JP2006288182A - Electric power supply circuit of three-phase four-wire type distribution line equipped with harmonic reduction circuit and harmonic reduction method - Google Patents

Electric power supply circuit of three-phase four-wire type distribution line equipped with harmonic reduction circuit and harmonic reduction method Download PDF

Info

Publication number
JP2006288182A
JP2006288182A JP2005213515A JP2005213515A JP2006288182A JP 2006288182 A JP2006288182 A JP 2006288182A JP 2005213515 A JP2005213515 A JP 2005213515A JP 2005213515 A JP2005213515 A JP 2005213515A JP 2006288182 A JP2006288182 A JP 2006288182A
Authority
JP
Japan
Prior art keywords
circuit
phase
current
harmonic
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005213515A
Other languages
Japanese (ja)
Other versions
JP4801390B2 (en
Inventor
Tadayoshi Aizawa
愛澤忠良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2005213515A priority Critical patent/JP4801390B2/en
Publication of JP2006288182A publication Critical patent/JP2006288182A/en
Application granted granted Critical
Publication of JP4801390B2 publication Critical patent/JP4801390B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Rectifiers (AREA)
  • Power Conversion In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simplify the configuration of a harmonic reduction circuit for reducing the distorted wave current, on the basis of tertiary harmonic current of neutral line in a three-phase four-wire distribution line, and manufacture the harmonic reduction circuit at a low cost. <P>SOLUTION: Loads 7 are connected between distribution lines U, V, W for U-phase, V-phase, W-phase and a neutral line N. The loads 7 include capacitor input type rectifier circuit in which capacitors (smoothing capacitor) are connected to rectifying circuits 71. To the load 7, the harmonic reduction circuit 6 is connected in parallel. A harmonic reduction circuit 6 has thyristors SCR1, 2, a resistance rc, an inductance Lc, a capacitor C connected in series. The inductance Lc, the capacitor C constitute a resonance circuit. The resonance frequency of the resonance circuit, which is generated by the loads 7, is set at the same one as a frequency of a harmonic current flowing through the neutral line N. In addition, the phase of the current of the harmonic reduction circuit 6 is set to be reverse phase to tertiary harmonic current generated by the loads 7, by adjsuting the firing angles of the thyristors SCR1, 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本願発明は、三相4線式配電線の中性線のひずみ波電流を低減して受電端電圧の波形ひずみを低減する高調波低減回路を備えた三相4線式配電線の電力供給回路と高調波低減方法に関する。   The present invention relates to a power supply circuit for a three-phase four-wire distribution line including a harmonic reduction circuit that reduces the distortion wave current of the neutral wire of the three-phase four-wire distribution line to reduce the waveform distortion of the receiving end voltage. And a harmonic reduction method.

三相4線式配電線には、半導体回路を内蔵した家電製品、パソコン等の電子機器、サイリスタ等を用いた位相制御型調光回路等が接続されている。半導体回路は、一般に交流を整流して得た直流電源により駆動しているが、その整流には、コンデンサ(平滑コンデンサ)を接続した整流回路、いわゆるコンデンサ入力型整流回路が用いられている。コンデンサ入力型整流回路の電流は、正弦波の中央部分(振幅のピーク付近)の比較的狭い範囲において流れるため、電流の通流幅が狭くなる。そのため高調波電流が発生し、その同相分の高調波電流が三相4線式配電線の中性線を流れるため電圧降下が生じ、受電端電圧に波形ひずみを生じる。そこでその高調波電流を低減するため、従来アクティブフィルタが用いられている(例えば特許文献1参照)。   Connected to the three-phase four-wire distribution line are home appliances with built-in semiconductor circuits, electronic devices such as personal computers, phase control type dimming circuits using thyristors and the like. A semiconductor circuit is generally driven by a direct current power source obtained by rectifying alternating current, and a rectifier circuit connected to a capacitor (smoothing capacitor), a so-called capacitor input type rectifier circuit, is used for the rectification. Since the current of the capacitor input type rectifier circuit flows in a relatively narrow range in the central part of the sine wave (near the peak of amplitude), the current flow width becomes narrow. Therefore, a harmonic current is generated, and the harmonic current of the same phase flows through the neutral line of the three-phase four-wire distribution line, so that a voltage drop occurs, and a waveform distortion occurs in the receiving end voltage. Therefore, in order to reduce the harmonic current, a conventional active filter has been used (see, for example, Patent Document 1).

図11により従来のアクティブフィルタを用いた三相4線式配電線の電力供給回路を説明する。
図11(a)は、三相交流電源に負荷とアクティブフィルタを接続した三相4線式配電線の電力供給回路を示し、図11(b)は、図11(a)の一相分の電力供給回路を示す。
図11(a)において、三相交流電源1は、U相、V相、W相の電源eU,eV,eWを有し、負荷3は、それらの電源から各相の配電線U,V,Wと中性線Nにより電力が供給される。負荷3の近傍には、アクティブフィルタ2を接続してある。アクティブフィルタ2は、波形変換回路21、電流出力回路22、補助電源回路23、制御回路24等を備えている。制御回路24は、負荷電流検出部41の検出電流から3次高調波成分を抽出して電流出力回路22の制御信号を発生し、その制御信号により電流出力回路22のIGBT等のスイッチ素子の導通、非導通を制御する。電流出力回路22は、補助電源回路23を電源として矩形波を発生する。波形変換回路21は、その矩形波を正弦波状の電流に変換して配電線U,V,Wと中性線Nの間に供給する。その正弦波状の電流は、負荷3を流れる電流に含まれる3次高調波電流に近似している。
A conventional power supply circuit for a three-phase four-wire distribution line using an active filter will be described with reference to FIG.
FIG. 11A shows a power supply circuit of a three-phase four-wire distribution line in which a load and an active filter are connected to a three-phase AC power source, and FIG. 11B shows one phase of FIG. 1 shows a power supply circuit.
In FIG. 11A, a three-phase AC power source 1 has U-phase, V-phase, and W-phase power sources e U , e V , and e W , and a load 3 receives a distribution line U for each phase from these power sources. , V, W and neutral wire N supply power. An active filter 2 is connected in the vicinity of the load 3. The active filter 2 includes a waveform conversion circuit 21, a current output circuit 22, an auxiliary power circuit 23, a control circuit 24, and the like. The control circuit 24 extracts a third-order harmonic component from the detection current of the load current detection unit 41 to generate a control signal for the current output circuit 22, and the control signal causes conduction of a switch element such as an IGBT of the current output circuit 22. Control non-conduction. The current output circuit 22 generates a rectangular wave using the auxiliary power supply circuit 23 as a power source. The waveform conversion circuit 21 converts the rectangular wave into a sinusoidal current and supplies it between the distribution lines U, V, W and the neutral line N. The sinusoidal current approximates the third harmonic current included in the current flowing through the load 3.

図11(b)において、制御回路24は、負荷電流検出部41の出力から3次高調波成分を抽出する3次高調波成分抽出回路241、出力電流検出部42の出力と3次高調波成分抽出回路241の出力と補助制御回路242の出力とを演算する演算回路243、増幅回路244、増幅回路244の出力と三角波発生回路245の出力とを比較する比較回路246等を備えている。比較回路246の出力は、電流出力回路22のIGBT221へ直接供給するとともに、位相を反転してIGBT222へ供給する。補助電源回路23は、2個のコンデンサからなり、波形変換回路21は、コンデンサとインダクタンスからなる。   In FIG. 11B, the control circuit 24 extracts a third harmonic component from the output of the load current detection unit 41, a third harmonic component extraction circuit 241, an output of the output current detection unit 42, and a third harmonic component. An arithmetic circuit 243 that calculates the output of the extraction circuit 241 and the output of the auxiliary control circuit 242, an amplifier circuit 244, a comparison circuit 246 that compares the output of the amplifier circuit 244 and the output of the triangular wave generation circuit 245 are provided. The output of the comparison circuit 246 is directly supplied to the IGBT 221 of the current output circuit 22 and is supplied to the IGBT 222 with the phase inverted. The auxiliary power supply circuit 23 includes two capacitors, and the waveform conversion circuit 21 includes a capacitor and an inductance.

特開2002−118964号公報JP 2002-118964 A

図11のように従来の三相4線式配電線の電力供給回路は、中性線の高調波電流を低減するためにアクティブフィルタを用いているが、アクティブフィルタは構成が複雑で高価になる。
本願発明は、この点に鑑み三相4線式配電線の電力供給回路において、中性線の高調波電流を低減する回路を簡単な構成の回路で実現し、安価に作製することを目的とする。
As shown in FIG. 11, the power supply circuit of the conventional three-phase four-wire distribution line uses an active filter to reduce the harmonic current of the neutral wire. However, the active filter is complicated and expensive. .
In view of this point, the invention of the present application aims to realize a circuit for reducing the harmonic current of a neutral wire in a power supply circuit of a three-phase four-wire distribution line with a simple configuration circuit and to manufacture it at low cost. To do.

本願発明は、その目的を達成するため、請求項1に記載の三相4線式配電線の電力供給回路は、スイッチング素子、抵抗、インダクタンス及びコンデンサを直列に接続してなり、負荷により発生する高調波電流と逆相の電流を発生する高調波低減回路を負荷に並列に接続してあることを特徴とする。
請求項2に記載の三相4線式配電線の電力供給回路は、請求項1に記載の電力供給回路において、前記スイッチング素子はサイリスタであることを特徴とする。
請求項3に記載の三相4線式配電線の電力供給回路は、請求項1又は請求項2に記載の電力供給回路において、前記スイッチング素子の点弧角を調整して前記高調波低減回路の電流の位相を調整できることを特徴とする。
請求項4に記載の三相4線式配電線の電力供給回路は、請求項1、請求項2又は請求項3に記載の電力供給回路において、前記高調波低減回路の共振回路の共振周波数を電源電圧の周波数より高い周波数に設定してあることを特徴とする。
請求項5に記載の三相4線式配電線の電力供給回路は、請求項4に記載の電力供給回路において、前記共振周波数を電源電圧の周波数の3倍の周波数に設定してあることを特徴とする。
請求項6に記載の三相4線式配電線の電力供給回路は、請求項4に記載の電力供給回路において、前記共振周波数を電源電圧の周波数の3倍以外の周波数に設定してあることを特徴とする。
請求項7に記載の三相4線式配電線の電力供給回路は、請求項4、請求項5又は請求項6に記載の電力供給回路において、前記高調波低減回路にバイアス回路を付加してあることを特徴とする。
請求項8に記載の三相4線式配電線の電力供給回路の高調波低減方法は、スイッチング素子、抵抗、インダクタンス及びコンデンサを直列に接続してなり、負荷に並列に接続した高調波低減回路の共振回路の共振周波数を電源電圧の周波数より高い周波数に設定し、負荷により発生する高調波電流と逆相の電流を発生して負荷により発生する高調波電流を打ち消すことを特徴とする。
請求項9に記載の三相4線式配電線の電力供給回路の高調波低減方法は、請求項8に記載の高調波低減方法において、前記スイッチング素子の点弧角を調整して前記高調波低減回路の電流の位相を調整することを特徴とする。
請求項10に記載の三相4線式配電線の電力供給回路の高調波低減方法は、請求項8又は請求項9に記載の高調波低減方法において、前記共振周波数を電源電圧の周波数の3倍の周波数に設定することを特徴とする。
請求項11に記載の三相4線式配電線の電力供給回路の高調波低減方法は、請求項8又は請求項9に記載の高調波低減方法において、前記共振周波数を電源電圧の周波数の3倍以外の周波数に設定することを特徴とする。
請求項12に記載の三相4線式配電線の電力供給回路の高調波低減方法は、請求項8、請求項9、請求項10又は請求項11に記載の高調波低減方法において、前記高調波低減回路にバイアス回路を付加してあることを特徴とする。
In order to achieve the object of the present invention, a power supply circuit for a three-phase four-wire distribution line according to claim 1 is formed by connecting a switching element, a resistor, an inductance and a capacitor in series, and is generated by a load. A harmonic reduction circuit that generates a current having a phase opposite to that of the harmonic current is connected in parallel to the load.
The power supply circuit of the three-phase four-wire distribution line according to claim 2 is the power supply circuit according to claim 1, wherein the switching element is a thyristor.
The power supply circuit of the three-phase four-wire distribution line according to claim 3 is the power supply circuit according to claim 1 or 2, wherein the harmonic reduction circuit is configured by adjusting an ignition angle of the switching element. The phase of the current can be adjusted.
The power supply circuit of the three-phase four-wire distribution line according to claim 4 is the power supply circuit according to claim 1, 2, or 3, wherein the resonance frequency of the resonance circuit of the harmonic reduction circuit is set. The frequency is higher than the frequency of the power supply voltage.
The power supply circuit of the three-phase four-wire distribution line according to claim 5 is the power supply circuit according to claim 4, wherein the resonance frequency is set to a frequency that is three times the frequency of the power supply voltage. Features.
The power supply circuit of the three-phase four-wire distribution line according to claim 6 is the power supply circuit according to claim 4, wherein the resonance frequency is set to a frequency other than three times the frequency of the power supply voltage. It is characterized by.
The power supply circuit of the three-phase four-wire distribution line according to claim 7 is the power supply circuit according to claim 4, 5, or 6, wherein a bias circuit is added to the harmonic reduction circuit. It is characterized by being.
The harmonic reduction method of the power supply circuit of the three-phase four-wire distribution line according to claim 8, wherein a switching element, a resistor, an inductance, and a capacitor are connected in series and connected to a load in parallel. The resonance frequency of this resonance circuit is set to a frequency higher than the frequency of the power supply voltage, and a harmonic current generated by the load is generated in a phase opposite to that of the harmonic current generated by the load to cancel the harmonic current generated by the load.
The harmonic reduction method for the power supply circuit of the three-phase four-wire distribution line according to claim 9 is the harmonic reduction method according to claim 8, wherein the harmonic is adjusted by adjusting an ignition angle of the switching element. The phase of the current of the reduction circuit is adjusted.
The harmonic reduction method for the power supply circuit of the three-phase four-wire distribution line according to claim 10 is the harmonic reduction method according to claim 8 or 9, wherein the resonance frequency is 3 times the frequency of the power supply voltage. The frequency is set to double.
The harmonic reduction method for the power supply circuit of the three-phase four-wire distribution line according to claim 11 is the harmonic reduction method according to claim 8 or 9, wherein the resonance frequency is 3 times the frequency of the power supply voltage. The frequency is set to a frequency other than double.
The harmonic reduction method of the power supply circuit of the three-phase four-wire distribution line according to claim 12 is the harmonic reduction method according to claim 8, 9, 10, or 11, wherein A bias circuit is added to the wave reduction circuit.

本願発明は、高調波低減回路を、サイリスタ等のスイッチング素子、抵抗、インダクタンス及びコンデンサによって構成できるから、高調波低減回路は、従来のアクティブフィルタに比べて、構成が簡単になり安価に作製することができる。また本願発明の三相4線式配電線の電力供給回路は、高調波低減回路を負荷と並列に接続するだけで、負荷によって発生する高調波電流の打消し用電流を発生することができ、その高調波電流を打ち消すために高調波電流成分を抽出するための高調波電流成分抽出回路を設ける必要がない。   In the present invention, the harmonic reduction circuit can be configured by a switching element such as a thyristor, a resistor, an inductance, and a capacitor. Therefore, the harmonic reduction circuit is simpler and less expensive than a conventional active filter. Can do. In addition, the power supply circuit of the three-phase four-wire distribution line of the present invention can generate a current for canceling the harmonic current generated by the load by simply connecting the harmonic reduction circuit in parallel with the load. There is no need to provide a harmonic current component extraction circuit for extracting a harmonic current component in order to cancel the harmonic current.

本願発明は、高調波低減回路を構成するサイリスタの点弧角を変えるだけで、高調波電流打消し用電流の位相、即ち負荷からの高調波電流とのタイミングを簡単に調整することができる。
本願発明は、高調波低減回路の共振回路の共振周波数を、電源電圧の周波数の3倍又は3倍以外の周波数に設定することにより正弦波又は非正弦波の高調波電流打消し用電流を発生することができる。また高調波低減回路にバイアス回路を付加することにより、半波の立ち上り部分と下降部分とが非対称になる高調波電流打消し用電流を発生することができる。
In the present invention, the phase of the harmonic current cancellation current, that is, the timing of the harmonic current from the load, can be easily adjusted by simply changing the firing angle of the thyristor constituting the harmonic reduction circuit.
The present invention generates a sine wave or non-sinusoidal harmonic current canceling current by setting the resonance frequency of the resonance circuit of the harmonic reduction circuit to a frequency other than three times or three times the frequency of the power supply voltage. can do. Further, by adding a bias circuit to the harmonic reduction circuit, it is possible to generate a harmonic current canceling current in which the rising and falling portions of the half wave are asymmetric.

本願発明は、前記のように高調波低減回路を負荷と並列に接続して、その高調波低減回路の共振回路の共振周波数の設定値を変えるだけで、正弦波又は非正弦波の高調波電流打消し用電流を発生することができ、かつ高調波低減回路にバイアス回路を付加するだけで、それらの正弦波又は非正弦波を半波の立ち上り部分と下降部分とを非対称にすることもできる。したがって本願発明は、負荷によって発生する高調波電流の波形に応じて多様の波形の高調波電流打消し用電流を発生することがでる。   In the present invention, a harmonic current of a sine wave or non-sinusoidal wave can be obtained by simply connecting a harmonic reduction circuit in parallel with a load as described above and changing the set value of the resonance frequency of the resonance circuit of the harmonic reduction circuit. A cancellation current can be generated, and by adding a bias circuit to the harmonic reduction circuit, the rising part and the falling part of the half-wave can be made asymmetric with respect to those sine waves or non-sine waves. . Therefore, the present invention can generate harmonic current cancellation currents having various waveforms according to the waveform of the harmonic current generated by the load.

図1〜図10により本願発明の実施例を説明する。なお各図に共通の部分は同じ符号を使用している。   An embodiment of the present invention will be described with reference to FIGS. In addition, the same code | symbol is used for the part common to each figure.

図1〜図4により実施例1を説明する。
図1(a)は、本願発明の実施例1に係る高調波低減回路を接続した三相4線式配電線の電力供給回路を示し、負荷にコンデンサ入力型整流回路が接続されている。図1(b)は、図1(a)の一相分の高調波低減回路例を示す。
図1において、1は3相交流電源、6は高調波低減回路、7はコンデンサ入力型整流回路が接続されている負荷、U,V,Wは、U相、V相、W相の配電線、Nは中性線である。3相交流電源1は、U相、V相、W相の電源eU,eV,eWを有し、負荷7は、各相の配電線U,V,Wと中性線Nにより各電源に接続されている。負荷7は、半導体回路駆動用の整流回路(ダイオードブリッジ)71、コンデンサ(平滑コンデンサ)Cd、半導体回路の等価負荷抵抗Rdからなる。Llは、配電用変圧器の漏れリアクタンス、L0とr0は、配電線のインピーダンス、icは高調波低減回路6の電流、ilは負荷7の入力電流、Vlは受電端電圧である。
なお図1(a)は、符号6,7をU相にのみ付してあるが、V相、W相も同様である。
図1(a)の負荷7は、整流回路71とコンデンサCdからなるコンデンサ入力型整流回路を用いている。そのため中性線Nには、3次高調波電流をベースとするひずみ波電流が流れる。そこで図1(a)は、そのひずみ波電流を低減するため各相の負荷7と並列に高調波低減回路6を接続してある。
A first embodiment will be described with reference to FIGS.
FIG. 1A shows a power supply circuit of a three-phase four-wire distribution line connected with a harmonic reduction circuit according to Embodiment 1 of the present invention, and a capacitor input rectifier circuit is connected to a load. FIG. 1B shows an example of a harmonic reduction circuit for one phase of FIG.
In FIG. 1, 1 is a three-phase AC power source, 6 is a harmonic reduction circuit, 7 is a load to which a capacitor input rectifier circuit is connected, U, V, and W are U-phase, V-phase, and W-phase distribution lines. , N is a neutral wire. The three-phase AC power source 1 has U-phase, V-phase, and W-phase power sources e U , e V , and e W , and the load 7 is connected to each phase by distribution lines U, V, W and neutral wires N. Connected to power. The load 7 includes a rectifier circuit (diode bridge) 71 for driving a semiconductor circuit, a capacitor (smoothing capacitor) Cd, and an equivalent load resistance Rd of the semiconductor circuit. Ll is the leakage reactance of the distribution transformer, L 0 and r 0 is the impedance of the distribution line, ics current harmonics reduction circuit 6, il is the input current of the load 7, Vl is the voltage at reception end.
In FIG. 1A, reference numerals 6 and 7 are attached only to the U phase, but the same applies to the V phase and the W phase.
The load 7 in FIG. 1A uses a capacitor input type rectifier circuit including a rectifier circuit 71 and a capacitor Cd. Therefore, a distorted wave current based on the third harmonic current flows through the neutral wire N. Therefore, in FIG. 1A, a harmonic reduction circuit 6 is connected in parallel with the load 7 of each phase in order to reduce the distortion wave current.

図1(b)は、図1(a)の高調波低減回路6の具体例を示す。
高調波低減回路6は、スイッチング素子として逆阻止サイリスタSCR1,2の逆並列接続を用い、これと直列に抵抗rc、インダクタンスLc、コンデンサCを接続してある。インダクタンスLc、コンデンサCは、共振回路を形成している。その共振回路の共振周波数f0は、電源電圧の周波数fの3倍(f0=3f)に設定してある。このように設定することにより、各相の高調波低減回路6から中性線Nに流れる合成電流Σicの周波数は、負荷7によって発生する3次高調波電流の周波数と同じになる。
FIG.1 (b) shows the specific example of the harmonic reduction circuit 6 of Fig.1 (a).
The harmonic reduction circuit 6 uses a reverse parallel connection of reverse blocking thyristors SCR1 and SCR2 as switching elements, and a resistor rc, an inductance Lc, and a capacitor C are connected in series therewith. The inductance Lc and the capacitor C form a resonance circuit. The resonance frequency f 0 of the resonance circuit is set to three times the frequency f of the power supply voltage (f 0 = 3f). By setting in this way, the frequency of the combined current Σic flowing from the harmonic reduction circuit 6 of each phase to the neutral line N becomes the same as the frequency of the third harmonic current generated by the load 7.

各相の高調波低減回路6の電流icは、サイリスタSCR1,2がターンオンした時に流れ始めるから、中性線Nを流れる各相の電流icの合成電流Σicの位相は、サイリスタSCR1,2がターンオンする時期(位相)、即ち点弧角αによって決まる。また各相の電流icが流れる期間(通流幅或いは通流角)は、共振周波数f0によって決まり、電流icの大きさは、主として抵抗rcによって決まる。したがって中性線Nの合成電流Σicの位相は、各相の高調波低減回路6のサイリスタSCR1,2の点弧角αによって決まるから、その点弧角αを調整することにより、負荷7によって発生する3次高調波電流と逆相にすることができる。なお負荷7により発生する3次高調波電流の大きさや位相は、負荷の出力が変動してもほとんど変わらないが、サイリスタSCR1,2の点弧角αを調整することにより、負荷の種類が変わった際の3次高調波電流の位相の変化に対応して各相の高調波低減回路6の電流icの位相を調整することができる。本実施例は、高調波低減回路6にサイリスタSCR1,2を用いているから、駆動回路が簡単になる。
各相の電源電圧eU,eV,eW、各相の高調波低減回路6の電流(各相の高調波低減回路6の電流ic)iCU,iCV,iCW、それらの電流の和である中性線Nの電流iCN(=Σic)は、図2のようになる。中性線Nの電流iCNは、高調波低減回路6の共振回路の共振周波数f0が、電源電圧の周波数fの3倍(f0=3f)のときには、図2のiCNのように、3次高調波電流と同じ周波数の正弦波となる。
Since the current ic of the harmonic reduction circuit 6 of each phase starts to flow when the thyristors SCR1 and SCR2 are turned on, the phase of the combined current Σic of the current ic of each phase flowing through the neutral line N is turned on by the thyristors SCR1 and SCR2 The timing (phase) to be performed, that is, the firing angle α. Further, the period (current width or current angle) in which the current ic of each phase flows is determined by the resonance frequency f 0 , and the magnitude of the current ic is mainly determined by the resistance rc. Therefore, since the phase of the composite current Σic of the neutral line N is determined by the firing angle α of the thyristors SCR1 and SCR2 of the harmonic reduction circuit 6 of each phase, it is generated by the load 7 by adjusting the firing angle α. Can be out of phase with the third harmonic current. The magnitude and phase of the third harmonic current generated by the load 7 hardly change even if the output of the load fluctuates, but the type of the load changes by adjusting the firing angle α of the thyristors SCR1 and SCR2. The phase of the current ic of the harmonic reduction circuit 6 of each phase can be adjusted in response to the change in the phase of the third harmonic current at the time. In this embodiment, since the thyristors SCR1 and SCR2 are used for the harmonic reduction circuit 6, the drive circuit is simplified.
Power supply voltage e U , e V , e W of each phase, current of harmonic reduction circuit 6 of each phase (current ic of harmonic reduction circuit 6 of each phase) i CU , i CV , i CW , The current i CN (= Σic) of the neutral line N which is the sum is as shown in FIG. The current i CN of the neutral line N is as shown by i CN in FIG. 2 when the resonance frequency f 0 of the resonance circuit of the harmonic reduction circuit 6 is three times the frequency f of the power supply voltage (f 0 = 3f). It becomes a sine wave having the same frequency as the third harmonic current.

以上のように高調波低減回路6は、負荷7によって発生する3次高調波電流と周波数が同じで、逆相の電流icを発生できるから、それらの合成電流Σicによって中性線Nの3次高調波電流を打ち消すことができる。したがって図1(a)のように、U相、V相、W相毎に高調波低減回路6を接続することにより、各相の負荷7により発生して中性線Nを流れる3次高調波電流をベースとするひずみ波電流を低減することができる。
なお高調波低減回路6の共振回路の共振周波数f0は、f0=3fの例について説明したが、負荷7によって発生する高調波電流の周波数成分は、3次以上の高調波成分が多く含まれる場合があり、その場合、共振周波数f0を3f以外の適当な値に設定することにより3f以外の高調波成分も低減することができる。
As described above, the harmonic reduction circuit 6 has the same frequency as the third-order harmonic current generated by the load 7 and can generate a reverse-phase current ic. Therefore, the third-order of the neutral line N is generated by the combined current Σic. Harmonic current can be canceled out. Therefore, as shown in FIG. 1A, by connecting the harmonic reduction circuit 6 for each of the U phase, V phase, and W phase, the third harmonic generated by the load 7 of each phase and flowing through the neutral line N The distortion wave current based on the current can be reduced.
Although the example in which the resonance frequency f 0 of the resonance circuit of the harmonic reduction circuit 6 is f 0 = 3f has been described, the frequency component of the harmonic current generated by the load 7 includes many higher-order harmonic components. it is subject, in which case, it is also possible to reduce the harmonic components other than 3f by setting the resonance frequency f 0 to a suitable value other than 3f.

図1(b)の高調波低減回路6は、サイリスタ、抵抗、インダクタンス及びコンデンサによって形成できるから、従来のアクティブフィルタに比べて、構成が簡単になり安価に作製することができる。また図1の三相4線式配電線の電力供給回路は、高調波低減回路6を負荷7と並列に接続するだけで、負荷7によって発生する高調波電流を打ち消すことができ、その高調波電流を打ち消すために高調波電流成分を抽出するための高調波電流成分抽出回路を設ける必要がない。
なおスイッチング素子は、サイリスタに限らず、IGBT、バイポーラトランジスタ、パワーMOSFET等のスイッチング素子であってもよい。
Since the harmonic reduction circuit 6 of FIG. 1B can be formed by a thyristor, a resistor, an inductance, and a capacitor, the configuration is simpler and can be manufactured at a lower cost than a conventional active filter. The power supply circuit of the three-phase four-wire distribution line in FIG. 1 can cancel the harmonic current generated by the load 7 only by connecting the harmonic reduction circuit 6 in parallel with the load 7. There is no need to provide a harmonic current component extraction circuit for extracting a harmonic current component in order to cancel the current.
The switching element is not limited to a thyristor, and may be a switching element such as an IGBT, a bipolar transistor, or a power MOSFET.

ここで、図3、図4により図1の三相4線式配電線の電力供給回路のシミュレーションの結果について説明する。
シミュレーションに用いた図1(a)の対称三相電源と回路定数は、eU=Emsinωt、eV=Emsin(ωt−120°)、eW=Emsin(ωt−240°)、Em=141[V]、f=50[Hz]、Ll=0.2[mH]、L0=0.2[mH]、r0=0.1[Ω]、Rd=1〜40[Ω](この範囲内で可変)に設定し、三相平衡負荷としてシミュレーションを実施した。ただし、負荷の時定数(Rd×Cd)を約100[ms](一定)に保ちながらRdに対応してCdも可変した。
また図1(b)の回路定数は、サイリスタ点弧角α=4〜18[°]、rc=0.55〜7.1[Ω]、L=10[mH]、C=100[μF]に設定した。
なおシミュレーションには、パワーエレクトロニクスの分野で一般に使用されているシミュレーションソフトPSIM(発売元:マイウェイ技研株式会社)を使用した。
Here, the result of the simulation of the power supply circuit of the three-phase four-wire distribution line in FIG. 1 will be described with reference to FIGS.
The symmetrical three-phase power source and circuit constants of FIG. 1A used for the simulation are e U = Esin ωt, e V = Emsin (ωt−120 °), e W = Emsin (ωt−240 °), Em = 141 [ V], f = 50 [Hz], Ll = 0.2 [mH], L 0 = 0.2 [mH], r 0 = 0.1 [Ω], Rd = 1 to 40 [Ω] (this range The simulation was carried out as a three-phase balanced load. However, Cd was also varied corresponding to Rd while keeping the load time constant (Rd × Cd) at about 100 [ms] (constant).
The circuit constants in FIG. 1B are as follows: thyristor firing angle α = 4 to 18 [°], rc = 0.55 to 7.1 [Ω], L = 10 [mH], C = 100 [μF] Set to.
In the simulation, simulation software PSIM (release source: Myway Giken Co., Ltd.) generally used in the field of power electronics was used.

まず図3について説明する。なお、Rd=7[Ω]、Cd=13429[μF]、サイリスタ点弧角α=11[°]に設定した。
図3(a)は、中性線電流を示し、図3(b)は、受電端電圧を示す。なお比較のため電源電圧(周波数f)の正弦半波(破線)を併記してある。なお図3において、イは、高調波低減回路を接続した場合の中性線電流と受電端電圧を示し、ロは、高調波低減回路を接続しない場合の中性線電流と受電端電圧を示す。
First, FIG. 3 will be described. Note that Rd = 7 [Ω], Cd = 13429 [μF], and thyristor firing angle α = 11 [°].
FIG. 3A shows the neutral line current, and FIG. 3B shows the receiving end voltage. For comparison, a half sine wave (broken line) of the power supply voltage (frequency f) is also shown. In FIG. 3, A indicates the neutral line current and the receiving end voltage when the harmonic reduction circuit is connected, and B indicates the neutral line current and the receiving end voltage when the harmonic reduction circuit is not connected. .

図3(a)によると、三相4線式配電線に図1の高調波低減回路を接続すると、中性線電流の3次高調波電流をベースとするひずみ波電流イは、高調波低減回路を接続しない場合のひずみ波電流ロに比べて非常に小さくなり、図3(b)のように高調波低減回路を接続した場合の受電端電圧イは、立ち上り部分と降下部分のスロープが正弦波に近付いており、受電端電圧中の高調波の含有量が低減していることが分かる。したがって図1の高調波低減回路は、中性線電流の3次高調波電流をベースとするひずみ波電流を低減する効果がある。
コンデンサ入力型整流回路は、整流回路入力電流の通流幅が狭いため、波高値が実効値の3〜5倍程度になることもある。そのため、線路インピーダンスの関係で正弦波のピークの頭部分がカットされて電圧降下が生じ、受電端電圧の波形ひずみを生じるが、三相4線式配電線に図1の高調波低減回路を用いることにより、図3(b)のように、波高以外部分の形状を含めてその受電端電圧の波形ひずみは、改善される。
According to FIG. 3 (a), when the harmonic reduction circuit of FIG. 1 is connected to a three-phase four-wire distribution line, the distortion wave current a based on the third harmonic current of the neutral wire current is reduced by harmonics. The distortion wave current b when the circuit is not connected is much smaller than the distortion wave current b. When the harmonic reduction circuit is connected as shown in FIG. It is close to the wave, and it can be seen that the harmonic content in the receiving end voltage is reduced. Therefore, the harmonic reduction circuit of FIG. 1 has an effect of reducing the distortion wave current based on the third harmonic current of the neutral line current.
Since the capacitor input type rectifier circuit has a narrow rectifier circuit input current flow width, the peak value may be about 3 to 5 times the effective value. Therefore, the peak portion of the sine wave is cut due to the line impedance, resulting in a voltage drop and a waveform distortion of the receiving end voltage. However, the harmonic reduction circuit of FIG. 1 is used for the three-phase four-wire distribution line. As a result, as shown in FIG. 3B, the waveform distortion of the receiving end voltage including the shape of the portion other than the wave height is improved.

次に図4について説明する。
図4(a)は、負荷電力(負荷容量)と中性線電流を示し、図4(b)は、負荷電力(負荷容量)と受電端電圧ひずみ率を示し、図4(c)は、負荷電力(負荷容量)と直流出力電圧(整流回路の直流出力電圧)を示す。なお図4において、実線は、高調波低減回路を接続した場合の特性を示し、破線は、高調波低減回路を接続しない場合の特性を示す。
三相4線式配電線に図1の高調波低減回路を接続すると、中性線のひずみ波電流は、図4(a)のように負荷の容量の広い範囲において大幅に低減できる。その結果三相4線式配電線に図1の高調波低減回路を接続すると、受電端電圧ひずみ率は、図4(b)のように改善でき、直流出力電圧の低下は、図4(c)のように小さくなる。
Next, FIG. 4 will be described.
4A shows the load power (load capacity) and the neutral line current, FIG. 4B shows the load power (load capacity) and the receiving-end voltage distortion rate, and FIG. The load power (load capacity) and the DC output voltage (DC output voltage of the rectifier circuit) are shown. In FIG. 4, the solid line indicates the characteristic when the harmonic reduction circuit is connected, and the broken line indicates the characteristic when the harmonic reduction circuit is not connected.
When the harmonic reduction circuit of FIG. 1 is connected to the three-phase four-wire distribution line, the distorted wave current of the neutral wire can be greatly reduced in a wide range of load capacity as shown in FIG. As a result, when the harmonic reduction circuit of FIG. 1 is connected to the three-phase four-wire distribution line, the receiving-end voltage distortion rate can be improved as shown in FIG. 4B, and the decrease in the DC output voltage is shown in FIG. ) Becomes smaller.

図5〜図8により実施例2を説明する。
図5は、本願発明の実施例2に係る高調波低減回路を接続した三相4線式配電線の電力供給回路を示し、負荷に位相制御型調光回路が接続されている。負荷以外は、図1と同じである。
各相の負荷8は、SCR3,4を逆並列接続した位相制御用スイッチ81に電球の抵抗Rbを接続してある。
中性線Nには、実施例1で説明したように、各相の高調波低減回路6の電流icの合成電流Σic(中性線Nの電流iCN)が流れ、その合成電流Σicは、各相の高調波低減回路6の共振回路の共振周波数f0を電源電圧の周波数fの3倍(f0=3f)に設定すると正弦波の3次高調波電流となる。一方負荷8に位相制御用スイッチ81を用いた場合には、負荷8により発生して中性線Nを流れる3次高調波電流をベースとしたひずみ電流は、非正弦波となる。したがって負荷8により発生して中性線Nを流れる3次高調波電流をベースとしたひずみ電流を、中性線Nの合成電流Σicで完全に相殺することは困難である。
A second embodiment will be described with reference to FIGS.
FIG. 5 shows a power supply circuit of a three-phase four-wire distribution line to which a harmonic reduction circuit according to Embodiment 2 of the present invention is connected, and a phase control type dimming circuit is connected to a load. Except for the load, it is the same as FIG.
The load 8 of each phase is connected to a bulb resistance Rb to a phase control switch 81 in which SCRs 3 and 4 are connected in antiparallel.
As described in the first embodiment, the neutral line N is supplied with the combined current Σic (current i CN of the neutral line N) of the current ic of the harmonic reduction circuit 6 of each phase. When the resonance frequency f 0 of the resonance circuit of the harmonic reduction circuit 6 for each phase is set to three times the frequency f of the power supply voltage (f 0 = 3f), a sine wave third harmonic current is obtained. On the other hand, when the phase control switch 81 is used for the load 8, the distortion current based on the third harmonic current generated by the load 8 and flowing through the neutral line N becomes a non-sinusoidal wave. Therefore, it is difficult to completely cancel the distortion current based on the third harmonic current generated by the load 8 and flowing through the neutral line N with the combined current Σic of the neutral line N.

そこで本実施例は、中性線Nの合成電流Σicを非正弦波化することを試み、各相の高調波低減回路6の共振回路の共振周波数f0を、電源電圧の周波数fの3倍(f0=3f)以外の周波数に設定することにより非正弦波化できることを見出した。
図6は、中性線Nの合成電流Σicを三角波化する例である。
各相の高調波低減回路6の共振回路の共振周波数f0を、電源電圧の周波数fの1.5倍(f0=1.5f)に設定すると、各相の高調波低減回路6の電流icは、iCU,iCV,iCWのように繰り返し周波数1.5fの正弦パルス状の電流になるが、中性線Nの合成電流Σicは、iCNのように繰り返し周波数3fの三角波になる。即ち三相4線式の電力供給回路は、各相の共振周波数f0を1.5fに設定すると、各相の電流icは1.5fの正弦パルス状となるが、合成電流Σic(中性線Nの電流iCN)は3次高調波電流と同一周期(同一の繰り返し周波数)の三角波になる。
In this embodiment, therefore, an attempt is made to make the combined current Σic of the neutral line N non-sinusoidal, and the resonance frequency f 0 of the resonance circuit of the harmonic reduction circuit 6 of each phase is three times the frequency f of the power supply voltage. It has been found that a non-sinusoidal wave can be obtained by setting a frequency other than (f 0 = 3f).
FIG. 6 shows an example in which the combined current Σic of the neutral line N is converted into a triangular wave.
When the resonance frequency f 0 of the resonance circuit of the harmonic reduction circuit 6 of each phase is set to 1.5 times the frequency f of the power supply voltage (f 0 = 1.5f), the current of the harmonic reduction circuit 6 of each phase ic becomes a sinusoidal current with a repetition frequency of 1.5 f as i CU , i CV , i CW , but the synthesized current Σic of the neutral line N becomes a triangular wave with a repetition frequency of 3 f as i CN. Become. That is, in the three-phase four-wire power supply circuit, when the resonance frequency f 0 of each phase is set to 1.5f, the current ic of each phase becomes a sine pulse of 1.5f, but the combined current Σic (neutral) The current i CN of the line N becomes a triangular wave having the same period (same repetition frequency) as the third harmonic current.

図7は、各相の高調波低減回路6の共振回路の共振周波数f0を変えたときの合成電流Σicの波形を示す。なお図7(a)には、比較のため周波数fの電源電圧の波形を併記してある。
図7(b)〜(f)は、共振周波数f0が、f0=1.5f(図6と同じ)、f0=2f、f0=2.5f、f0=3f(図2と同じ)、f0=5fのときの合成電流Σicの波形を示す。共振周波数f0を変えると、合成電流Σicの波形は、図7(b)〜(f)のように変化するが、合成電流Σicの周期(或いは繰り返し周波数)は、いずれの場合も3次高調波電流と同じになる。
以上のように合成電流Σicは、共振周波数f0を変えるとことにより、正弦波にも非正弦波にもなる。なおこの点は、図1(負荷7の場合)についても同様である。
図7(b)〜(f)は、3次高調波電流と同一周期となる合成電流Σicのみを図示してあるが、合成電流Σicには3次高調波電流以外の高調波電流も含まれている。
FIG. 7 shows the waveform of the combined current Σic when the resonance frequency f 0 of the resonance circuit of the harmonic reduction circuit 6 of each phase is changed. In FIG. 7A, the waveform of the power supply voltage at the frequency f is also shown for comparison.
7B to 7F, the resonance frequency f 0 is f 0 = 1.5f (same as FIG. 6), f 0 = 2f, f 0 = 2.5f, f 0 = 3f (FIG. 2 and FIG. The same shows the waveform of the combined current Σic when f 0 = 5f. When the resonance frequency f 0 is changed, the waveform of the composite current Σic changes as shown in FIGS. 7B to 7F, but the period (or repetition frequency) of the composite current Σic is the third harmonic in any case. Same as wave current.
As described above, the combined current Σic becomes a sine wave or a non-sine wave by changing the resonance frequency f 0 . This also applies to FIG. 1 (in the case of load 7).
FIGS. 7B to 7F show only the combined current Σic having the same period as the third harmonic current, but the combined current Σic includes harmonic currents other than the third harmonic current. ing.

そこで図8により3次高調波以外の高調波電流の含有率を説明する。
図8は、電源電圧の周波数f=50[Hz]における高調波低減回路6の共振周波数f0と合成電流Σicのn次高調波電流の含有率との関係を示す。図8において、縦軸は、3次高調波電流に対するn次高調波電流の含有率を、横軸は、高調波低減回路6の共振周波数f0を示す。図8は、n=3以外のn=9,15,21,33の高調波電流を図示してある。なおn=27等の高調波電流も現れるが、含有量が少ないので省略してある。
以上のように本実施例の電力供給回路は、高調波低減回路6を用いることにより、中性線Nの合成電流Σicは、3次高調波電流をベースとする高調波電流からなるから、負荷8により発生して中性線Nを流れる3次高調波電流をベースとするひずみ波電流を低減することができる。
なお実施例2は、高調波低減回路6のサイリスタSCR1,2の点弧角αを変えることにより各相の3次高調波電流の位相を変えることができる。即ち実施例2の各相の3次高調波電流の位相は、実施例1の高調波低減回路6の電流の位相に相当する。したがって本願発明は、実施例2の3次高調波電流を含めて高調波低減回路の電流と呼ぶ。
また実施例2で説明した各相の高調波低減回路からの合成電流Σicの波形は、図1の場合(負荷7の場合)についても同様である。
Therefore, the content of harmonic currents other than the third harmonic will be described with reference to FIG.
FIG. 8 shows the relationship between the resonance frequency f 0 of the harmonic reduction circuit 6 and the content ratio of the n-th harmonic current of the combined current Σic at the power supply voltage frequency f = 50 [Hz]. In FIG. 8, the vertical axis represents the content of the nth harmonic current with respect to the third harmonic current, and the horizontal axis represents the resonance frequency f 0 of the harmonic reduction circuit 6. FIG. 8 illustrates harmonic currents of n = 9, 15, 21, 33 other than n = 3. Although harmonic currents such as n = 27 also appear, they are omitted because the content is small.
As described above, the power supply circuit of the present embodiment uses the harmonic reduction circuit 6 so that the combined current Σic of the neutral line N is composed of a harmonic current based on the third harmonic current. 8 can reduce the distorted wave current based on the third-order harmonic current generated by 8 and flowing through the neutral wire N.
In the second embodiment, the phase of the third harmonic current of each phase can be changed by changing the firing angle α of the thyristors SCR1 and SCR2 of the harmonic reduction circuit 6. That is, the phase of the third harmonic current of each phase of the second embodiment corresponds to the phase of the current of the harmonic reduction circuit 6 of the first embodiment. Therefore, the present invention is called the current of the harmonic reduction circuit including the third harmonic current of the second embodiment.
The waveform of the combined current Σic from the harmonic reduction circuit for each phase described in the second embodiment is the same as in the case of FIG. 1 (in the case of the load 7).

図9、図10により実施例3を説明する。
図9(a)は、本願発明の実施例3に係る高調波低減回路を接続した三相4線式配電線の電力供給回路を示し、各相の高調波低減回路にバイアス回路を付加してある。バイアス回路以外は、図5と同じである。
実施例1、実施例2の中性線Nの高調波低減回路6からの電流iCN(合成電流Σic)の波形は、正弦波、非正弦波いずれの場合にも、半波の立ち上り部分と下降部分とが対称であるが、負荷の種類により非対称の電流を必要とする場合がある。例えば、図10(a)の三角波ロは、半波の立ち上り部分と下降部分とが対称であるが、負荷の種類によりイのような非対称の電流を必要とする場合がある。同様に図10(b)の正弦波ロは、半波の立ち上り部分と下降部分とが対称であるが、負荷の種類によりイのような非対称の電流を必要とする場合がある。
そこで実施例3は、それらの非対称波形に対応して、中性線Nの電流iCN(合成電流Σic)の波形を非対称にするため、高調波低減回路6にバイアス回路9を付加してある。
A third embodiment will be described with reference to FIGS.
FIG. 9A shows a power supply circuit of a three-phase four-wire distribution line connected with a harmonic reduction circuit according to Embodiment 3 of the present invention, and a bias circuit is added to the harmonic reduction circuit of each phase. is there. Except for the bias circuit, it is the same as FIG.
The waveform of the current i CN (synthetic current Σic) from the harmonic reduction circuit 6 of the neutral line N of the first and second embodiments is a half-wave rising portion in both cases of a sine wave and a non-sine wave. Although it is symmetrical with the descending portion, an asymmetrical current may be required depending on the type of load. For example, in the triangular wave B of FIG. 10A, the rising and falling portions of the half wave are symmetric, but an asymmetrical current such as A may be required depending on the type of load. Similarly, in the sine wave b in FIG. 10B, the rising and falling parts of the half wave are symmetric, but an asymmetrical current such as A may be required depending on the type of load.
Accordingly, in the third embodiment, a bias circuit 9 is added to the harmonic reduction circuit 6 in order to make the waveform of the current i CN (combined current Σic) of the neutral line N asymmetric corresponding to these asymmetric waveforms. .

各相のバイアス回路9は、図9(b)のようにバイアス電圧発生回路91とトランス92からなり、バイアス電圧発生回路91のバイアス電圧は、トランス92により高調波低減回路6の出力に結合されている。
高調波低減回路6の電流iCの波形は、無バイアス時、例えば図9(c)イの波形に設定する。一方バイアス電圧発生回路91のバイアス電圧の波形は、図9(c)ロのように傾斜特性を有する波形に設定する。高調波低減回路6の電流iCの波形は、バイアス電圧を印加すると図9(c)ハのようになる。したがって中性線Nの高調波低減回路6からの電流iCN(合成電流Σic)の波形は、波形ロのバイアス電圧を印加すると半波の立ち上り部分と下降部分とが非対称になる。
バイアス電圧の波形は、図9(c)ロ以外の波形に設定することもできる。
バイアス電圧発生回路91は、スイッチング素子を用いたインバータ等によって構成することができる。
なお実施例3は、高調波低減回路6のサイリスタSCR1,2の点弧角αを変えることにより各相の3次高調波電流の位相を変えることができる。即ち実施例3の各相の3次高調波電流の位相は、実施例1の高調波低減回路6の電流の位相に相当する。したがって本願発明は、実施例3の3次高調波電流を含めて高調波低減回路の電流と呼ぶ。
また実施例3で説明した各相の高調波低減回路からの合成電流Σicの波形の非対称化は、図1の場合(負荷7の場合)についても同様である。
The bias circuit 9 for each phase includes a bias voltage generation circuit 91 and a transformer 92 as shown in FIG. 9B. The bias voltage of the bias voltage generation circuit 91 is coupled to the output of the harmonic reduction circuit 6 by the transformer 92. ing.
The waveform of the current i C of the harmonic reduction circuit 6 is set to the waveform shown in FIG. On the other hand, the bias voltage waveform of the bias voltage generation circuit 91 is set to a waveform having a slope characteristic as shown in FIG. When the bias voltage is applied, the waveform of the current i C of the harmonic reduction circuit 6 becomes as shown in FIG. Accordingly, the waveform of the current i CN (combined current Σic) from the harmonic reduction circuit 6 of the neutral line N becomes asymmetrical between the rising and falling portions of the half-wave when a bias voltage of waveform b is applied.
The waveform of the bias voltage can also be set to a waveform other than that shown in FIG.
The bias voltage generation circuit 91 can be configured by an inverter or the like using a switching element.
In the third embodiment, the phase of the third harmonic current of each phase can be changed by changing the firing angle α of the thyristors SCR1 and SCR2 of the harmonic reduction circuit 6. That is, the phase of the third harmonic current of each phase of the third embodiment corresponds to the phase of the current of the harmonic reduction circuit 6 of the first embodiment. Therefore, the present invention is called the current of the harmonic reduction circuit including the third harmonic current of the third embodiment.
Further, the asymmetry of the waveform of the combined current Σic from the harmonic reduction circuit of each phase described in the third embodiment is the same in the case of FIG. 1 (in the case of the load 7).

本願発明の実施例1に係る三相4線式配電線の電力供給回路で、負荷にコンデンサ入力型整流回路を接続してある。In the power supply circuit of the three-phase four-wire distribution line according to the first embodiment of the present invention, a capacitor input rectifier circuit is connected to the load. 図1の電力供給回路において、高調波低減回路の共振回路の共振周波数を電源電圧の周波数の3倍に設定したときの各相の電源電圧、各相の高調波低減回路の電流、中性線の電流の波形を示す。In the power supply circuit of FIG. 1, when the resonance frequency of the resonance circuit of the harmonic reduction circuit is set to three times the frequency of the power supply voltage, the power supply voltage of each phase, the current of the harmonic reduction circuit of each phase, the neutral line The waveform of current is shown. 図1の三相4線式配電線の電力供給回路のシミュレーション結果例(中性線電流波形と受電端電圧波形)を示す。The simulation result example (neutral wire current waveform and receiving end voltage waveform) of the power supply circuit of the three-phase four-wire distribution line in FIG. 1 is shown. 図1の三相4線式配電線の電力供給回路のシミュレーション結果例(負荷電力(負荷容量)に対する中性線電流、受電端電圧ひずみ率及び整流回路の直流出力電圧)を示す。The example of the simulation result (Neutral line current with respect to load electric power (load capacity), receiving-end voltage distortion factor, and DC output voltage of a rectifier circuit) of the power supply circuit of the three-phase four-wire distribution line in FIG. 1 is shown. 本願発明の実施例2に係る三相4線式配電線の電力供給回路で、負荷に位相制御型調光回路を接続してある。In the power supply circuit of the three-phase four-wire distribution line according to the second embodiment of the present invention, a phase control dimmer circuit is connected to the load. 図5の電力供給回路において、高調波低減回路の共振回路の共振周波数を電源電圧の周波数の1.5倍に設定したときの各相の電源電圧、各相の高調波低減回路の電流、中性線の電流の波形を示す。In the power supply circuit of FIG. 5, when the resonance frequency of the resonance circuit of the harmonic reduction circuit is set to 1.5 times the frequency of the power supply voltage, the power supply voltage of each phase, the current of the harmonic reduction circuit of each phase, The waveform of the current of the sex line is shown. 図1、図5の電力供給回路において、高調波低減回路の共振回路の共振周波数を種々変えたときの中性線の電流の波形を示す。In the power supply circuit of FIG. 1 and FIG. 5, the waveform of the neutral current when the resonance frequency of the resonance circuit of the harmonic reduction circuit is variously changed is shown. 高調波低減回路の共振回路の共振周波数を種々変えたときの中性線電流中の含有量が大きいn次高調波の含有率を示す。The content rate of the n-th order harmonic with a large content in the neutral wire current when the resonance frequency of the resonance circuit of the harmonic reduction circuit is variously changed is shown. 本願発明の実施例3に係る三相4線式配電線の電力供給回路で、高調波低減回路にバイアス回路を付加してある。In the power supply circuit of the three-phase four-wire distribution line according to Embodiment 3 of the present invention, a bias circuit is added to the harmonic reduction circuit. 中性線の電流波形が半波の立ち上り部分と降下部分とで非対称になる場合の波形を示す。The waveform in the case where the current waveform of the neutral line becomes asymmetric between the rising part and the falling part of the half wave is shown. 従来のアクティブフィルタを接続した三相4線式配電線の電力供給回路を示す。The power supply circuit of the three-phase four-wire distribution line which connected the conventional active filter is shown.

符号の説明Explanation of symbols

1 3相交流電源
6 高調波低減回路
7 コンデンサ入力型整流回路を用いた負荷
71 ダイオードブリッジ整流回路
8 位相制御型調光回路を用いた負荷
81 位相制御用スイッチ
9 バイアス回路
91 バイアス電圧発生回路
92 トランス
U,V,W U相、V相、W相の配電線
N 中性線
Vl 受電端電圧
ic 高調波低減回路の電流
il 負荷の入力電流
DESCRIPTION OF SYMBOLS 1 3 phase alternating current power supply 6 Harmonic reduction circuit 7 Load 71 using capacitor input type rectifier circuit Diode bridge rectifier circuit 8 Load 81 using phase control type dimmer circuit Phase control switch 9 Bias circuit 91 Bias voltage generation circuit 92 Transformer U, V, W U phase, V phase, W phase distribution line N Neutral line Vl Receiving end voltage ic Harmonic reduction circuit current il Load input current

Claims (12)

スイッチング素子、抵抗、インダクタンス及びコンデンサを直列に接続してなり、負荷により発生する高調波電流と逆相の電流を発生する高調波低減回路を負荷に並列に接続してあることを特徴とする三相4線式配電線の電力供給回路。   A switching element, a resistor, an inductance, and a capacitor are connected in series, and a harmonic reduction circuit that generates a current in a phase opposite to that of the harmonic current generated by the load is connected in parallel to the load. Power supply circuit for phase 4-wire distribution lines. 請求項1に記載の電力供給回路において、前記スイッチング素子はサイリスタであることを特徴とする三相4線式配電線の電力供給回路。   2. The power supply circuit according to claim 1, wherein the switching element is a thyristor. 3. 請求項1又は請求項2に記載の電力供給回路において、前記スイッチング素子の点弧角を調整して前記高調波低減回路の電流の位相を調整できることを特徴とする三相4線式配電線の電力供給回路。   The power supply circuit according to claim 1 or 2, wherein the phase of the current of the harmonic reduction circuit can be adjusted by adjusting the firing angle of the switching element. Power supply circuit. 請求項1、請求項2又は請求項3に記載の電力供給回路において、前記高調波低減回路の共振回路の共振周波数を電源電圧の周波数より高い周波数に設定してあることを特徴とする三相4線式配電線の電力供給回路。   4. The power supply circuit according to claim 1, wherein the resonance frequency of the resonance circuit of the harmonic reduction circuit is set to a frequency higher than the frequency of the power supply voltage. Power supply circuit for 4-wire distribution lines. 請求項4に記載の電力供給回路において、前記共振周波数を電源電圧の周波数の3倍の周波数に設定してあることを特徴とする三相4線式配電線の電力供給回路。   5. The power supply circuit according to claim 4, wherein the resonance frequency is set to a frequency that is three times the frequency of the power supply voltage. 請求項4に記載の電力供給回路において、前記共振周波数を電源電圧の周波数の3倍以外の周波数に設定してあることを特徴とする三相4線式配電線の電力供給回路。   The power supply circuit according to claim 4, wherein the resonance frequency is set to a frequency other than three times the frequency of the power supply voltage. 請求項4、請求項5又は請求項6に記載の電力供給回路において、前記高調波低減回路にバイアス回路を付加してあることを特徴とする三相4線式配電線の電力供給回路。   The power supply circuit according to claim 4, 5 or 6, wherein a bias circuit is added to the harmonic reduction circuit. スイッチング素子、抵抗、インダクタンス及びコンデンサを直列に接続してなり、負荷に並列に接続した高調波低減回路の共振回路の共振周波数を電源電圧の周波数より高い周波数に設定し、負荷により発生する高調波電流と逆相の電流を発生して負荷により発生する高調波電流を打ち消すことを特徴とする三相4線式配電線の電力供給回路の高調波低減方法。   Harmonics generated by the load by setting the resonance frequency of the harmonic reduction circuit connected to the load in parallel with the switching element, resistor, inductance, and capacitor in series, and higher than the frequency of the power supply voltage. A method for reducing harmonics in a power supply circuit for a three-phase four-wire distribution line, wherein a current having a phase opposite to that of the current is generated to cancel a harmonic current generated by a load. 請求項8に記載の高調波低減方法において、前記スイッチング素子の点弧角を調整して前記高調波低減回路の電流の位相を調整することを特徴とする三相4線式配電線の電力供給回路の高調波低減方法。   9. The harmonic supply method according to claim 8, wherein the phase of the current of the harmonic reduction circuit is adjusted by adjusting the firing angle of the switching element. Circuit harmonic reduction method. 請求項8又は請求項9に記載の高調波低減方法において、前記共振周波数を電源電圧の周波数の3倍の周波数に設定することを特徴とする三相4線式配電線の電力供給回路の高調波低減方法。   10. The harmonic reduction method according to claim 8, wherein the resonance frequency is set to a frequency that is three times the frequency of the power supply voltage. Wave reduction method. 請求項8又は請求項9に記載の高調波低減方法において、前記共振周波数を電源電圧の周波数の3倍以外の周波数に設定することを特徴とする三相4線式配電線の電力供給回路の高調波低減方法。   The harmonic reduction method according to claim 8 or 9, wherein the resonance frequency is set to a frequency other than three times the frequency of the power supply voltage. Harmonic reduction method. 請求項8、請求項9、請求項10又は請求項11に記載の高調波低減方法において、前記高調波低減回路にバイアス回路を付加してあることを特徴とする三相4線式配電線の電力供給回路の高調波低減方法。   The harmonic reduction method according to claim 8, claim 9, or claim 11, wherein a bias circuit is added to the harmonic reduction circuit of the three-phase four-wire distribution line. Harmonic reduction method for power supply circuit.
JP2005213515A 2005-03-08 2005-07-22 Power supply circuit and harmonic reduction method for three-phase four-wire distribution line with harmonic reduction circuit Expired - Fee Related JP4801390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005213515A JP4801390B2 (en) 2005-03-08 2005-07-22 Power supply circuit and harmonic reduction method for three-phase four-wire distribution line with harmonic reduction circuit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005064633 2005-03-08
JP2005064633 2005-03-08
JP2005213515A JP4801390B2 (en) 2005-03-08 2005-07-22 Power supply circuit and harmonic reduction method for three-phase four-wire distribution line with harmonic reduction circuit

Publications (2)

Publication Number Publication Date
JP2006288182A true JP2006288182A (en) 2006-10-19
JP4801390B2 JP4801390B2 (en) 2011-10-26

Family

ID=37409498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005213515A Expired - Fee Related JP4801390B2 (en) 2005-03-08 2005-07-22 Power supply circuit and harmonic reduction method for three-phase four-wire distribution line with harmonic reduction circuit

Country Status (1)

Country Link
JP (1) JP4801390B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027716A (en) * 2012-07-24 2014-02-06 Odakyu Dentetsu Kk Power supply circuit, vehicle having power supply circuit, and power supply method
JP2015126678A (en) * 2013-12-27 2015-07-06 株式会社志賀機能水研究所 Electric power facility
CN105629087A (en) * 2014-10-17 2016-06-01 国家电网公司 Improved inverter anti-island detection method
JP2018137953A (en) * 2017-02-23 2018-08-30 株式会社志賀機能水研究所 Higher harmonic generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027716A (en) * 2012-07-24 2014-02-06 Odakyu Dentetsu Kk Power supply circuit, vehicle having power supply circuit, and power supply method
JP2015126678A (en) * 2013-12-27 2015-07-06 株式会社志賀機能水研究所 Electric power facility
CN105629087A (en) * 2014-10-17 2016-06-01 国家电网公司 Improved inverter anti-island detection method
JP2018137953A (en) * 2017-02-23 2018-08-30 株式会社志賀機能水研究所 Higher harmonic generator

Also Published As

Publication number Publication date
JP4801390B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
US8164930B2 (en) Power factor correction circuit
JP6204970B2 (en) Rectifier circuit with current injection
JP4801390B2 (en) Power supply circuit and harmonic reduction method for three-phase four-wire distribution line with harmonic reduction circuit
US7576299B2 (en) Generator for arc welder with high power factor
US7015679B2 (en) Circuit and method for supplying an electrical a.c. load
US6909258B2 (en) Circuit device for driving an AC electric load
WO2010038841A1 (en) Three-phase rectifier
JP2006333564A (en) Surge absorber
Hagemeyer et al. Comparison of PWM AC chopper topologies
US6870748B2 (en) Method and apparatus for controlling the power supplied to a load
JP4019047B2 (en) Three-phase power supply parallel feedforward compensation type power factor correction circuit
Branas et al. Optimal PWM implementation for dimming control of LED lamps
JP2573229B2 (en) Variable voltage and variable frequency power supply
JPH1198847A (en) Rectifier circuit
JP3602352B2 (en) Method for suppressing harmonic inflow of PWM current-type power converter
Kabir et al. Ćuk topology based single switch single phase high power quality AC voltage controller
JP4833760B2 (en) Power control apparatus and power control method
JP2019075880A (en) Power factor improvement circuit and power supply circuit
KR101638938B1 (en) System for multileverl power transformer
JP2003158881A (en) High frequency converting circuit
Nekoui et al. Designing and constructing PFC converter by boundary layer control (BLC) in order to correct power factor and harmonic migration
JP2003243136A (en) Induction heating device
JP2000122736A (en) Alternating current voltage adjusting device
JP2005080369A (en) Dc/dc converting circuit
JP2004064907A (en) High-frequency power supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees