形して使用することができ、コージライト、SiC、アルミナなどの担体に触媒成分を担持して使用してもよい。   The catalyst can be used in the form of a honeycomb, sphere, column, cylinder, plate or the like, and can be used with a catalyst component supported on a support such as cordierite, SiC or alumina. Good.

なお、本発明で使用される炉筒煙管ボイラーは、図1および図2に示すような後煙室を有するタイプだけでなく、燃焼室と煙管室とがある空間をおいて直行するタイプやその他種のタイプのものが使用できる。   Note that the furnace flue boiler used in the present invention is not only a type having a rear smoke chamber as shown in FIGS. 1 and 2, but also a type that goes straight in a space with a combustion chamber and a smoke tube chamber, and others. A seed type can be used.

つぎに実施例を挙げて本発明方法をさらに詳細に説明する。   Next, the method of the present invention will be described in more detail with reference to examples.

実施例1
実施例1は、図1の実施態様にあるように、定格蒸発量7.2t/hの炉筒煙管ボイラーの後煙室にノズルを設け、これより尿素水を噴霧することで窒素酸化物を還元したものである。このボイラーは運転ロード100%時に燃料ガス流量が400mN/hになる。図1に示す触媒層前後の2箇所に設けた窒素酸化物濃度測定装置により触媒脱硝量、無触媒脱硝量、自己酸化量およびリークアンモニア量を測定することができる。
Example 1
In Example 1, as shown in the embodiment of FIG. 1, a nozzle is provided in the rear smoke chamber of a furnace tube flue boiler with a rated evaporation amount of 7.2 t / h, and nitrogen oxides are formed by spraying urea water therefrom. It has been reduced. This boiler has a fuel gas flow rate of 400 m 3 N / h when the operation load is 100%. The amount of catalyst denitration, the amount of non-catalyst denitration, the amount of self-oxidation, and the amount of leaked ammonia can be measured by nitrogen oxide concentration measuring devices provided at two locations before and after the catalyst layer shown in FIG.

尿素水の注入後に触媒層前段における窒素酸化物濃度が増加した場合、注入した尿素が自己酸化して窒素酸化物になったことを示すが、この量は自己酸化と無触媒脱硝の両反応が同時に進行した結果であるため、見かけの自己酸化量と定義する。   If the nitrogen oxide concentration in the upstream of the catalyst layer increases after the urea water injection, this indicates that the injected urea has been auto-oxidized to nitrogen oxide, but this amount represents both auto-oxidation and non-catalytic denitration reactions. Since it is the result of progressing simultaneously, it is defined as the apparent amount of autooxidation.

すなわち、下記式(2)となる。   That is, the following formula (2) is obtained.

Figure 2006289326
Figure 2006289326

さらに、還元剤であるアンモニアの廃ガス中の物質収支から下記式(3)式が成り立つ。   Furthermore, the following equation (3) is established from the material balance in the waste gas of ammonia as a reducing agent.

Figure 2006289326
Figure 2006289326

ここで、還元剤注入量は尿素水の濃度、流量から、触媒脱硝量は触媒層の上下流に設置された窒素酸化物濃度計の差異から、リークアンモニアはアンモニア計から、見かけの自己酸化量は触媒層上流に設置された窒素酸化物濃度計の指示変化から、それぞれ求めることができる。   Here, the reducing agent injection amount is from the concentration and flow rate of urea water, the catalyst denitration amount is from the difference between the nitrogen oxide concentration meters installed upstream and downstream of the catalyst layer, and the leaked ammonia is from the ammonia meter, the apparent amount of self-oxidation Can be obtained from the change in indication of a nitrogen oxide concentration meter installed upstream of the catalyst layer.

こうした実測値を基に(2)式、(3)式を連立させて解くことにより、自己酸化量および無触媒脱硝量を算出することができる。   The autooxidation amount and the non-catalytic denitration amount can be calculated by solving the equations (2) and (3) simultaneously based on these actually measured values.

表1はボイラーロードと燃料流量および注入点である後煙室温度の関係である。通常ボイラーは30〜100%の範囲で運転され、その温度域は600〜900℃である。   Table 1 shows the relationship between boiler load, fuel flow rate, and rear smoke chamber temperature, which is the injection point. Usually, the boiler is operated in the range of 30 to 100%, and its temperature range is 600 to 900 ° C.

図5は、炉筒煙管ボイラーで得られた注入点温度と自己酸化および無触媒脱硝の割合を示す。注入点温度の上昇に伴い、自己酸化割合および無触媒脱硝割合も上昇するが、自己酸化割合は指数関数的な上昇を示し、900℃以上の領域では自己酸化割合が50%を越え、脱硝が有効に機能する限界点を超過する(自己酸化割合が50%を超えると、元々ボイラーの燃焼によって生じたサーマルNOxと反応する還元剤が残らない。)。   FIG. 5 shows the injection point temperature and the ratio of auto-oxidation and non-catalytic denitration obtained with a furnace flue boiler. As the injection point temperature rises, the auto-oxidation rate and non-catalytic denitration rate also rise, but the auto-oxidation rate shows an exponential increase, and the auto-oxidation rate exceeds 50% in the region of 900 ° C. Exceeds the effective functioning limit (if the auto-oxidation rate exceeds 50%, no reducing agent remains which reacts with the thermal NOx originally produced by the combustion of the boiler).

Figure 2006289326
Figure 2006289326

実施例2
実施例2は、図2の実施態様にあるように、出口部123より導管126を通りアンモニアを含有した燃焼ガスの一部をバーナー105に循環した条件での脱硝例を示す。実施例1と同様の手段にて、自己酸化割合および無触媒脱硝割合を算出した。図6に示すとおり、低ボイラーロード時、すなわち注入点温度が低い領域で、自己酸化割合が大きくなっている。これは、廃ガス循環により注入したアンモニアの一部がボイラーの炉内に導入され燃焼していることを示している。
Example 2
Example 2 shows an example of denitration under the condition that a part of the combustion gas containing ammonia passes through the conduit 126 from the outlet 123 and is circulated to the burner 105 as in the embodiment of FIG. By the same means as in Example 1, the autooxidation ratio and the non-catalytic denitration ratio were calculated. As shown in FIG. 6, the autooxidation ratio is large at the time of low boiler load, that is, in the region where the injection point temperature is low. This indicates that a part of the ammonia injected by the waste gas circulation is introduced into the furnace of the boiler and burned.

図6に示した自己酸化、無触媒脱硝割合を燃料流量の関数としたうえで[数1]と合わせて脱硝設備の制御に組み込み、実施した例を図7に示す。図7は、設備出口における廃ガス中の窒素酸化物濃度目標値を15ppm(酸素0%換算)に設定し、ボイラーおよび脱硝設備を運転したものである。[数1]を用いることによって、ボイラーロードに応じて適切な注入時アンモニア比率が算出され、ロードが変化しても出口廃ガスの窒素酸化物濃度は15ppm以下に適切に保つことができている。   FIG. 7 shows an example in which the auto-oxidation and non-catalytic denitration ratio shown in FIG. 6 is used as a function of the fuel flow rate and is incorporated in the control of the denitration facility in combination with [Equation 1]. FIG. 7 shows the operation of the boiler and the denitration facility with the target value of nitrogen oxide concentration in the waste gas at the facility outlet set to 15 ppm (oxygen 0% conversion). By using [Equation 1], an appropriate ammonia ratio at the time of injection is calculated according to the boiler load, and the nitrogen oxide concentration of the outlet waste gas can be appropriately maintained at 15 ppm or less even when the load changes. .

また、表2は、目標脱硝率70%の条件において、[数1]より導かれる注入時アンモニア比率を示す。表2に示すとおり、ボイラーのロードによって注入時アンモニア比率(廃ガス中の窒素酸化物1モルに対するアンモニアの注入割合)を適切に変更(制御)することで、精度の高い脱硝を実現することができる。   Table 2 shows the ammonia ratio at the time of injection derived from [Equation 1] under the condition of a target denitration rate of 70%. As shown in Table 2, highly accurate denitration can be realized by appropriately changing (controlling) the ammonia ratio at the time of injection (the ratio of ammonia injection to 1 mol of nitrogen oxide in the waste gas) by loading the boiler. it can.

Figure 2006289326
Figure 2006289326

本願発明によるボイラー廃ガスの脱硝処理方法の一実施態様を示すフローチャートである。It is a flowchart which shows one embodiment of the denitration processing method of the boiler waste gas by this invention. 本発明によるボイラー廃ガスの脱硝処理方法の他の実施態様を示すフローチャートである。It is a flowchart which shows the other embodiment of the denitration processing method of the boiler waste gas by this invention. 本発明における尿素注入量算出フローである。It is a urea injection amount calculation flow in the present invention. 本発明における尿素比率1に対する注入温度と脱硝率との関係を示すグラフである。It is a graph which shows the relationship between the injection temperature with respect to the urea ratio of 1 in this invention, and a denitration rate. 注入点温度と自己酸化、無触媒脱硝の割合を示すグラフである。It is a graph which shows the ratio of injection | pouring point temperature, auto-oxidation, and non-catalytic denitration. 廃ガス循環式ボイラーにおける自己酸化割合と無触媒脱硝の割合を示すグラフである。It is a graph which shows the ratio of the auto-oxidation in a waste gas circulation type boiler, and the ratio of non-catalytic denitration. [数1]を適用したボイラー脱硝設備運転の実施例を示すグラフである。It is a graph which shows the Example of the boiler denitration equipment operation | movement which applied [Equation 1].

符号の説明Explanation of symbols

1,14,101,114・・・空気、
3,103・・・燃料、
5,105・・・バーナー、
7,107・・・炉筒、
8,108・・・燃焼室、
9,109・・・後煙室、
10,110・・・炉筒煙管ボイラー、
11,111・・・熱交換器、
13,113・・・煙管室、
17,117・・・ノズル、
18,118・・・尿素水タンク、
22,122・・・チューブ、
23,123・・・出口部、
24,124・・・脱硝触媒。
1, 14, 101, 114 ... air,
3,103 ... fuel,
5,105 ... Burner,
7, 107...
8,108 ... combustion chamber,
9,109 ... rear smoke chamber,
10, 110 ... furnace tube fire tube boiler,
11, 111 ... heat exchanger,
13, 113 ... Smoke tube chamber,
17, 117 ... nozzle,
18, 118 ... urea water tank,
22, 122 ... tube,
23, 123 ... exit part,
24, 124 ... denitration catalyst.

Claims (9)

炉筒煙管ボイラーにおける燃焼室と煙管室との間の空間の燃焼ガス中に、600〜900℃の温度で該燃焼ガス中の窒素酸化物1モルに対して尿素を0.5〜1.5モルの範囲で尿素水として導入することを特徴とするボイラー廃ガスの脱硝処理方法。   In the combustion gas in the space between the combustion chamber and the smoke tube chamber in the furnace tube flue boiler, urea is added in an amount of 0.5 to 1.5 to 1 mol of nitrogen oxide in the combustion gas at a temperature of 600 to 900 ° C. A denitration method for boiler waste gas, which is introduced as urea water in a molar range. 尿素水が導入される空間は、炉筒煙管ボイラーにおける後煙室である請求項1に記載の方法。   The method according to claim 1, wherein the space into which the urea water is introduced is a rear smoke chamber in a furnace flue boiler. 尿素水中の尿素の濃度が8〜40質量%である請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein the concentration of urea in the urea water is 8 to 40% by mass. 尿素水が燃焼室と煙管室との間の空間の廃ガス温度に応じ自己酸化および無触媒で脱硝する量等から、注入量の最適値を算出して尿素水の注入量を制御することを特徴とする請求項1〜3のいずれか一つに記載の方法。   Control the injection amount of urea water by calculating the optimum value of the injection amount from the amount of deoxidation and auto-oxidation and non-catalytic denitration according to the waste gas temperature in the space between the combustion chamber and the smoke tube chamber The method according to claim 1, wherein the method is characterized in that 廃ガスを循環させて用いる炉筒煙管ボイラーにおける燃焼室と煙管室との間の空間の燃焼ガス中に、600〜900℃の温度で該燃焼ガス中の窒素酸化物1モルに対して尿素を0.5〜1.5モルの範囲で尿素水として導入することを特徴とするボイラー廃ガスの脱硝処理方法。   Urea is added to 1 mol of nitrogen oxides in the combustion gas at a temperature of 600 to 900 ° C. in the combustion gas in the space between the combustion chamber and the flue tube chamber in the furnace tube flue boiler used by circulating the waste gas. A boiler degassing method for denitrating a boiler waste gas, which is introduced as urea water in a range of 0.5 to 1.5 mol. 該廃ガスの循環は、出口部における燃焼ガスと尿素の加水分解ガスとの混合物の一部を排出させて燃焼室のバーナーに供給して行なわれる請求項5に記載の方法。   6. The method according to claim 5, wherein the waste gas is circulated by discharging a part of the mixture of the combustion gas and the urea hydrolysis gas at the outlet and supplying the exhaust gas to the burner of the combustion chamber. 循環ガスの量は、1〜20容量%である請求項5または6に記載の方法。   The method according to claim 5 or 6, wherein the amount of the circulating gas is 1 to 20% by volume. 尿素水が導入される空間は、炉筒煙管ボイラーにおける後煙室である請求項5〜7のいずれか一つに記載の方法。   The method according to any one of claims 5 to 7, wherein the space into which the urea water is introduced is a rear smoke chamber in a furnace flue boiler. 尿素水が燃焼室と煙管室との間の空間の廃ガス温度に応じ自己酸化および無触媒で脱硝する量等から、注入量の最適値を算出して尿素水の注入量を制御することを特徴とする請求項5〜8のいずれか一つに記載の方法。   Control the injection amount of urea water by calculating the optimum value of the injection amount from the amount of deoxidation and auto-oxidation and non-catalytic denitration according to the waste gas temperature in the space between the combustion chamber and the smoke tube chamber 9. A method according to any one of claims 5 to 8, characterized in that
JP2005137688A 2005-03-17 2005-05-10 Denitration treatment method for boiler waste gas Expired - Fee Related JP4766915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005137688A JP4766915B2 (en) 2005-03-17 2005-05-10 Denitration treatment method for boiler waste gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005077661 2005-03-17
JP2005077661 2005-03-17
JP2005137688A JP4766915B2 (en) 2005-03-17 2005-05-10 Denitration treatment method for boiler waste gas

Publications (2)

Publication Number Publication Date
JP2006289326A true JP2006289326A (en) 2006-10-26
JP4766915B2 JP4766915B2 (en) 2011-09-07

Family

ID=37410501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005137688A Expired - Fee Related JP4766915B2 (en) 2005-03-17 2005-05-10 Denitration treatment method for boiler waste gas

Country Status (1)

Country Link
JP (1) JP4766915B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107781805A (en) * 2016-08-29 2018-03-09 兰州明康热能环保设备有限公司 A kind of novel environment friendly denitrogenates boiler
WO2018159622A1 (en) * 2017-02-28 2018-09-07 Okinawa Institute Of Science And Technology School Corporation Process for preparing a supported catalytic material, and supported catalytic material
WO2021095305A1 (en) * 2019-11-12 2021-05-20 日立造船株式会社 Flow rectifier, hydrolysis apparatus, and denitrification equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0996402A (en) * 1995-09-30 1997-04-08 Osaka Gas Co Ltd Boiler heater
JPH11151456A (en) * 1997-11-20 1999-06-08 Tosoh Corp Urea aqueous solution spraying nozzle for urea method denitrification and urea method denitrification device using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0996402A (en) * 1995-09-30 1997-04-08 Osaka Gas Co Ltd Boiler heater
JPH11151456A (en) * 1997-11-20 1999-06-08 Tosoh Corp Urea aqueous solution spraying nozzle for urea method denitrification and urea method denitrification device using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107781805A (en) * 2016-08-29 2018-03-09 兰州明康热能环保设备有限公司 A kind of novel environment friendly denitrogenates boiler
WO2018159622A1 (en) * 2017-02-28 2018-09-07 Okinawa Institute Of Science And Technology School Corporation Process for preparing a supported catalytic material, and supported catalytic material
JP2020508861A (en) * 2017-02-28 2020-03-26 学校法人沖縄科学技術大学院大学学園 Method for producing supported catalyst material and supported catalyst material
US11264630B2 (en) 2017-02-28 2022-03-01 Okinawa Institute Of Science And Technology School Corporation Process for preparing a supported catalytic material, and supported catalytic material
JP7228898B2 (en) 2017-02-28 2023-02-27 学校法人沖縄科学技術大学院大学学園 Method for producing supported catalyst material and supported catalyst material
WO2021095305A1 (en) * 2019-11-12 2021-05-20 日立造船株式会社 Flow rectifier, hydrolysis apparatus, and denitrification equipment
JP2021076094A (en) * 2019-11-12 2021-05-20 日立造船株式会社 Stream adjusting device, hydrolysis device, and denitration installation
CN114729586A (en) * 2019-11-12 2022-07-08 日立造船株式会社 Rectifying device, hydrolysis device, and denitration device
JP7382595B2 (en) 2019-11-12 2023-11-17 日立造船株式会社 Rectifier, hydrolysis equipment, and denitrification equipment
CN114729586B (en) * 2019-11-12 2023-11-21 日立造船株式会社 Rectifying device, hydrolysis device and denitration device

Also Published As

Publication number Publication date
JP4766915B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
US7824636B1 (en) Model-based tuning of ammonia distribution and control for reduced operating cost of selective catalytic reduction
US7682586B2 (en) Thermal decomposition of urea in a side stream of combustion flue gas using a regenerative heat exchanger
JP7417013B2 (en) Exhaust gas treatment method for thermal power plants
JP6520309B2 (en) Combustion device, gas turbine and power generation device
US7842266B2 (en) Method of denitration of exhaust gas and apparatus therefor
US8518354B2 (en) Diesel exhaust fluid formulation having a high ammonium content and a low freezing point
CN102470319B (en) Emission-control equipment
CN102470318B (en) The mercury removing method of emission-control equipment and waste gas
JP2009517210A (en) Multi-stage system for selective catalytic reduction
KR102586253B1 (en) spray device comprising porous structure for providing precise controllable concentration of diluted urea-water solution inserted inside
KR960011040B1 (en) Method and apparatus for removing nitrogen oxides
KR101312994B1 (en) Scr de-nox system for reducing yellow plume and nox under low temperature operating condition
JP2008215133A (en) Engine exhaust gas treatment device and engine exhaust gas treatment method using it
JP2003503172A (en) Flue gas purifier
US20130272940A1 (en) On Demand Generation of Ammonia for Small Industrial and Commercial Boilers
US8961818B2 (en) Diesel exhaust fluid formulation that reduces urea deposits in exhaust systems
JP4766915B2 (en) Denitration treatment method for boiler waste gas
EP2772301B1 (en) Process and apparatus for reducing the content of nitrogen oxides
US8999277B2 (en) Diesel exhaust fluid formulation that reduces urea deposits in exhaust systems
JPH0857261A (en) Denitrification apparatus using aqueous solution of reducing agent
JP3558737B2 (en) Exhaust gas denitration method and exhaust gas treatment method
CN209828701U (en) Preparation facilities of mixed denitrifier based on aqueous ammonia + hydrazine
JP2007301524A (en) Method and apparatus for denitrification
JPH08281074A (en) Denitrification equipment using urea
US10458650B2 (en) Methods and systems for flue gas denitrification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees