JP2006288051A - Control device for hybrid vehicle - Google Patents

Control device for hybrid vehicle Download PDF

Info

Publication number
JP2006288051A
JP2006288051A JP2005103643A JP2005103643A JP2006288051A JP 2006288051 A JP2006288051 A JP 2006288051A JP 2005103643 A JP2005103643 A JP 2005103643A JP 2005103643 A JP2005103643 A JP 2005103643A JP 2006288051 A JP2006288051 A JP 2006288051A
Authority
JP
Japan
Prior art keywords
control
torque
trq
circuit
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005103643A
Other languages
Japanese (ja)
Other versions
JP4350676B2 (en
Inventor
Hirobumi Shin
博文 新
Tomoyuki Ito
智之 伊藤
Hiroyuki Isekawa
浩行 伊勢川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005103643A priority Critical patent/JP4350676B2/en
Publication of JP2006288051A publication Critical patent/JP2006288051A/en
Application granted granted Critical
Publication of JP4350676B2 publication Critical patent/JP4350676B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/04Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using dc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2072Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for drive off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/003Dynamic electric braking by short circuiting the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • H02P6/21Open loop start
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/16DC brushless machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/22Standstill, e.g. zero speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/142Emission reduction of noise acoustic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device for a hybrid vehicle reducing electromagnetic noise and improving reliability in sensor-less control of a brushless motor. <P>SOLUTION: This control device for the hybrid vehicle, equipped with a motor 12 assisting running driving on power supply from a battery 14 or running driving of an engine 11, includes: a sensor-less controller for performing sensor-less control by detecting a rotor position on the basis of induced voltage of the motor 12; a controller for stopping rotation of the motor by performing two-phase short-circuit control or three-phase short-circuit control of the motor 12 under a vehicle control state where the rotational speed of the motor 12 is lower than a predetermined rotational speed; and a starter for starting the motor 12 by forced commutation for engine restart. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、ハイブリッド車両の制御装置に関するものである。   The present invention relates to a control device for a hybrid vehicle.

従来、エンジンとブラシレスモータとを有したハイブリッド車両の制御装置が知られている。このようなハイブリッド車両の制御装置ではブラシレスモータのロータの磁極位置を検出し、この検出結果に基づいてインバータのスイッチングを行い前記ブラシレスモータの駆動回生制御を行っているため、ロータの磁極位置を検出するセンサを必要とする分、部品点数が増加するという問題があった。近年、部品点数を削減するべく、磁極位置センサを必要としないセンサレス制御を行ってロータの磁極判別を行うハイブリッド車両の制御装置が提案されている(例えば、特許文献1参照)。
特開2002−320398号公報
Conventionally, a control apparatus for a hybrid vehicle having an engine and a brushless motor is known. In such a hybrid vehicle control device, the magnetic pole position of the rotor of the brushless motor is detected, the inverter is switched based on the detection result, and the drive regeneration control of the brushless motor is performed, so the magnetic pole position of the rotor is detected. There is a problem that the number of parts increases by the amount of sensor required. In recent years, in order to reduce the number of parts, there has been proposed a hybrid vehicle control apparatus that performs sensorless control that does not require a magnetic pole position sensor to determine the magnetic pole of the rotor (see, for example, Patent Document 1).
JP 2002-320398 A

しかしながら、上述のハイブリッド車両の制御装置では、エンジンの低回転領域でセンサレス制御により高精度に磁極位置を検出しようとした場合、ブラシレスモータの駆動電流に高調波を重畳させ、この時のブラシレスモータのインダクタンス変化に基づいて磁極位置を判別する必要がある。そのため、エンジン始動時などの磁極位置判別時に高調波重畳による電磁騒音とインバータのスイッチングによる電磁騒音とが発生するという課題がある。
また、従来、エンジン停止時の騒音を低減させるためにエンジンとエンジンマウントとの共振点を短時間で抜ける制御を行うものが知られているが、前述したセンサレス制御によって磁極位置を検出しながらエンジンの高トルク制動を行うと、回転数変化が大きくなるため、磁極位置の検出精度が低下する虞があるという課題がある。
However, in the above-described hybrid vehicle control device, when the magnetic pole position is to be detected with high accuracy by sensorless control in the low rotation region of the engine, harmonics are superimposed on the driving current of the brushless motor. It is necessary to determine the magnetic pole position based on the inductance change. Therefore, there is a problem that electromagnetic noise due to harmonic superposition and electromagnetic noise due to switching of the inverter are generated when determining the magnetic pole position at the time of starting the engine.
Conventionally, in order to reduce the noise when the engine is stopped, it is known to perform control to exit the resonance point between the engine and the engine mount in a short time, but the engine is detected while detecting the magnetic pole position by the sensorless control described above. When the high torque braking is performed, since the change in the rotational speed becomes large, there is a problem that the detection accuracy of the magnetic pole position may decrease.

そこで、この発明は、ブラシレスモータのセンサレス制御において、電磁騒音を低減すると共に信頼性を向上することができるハイブリッド車両の制御装置を提供するものである。   Therefore, the present invention provides a control device for a hybrid vehicle that can reduce electromagnetic noise and improve reliability in sensorless control of a brushless motor.

上記の課題を解決するために、請求項1に記載した発明は、蓄電器(例えば、実施の形態におけるバッテリ14)から電源供給を受け走行駆動又は内燃機関(例えば、実施の形態におけるエンジン11)の走行駆動を補助する発電電動機(例えば、実施の形態におけるモータ12)を備えたハイブリッド車両の制御装置において、前記発電電動機の誘起電圧に基づきロータ位置を検出してセンサレス制御を行うセンサレス制御手段(例えば、実施の形態におけるステップS8)と、前記発電電動機の回転数が所定回転数より低い車両制動時に前記発電電動機の2相短絡制御又は3相短絡制御を実施して前記発電電動機の回転を停止させる制動手段(例えば、実施の形態におけるステップS5)と、前記内燃機関の再始動時に前記発電電動機を強制転流により起動させる始動手段(例えば、実施の形態におけるステップS55)とを備えたことを特徴とする。
このように構成することで、2相短絡制御又は3相短絡制御によって内燃機関のアイドル回転数以下で大きな制動トルクを発生させて早期に内燃機関の回転を停止させることができ、さらに、内燃機関の回転停止直前には前記制動トルクが0となって内燃機関の逆転の懸念が生じることなしにスムーズなエンジン停止が可能となりメカストレスを低減することができる。
さらに、始動手段によって制動時に高調波重畳による磁極判別を行わずに発電電動機を始動し内燃機関の再始動を行うことができる。
In order to solve the above-mentioned problem, the invention described in claim 1 is directed to a traveling drive or internal combustion engine (for example, the engine 11 in the embodiment) which receives power supply from a battery (for example, the battery 14 in the embodiment). In a control apparatus for a hybrid vehicle including a generator motor (for example, the motor 12 in the embodiment) that assists driving, sensorless control means (for example, sensorless control is performed by detecting a rotor position based on an induced voltage of the generator motor. In step S8), the two-phase short-circuit control or the three-phase short-circuit control of the generator motor is performed at the time of vehicle braking when the rotation speed of the generator motor is lower than a predetermined rotation speed, and the rotation of the generator motor is stopped. Braking means (for example, step S5 in the embodiment) and the generator motor when the internal combustion engine is restarted Starting means for starting the Seiten stream (e.g., step S55 in the embodiment) is characterized in that a.
With this configuration, it is possible to generate a large braking torque below the idle speed of the internal combustion engine by two-phase short-circuit control or three-phase short-circuit control, and to stop the rotation of the internal combustion engine at an early stage. Immediately before the rotation is stopped, the braking torque becomes 0, and the engine can be stopped smoothly without causing a fear of reverse rotation of the internal combustion engine, and mechanical stress can be reduced.
Furthermore, the generator motor can be started and the internal combustion engine can be restarted without performing magnetic pole discrimination by superimposing harmonics during braking by the starting means.

請求項2に記載した発明は、前記センサレス制御手段によるセンサレス制御から前記制動手段による2相短絡制御又は3相短絡制御へ移行する前に、センサレス制御時の停止制御用トルクと2相短絡制御又は3相短絡制御時の短絡制動トルクとの差分を所定値以下にすることを特徴とする。
このように構成することで、前記センサレス制御手段によるセンサレス制御と制動手段による2相短絡制御又は3相短絡制御との切替え時、停止制御用トルクと短絡制動トルクとの各トルク値を揃えることができる。
According to the second aspect of the present invention, before the transition from the sensorless control by the sensorless control means to the two-phase short circuit control or the three-phase short circuit control by the braking means, the stop control torque and the two-phase short circuit control at the time of the sensorless control or The difference from the short-circuit braking torque during the three-phase short-circuit control is set to a predetermined value or less.
With this configuration, when switching between the sensorless control by the sensorless control means and the two-phase short-circuit control or the three-phase short-circuit control by the braking means, the torque values of the stop control torque and the short-circuit braking torque can be made uniform. it can.

請求項3に記載した発明は、車両停車直後に前記内燃機関をアイドル状態とし、ブレーキ踏込み量が所定の踏込み量以上での停車時間が所定時間を超えるとアイドル停止制御を実行すると共に、前記内燃機関の回転数が所定回転数以下になると前記2相短絡制御又は3相短絡制御を実行し前記発電電動機の回転を停止する停止手段を備えることを特徴とする。
このように構成することで、車両が停車してから内燃機関の回転数が所定の回転数以下になるまで2相短絡制御又は3相短絡制御を行わないため、前記ブレーキが開放された場合には、即座に発電電動機を用いて内燃機関の駆動を再開することができ、内燃機関の回転数が所定回転数以下になって初めて発電電動機の回転を停止することができる。
According to a third aspect of the present invention, the internal combustion engine is set in an idle state immediately after the vehicle stops, and when the stop time when the brake depression amount is equal to or greater than a predetermined depression amount exceeds a predetermined time, idle stop control is executed, and The engine is characterized by comprising stop means for executing the two-phase short-circuit control or the three-phase short-circuit control and stopping the rotation of the generator motor when the engine speed becomes equal to or lower than a predetermined speed.
With this configuration, the two-phase short-circuit control or the three-phase short-circuit control is not performed until the rotational speed of the internal combustion engine becomes equal to or lower than the predetermined rotational speed after the vehicle stops, so when the brake is released. Can immediately restart the driving of the internal combustion engine using the generator motor, and the rotation of the generator motor can be stopped only when the rotational speed of the internal combustion engine becomes equal to or lower than the predetermined rotational speed.

請求項4に記載した発明は、前記始動手段は前記内燃機関の回転停止後、ブレーキ踏込み量が所定の踏込み量以下になると前記発電電動機を強制転流により起動させ、前記内燃機関の点火制御を実行することを特徴とする。
このように構成することで、ブレーキ踏込み量が所定の踏込み量以下になった場合に、乗員に発車意思があると判断して、磁極位置の判別を必要としない強制転流により発電電動機をスムーズに始動させ、この発電電動機の駆動によって内燃機関を始動させることができる。
According to a fourth aspect of the present invention, the starter controls the ignition of the internal combustion engine by starting the generator motor by forced commutation when the brake depression amount is equal to or less than a predetermined depression amount after the rotation of the internal combustion engine is stopped. It is characterized by performing.
With this configuration, when the brake depression amount is less than or equal to the predetermined depression amount, it is determined that the occupant intends to start the vehicle, and the generator motor is smoothly moved by forced commutation that does not require determination of the magnetic pole position. The internal combustion engine can be started by driving the generator motor.

請求項1に記載した発明によれば、2相短絡制御又は3相短絡制御によって内燃機関のアイドル回転数以下で大きな制動トルクを発生させて早期に内燃機関の回転を停止させることができ、さらに、内燃機関の回転停止直前には前記制動トルクが0となって内燃機関の逆転の懸念が生じることなしにスムーズな内燃機関の回転停止が可能となりメカストレスを低減することができるため、商品性の向上と信頼性の向上とを図ることができる効果がある。   According to the first aspect of the present invention, the two-phase short-circuit control or the three-phase short-circuit control can generate a large braking torque below the idling speed of the internal combustion engine to stop the rotation of the internal combustion engine at an early stage. Since the braking torque becomes 0 immediately before the rotation of the internal combustion engine is stopped, the internal combustion engine can be smoothly stopped without causing a concern about the reverse rotation of the internal combustion engine, and mechanical stress can be reduced. There is an effect that improvement of reliability and improvement of reliability can be achieved.

さらに、始動手段によって制動時に高調波重畳による磁極判別を行わずに発電電動機を始動し内燃機関の再始動を行うことができるため、高調波重畳による電磁騒音を抑制して車室内の静粛性を向上すことできる効果がある。   Furthermore, since the generator motor can be started and the internal combustion engine can be restarted without performing magnetic pole discrimination due to harmonic superposition during braking by the starting means, electromagnetic noise due to harmonic superposition can be suppressed and quietness in the vehicle interior can be reduced. There is an effect that can be improved.

請求項2に記載した発明によれば、請求項1の効果に加え、前記センサレス制御手段によって行われるセンサレス制御と制動手段によって行われる2相短絡制御又は3相短絡制御との切替え時の停止制御用トルクと短絡制動トルクとの各トルク値を揃えることができるため、切替え時のトルク段差を低減してスムーズに内燃機関を停止させることができ、したがって、更なる商品性の向上を図ることができる効果がある。   According to the second aspect of the present invention, in addition to the effect of the first aspect, stop control at the time of switching between the sensorless control performed by the sensorless control unit and the two-phase short-circuit control or the three-phase short-circuit control performed by the braking unit. Since the torque values of the engine torque and the short-circuit braking torque can be made uniform, the torque level difference at the time of switching can be reduced and the internal combustion engine can be stopped smoothly, thus further improving the merchantability. There is an effect that can be done.

請求項3に記載した発明によれば、請求項1の効果に加え、車両が停車してから内燃機関の回転数が所定の回転数以下になるまで2相短絡制御又は3相短絡制御を行わないため、前記ブレーキが開放された場合には、即座に発電電動機を用いて内燃機関の駆動を再開することができ、さらに、内燃機関の回転数が所定回転数以下になって初めて発電電動機の回転を停止することができるため、乗員の発車意思に対する内燃機関の始動応答性を向上することができる効果がある。   According to the third aspect of the invention, in addition to the effect of the first aspect, the two-phase short-circuit control or the three-phase short-circuit control is performed until the rotational speed of the internal combustion engine becomes a predetermined rotational speed or less after the vehicle stops. Therefore, when the brake is released, the driving of the internal combustion engine can be resumed immediately using the generator motor, and the generator motor is not turned on until the rotational speed of the internal combustion engine falls below a predetermined rotational speed. Since the rotation can be stopped, there is an effect that it is possible to improve the start response of the internal combustion engine with respect to the occupant's intention to start.

請求項4に記載した発明によれば、上述の効果に加え、ブレーキ踏込み量が所定の踏込み量以下になった場合に、乗員に発車意思があると判断して、磁極位置の判別を必要としない強制転流により発電電動機をスムーズに始動させ、この発電電動機の駆動によって内燃機関を始動させることができるため、発電電動機の始動時の電磁騒音を低減して商品性を向上することができる効果がある。   According to the invention described in claim 4, in addition to the above-described effect, it is necessary to determine the magnetic pole position by determining that the occupant has an intention to start when the brake depression amount is equal to or less than the predetermined depression amount. Since the generator motor can be smoothly started by the forced commutation, and the internal combustion engine can be started by driving the generator motor, the electromagnetic noise at the start of the generator motor can be reduced and the merchantability can be improved. There is.

次に、この発明の第1の実施の形態を図面に基づいて説明する。この実施の形態による3相ブラシレスDCモータの制御装置10(以下、単に、モータ制御装置10と呼ぶ)は、例えばハイブリッド車両にエンジン11と共に駆動源として搭載される発電電動機であるブラシレスDCモータ12(以下、単に、モータ12と呼ぶ)を駆動制御するものであって、このモータ12は、界磁に利用する永久磁石を有するロータ(図示略)と、このロータを回転させる回転磁界を発生するステータ(図示略)とを備えて構成されている。また、モータ12はその駆動軸がエンジン(内燃機関)11のクランク軸と直結されており、発進クラッチ7とトランスミッションT(例えば、CVT:Continuously Variable Transmission)とを介して駆動輪Wに接続されている。前記モータ制御装置10は、例えば図1に示すように、パワードライブユニット(PDU)13と、ゲート信号生成部9と、バッテリ(蓄電器)14と、制御部15と、角度誤差算出部16と、オブザーバ17とを備えて構成されている。尚、前記エンジン11のクランク軸とモータ12の駆動軸とは直結されているためエンジン11とモータ12の各回転数は同一回転数となる。   Next, a first embodiment of the present invention will be described with reference to the drawings. A control device 10 (hereinafter simply referred to as a motor control device 10) for a three-phase brushless DC motor according to this embodiment includes, for example, a brushless DC motor 12 (which is a generator motor mounted as a drive source together with an engine 11 in a hybrid vehicle). Hereinafter, the motor 12 is simply driven and controlled. The motor 12 includes a rotor (not shown) having a permanent magnet used for a field and a stator that generates a rotating magnetic field that rotates the rotor. (Not shown). The motor 12 has a drive shaft directly connected to a crankshaft of the engine (internal combustion engine) 11 and is connected to the drive wheels W via a start clutch 7 and a transmission T (for example, CVT: Continuously Variable Transmission). Yes. For example, as shown in FIG. 1, the motor control device 10 includes a power drive unit (PDU) 13, a gate signal generation unit 9, a battery (capacitor) 14, a control unit 15, an angle error calculation unit 16, and an observer. 17. Since the crankshaft of the engine 11 and the drive shaft of the motor 12 are directly connected, the rotational speeds of the engine 11 and the motor 12 are the same.

このモータ制御装置10において、複数相(例えば、U相、V相、W相の3相)のモータ12の駆動および回生作動は制御部15から出力される制御指令を受けてパワードライブユニット(PDU)13により行われる。
PDU13は、例えばトランジスタのスイッチング素子を複数用いてブリッジ接続してなるブリッジ回路を具備するパルス幅変調(PWM)によるPWMインバータを備え、モータ12と電気エネルギーの授受を行う高圧系のバッテリ14が接続されている。
PDU13は、例えばモータ12の駆動時に、ゲート信号生成部9から出力される指令値(U相交流電圧指令値Vu,V相交流電圧指令値Vv,W相交流電圧指令値Vw)に基づき、バッテリ14から供給される直流電力を3相交流電力に変換し、3相のモータ12のステータ巻線への通電を順次転流させることで各電圧指令値Vu,Vv,Vwに応じたU相電流Iu及びV相電流Iv及びW相電流Iwをモータ12の各相へと出力する。
In this motor control device 10, the drive and regenerative operation of a motor 12 having a plurality of phases (for example, U-phase, V-phase, and W-phase) is received by a control command output from the control unit 15 and is a power drive unit (PDU). 13 is performed.
The PDU 13 includes, for example, a PWM inverter by pulse width modulation (PWM) having a bridge circuit formed by bridge connection using a plurality of switching elements of transistors, and is connected to a high-voltage battery 14 that exchanges electric energy with the motor 12. Has been.
The PDU 13 is a battery based on command values (U-phase AC voltage command value Vu, V-phase AC voltage command value Vv, W-phase AC voltage command value Vw) output from the gate signal generator 9 when the motor 12 is driven, for example. The U-phase current corresponding to each voltage command value Vu, Vv, and Vw is obtained by converting the DC power supplied from 14 into 3-phase AC power and sequentially commutating the energization of the stator windings of the 3-phase motor 12. Iu, V phase current Iv and W phase current Iw are output to each phase of motor 12.

ゲート信号生成部は9、制御部15と後述するエンジン制御部(FI)8に接続されており、通常は制御部15から出力される指令値をそのままPDU13に出力して、エンジン制御部8からの制御指令である短絡指令と転流指令とが出力された場合に、制御部15からのゲート信号を遮断してPDU13に対して予め設定された3相短絡制御用又は強制転流用の指令値を出力するようになっている。ここで、前者の3相短絡制動用の指令値は、PDU13のPWMインバータのハイサイドアーム又はローサイドアームの全てのインバータをON状態にするものである。一方、後者の強制転流用の指令値は、PDU13の3相の内の所定の2相にパターン通電を行いモータ12のロータを強制的に回転させ磁極位置を特定の位置に配置させるためのものである。   The gate signal generation unit 9 is connected to the control unit 15 and an engine control unit (FI) 8 to be described later. Usually, a command value output from the control unit 15 is output to the PDU 13 as it is, and the engine control unit 8 When a short-circuit command and a commutation command are output as control commands, a command value for three-phase short-circuit control or forced commutation preset for the PDU 13 by cutting off the gate signal from the control unit 15 is output. Is output. Here, the former command value for three-phase short circuit braking is to turn on all the inverters of the high side arm or the low side arm of the PWM inverter of the PDU 13. On the other hand, the latter command value for forced commutation is for energizing a predetermined two phases of the three phases of the PDU 13 to forcibly rotate the rotor of the motor 12 to place the magnetic pole position at a specific position. It is.

制御部15は、回転直交座標をなすdq座標上で電流のフィードバック制御を行うものであり、Id指令及びIq指令に基づいて各電圧指令値Vu,Vv,Vwを算出し、PDU13へパルス幅変調信号を入力すると共に、実際にPDU13からモータ12に供給される各相電流Iu,Iv,Iwをdq座標上に変換して得たd軸電流Id及びq軸電流Iqと、Id指令及びIq指令との各偏差がゼロとなるように制御を行う。
この制御部15は、例えば、電流指令入力部21と、減算器22,23と、電流フィードバック制御部24と、dq−3相変換部25と、3相−dq変換部26とを備えて構成されている。
The control unit 15 performs current feedback control on the dq coordinate forming the rotation orthogonal coordinate, calculates each voltage command value Vu, Vv, Vw based on the Id command and the Iq command, and applies pulse width modulation to the PDU 13. While inputting a signal, the d-axis current Id and the q-axis current Iq obtained by converting the phase currents Iu, Iv, and Iw actually supplied from the PDU 13 to the motor 12 on the dq coordinate, the Id command and the Iq command Control is performed so that each deviation becomes zero.
The control unit 15 includes, for example, a current command input unit 21, subtractors 22 and 23, a current feedback control unit 24, a dq-3 phase conversion unit 25, and a three phase-dq conversion unit 26. Has been.

エンジン制御部8は、アクセル開度(ACC)センサ、ブレーキ(BRK)センサ、エンジン回転数(Ne)センサが接続され、例えば、アクセルペダルの踏み込み操作に関するアクセル操作量、エンジン回転数、ブレーキの踏込み量に基づいて必要とされるトルク値を演算し、この演算したトルク値のうちモータ12に発生させる分をトルク指令として電流指令入力部21に出力している。さらに、エンジン制御部8は、ゲート信号生成部9に接続され、アクセル開度センサ、ブレーキセンサ、エンジン回転数センサの検出結果に基づいて、制御指令としての短絡指令と転流指令とを出力している。尚、図示都合上、エンジン制御部8とエンジン11、各種制御部との接続を省略する。   The engine control unit 8 is connected to an accelerator opening (ACC) sensor, a brake (BRK) sensor, and an engine speed (Ne) sensor. For example, an accelerator operation amount related to an accelerator pedal depression operation, an engine speed, and a brake depression A required torque value is calculated based on the amount, and a portion of the calculated torque value to be generated by the motor 12 is output to the current command input unit 21 as a torque command. Further, the engine control unit 8 is connected to the gate signal generation unit 9 and outputs a short-circuit command and a commutation command as control commands based on detection results of the accelerator opening sensor, the brake sensor, and the engine speed sensor. ing. For convenience of illustration, connection between the engine control unit 8 and the engine 11 and various control units is omitted.

電流指令入力部21は、エンジン制御部8からのトルク指令に基づき、PDU13からモータ12に供給する各相電流Iu,Iv,Iwを指定するための電流指令を演算しており、この電流指令は、回転する直交座標上でのId指令及びIq指令として減算器22,23へ出力されている。
この回転直交座標をなすdq座標は、例えばロータの永久磁石による界磁極の磁束方向をd軸(界磁軸)とし、このd軸と直交する方向をq軸(トルク軸)としており、モータ12のロータ(図示略)と共に同期して電気角速度ω(以下、単に、回転角速度ωと呼ぶ)で回転している。これにより、PDU13からモータ12の各相に供給される交流信号に対する電流指令として、直流的な信号であるId指令及びIq指令を与えるようになっている。
The current command input unit 21 calculates a current command for designating each phase current Iu, Iv, Iw to be supplied from the PDU 13 to the motor 12 based on the torque command from the engine control unit 8. The Id command and the Iq command on the rotating orthogonal coordinates are output to the subtracters 22 and 23.
The dq coordinates forming the rotation orthogonal coordinates are, for example, a field magnetic flux direction of a permanent magnet of the rotor as a d axis (field axis), and a direction orthogonal to the d axis as a q axis (torque axis). , And an electric angular velocity ω (hereinafter simply referred to as a rotational angular velocity ω). As a result, an Id command and an Iq command, which are DC signals, are given as current commands for an AC signal supplied from the PDU 13 to each phase of the motor 12.

減算器22はId指令とd軸電流Idとの偏差ΔIdを算出し、減算器23はIq指令とq軸電流Iqとの偏差ΔIqを算出する。各減算器22,23から出力された偏差ΔId及び偏差ΔIqは、電流フィードバック制御部24に入力されている。
電流フィードバック制御部24は、例えばPI(比例積分)動作により、偏差ΔIdを制御増幅してd軸電圧指令値Vdを算出し、偏差ΔIqを制御増幅してq軸電圧指令値Vqを算出する。電流フィードバック制御部24から出力されるd軸電圧指令値Vd及びq軸電圧指令値Vqはdq−3相変換部25に入力されている。
The subtractor 22 calculates a deviation ΔId between the Id command and the d-axis current Id, and the subtractor 23 calculates a deviation ΔIq between the Iq command and the q-axis current Iq. The deviations ΔId and ΔIq output from the subtracters 22 and 23 are input to the current feedback control unit 24.
The current feedback control unit 24 controls and amplifies the deviation ΔId to calculate the d-axis voltage command value Vd, for example, by PI (proportional integration) operation, and controls and amplifies the deviation ΔIq to calculate the q-axis voltage command value Vq. The d-axis voltage command value Vd and the q-axis voltage command value Vq output from the current feedback control unit 24 are input to the dq-3 phase conversion unit 25.

dq−3相変換部25は、後述するオブザーバ17から入力されるロータの回転角度に対する推定回転角度θ^を用いて、dq座標上でのd軸電圧指令値Vd及びq軸電圧指令値Vqを、静止座標である3相交流座標上でのU相交流電圧指令値Vu及びV相交流電圧指令値Vv及びW相交流電圧指令値Vwに変換する。
dq−3相変換部25から出力される各電圧指令値Vu,Vv,Vwは、PDU13のスイッチング素子をオン/オフさせるためのスイッチング指令(例えば、パルス幅変調信号)として前述したゲート信号生成部9を介してPDU13に入力されている。
The dq-3 phase conversion unit 25 uses the estimated rotation angle θ ^ with respect to the rotor rotation angle input from the observer 17 described later, to calculate the d-axis voltage command value Vd and the q-axis voltage command value Vq on the dq coordinate. The U-phase AC voltage command value Vu, the V-phase AC voltage command value Vv, and the W-phase AC voltage command value Vw on the three-phase AC coordinates that are stationary coordinates are converted.
The voltage command values Vu, Vv, Vw output from the dq-3 phase converter 25 are the gate signal generator described above as a switching command (for example, a pulse width modulation signal) for turning on / off the switching element of the PDU 13. 9 is input to the PDU 13.

3相−dq変換部26は、後述するオブザーバ17から入力されるロータの回転角度に対する推定回転角度θ^を用いて、静止座標上における電流である各相電流Iu,Iv,Iwを、モータ12の回転位相による回転座標すなわちdq座標上でのd軸電流Id及びq軸電流Iqに変換する。このため、3相−dq変換部26には、モータ12の各相のステータ巻線に供給される各相電流Iu,Iv,Iwを検出する少なくとも2つの相電流検出器27,27から出力される検出値(例えば、U相電流Iu,W相電流Iw)が入力されている。そして、3相−dq変換部26から出力されるd軸電流Id及びq軸電流Iqは減算器22,23に出力されている。   The three-phase-dq converter 26 converts the phase currents Iu, Iv, Iw, which are currents on the stationary coordinates, to the motor 12 using the estimated rotational angle θ ^ with respect to the rotational angle of the rotor input from the observer 17 described later. Are converted into a d-axis current Id and a q-axis current Iq on a rotation coordinate, that is, a dq coordinate. For this reason, the three-phase-dq converter 26 outputs the phase currents Iu, Iv, Iw supplied to the stator windings of the respective phases of the motor 12 from at least two phase current detectors 27, 27. Detection values (for example, U-phase current Iu, W-phase current Iw) are input. The d-axis current Id and the q-axis current Iq output from the three-phase-dq conversion unit 26 are output to the subtracters 22 and 23.

角度誤差算出部16は、ロータの回転角度に対する推定回転角度θ^と実回転角度θとの角度差θe(=θ−θ^)が相対的に小さい値である場合に角度差θeを正弦値sinθeで近似可能(θe≒sinθe)であることを利用して、例えばdq軸演算モデルによる回路方程式に含まれる角度差θeの正弦値sinθeおよび余弦値cosθeに基づき角度差θeを算出し、オブザーバ17へ出力する。
この角度誤差算出部16は、例えば、モデル演算部31と、角速度状態量算出部32と、正規化部33とを備えて構成されている。
The angle error calculation unit 16 calculates the angle difference θe as a sine value when the angle difference θe (= θ−θ ^) between the estimated rotation angle θ ^ relative to the rotation angle of the rotor and the actual rotation angle θ is a relatively small value. By utilizing the fact that approximation by sin θe is possible (θe≈sin θe), for example, the angle difference θe is calculated based on the sine value sin θe and the cosine value cos θe of the angle difference θe included in the circuit equation by the dq axis calculation model, and the observer 17 Output to.
The angle error calculation unit 16 includes, for example, a model calculation unit 31, an angular velocity state quantity calculation unit 32, and a normalization unit 33.

モデル演算部31は、電流フィードバック制御部24から出力されるd軸電圧指令値Vd及びq軸電圧指令値Vqと、3相−dq変換部26から出力されるd軸電流Id及びq軸電流Iqとに基づき、例えば下記数式(1)に示すように記述されるdq座標上での回路方程式により、角度差θeの正弦値sinθeおよび余弦値cosθeからなる誘起電圧の正弦成分Vs及び余弦成分Vcを算出する。なお、下記数式(1)において、ωはロータの回転角速度、Keは誘起電圧定数、rは相抵抗値、Lはインダクタンス成分値である。   The model calculation unit 31 includes a d-axis voltage command value Vd and a q-axis voltage command value Vq output from the current feedback control unit 24, and a d-axis current Id and a q-axis current Iq output from the three-phase-dq conversion unit 26. Based on the above, the sine component Vs and the cosine component Vc of the induced voltage composed of the sine value sin θe and the cosine value cos θe of the angle difference θe are expressed by the circuit equation on the dq coordinate described as shown in the following formula (1), for example. calculate. In Equation (1) below, ω is the rotational angular velocity of the rotor, Ke is the induced voltage constant, r is the phase resistance value, and L is the inductance component value.

Figure 2006288051
Figure 2006288051

角速度状態量算出部32は、後述する正規化部33での正規化処理にて用いる回転角速度ωに比例する状態量として、例えば下記数式(2)に示すように、回転角速度ωと誘起電圧定数Keとを乗算して得た値(ωKe)を、モデル演算部31にて算出される誘起電圧の正弦成分Vsおよび余弦成分Vcに基づき算出し、正規化部33へ出力する。
図2に示すように、
The angular velocity state quantity calculation unit 32 uses a rotation angular velocity ω and an induced voltage constant as a state quantity proportional to the rotation angular velocity ω used in the normalization process in the normalization unit 33 described later, for example, as shown in the following formula (2). A value (ωKe) obtained by multiplying Ke is calculated based on the sine component Vs and cosine component Vc of the induced voltage calculated by the model calculation unit 31, and is output to the normalization unit 33.
As shown in FIG.

Figure 2006288051
Figure 2006288051

正規化部33は、モデル演算部31にて算出される誘起電圧の正弦成分Vsを、角速度状態量算出部32にて算出される回転角速度ωに比例する状態量(例えば、ωKe)によって除算することで角度差θeに近似される角度差近似値(−Vs/(Vs2+Vc2)1/2≒θe)を算出し、オブザーバ17へ入力する。
すなわち、角度差θeに回転角速度ω及び誘起電圧定数Keを乗算して得た値として角度差推定値θesを設定すると、この角度差推定値θesは、上記数式(1)での誘起電圧の正弦成分Vsにおいて、正弦値sinθeを角度差θeで近似(θe≒sinθe)し、さらに、相抵抗値rによる電圧降下を無視して、例えば下記数式(3)に示すように記述される。
The normalization unit 33 divides the sine component Vs of the induced voltage calculated by the model calculation unit 31 by a state quantity (for example, ω Ke) proportional to the rotational angular velocity ω calculated by the angular velocity state quantity calculation unit 32. Thus, an angle difference approximate value approximated to the angle difference θe (−Vs / (Vs2 + Vc2) 1 / 2≈θe) is calculated and input to the observer 17.
That is, when the angle difference estimated value θes is set as a value obtained by multiplying the angle difference θe by the rotational angular velocity ω and the induced voltage constant Ke, the angle difference estimated value θes is the sine of the induced voltage in the above equation (1). In the component Vs, the sinusoidal value sin θe is approximated by the angle difference θe (θe≈sin θe), and the voltage drop due to the phase resistance value r is ignored, for example, as shown in the following formula (3).

Figure 2006288051
Figure 2006288051

ここで、上記数式(3)において、例えばインダクタンス成分値Lに誤差ΔLがあると、角度差推定値θesは、例えば下記数式(4)に示すように記述され、たとえ角度差θeが一定値であっても、回転角速度ωに比例して誤差が増大することになる。
すなわち、下記数式(4)において、誤差ΔLを含む項(ωΔLIq)は、角度差θeがゼロのときの角度差推定値θesの誤差であって、回転角速度ωに比例して増大する。このため、モータ12の相対的に高回転状態においては、モータ12の相対的に低回転状態に比べて、角度差推定値θesの誤差が増大する。
Here, in the above equation (3), for example, if there is an error ΔL in the inductance component value L, the angle difference estimated value θes is described as shown in the following equation (4), for example, and the angle difference θe is a constant value. Even so, the error increases in proportion to the rotational angular velocity ω.
That is, in the following mathematical formula (4), the term (ωΔLIq) including the error ΔL is an error of the angle difference estimated value θes when the angle difference θe is zero, and increases in proportion to the rotational angular velocity ω. For this reason, in the relatively high rotation state of the motor 12, the error of the estimated angle difference value θes increases compared to the relatively low rotation state of the motor 12.

Figure 2006288051
Figure 2006288051

ここで、上記数式(4)による角度差推定値θesを、回転角速度ωに比例する値ωK(Kは任意の定数)で除算すると、下記数式(5)に示すように、角度差推定値θesの誤差が回転角速度ωに依存しない値となる。   Here, when the estimated angle difference value θes according to the above equation (4) is divided by a value ωK (K is an arbitrary constant) proportional to the rotational angular velocity ω, as shown in the following equation (5), the estimated angle difference value θes. The error is a value that does not depend on the rotational angular velocity ω.

Figure 2006288051
Figure 2006288051

このため、オブザーバ17は、上記数式(5)に示すように角度差推定値θesに近似される誘起電圧の正弦成分Vsを、上記数式(2)に示すように角速度状態量算出部32にて算出される回転角速度ωに比例する状態量(例えば、ωKe)によって除算して得た値(Vs/(Vs2+Vc2)1/2)、つまり角度差θeに近似される角度差近似値(−Vs/(Vs2+Vc2)1/2≒θe)を追従演算処理に対する入力値とする。そして、オブザーバ17は、例えば下記数式(6)に示すように、この入力値(つまり角度差θe)をゼロに収束させるようにして追従演算処理を行うことによって、推定回転角度θ^を逐次更新しつつ算出し、推定回転角度θ^の収束値を制御部15のdq−3相変換部25および3相−dq変換部26へ出力する。ここで、オブザーバ17は、角度差補正部34を有しており、この角度差補正部34は角度差の余弦成分Vcが負の値である時にこの角度差θeを補正すると共に、角度差θeの正弦成分Vs及び余弦成分Vcの各絶対値の大小関係に応じて前記角度差θeを補正する。   Therefore, the observer 17 uses the angular velocity state quantity calculation unit 32 to generate the sine component Vs of the induced voltage approximated to the estimated angle difference value θes as shown in the equation (5), as shown in the equation (2). A value (Vs / (Vs2 + Vc2) 1/2) obtained by dividing by a state quantity (for example, ωKe) proportional to the calculated rotational angular velocity ω, that is, an angle difference approximation value (−Vs / Let (Vs2 + Vc2) 1 / 2≈θe) be an input value for the follow-up calculation process. Then, the observer 17 sequentially updates the estimated rotation angle θ ^ by performing the follow-up calculation process so that the input value (that is, the angle difference θe) converges to zero, for example, as shown in the following formula (6). The convergence value of the estimated rotation angle θ ^ is output to the dq-3 phase conversion unit 25 and the 3 phase-dq conversion unit 26 of the control unit 15. Here, the observer 17 includes an angle difference correction unit 34. The angle difference correction unit 34 corrects the angle difference θe when the cosine component Vc of the angle difference is a negative value, and the angle difference θe. The angle difference θe is corrected in accordance with the magnitude relationship between the absolute values of the sine component Vs and the cosine component Vc.

下記数式(6)において、nは所定時間周期Δtにて繰り返し実行される追従演算処理の実行回数を示す任意の自然数であり、K1は推定回転角度θ^に係る制御ゲイン(フィードバックゲイン)であり、K2は回転角速度推定値ω^に係る制御ゲイン(フィードバックゲイン)であり、K〜は正負の符号を含む適宜の比例係数である。
また、下記数式(6)において、offsetは、例えばモータ12の相対的に低回転状態おいて、あるいは、例えば実回転角度θを算出する際等において適宜に設定されるロータの回転角度である。
In the following mathematical formula (6), n is an arbitrary natural number indicating the number of times of the follow-up calculation process repeatedly executed at a predetermined time period Δt, and K1 is a control gain (feedback gain) related to the estimated rotation angle θ ^. , K2 is a control gain (feedback gain) related to the estimated rotational angular velocity value ω ^, and K˜ is an appropriate proportional coefficient including a positive / negative sign.
Further, in the following mathematical formula (6), offset is a rotation angle of the rotor that is appropriately set, for example, when the motor 12 is in a relatively low rotation state or when, for example, the actual rotation angle θ is calculated.

Figure 2006288051
Figure 2006288051

第1の実施の形態によるモータ制御装置10は上記構成を備えており、次に、このモータ制御装置10の動作、特に、車両が停止する際のモータ制動制御処理について図2〜図4を参照しながら説明する。
まずステップS1ではアクセルがOFFか否かを判定する。判定結果が「YES」(アクセルOFF)である場合はステップS2に進み、判定結果が「NO」(アクセルON)である場合は乗員の停止意思がないものとしてモータ制動制御処理を終了する。ステップS2では、ブレーキがON状態か否かを判定する。判定結果が「YES」(ブレーキON)である場合はステップS3に進み、判定結果が「NO」(ブレーキOFF)である場合はステップS8に進む。
The motor control device 10 according to the first embodiment has the above-described configuration. Next, refer to FIGS. 2 to 4 for the operation of the motor control device 10, particularly, the motor braking control process when the vehicle stops. While explaining.
First, in step S1, it is determined whether or not the accelerator is OFF. If the determination result is “YES” (accelerator OFF), the process proceeds to step S2, and if the determination result is “NO” (accelerator ON), the motor braking control process is terminated assuming that there is no intention of the passenger to stop. In step S2, it is determined whether or not the brake is on. If the determination result is “YES” (brake ON), the process proceeds to step S3, and if the determination result is “NO” (brake OFF), the process proceeds to step S8.

ステップS3では、エンジン回転数Neが所定の回転数N1(例えば、750rpm程度)よりも小さいか否かを判定する。判定結果が「YES」(Ne<N1)である場合はステップS4に進み、判定結果が「NO」(Ne≧N1)である場合はステップS8に進む。ステップS4ではエンジン回転数Neが所定の回転数N2(例えば、400rpm程度)よりも小さいか否かを判定する。判定結果が「YES」(Ne<N2)である場合はステップS5に進み、判定結果が「NO」(Ne≧N2)である場合はステップS7に進む。ここで、前記回転数N1は回転数N2よりも大きい回転数が設定されている。   In step S3, it is determined whether or not the engine speed Ne is smaller than a predetermined speed N1 (for example, about 750 rpm). If the determination result is “YES” (Ne <N1), the process proceeds to step S4, and if the determination result is “NO” (Ne ≧ N1), the process proceeds to step S8. In step S4, it is determined whether or not the engine speed Ne is smaller than a predetermined speed N2 (for example, about 400 rpm). If the determination result is “YES” (Ne <N2), the process proceeds to step S5, and if the determination result is “NO” (Ne ≧ N2), the process proceeds to step S7. Here, the rotational speed N1 is set to be larger than the rotational speed N2.

ステップS5ではモータの3相短絡制御を行いステップS6に進む。ステップS6では停止制御用トルクであるエンジンを停止するために最低限必要なモータトルクの演算値(以下、単にトルク演算値と略す)ESR_TRQを0に設定してモータ制動制御処理を終了する。ここで、3相短絡制御ではエンジンを停止させるためのモータトルクを必要としないため、前記トルク演算値ESR_TRQを初期値である0に設定している。   In step S5, three-phase short circuit control of the motor is performed and the process proceeds to step S6. In step S6, a minimum motor torque calculation value (hereinafter simply abbreviated as a torque calculation value) ESR_TRQ necessary for stopping the engine, which is the stop control torque, is set to 0, and the motor braking control process is terminated. Here, since the motor torque for stopping the engine is not required in the three-phase short-circuit control, the torque calculation value ESR_TRQ is set to 0 which is an initial value.

ステップS7では、センサレスエンジン停止回生処理を行ってモータ制動制御処理を終了する。ステップS8では通常の回生制御を行い、ステップS9で前述したステップS6と同様にトルク演算値ESR_TRQを0に設定し、モータ制動制御処理を終了する。ここで、前記ステップS8の通常の回生制御は、モータ回転時にこのモータが発生する誘起電圧の変化に基づいてロータの磁極位置を判別するセンサレス制御によって行われるものである。   In step S7, a sensorless engine stop regeneration process is performed and the motor braking control process is terminated. In step S8, normal regenerative control is performed. In step S9, the torque calculation value ESR_TRQ is set to 0 in the same manner as in step S6 described above, and the motor braking control process is terminated. Here, the normal regenerative control in step S8 is performed by sensorless control that determines the magnetic pole position of the rotor based on a change in the induced voltage generated by the motor when the motor rotates.

ステップS10ではエンジン制御部側からのモータへの指令トルク(以下、単に指令トルクと略す)QTARが、短絡制動トルクである3相短絡制御を行った時のモータの発生トルク(以下、単に短絡トルクと略す)SH_TRQよりも大きいか否かを判定する。判定結果が「YES」(QTAR>ESR_TRQ)である場合はステップS11に進み、判定結果が「NO」(QTAR≦ESR_TRQ)である場合はステップS17に進む。ここで、前記短絡トルクSH_TRQは、例えば図11に示すように、エンジン回転数(rpm:横軸)が減少するにつれて低トルク状態から高トルク状態にトルク(Nm:縦軸)が変移し、再び低トルク状態になり、最終的にエンジン回転数が0となると0トルクになる。このトルク値の変移はモータ毎の固有のものであるが、エンジンの停止時には、エンジンとこれを支持するエンジンマウントとの振動の共振点近傍で短絡トルクSH_TRQによる制動力が最大になるようになっている。よって、エンジンとエンジンマウントとの共振点を短時間で通過することができる。   In step S10, the command torque (hereinafter simply referred to as command torque) QTAR from the engine control unit side is the torque generated by the motor when the three-phase short-circuit control, which is a short-circuit braking torque, is performed (hereinafter simply referred to as short-circuit torque). It is determined whether or not it is larger than SH_TRQ. When the determination result is “YES” (QTAR> ESR_TRQ), the process proceeds to step S11, and when the determination result is “NO” (QTAR ≦ ESR_TRQ), the process proceeds to step S17. Here, as shown in FIG. 11, for example, as shown in FIG. 11, the short-circuit torque SH_TRQ causes the torque (Nm: vertical axis) to shift from the low torque state to the high torque state as the engine speed (rpm: horizontal axis) decreases. When the low torque state is reached and the engine speed finally becomes zero, the torque becomes zero. This change in torque value is unique to each motor, but when the engine is stopped, the braking force by the short-circuit torque SH_TRQ becomes maximum near the resonance point of vibration between the engine and the engine mount that supports the engine. ing. Therefore, the resonance point between the engine and the engine mount can be passed in a short time.

前記短絡トルクSH_TRQは、下記数式(7)を用いて算出することができる。尚、下記数式(7)において、Tは短絡トルク、Rは相抵抗、ωは電気角速度、Keは誘起電圧定数、LdとLqとはそれぞれ界磁軸とトルク軸とのインダクタンス成分値である。   The short-circuit torque SH_TRQ can be calculated using the following formula (7). In the following formula (7), T is a short-circuit torque, R is a phase resistance, ω is an electrical angular velocity, Ke is an induced voltage constant, and Ld and Lq are inductance component values of the field axis and the torque axis, respectively.

Figure 2006288051
Figure 2006288051

ステップS11では、指令トルクQTARがトルク演算値ESR_TRQよりも大きいか否かを判定する。判定結果が「YES」(QTAR>ESR_TRQ)である場合はステップS12に進み、判定結果が「NO」(QTAR≦ESR_TRQ)である場合はステップS13に進む。   In step S11, it is determined whether or not the command torque QTAR is larger than the torque calculation value ESR_TRQ. When the determination result is “YES” (QTAR> ESR_TRQ), the process proceeds to step S12, and when the determination result is “NO” (QTAR ≦ ESR_TRQ), the process proceeds to step S13.

ステップS12では指令トルクQTARの現在値をトルク演算値ESR_TRQの値として設定しステップS16に進む。ステップS13では、トルク演算値ESR_TRQの減算処理を行いステップS14に進む。ステップS14ではトルク演算値ESR_TRQが短絡トルクSH_TRQから所定トルクα(例えば、2〜3Nm)だけ減算したものよりも小さいか否かを判定する。判定結果が「YES」(ESR_TRQ<SH_TRQ−α)である場合はステップS15に進み、判定結果が「NO」(ESR_TRQ≧SH_TRQ−α)である場合はステップS16に進む。   In step S12, the current value of the command torque QTAR is set as the value of the torque calculation value ESR_TRQ, and the process proceeds to step S16. In step S13, the torque calculation value ESR_TRQ is subtracted, and the process proceeds to step S14. In step S14, it is determined whether or not the torque calculation value ESR_TRQ is smaller than a value obtained by subtracting a predetermined torque α (for example, 2 to 3 Nm) from the short-circuit torque SH_TRQ. When the determination result is “YES” (ESR_TRQ <SH_TRQ−α), the process proceeds to step S15, and when the determination result is “NO” (ESR_TRQ ≧ SH_TRQ−α), the process proceeds to step S16.

ステップS15では短絡トルクSH_TRQのトルク値をトルク演算値ESR_TRQのトルク値として設定しステップS16に進む。ステップS16ではトルク演算値ESR_TRQのトルク値をモータ制御用指令トルクCommand_TRQに設定してメインフローにリターンする。   In step S15, the torque value of the short-circuit torque SH_TRQ is set as the torque value of the torque calculation value ESR_TRQ, and the process proceeds to step S16. In step S16, the torque value of the torque calculation value ESR_TRQ is set to the motor control command torque Command_TRQ, and the process returns to the main flow.

ステップS17では指令トルクQTARがトルク演算値ESR_TRQよりも大きいか否かを判定する。判定結果が「YES」(QTAR>ESR_TRQ)である場合はステップS18に進み、判定結果が「NO」(QTAR≦ESR_TRQ)である場合はステップS19に進む。ステップS18では指令トルクQTARをトルク演算値ESR_TRQに設定してステップS16に進み前述した処理を行う。   In step S17, it is determined whether or not the command torque QTAR is larger than the torque calculation value ESR_TRQ. If the determination result is “YES” (QTAR> ESR_TRQ), the process proceeds to step S18, and if the determination result is “NO” (QTAR ≦ ESR_TRQ), the process proceeds to step S19. In step S18, the command torque QTAR is set to the torque calculation value ESR_TRQ, and the process proceeds to step S16 to perform the above-described processing.

ステップS19ではトルク演算値ESR_TRQが短絡トルクSH_TRQよりも小さいか否かを判定する。判定結果が「YES」(ESR_TRQ<SH_TRQ)である場合はステップS18に進み、判定結果が「NO」(ESR_TRQ≧SH_TRQ)である場合はステップS20に進む。   In step S19, it is determined whether or not the torque calculation value ESR_TRQ is smaller than the short circuit torque SH_TRQ. When the determination result is “YES” (ESR_TRQ <SH_TRQ), the process proceeds to step S18, and when the determination result is “NO” (ESR_TRQ ≧ SH_TRQ), the process proceeds to step S20.

ステップS20ではトルク演算値ESR_TRQの加算処理を行いステップS21に進む。ステップS21ではトルク演算値ESR_TRQが短絡トルクSH_TRQに所定トルクαを加算したものよりも大きいか否かを判定する。判定結果が「YES」(ESR_TRQ>SH_TRQ+α)である場合はステップS22に進み、判定結果が「NO」(ESR_TRQ≦SH_TRQ+α)である場合はステップS16に進み前述した処理を行う。ステップS22ではトルク演算値ESR_TRQに短絡トルクSH_TRQを設定してステップS16に進み前述した処理を行う。   In step S20, the torque calculation value ESR_TRQ is added, and the process proceeds to step S21. In step S21, it is determined whether or not the torque calculation value ESR_TRQ is larger than a value obtained by adding the predetermined torque α to the short-circuit torque SH_TRQ. If the determination result is “YES” (ESR_TRQ> SH_TRQ + α), the process proceeds to step S22. If the determination result is “NO” (ESR_TRQ ≦ SH_TRQ + α), the process proceeds to step S16 and the above-described processing is performed. In step S22, the short circuit torque SH_TRQ is set to the torque calculation value ESR_TRQ, and the process proceeds to step S16 to perform the above-described processing.

すなわち、上述したモータ制動制御処理においては、車両走行中にアクセル及びブレーキの状態によって乗員の加速意思、停車意思を判断し(ステップS1、ステップS2)、ブレーキペダルが踏み込まれていないか、或いは、ブレーキペダルが踏込まれていたとしてもエンジン回転数Neが所定の回転数N1よりも高い高回転領域にある場合には通常のセンサレス制御によりモータの回生制御を行う(ステップS8)。   That is, in the motor braking control process described above, the occupant's intention to accelerate and stop is determined according to the accelerator and brake states during vehicle travel (step S1, step S2), or the brake pedal is not depressed, or Even if the brake pedal is depressed, if the engine rotational speed Ne is in a high rotational speed region higher than the predetermined rotational speed N1, regeneration control of the motor is performed by normal sensorless control (step S8).

そして、乗員によってブレーキが踏み込まれると(ステップS2でYES)、エンジン回転数Neが徐々に低下するが、このエンジン回転数Neが回転数N1から回転数N2の間の回転領域に入った時点で(ステップS3、ステップS4でYES)、3相短絡制御への切替え時に発生するトルク段差を抑制する処理として、トルク演算値ESR_TRQを短絡トルクSH_TRQに近づける処理(ステップS7)を行う。   When the brake is depressed by the occupant (YES in step S2), the engine speed Ne gradually decreases, but when the engine speed Ne enters a rotation region between the speed N1 and the speed N2. (YES in step S3 and step S4) As a process for suppressing the torque step generated when switching to the three-phase short circuit control, a process (step S7) for bringing the torque calculation value ESR_TRQ closer to the short circuit torque SH_TRQ is performed.

具体的には、前述したようにトルク演算値ESR_TRQが初期値の0であるため、指令トルクQTARが短絡トルクSH_TRQよりも大きい場合には(ステップS10でYES)、指令トルクQTARよりもトルク演算値ESR_TRQが大きくなるため(ステップS11でYES)、トルク演算値ESR_TRQにこれよりも短絡トルクに近い指令トルクQTARを設定して(ステップS12)トルク演算値ESR_TRQを短絡トルクSH_TRQに近づける。   Specifically, since torque calculation value ESR_TRQ is the initial value 0 as described above, when command torque QTAR is larger than short-circuit torque SH_TRQ (YES in step S10), torque calculation value is larger than command torque QTAR. Since ESR_TRQ becomes large (YES in step S11), a command torque QTAR closer to the short circuit torque is set to the torque calculation value ESR_TRQ (step S12), and the torque calculation value ESR_TRQ is brought close to the short circuit torque SH_TRQ.

その後、トルク演算値ESR_TRQを減算処理によって徐々に短絡トルクSH_TRQに近づけて(ステップS13)、このトルク演算値ESR_TRQが短絡トルクSH_TRQから所定トルクαを減算したものよりも低いトルク範囲に入った時点で(ステップS14でYES)トルク演算値ESR_TRQを短絡トルクSH_TRQに完全に一致させる(ステップS15)。   Thereafter, the torque calculation value ESR_TRQ is gradually brought closer to the short-circuit torque SH_TRQ by subtraction processing (step S13), and when the torque calculation value ESR_TRQ enters a lower torque range than the value obtained by subtracting the predetermined torque α from the short-circuit torque SH_TRQ. (YES in step S14) The torque calculation value ESR_TRQ is completely matched with the short-circuit torque SH_TRQ (step S15).

一方、指令トルクQTARが短絡トルクSH_TRQ以下である場合には(ステップS10でNO)、トルク演算値ESR_TRQよりも指令トルクQTARが小さくなり、さらに、トルク演算値ESR_TRQよりも短絡トルクSH_TRQが小さくなる(ステップS17でNO、ステップS19でYES)。そのため、初期値の0に設定されたトルク演算値ESR_TRQに対して初期のトルク合わせとして指令トルクQTARを設定する(ステップS18)。ここで、指令トルクQTARは、トルク演算値ESR_TRQよりも短絡トルクSH_TRQ寄りに位置するためトルク演算値ESR_TRQが短絡トルクSH_TRQに近づくこととなる。   On the other hand, when the command torque QTAR is equal to or less than the short circuit torque SH_TRQ (NO in step S10), the command torque QTAR is smaller than the torque calculation value ESR_TRQ, and further, the short circuit torque SH_TRQ is smaller than the torque calculation value ESR_TRQ ( NO in step S17, YES in step S19). Therefore, the command torque QTAR is set as the initial torque matching with respect to the torque calculation value ESR_TRQ set to the initial value 0 (step S18). Here, since the command torque QTAR is located closer to the short circuit torque SH_TRQ than the torque calculation value ESR_TRQ, the torque calculation value ESR_TRQ approaches the short circuit torque SH_TRQ.

そして、このトルク演算値ESR_TRQは短絡トルクSH_TRQよりも小さくなるため、加算処理で増加させて(ステップS20)、短絡トルクSH_TRQに所定トルクαを加算したものよりも大きいトルク範囲に入った時点で(ステップS21でYES)トルク演算値ESR_TRQの加算処理を停止してトルク演算値ESR_TRQに短絡トルクSH_TRQを設定して(ステップS22)トルク演算値ESR_TRQと短絡トルクSH_TRQに完全に一致させる。尚、エンジン回転数Neが回転数N2を下回るまでは通常の回生制御は継続して行われる。   Since this torque calculation value ESR_TRQ is smaller than the short-circuit torque SH_TRQ, it is increased by the addition process (step S20), and enters a torque range larger than the value obtained by adding the predetermined torque α to the short-circuit torque SH_TRQ ( In step S21, the process of adding the torque calculation value ESR_TRQ is stopped, and the short-circuit torque SH_TRQ is set to the torque calculation value ESR_TRQ (step S22) to completely match the torque calculation value ESR_TRQ and the short-circuit torque SH_TRQ. The normal regeneration control is continued until the engine speed Ne falls below the speed N2.

次に、図5〜図7に基づいて車両停車時のアイドル停止判定処理について説明する。
まず、ステップS30ではアクセルがOFFか否かを判定する。判定結果が「YES」(アクセルOFF)である場合はステップS31に進み、判定結果が「NO」(アクセルON)である場合はステップS44に進む。ステップS31ではブレーキがONか否かを判定する。判定結果が「YES」(ブレーキON)である場合はステップS32に進み、判定結果が「NO」(ブレーキOFF)である場合はステップS44に進む。
Next, an idle stop determination process when the vehicle is stopped will be described with reference to FIGS.
First, in step S30, it is determined whether or not the accelerator is OFF. When the determination result is “YES” (accelerator OFF), the process proceeds to step S31, and when the determination result is “NO” (accelerator ON), the process proceeds to step S44. In step S31, it is determined whether or not the brake is ON. If the determination result is “YES” (brake ON), the process proceeds to step S32. If the determination result is “NO” (brake OFF), the process proceeds to step S44.

ステップS32ではエンジン回転数Neが予め設定された所定の回転数N2よりも小さいか否かを判定する。判定結果が「YES」(Ne<N2)である場合はステップS33に進み、判定結果が「NO」(Ne≧N2)である場合はステップS42に進む。ステップS33では発進クラッチがオフ時のアイドル制御を行う。ステップS34ではブレーキ踏力が予め設定された踏力Pbks1よりも大きいか否かを判定する。判定結果が「YES」(ブレーキ踏力>Pbks1)である場合はステップS35に進み、判定結果が「NO」(ブレーキ踏力≦Pbks1)である場合はアイドル停止判定処理を終了する。ここで、前記踏力Pbks1は、乗員の停車意思を判定するための閾値である。   In step S32, it is determined whether or not the engine rotational speed Ne is smaller than a predetermined rotational speed N2. If the determination result is “YES” (Ne <N2), the process proceeds to step S33, and if the determination result is “NO” (Ne ≧ N2), the process proceeds to step S42. In step S33, idle control is performed when the starting clutch is off. In step S34, it is determined whether or not the brake pedal force is greater than a preset pedal force Pbks1. If the determination result is “YES” (brake pedal force> Pbks1), the process proceeds to step S35. If the determination result is “NO” (brake pedal force ≦ Pbks1), the idling stop determination process is terminated. Here, the pedaling force Pbks1 is a threshold value for determining the occupant's intention to stop.

ステップS35ではタイマーをスタートさせ、ステップS36では再びブレーキ踏力が踏力Pbks1よりも大きいか否かを判定する。判定結果が「YES」(ブレーキ踏力>Pbks1)である場合はステップS37に進み、判定結果が「NO」(ブレーキ踏力≦Pbks1)である場合はステップS41に進む。ステップS37ではタイマーが終了したか否かを判定する。判定結果が「YES」(タイマー終了)である場合はステップS38に進み、判定結果が「NO」(タイマー継続)である場合はステップS36に戻り上述の処理を繰り返す。   In step S35, a timer is started. In step S36, it is determined again whether or not the brake pedal force is greater than the pedal force Pbks1. When the determination result is “YES” (brake pedal force> Pbks1), the process proceeds to step S37, and when the determination result is “NO” (brake pedal force ≦ Pbks1), the process proceeds to step S41. In step S37, it is determined whether or not the timer has expired. If the determination result is “YES” (timer end), the process proceeds to step S38. If the determination result is “NO” (timer continuation), the process returns to step S36 and the above-described processing is repeated.

ステップS38では、エンジン停止制御処理を行う。ステップS39ではブレーキ踏力が所定の踏力Pbks2以下か否かを判定する。判定結果が「YES」(ブレーキ踏力≦Pbks2)である場合はステップS40に進み、判定結果が「NO」(ブレーキ踏力>Pbks2)である場合はステップS39の処理を繰り返す。ステップS40ではエンジン始動制御処理を行いアイドル停止判定処理を終了する。   In step S38, an engine stop control process is performed. In step S39, it is determined whether or not the brake pedal force is equal to or less than a predetermined pedal force Pbks2. If the determination result is “YES” (brake pedaling force ≦ Pbks2), the process proceeds to step S40. If the determination result is “NO” (brake pedaling force> Pbks2), the process of step S39 is repeated. In step S40, an engine start control process is performed and the idle stop determination process is terminated.

ステップS41では、タイマーをリセットしてアイドル停止判定処理を終了する。
ステップS42では、エンジンのフューエルカットを行いステップS43でモータによる回生制御を行いアイドル停止判定処理を終了する。
ステップS44では、エンジンの通常の燃焼処理制御を行いアイドル停止判定処理を終了する。
In step S41, the timer is reset and the idle stop determination process ends.
In step S42, fuel cut of the engine is performed, and in step S43, regeneration control by the motor is performed, and the idle stop determination process is ended.
In step S44, normal combustion process control of the engine is performed and the idle stop determination process is terminated.

ステップS45ではエンジン(ENG)の駆動フラグが1か否かを判定する。判定結果が「YES」(ENG駆動フラグ=1)である場合はステップS46に進み、判定結果が「NO」(ENG駆動フラグ≠1)である場合はステップS45の処理を繰り返す。
ステップS46ではイグニッション(IG)がONか否かを判定する。判定結果が「YES」(IGがON)である場合はステップS47に進み、判定結果が「NO」(IGがOFF)である場合はステップS45に戻り上述の処理を繰り返す。
In step S45, it is determined whether the engine (ENG) drive flag is 1. If the determination result is “YES” (ENG drive flag = 1), the process proceeds to step S46, and if the determination result is “NO” (ENG drive flag ≠ 1), the process of step S45 is repeated.
In step S46, it is determined whether the ignition (IG) is ON. If the determination result is “YES” (IG is ON), the process proceeds to step S47. If the determination result is “NO” (IG is OFF), the process returns to step S45 and the above-described processing is repeated.

ステップS47ではエンジン回転数Neが回転数N2よりも小さいか否かを判定する。判定結果が「YES」(Ne<N2)である場合はステップS48に進み、判定結果が「NO」(Ne≧N2)である場合はステップS51に進む。ステップS48ではPWMインバータのハイサイドアーム又はローサイドアームを全てON状態にする3相短絡制御を行いステップS49に進む。一方、ステップS51ではフューエルカットを行うと共にステップS52でモータの回生制御を行い前述したステップS47の処理を再度行う。   In step S47, it is determined whether or not the engine rotational speed Ne is smaller than the rotational speed N2. If the determination result is “YES” (Ne <N2), the process proceeds to step S48, and if the determination result is “NO” (Ne ≧ N2), the process proceeds to step S51. In step S48, three-phase short-circuit control is performed to turn on all the high-side arms or low-side arms of the PWM inverter, and the process proceeds to step S49. On the other hand, in step S51, fuel cut is performed, and motor regeneration control is performed in step S52, and the above-described processing in step S47 is performed again.

ステップS49ではエンジン回転数Neが略ゼロか否かを判定する。判定結果が「YES」(Ne≒0)である場合はステップS50に進み、判定結果が「NO」(Ne≒0ではない)である場合はステップS48に戻り上述の処理を繰り返す。ステップS50ではエンジンの駆動フラグに0を設定しリターンする。   In step S49, it is determined whether or not the engine speed Ne is substantially zero. If the determination result is “YES” (Ne≈0), the process proceeds to step S50. If the determination result is “NO” (Ne≈0 is not 0), the process returns to step S48 and the above-described processing is repeated. In step S50, the engine drive flag is set to 0 and the process returns.

ステップS53ではエンジンの駆動フラグが0か否かを判定する。判定結果が「YES」(ENG駆動フラグ=0)である場合はステップS54に進み、判定結果が「NO」(ENG駆動フラグ≠0)である場合はステップS53の処理を繰り返す。
ステップS54ではイグニッションがONか否かを判定する。判定結果が「YES」(IGがON)である場合はステップS55に進み、判定結果が「NO」(IGがOFF)である場合はステップS53に戻り上述の処理を繰り返す。
In step S53, it is determined whether the engine drive flag is 0 or not. When the determination result is “YES” (ENG drive flag = 0), the process proceeds to step S54, and when the determination result is “NO” (ENG drive flag ≠ 0), the process of step S53 is repeated.
In step S54, it is determined whether the ignition is ON. If the determination result is “YES” (IG is ON), the process proceeds to step S55. If the determination result is “NO” (IG is OFF), the process returns to step S53 and the above-described processing is repeated.

ステップS55ではPWMインバータを用いてモータの3相のうち2相にパターン通電を行う強制転流によりロータ位置を所定位置に動かしてモータを起動する。ステップS56ではエンジン回転数Neがアイドル回転数Nidlsよりも大きいか否かを判定する。判定結果が「YES」(Ne>Nidls)である場合はステップS57に進み、判定結果が「NO」(Ne≦Nidls)である場合はステップS54に戻り上述の処理を繰り返す。   In step S55, the motor is started by moving the rotor position to a predetermined position by forced commutation for energizing two of the three phases of the motor using a PWM inverter. In step S56, it is determined whether or not the engine speed Ne is greater than the idle speed Nidls. If the determination result is “YES” (Ne> Nidls), the process proceeds to step S57. If the determination result is “NO” (Ne ≦ Nidls), the process returns to step S54 and the above-described processing is repeated.

ステップS57ではエンジンの点火制御を開始し、ステップS58でエンジンが点火制御によって完爆しているか否かを判定する。判定結果が「YES」(完爆している)である場合はステップS59に進み、判定結果が「NO」(完爆していない)である場合はステップS57に戻り上述の処理を繰り返す。ステップS59ではエンジンの駆動フラグを1に設定してリターンする。   In step S57, ignition control of the engine is started, and in step S58, it is determined whether or not the engine has completely exploded by ignition control. If the determination result is “YES” (complete explosion), the process proceeds to step S59. If the determination result is “NO” (not complete explosion), the process returns to step S57 and the above-described processing is repeated. In step S59, the engine drive flag is set to 1 and the routine returns.

すなわち、上述したアイドル停止判定処理においては、乗員の車両停止の意思があると判断された場合(ステップS30とステップS31でYES)、エンジン回転数Neが所定回転数N2を下回る低回転領域に入ったらエンジンの回転を停止する準備として発進クラッチを切断する(ステップS33)。そして、ブレーキ踏力が所定値Pbks1を上回った状態が所定時間継続した場合にはエンジン停止制御処理に移行する。   That is, in the idling stop determination process described above, when it is determined that the occupant intends to stop the vehicle (YES in step S30 and step S31), the engine speed Ne enters a low speed region where the engine speed Ne is lower than the predetermined speed N2. Then, in preparation for stopping the rotation of the engine, the starting clutch is disconnected (step S33). Then, when the state where the brake pedal force exceeds the predetermined value Pbks1 continues for a predetermined time, the process proceeds to the engine stop control process.

エンジン停止処理においては、エンジンが駆動状態で(ステップS45でYES)、エンジン回転数Neが所定回転数N2以上の場合には通常の回生制御であるエンジンのフューエルカット及び回生制御を行い(ステップS51、ステップS52)、一方、エンジン回転数Neが所定回転数N2よりも小さい場合には、PWMインバータによってモータの3相短絡制御を行って前記エンジンの回転を停止させる(ステップS48)。   In the engine stop process, when the engine is in a driving state (YES in step S45) and the engine speed Ne is equal to or higher than the predetermined speed N2, engine fuel cut and regenerative control that are normal regenerative control are performed (step S51). On the other hand, if the engine rotational speed Ne is smaller than the predetermined rotational speed N2, the motor is stopped by performing three-phase short-circuit control of the motor by the PWM inverter (step S48).

一方、エンジン始動処理においては、いわゆるエンジンのアイドル停止状態で、強制転流によりモータの起動を行い(ステップS55)、そして、このモータの回転数上昇によってエンジン回転数Neがアイドル回転数Nidls以上になった時点(ステップS58でYES)で点火制御を開始してエンジンの再始動を行う。   On the other hand, in the engine start process, the motor is started by forced commutation in a so-called engine idling stop state (step S55), and the engine speed Ne is increased to the idling speed Nidls or more by the increase in the motor speed. At that point (YES in step S58), ignition control is started and the engine is restarted.

したがって、上述の第1の実施の形態によれば、エンジン回転数Neがアイドル回転数以下の所定の回転数N2を下回る回転数領域にある場合には、モータ12の3相短絡制御によって大きな制動トルクを発生させることができるため、早期にエンジン11の回転を停止させることができる。さらに、エンジン11の回転停止直前には3相短絡制御の制動トルクが自然に0となってエンジン11の逆転の懸念が生じることなしにスムーズに回転停止に至ることができるため、メカストレスを低減することができ、その結果、商品性の向上と信頼性の向上とを図ることができる。   Therefore, according to the first embodiment described above, when the engine rotational speed Ne is in the rotational speed range lower than the predetermined rotational speed N2 equal to or lower than the idle rotational speed, large braking is performed by the three-phase short-circuit control of the motor 12. Since torque can be generated, the rotation of the engine 11 can be stopped early. Further, immediately before the engine 11 stops rotating, the braking torque of the three-phase short-circuit control naturally becomes zero, and the engine 11 can be smoothly stopped without causing the fear of reverse rotation, thereby reducing mechanical stress. As a result, it is possible to improve merchantability and reliability.

また、エンジン11の始動時には高調波を用いるセンサレス制御で磁極位置の判別を行わずに強制転流によってモータ12を始動して、エンジン11の再始動を行うことができるため、高調波による電磁騒音を防止して車室内の静粛性を向上すことできる。   Further, when the engine 11 is started, the motor 12 can be started by forced commutation without determining the magnetic pole position by sensorless control using harmonics, and the engine 11 can be restarted. This can improve the quietness of the passenger compartment.

そして、エンジン回転数Neが高回転領域において、ステップS8の通常のセンサレス制御と、ステップS5の3相短絡制御との切替え時のトルク演算値ESR_TRQと短絡トルクSH_TRQとの各トルク値をステップS7で揃えることができるため、ステップS8のセンサレス制御からステップS5の3相短絡制御に移行する際のトルク段差を低減してスムーズにエンジン11を停止させることができ、その結果、更なる商品性の向上を図ることができる。   Then, when the engine speed Ne is in a high rotation region, the torque values ESR_TRQ and short-circuit torque SH_TRQ at the time of switching between the normal sensorless control in step S8 and the three-phase short-circuit control in step S5 are determined in step S7. Therefore, the engine 11 can be stopped smoothly by reducing the torque step when shifting from the sensorless control in step S8 to the three-phase short-circuit control in step S5. As a result, further improvement in merchantability is achieved. Can be achieved.

また、ステップS42でエンジン11へのフューエルカットを行ってからエンジン回転数Neが回転数N2以下になるまで3相短絡制御に移行しないため、この間に前記ブレーキがOFF状態に変化したとしても、即座にモータ12の回転数を上昇させてエンジン11の駆動を再開することができる。そして、エンジン回転数Neが回転数N2以下になって乗員の停止意思が確実な状態になって初めてモータ12の回転を3相短絡制御によって停止させることができる。よって、乗員の発車意思に対するエンジン11の始動応答性を向上することができる。   In addition, since the fuel cut to the engine 11 is performed in step S42 and the engine speed Ne does not shift to the three-phase short-circuit control until the engine speed Ne becomes the engine speed N2 or less, even if the brake changes to the OFF state during this time, In addition, the drive of the engine 11 can be resumed by increasing the rotational speed of the motor 12. The rotation of the motor 12 can be stopped by the three-phase short-circuit control only after the engine speed Ne becomes equal to or lower than the speed N2 and the occupant's intention to stop is certain. Therefore, the start responsiveness of the engine 11 with respect to the occupant's intention to start can be improved.

さらに、アイドル停止によるエンジン11の回転停止後にステップS39でブレーキ踏込み量が所定の踏込み量Pbks2以下になったと判定されると乗員に発車意思があると判断して、即座に強制転流によりモータ12を始動させ、発進クラッチ7が係合する前にモータ12の駆動によってエンジン11を始動させることができるため、モータ12の始動時の電磁騒音を低減しつつエンジン11をスムーズに始動させることができ、商品性を向上することができる。   Furthermore, if it is determined in step S39 that the brake depression amount has become equal to or less than the predetermined depression amount Pbks2 after the engine 11 has stopped rotating due to idling stop, it is determined that the occupant intends to leave the vehicle, and the motor 12 is immediately subjected to forced commutation. Since the engine 11 can be started by driving the motor 12 before the start clutch 7 is engaged, the engine 11 can be started smoothly while reducing electromagnetic noise when the motor 12 is started. , Can improve the merchantability.

そして、エンジン11のアイドル停止を判定する際に、エンジン回転数Neが回転数N2を下回りステップS37でタイマーが終了するまでは、ステップS36でブレーキ踏力を監視し、このブレーキ踏力が踏力Pbks1を下回った時点でタイマーをリセットしてエンジンのアイドル停止を中止することができるため、乗員の発車意思に対する車両の応答性を向上することができる。   When the engine 11 is determined to be idle stopped, the engine pedaling force is monitored in step S36 until the engine speed Ne falls below the engine speed N2 and the timer ends in step S37. The brake pedaling force falls below the pedaling force Pbks1. At this time, the timer can be reset and the engine idle stop can be stopped, so that the responsiveness of the vehicle to the occupant's intention to start can be improved.

また、センサレス回生処理において、回転数N1から回転数N2の間の回転数領域で、トルク演算値ESR_TRQが0から短絡トルクSH_TRQに近づくように処理されるが、指令トルクQTARがトルク演算値ESR_TRQよりも短絡トルクSH_TRQ寄りにある場合にトルク演算値ESR_TRQを指令トルクQTARの値まで大きく変位させることができるため、トルク演算値ESR_TRQと短絡トルクSH_TRQとの値を揃える際の時間を短縮することができる。   In the sensorless regeneration process, the torque calculation value ESR_TRQ is processed so as to approach the short-circuit torque SH_TRQ in the rotation speed region between the rotation speed N1 and the rotation speed N2, but the command torque QTAR is calculated from the torque calculation value ESR_TRQ. Since the torque calculation value ESR_TRQ can be greatly displaced up to the value of the command torque QTAR when the torque calculation value ESR_TRQ is close to the short-circuit torque SH_TRQ, the time required to align the values of the torque calculation value ESR_TRQ and the short-circuit torque SH_TRQ can be shortened. .

次に図8〜図10、図12に基づいて第2の実施の形態を説明する。ここで、この第2の実施の形態は、前述した第1の実施の形態の図2〜図4に示すモータ制動制御処理を図8〜図10に示すモータ制動制御処理と置き換えたものであるため、第1の実施の形態と重複する説明を省略する。尚、この第二の実施の形態では最大短絡トルクSH_TRQMAXよりも低回転側においては、エンジン回転数Neが十分に低減されているためトルク段差は無視できるものとしている。   Next, a second embodiment will be described based on FIGS. 8 to 10 and FIG. Here, in the second embodiment, the motor braking control process shown in FIGS. 2 to 4 of the first embodiment described above is replaced with the motor braking control process shown in FIGS. Therefore, the description which overlaps with 1st Embodiment is abbreviate | omitted. In the second embodiment, the torque step is negligible because the engine speed Ne is sufficiently reduced on the low rotation side from the maximum short-circuit torque SH_TRQMAX.

まず、ステップS100では、アクセルがOFFか否かを判定する。判定結果が「YES」(アクセルOFF)である場合はステップS101に進み、判定結果が「NO」(アクセルON)である場合は乗員の停止意思がないものとしてモータ制動制御処理を終了する。   First, in step S100, it is determined whether or not the accelerator is OFF. If the determination result is “YES” (accelerator OFF), the process proceeds to step S101, and if the determination result is “NO” (accelerator ON), the motor braking control process is terminated assuming that there is no intention of the passenger to stop.

ステップS101では、ブレーキがON状態か否かを判定する。判定結果が「YES」(ブレーキON)である場合はステップS102に進み、判定結果が「NO」(ブレーキOFF)である場合はステップS107に進む。ステップS102では、エンジン回転数NeがN1よりも小さいか否かを判定する。判定結果が「YES」(Ne<N1)である場合はステップS103に進み、判定結果が「NO」(Ne≧N1)である場合はステップS107に進む。
ステップS103では3相短絡許可フラグF_SHENBが1か否かを判定する。判定結果が「YES」(F_SHENB=1)である場合はステップS104に進み、判定結果が「NO」(F_SHENB=0)である場合はステップS106に進む。ステップS104ではPWMインバータのハイサイドアーム又はローサイドアームの3相全部をON状態に維持する3相短絡制御を行いステップS105に進む。ステップS105ではトルク演算値ESR_TRQに0を設定してこの処理を終了する。
In step S101, it is determined whether the brake is on. When the determination result is “YES” (brake ON), the process proceeds to step S102, and when the determination result is “NO” (brake OFF), the process proceeds to step S107. In step S102, it is determined whether or not the engine speed Ne is smaller than N1. If the determination result is “YES” (Ne <N1), the process proceeds to step S103, and if the determination result is “NO” (Ne ≧ N1), the process proceeds to step S107.
In step S103, it is determined whether the three-phase short circuit permission flag F_SHENB is 1. When the determination result is “YES” (F_SHENB = 1), the process proceeds to step S104, and when the determination result is “NO” (F_SHENB = 0), the process proceeds to step S106. In step S104, three-phase short-circuit control is performed to maintain all three phases of the high-side arm or low-side arm of the PWM inverter in the ON state, and the process proceeds to step S105. In step S105, the torque calculation value ESR_TRQ is set to 0, and this process ends.

一方、ステップS106ではセンサレス回生処理を行いこの処理を終了する。また、ステップS107では通常の回生制御を行いステップS108でトルク演算値ESR_TRQに0を設定してこの処理を終了する。   On the other hand, in step S106, a sensorless regeneration process is performed and the process ends. In step S107, normal regenerative control is performed, and in step S108, the torque calculation value ESR_TRQ is set to 0, and this process ends.

次に、ステップS109では指令トルクQTARが最大短絡トルクSH_TRQMAXよりも大きいか否かを判定する。判定結果が「YES」(QTAR>SH_TRQMAX)である場合はステップS111に進み、判定結果が「NO」(QTAR≦SH_TRQMAX)である場合はステップS110に進む。ステップS110では指令トルクQTARに最大短絡トルクSH_TRQMAXを設定してステップS111に進む。ここで、ステップS109とステップS110とでは指令トルクQTARのリミット処理を行っており、具体的には、指令トルクQTARが最大短絡トルクSH_TRQMAXよりも小さい場合に、指令トルクQTARに最大短絡トルクSH_TRQMAXを設定して指令トルクQTARを短絡トルクSH_TRQの制動トルクの範囲内に変位させているのである。尚、最大短絡トルクSH_TRQMAXは、短絡トルクSH_TRQによる制動トルクが最大になるという意味で「最大」と称している。   Next, in step S109, it is determined whether or not the command torque QTAR is greater than the maximum short-circuit torque SH_TRQMAX. If the determination result is “YES” (QTAR> SH_TRQMAX), the process proceeds to step S111, and if the determination result is “NO” (QTAR ≦ SH_TRQMAX), the process proceeds to step S110. In step S110, the maximum short-circuit torque SH_TRQMAX is set in the command torque QTAR, and the process proceeds to step S111. Here, in step S109 and step S110, the limit processing for the command torque QTAR is performed. Specifically, when the command torque QTAR is smaller than the maximum short-circuit torque SH_TRQMAX, the maximum short-circuit torque SH_TRQMAX is set to the command torque QTAR. Thus, the command torque QTAR is displaced within the braking torque range of the short-circuit torque SH_TRQ. The maximum short-circuit torque SH_TRQMAX is referred to as “maximum” in the sense that the braking torque by the short-circuit torque SH_TRQ is maximized.

ステップS111では指令トルクQTARが短絡トルクSH_TRQよりも大きいか否かを判定する。判定結果が「YES」(QTAR>SH_TRQ)である場合はステップS112に進み、判定結果が「NO」(QTAR≦SH_TRQ)である場合はステップS120に進む。ステップS112では指令トルクQTARがトルク演算値ESR_TRQよりも小さいか否かを判定する。判定結果が「YES」(QTAR<ESR_TRQ)である場合はステップS113に進み、判定結果が「NO」(QTAR≧ESR_TRQ)である場合はステップS117に進む。   In step S111, it is determined whether or not the command torque QTAR is greater than the short-circuit torque SH_TRQ. When the determination result is “YES” (QTAR> SH_TRQ), the process proceeds to step S112, and when the determination result is “NO” (QTAR ≦ SH_TRQ), the process proceeds to step S120. In step S112, it is determined whether or not the command torque QTAR is smaller than the torque calculation value ESR_TRQ. If the determination result is “YES” (QTAR <ESR_TRQ), the process proceeds to step S113, and if the determination result is “NO” (QTAR ≧ ESR_TRQ), the process proceeds to step S117.

ステップS113ではトルク演算値ESR_TRQに指令トルクQTARを設定する。ステップS114では3相短絡許可フラグF_SHENBを0に設定し、ステップS115に進む。ステップS115ではトルク演算値ESR_TRQをモータ制御用指令トルクCommand_TRQに設定し、ステップS116で指令トルクQTARをバッファBuf1に設定してメインフローにリターンする。   In step S113, the command torque QTAR is set to the torque calculation value ESR_TRQ. In step S114, the three-phase short circuit permission flag F_SHENB is set to 0, and the process proceeds to step S115. In step S115, the torque calculation value ESR_TRQ is set to the motor control command torque Command_TRQ. In step S116, the command torque QTAR is set in the buffer Buf1 and the process returns to the main flow.

一方、ステップS117ではエンジン停止制御用トルクESR_TRQを減算処理する。ステップS118ではトルク演算値ESR_TRQが短絡トルクSH_TRQから所定トルクαを減算したものよりも小さいか否かを判定する。判定結果が「YES」(ESR_TRQ<SH_TRQ−α)である場合はステップS119に進み、判定結果が「NO」(ESR_TRQ≧SH_TRQ−α)である場合は前述したステップS115に進む。ステップS119では短絡トルクSH_TRQをトルク演算値ESR_TRQに設定すると共に、3相短絡許可フラグF_SHENBを1に設定して前述したステップS115に進む。   On the other hand, in step S117, the engine stop control torque ESR_TRQ is subtracted. In step S118, it is determined whether or not the torque calculation value ESR_TRQ is smaller than a value obtained by subtracting the predetermined torque α from the short-circuit torque SH_TRQ. If the determination result is “YES” (ESR_TRQ <SH_TRQ−α), the process proceeds to step S119, and if the determination result is “NO” (ESR_TRQ ≧ SH_TRQ-α), the process proceeds to step S115 described above. In step S119, the short-circuit torque SH_TRQ is set to the torque calculation value ESR_TRQ, and the three-phase short-circuit permission flag F_SHENB is set to 1, and the process proceeds to step S115 described above.

ステップS120では指令トルクQTARがトルク演算値ESR_TRQよりも小さいか否かを判定する。判定結果が「YES」(QTAR<ESR_TRQ)である場合はステップS126に進み、判定結果が「NO」(QTAR≧ESR_TRQ)である場合はステップS121に進む。
ステップS121ではトルク演算値ESR_TRQが短絡トルクSH_TRQよりも小さいか否かを判定する。判定結果が「YES」(ESR_TRQ<SH_TRQ)である場合はステップS122に進み、判定結果が「NO」(ESR_TRQ≧SH_TRQ)である場合はステップS126に進む。ステップS122ではバッファBuf1が指令トルクQTAR以上か否かを判定する。判定結果が「YES」(Buf1≧QTAR)である場合はステップS123に進み、判定結果が「NO」(Buf1<QTAR)である場合はステップS126に進む。ステップS123ではトルク演算値ESR_TRQを保持してステップS124に進み、一方、ステップS126では演算値ESR_TRQに指令トルクQTARを設定してステップS124に進む。
In step S120, it is determined whether or not the command torque QTAR is smaller than the torque calculation value ESR_TRQ. When the determination result is “YES” (QTAR <ESR_TRQ), the process proceeds to step S126, and when the determination result is “NO” (QTAR ≧ ESR_TRQ), the process proceeds to step S121.
In step S121, it is determined whether or not the torque calculation value ESR_TRQ is smaller than the short circuit torque SH_TRQ. When the determination result is “YES” (ESR_TRQ <SH_TRQ), the process proceeds to step S122, and when the determination result is “NO” (ESR_TRQ ≧ SH_TRQ), the process proceeds to step S126. In step S122, it is determined whether or not the buffer Buf1 is equal to or greater than the command torque QTAR. When the determination result is “YES” (Buf1 ≧ QTAR), the process proceeds to step S123, and when the determination result is “NO” (Buf1 <QTAR), the process proceeds to step S126. In step S123, the torque calculation value ESR_TRQ is held and the process proceeds to step S124. On the other hand, in step S126, the command torque QTAR is set to the calculation value ESR_TRQ and the process proceeds to step S124.

ステップS124ではトルク演算値ESR_TRQが短絡トルクSH_TRQから所定トルクαを減算したトルク値よりも小さいか否かを判定する。判定結果が「YES」(ESR_TRQ<SH_TRQ−α)である場合はステップS125に進み、判定結果が「NO」(ESR_TRQ≧SH_TRQ−α)である場合はステップS127に進む。ステップS125では3相短絡許可フラグF_SHENBに0を設定してステップS115に進む。   In step S124, it is determined whether or not the torque calculation value ESR_TRQ is smaller than a torque value obtained by subtracting the predetermined torque α from the short circuit torque SH_TRQ. When the determination result is “YES” (ESR_TRQ <SH_TRQ−α), the process proceeds to step S125, and when the determination result is “NO” (ESR_TRQ ≧ SH_TRQ-α), the process proceeds to step S127. In step S125, the three-phase short circuit permission flag F_SHENB is set to 0, and the process proceeds to step S115.

ステップS127ではトルク演算値ESR_TRQが短絡トルクSH_TRQに所定トルクαを加算したトルク値よりも小さいか否かを判定する。判定結果が「YES」(ESR_TRQ<SH_TRQ+α)である場合はステップS128に進み、判定結果が「NO」(ESR_TRQ≧SH_TRQ+α)である場合は前述したステップS125に進む。ステップS128では短絡トルクSH_TRQをESR_TRQに設定すると共に3相短絡許可フラグF_SHENBに1を設定して前述したステップS115に進む。   In step S127, it is determined whether or not the torque calculation value ESR_TRQ is smaller than the torque value obtained by adding the predetermined torque α to the short-circuit torque SH_TRQ. When the determination result is “YES” (ESR_TRQ <SH_TRQ + α), the process proceeds to step S128, and when the determination result is “NO” (ESR_TRQ ≧ SH_TRQ + α), the process proceeds to step S125 described above. In step S128, the short-circuit torque SH_TRQ is set to ESR_TRQ and the three-phase short-circuit permission flag F_SHENB is set to 1, and the process proceeds to the above-described step S115.

すなわち、上述した第2の実施の形態のモータ制動制御処理においては、車両走行中に乗員の停車意思がある場合には、例えば図12に示すように、エンジン回転数Neが所定の回転数N1よりも低回転領域に入った場合に通常の回生制御からセンサレス回生処理に移行する(ステップS102でYES)。   That is, in the motor braking control process of the second embodiment described above, when the occupant intends to stop while the vehicle is traveling, for example, as shown in FIG. 12, the engine speed Ne is set to a predetermined speed N1. If the low rotation region is entered, the normal regeneration control is shifted to the sensorless regeneration process (YES in step S102).

センサレス回生処理では、指令トルクQTARが短絡トルクSH_TRQよりも大きく(ステップS111でYES)、指令トルクQTARよりもトルク演算値ESR_TRQが大きい場合には(ステップS112でYES)、トルク演算値ESR_TRQを短絡トルクSH_TRQに近づけるべくトルク演算値ESR_TRQに指令トルクQTARを設定する。   In the sensorless regeneration process, when the command torque QTAR is larger than the short-circuit torque SH_TRQ (YES in step S111) and the torque calculation value ESR_TRQ is larger than the command torque QTAR (YES in step S112), the torque calculation value ESR_TRQ is reduced to the short-circuit torque. The command torque QTAR is set to the torque calculation value ESR_TRQ so as to be close to SH_TRQ.

その後、このトルク演算値ESR_TRQを減算処理により減少させ(ステップS117)、短絡トルクSH_TRQに十分近づいた時点(ステップS118でYES)で減算処理を停止して、トルク演算値ESR_TRQに短絡トルクSH_TRQを設定してこれらを完全に一致させてから3相短絡制御を許可する(ステップS119)。   Thereafter, the torque calculation value ESR_TRQ is decreased by subtraction processing (step S117), and when the torque calculation value ESR_TRQ is sufficiently close to the short circuit torque SH_TRQ (YES in step S118), the subtraction processing is stopped and the short circuit torque SH_TRQ is set to the torque calculation value ESR_TRQ. Then, after these are completely matched, the three-phase short-circuit control is permitted (step S119).

さらに、指令トルクQTARが最大短絡トルクSH_TRQMAXよりも小さい場合にはリミット処理によって指令トルクQTARにSH_TRQMAXが設定される(ステップS110)。つまり、短絡トルクSH_TRQが最大短絡トルクSH_TRQMAXでない限り指令トルクQTARは短絡トルクSH_TRQよりも小さくなる(ステップS11でNO)。すなわち、指令トルクQTARよりも初期状態であるトルク演算値ESR_TRQは大きいため(ステップS120でYES)、初期のトルク合わせとして指令トルクQTARをトルク演算値ESR_TRQに設定し、その後、このトルク演算値ESR_TRQを保持して(ステップS123)、短絡トルクSH_TRQが減少するのに応じてトルク演算値ESR_TRQを短絡トルクSH_TRQとの差が減少する方向(例えば、図12中の矢印の方向)に相対的に変移させる。そして、この短絡トルクSH_TRQがトルク演算値ESR_TRQに十分近づいた時点(ステップS124でNO且つステップS127でYES)でこれらトルク演算値ESR_TRQと短絡トルクSH_TRQとを完全に一致させて3相短絡制御を許可する(ステップS128)。   Further, when the command torque QTAR is smaller than the maximum short-circuit torque SH_TRQMAX, SH_TRQMAX is set to the command torque QTAR by a limit process (step S110). That is, unless the short-circuit torque SH_TRQ is not the maximum short-circuit torque SH_TRQMAX, the command torque QTAR is smaller than the short-circuit torque SH_TRQ (NO in step S11). That is, since the torque calculation value ESR_TRQ in the initial state is larger than the command torque QTAR (YES in step S120), the command torque QTAR is set to the torque calculation value ESR_TRQ as the initial torque adjustment, and then this torque calculation value ESR_TRQ is set. Holding (step S123), the torque calculation value ESR_TRQ is relatively shifted in a direction in which the difference from the short-circuit torque SH_TRQ decreases (for example, the direction of the arrow in FIG. 12) as the short-circuit torque SH_TRQ decreases. . When the short-circuit torque SH_TRQ is sufficiently close to the torque calculation value ESR_TRQ (NO in step S124 and YES in step S127), the torque calculation value ESR_TRQ and the short-circuit torque SH_TRQ are completely matched to allow three-phase short-circuit control. (Step S128).

したがって、上述した第2の実施の形態によれば、エンジン回転数Neが、前述した第1の実施の形態の所定回転数N2よりも高い回転数であっても、短絡トルクSH_TRQにトルク演算値ESR_TRQが十分に近づいた時点で3相短絡制御に移行することができるため、3相短絡制御を行う領域を拡大することができ、この結果、PWMインバータのスイッチングによる騒音を低減することができる。   Therefore, according to the above-described second embodiment, even if the engine speed Ne is higher than the predetermined speed N2 of the first embodiment described above, the torque calculation value is calculated as the short-circuit torque SH_TRQ. Since it is possible to shift to the three-phase short-circuit control when ESR_TRQ approaches sufficiently, the area for performing the three-phase short-circuit control can be expanded, and as a result, noise due to switching of the PWM inverter can be reduced.

さらに、エンジン回転数Neが高回転から低下してくる際に、トルク演算値ESR_TRQが短絡トルクSH_TRQよりも小さい場合、短絡トルクSH_TRQが制動トルクの増加する方向に変移するのに対して、トルク演算値ESR_TRQを制動トルクの減少する方向に変移させることなく、自然にトルク演算値ESR_TRQと短絡トルクSH_TRQとを揃えることができるため、乗員に違和感を与えることなしにトルク段差を低減して商品性を向上することができる。   Further, when the engine speed Ne decreases from a high speed and the torque calculation value ESR_TRQ is smaller than the short circuit torque SH_TRQ, the short circuit torque SH_TRQ shifts in the direction in which the braking torque increases, whereas the torque calculation The torque calculation value ESR_TRQ and the short-circuit torque SH_TRQ can be naturally aligned without shifting the value ESR_TRQ in the direction in which the braking torque decreases, so that the torque difference can be reduced without causing a sense of discomfort to the occupant. Can be improved.

尚、上記実施の形態では3相短絡制御を行う場合について説明したが、これに替えてPWMインバータの3相分のハイサイドアーム又はローサイドアームのうち2相だけをON状態とする2相短絡制御を行う構成としてもよい。   In the above embodiment, the case of performing the three-phase short-circuit control has been described, but instead of this, the two-phase short-circuit control in which only two phases of the high-side arm or the low-side arm for the three phases of the PWM inverter are turned on. It is good also as composition which performs.

本発明の第1、第2の実施の形態における制御装置の構成図である。It is a block diagram of the control apparatus in the 1st, 2nd embodiment of this invention. 本発明の第1実施の形態におけるモータ制動制御処理のフローチャートである。It is a flowchart of the motor braking control process in 1st Embodiment of this invention. 本発明の第1の実施の形態におけるセンサレス回生処理のフローチャートである。It is a flowchart of the sensorless regeneration process in the 1st Embodiment of this invention. 本発明の第1の実施の形態におけるセンサレス回生処理のフローチャートである。It is a flowchart of the sensorless regeneration process in the 1st Embodiment of this invention. 本発明の第1の実施の形態におけるアイドル停止判定処理のフローチャートである。It is a flowchart of the idle stop determination process in the 1st Embodiment of this invention. 本発明の第1の実施の形態におけるエンジン停止制御処理のフローチャートである。It is a flowchart of the engine stop control process in the 1st Embodiment of this invention. 本発明の第1の実施の形態におけるエンジン始動制御処理のフローチャートである。It is a flowchart of the engine starting control process in the 1st Embodiment of this invention. 本発明の第2の実施の形態における図2に相当するフローチャートである。It is a flowchart equivalent to FIG. 2 in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における図3に相当するフローチャートである。It is a flowchart equivalent to FIG. 3 in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における図4に相当するフローチャートである。It is a flowchart equivalent to FIG. 4 in the 2nd Embodiment of this invention. 本発明の第1の実施の形態におけるエンジン回転数に対する短絡トルクの変化を示すグラフである。It is a graph which shows the change of the short circuit torque with respect to the engine speed in the 1st Embodiment of this invention. 本発明の第2の実施の形態における図11に相当するグラフである。12 is a graph corresponding to FIG. 11 in the second embodiment of the present invention.

符号の説明Explanation of symbols

11 エンジン(内燃機関)
12 ブラシレスDCモータ(発電電動機)
14 バッテリ(蓄電器)
S5 制動手段
S8 センサレス制御手段
S55 始動手段
11 Engine (Internal combustion engine)
12 Brushless DC motor (generator motor)
14 Battery (capacitor)
S5 Braking means S8 Sensorless control means S55 Starting means

Claims (4)

蓄電器から電源供給を受け走行駆動又は内燃機関の走行駆動を補助する発電電動機を備えたハイブリッド車両の制御装置において、前記発電電動機の誘起電圧に基づきロータ位置を検出してセンサレス制御を行うセンサレス制御手段と、前記発電電動機の回転数が所定回転数より低い車両制動時に前記発電電動機の2相短絡制御又は3相短絡制御を実施して前記発電電動機の回転を停止させる制動手段と、前記内燃機関の再始動時に前記発電電動機を強制転流により起動させる始動手段とを備えたことを特徴とするハイブリッド車両の制御装置。   Sensorless control means for detecting the rotor position based on the induced voltage of the generator motor and performing sensorless control in a hybrid vehicle control device provided with a generator motor that receives power supply from a capacitor and assists in driving driving or driving of an internal combustion engine And a braking means for stopping the rotation of the generator motor by performing two-phase short-circuit control or three-phase short-circuit control of the generator motor at the time of vehicle braking when the rotation speed of the generator motor is lower than a predetermined number of revolutions, A hybrid vehicle control device comprising starter means for starting the generator motor by forced commutation upon restart. 前記センサレス制御手段によるセンサレス制御から前記制動手段による2相短絡制御又は3相短絡制御へ移行する前に、センサレス制御時の停止制御用トルクと2相短絡制御又は3相短絡制御時の短絡制動トルクとの差分を所定値以下にすることを特徴とする請求項1に記載のハイブリッド車両の制御装置。   Before shifting from the sensorless control by the sensorless control means to the two-phase short-circuit control or the three-phase short-circuit control by the braking means, the stop control torque at the time of sensorless control and the short-circuit braking torque at the time of two-phase short-circuit control or three-phase short-circuit control The control device for a hybrid vehicle according to claim 1, wherein a difference between the control value and the value is equal to or less than a predetermined value. 車両停車直後に前記内燃機関をアイドル状態とし、ブレーキ踏込み量が所定の踏込み量以上での停車時間が所定時間を超えるとアイドル停止制御を実行すると共に、前記内燃機関の回転数が所定回転数以下になると前記2相短絡制御又は3相短絡制御を実行し前記発電電動機の回転を停止する停止手段を備えることを特徴とする請求項1に記載のハイブリッド車両の制御装置。   Immediately after the vehicle stops, the internal combustion engine is set in an idle state, and when the stopping time when the brake depression amount is equal to or greater than the predetermined depression amount exceeds a predetermined time, idle stop control is executed, and the rotation speed of the internal combustion engine is equal to or less than the predetermined rotation speed 2. The hybrid vehicle control device according to claim 1, further comprising a stopping unit that executes the two-phase short-circuit control or the three-phase short-circuit control to stop the rotation of the generator motor. 前記始動手段は前記内燃機関の回転停止後、ブレーキ踏込み量が所定の踏込み量以下になると前記発電電動機を強制転流により起動させ、前記内燃機関の点火制御を実行することを特徴とする請求項1〜請求項3の何れか一項に記載のハイブリッド車両の制御装置。

The starter means starts the generator motor by forced commutation and executes ignition control of the internal combustion engine when a brake depression amount becomes a predetermined depression amount or less after the internal combustion engine stops rotating. The control apparatus of the hybrid vehicle as described in any one of Claims 1-3.

JP2005103643A 2005-03-31 2005-03-31 Control device for hybrid vehicle Expired - Fee Related JP4350676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005103643A JP4350676B2 (en) 2005-03-31 2005-03-31 Control device for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005103643A JP4350676B2 (en) 2005-03-31 2005-03-31 Control device for hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2006288051A true JP2006288051A (en) 2006-10-19
JP4350676B2 JP4350676B2 (en) 2009-10-21

Family

ID=37409381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005103643A Expired - Fee Related JP4350676B2 (en) 2005-03-31 2005-03-31 Control device for hybrid vehicle

Country Status (1)

Country Link
JP (1) JP4350676B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008137550A (en) * 2006-12-04 2008-06-19 Honda Motor Co Ltd Controller of hybrid vehicle
WO2009008501A1 (en) * 2007-07-12 2009-01-15 Toyota Jidosha Kabushiki Kaisha Vehicle, its control method, and drive device
JP2010019139A (en) * 2008-07-09 2010-01-28 Mazda Motor Corp Control device and control method for vehicle engine
US7804261B2 (en) 2006-12-01 2010-09-28 Honda Motor Co., Ltd Motor control method and motor control apparatus
JP2014136992A (en) * 2013-01-16 2014-07-28 Mazda Motor Corp Engine automatic stop control device
WO2015019155A2 (en) 2013-08-06 2015-02-12 Toyota Jidosha Kabushiki Kaisha Vehicle control device
JP2015080362A (en) * 2013-10-18 2015-04-23 トヨタ自動車株式会社 Vehicle control device
JP2015084624A (en) * 2013-10-25 2015-04-30 トヨタ自動車株式会社 Vehicle control device
WO2015059555A1 (en) 2013-10-24 2015-04-30 Toyota Jidosha Kabushiki Kaisha Control device for vehicle
JP2015091171A (en) * 2013-11-05 2015-05-11 トヨタ自動車株式会社 Vehicle control apparatus
JP2015091174A (en) * 2013-11-05 2015-05-11 トヨタ自動車株式会社 Vehicle control apparatus
US20180319391A1 (en) * 2016-01-19 2018-11-08 Bayerische Motoren Werke Aktiengesellschaft Control System Comprising at Least One Electronic Control Unit for Controlling an Internal Combustion Engine in a Hybrid Vehicle
CN109072854A (en) * 2016-02-11 2018-12-21 塞德马克机电私人有限公司 Start the method and system of internal combustion engine
JP2019026135A (en) * 2017-08-01 2019-02-21 三菱自動車工業株式会社 Vehicle control apparatus
CN110303902A (en) * 2019-07-18 2019-10-08 深圳市英威腾电动汽车驱动技术有限公司 Electric car and its control method, control device and controller
JP2019206198A (en) * 2018-05-28 2019-12-05 スズキ株式会社 Regeneration control device for hybrid vehicle
CN111277174A (en) * 2018-12-04 2020-06-12 丹佛斯(天津)有限公司 Method for controlling braking of compressor, frequency converter and frequency conversion compressor
GB2586040A (en) * 2019-07-31 2021-02-03 Delphi Automotive Systems Lux Method of controlling braking of an multi-phase electrical motor
US20210237579A1 (en) * 2020-01-31 2021-08-05 Lear Corporation Method and system for notification of an active short circuit condition in an electric motor of a hybrid electric vehicle
US11332029B2 (en) 2020-01-31 2022-05-17 Lear Corporation Method and system for producing an active short circuit condition in an electric motor of a hybrid electric vehicle
US11462920B2 (en) 2020-01-31 2022-10-04 Lear Corporation Method and system for producing an active short circuit condition in an electric motor of a hybrid electric vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101628145B1 (en) 2014-06-16 2016-06-09 현대자동차 주식회사 Method and system for controlling motor without sensor
KR101664040B1 (en) 2014-10-01 2016-10-11 현대자동차 주식회사 System and method for controlling motor without sensor
CN106451713B (en) * 2016-08-25 2019-04-16 深圳市金能弘盛能源科技有限公司 Motor braking energy recycling system

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7804261B2 (en) 2006-12-01 2010-09-28 Honda Motor Co., Ltd Motor control method and motor control apparatus
JP2008137550A (en) * 2006-12-04 2008-06-19 Honda Motor Co Ltd Controller of hybrid vehicle
JP4515439B2 (en) * 2006-12-04 2010-07-28 本田技研工業株式会社 Control device for hybrid vehicle
WO2009008501A1 (en) * 2007-07-12 2009-01-15 Toyota Jidosha Kabushiki Kaisha Vehicle, its control method, and drive device
US8335603B2 (en) 2007-07-12 2012-12-18 Toyota Jidosha Kabushiki Kaisha Vehicle, control method of vehicle, and driving apparatus
JP2010019139A (en) * 2008-07-09 2010-01-28 Mazda Motor Corp Control device and control method for vehicle engine
JP2014136992A (en) * 2013-01-16 2014-07-28 Mazda Motor Corp Engine automatic stop control device
WO2015019155A2 (en) 2013-08-06 2015-02-12 Toyota Jidosha Kabushiki Kaisha Vehicle control device
JP2015033292A (en) * 2013-08-06 2015-02-16 トヨタ自動車株式会社 Vehicle controller
WO2015019155A3 (en) * 2013-08-06 2015-05-07 Toyota Jidosha Kabushiki Kaisha Vehicle control device
CN105452047A (en) * 2013-08-06 2016-03-30 丰田自动车株式会社 Vehicle control device
JP2015080362A (en) * 2013-10-18 2015-04-23 トヨタ自動車株式会社 Vehicle control device
WO2015056081A1 (en) 2013-10-18 2015-04-23 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method of vehicle
US9884568B2 (en) 2013-10-18 2018-02-06 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method of vehicle
WO2015059555A1 (en) 2013-10-24 2015-04-30 Toyota Jidosha Kabushiki Kaisha Control device for vehicle
CN105682975A (en) * 2013-10-25 2016-06-15 丰田自动车株式会社 Vehicle control system and vehicle control method
JP2015084624A (en) * 2013-10-25 2015-04-30 トヨタ自動車株式会社 Vehicle control device
JP2015091174A (en) * 2013-11-05 2015-05-11 トヨタ自動車株式会社 Vehicle control apparatus
JP2015091171A (en) * 2013-11-05 2015-05-11 トヨタ自動車株式会社 Vehicle control apparatus
CN105705368A (en) * 2013-11-05 2016-06-22 丰田自动车株式会社 Vehicle control apparatus
WO2015068827A1 (en) 2013-11-05 2015-05-14 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus
US11155256B2 (en) * 2016-01-19 2021-10-26 Bayerische Motoren Werke Aktiengesellschaft Control system comprising at least one electronic control unit for controlling an internal combustion engine in a hybrid vehicle
US20180319391A1 (en) * 2016-01-19 2018-11-08 Bayerische Motoren Werke Aktiengesellschaft Control System Comprising at Least One Electronic Control Unit for Controlling an Internal Combustion Engine in a Hybrid Vehicle
CN109072854A (en) * 2016-02-11 2018-12-21 塞德马克机电私人有限公司 Start the method and system of internal combustion engine
JP2019026135A (en) * 2017-08-01 2019-02-21 三菱自動車工業株式会社 Vehicle control apparatus
JP7027718B2 (en) 2017-08-01 2022-03-02 三菱自動車工業株式会社 Vehicle control device
JP7127364B2 (en) 2018-05-28 2022-08-30 スズキ株式会社 Regenerative control device for hybrid vehicle
JP2019206198A (en) * 2018-05-28 2019-12-05 スズキ株式会社 Regeneration control device for hybrid vehicle
CN111277174A (en) * 2018-12-04 2020-06-12 丹佛斯(天津)有限公司 Method for controlling braking of compressor, frequency converter and frequency conversion compressor
CN110303902A (en) * 2019-07-18 2019-10-08 深圳市英威腾电动汽车驱动技术有限公司 Electric car and its control method, control device and controller
WO2021018514A1 (en) * 2019-07-31 2021-02-04 Delphi Automotive Systems Luxembourg Sa Method of controlling braking of an multi-phase electrical motor
GB2586040A (en) * 2019-07-31 2021-02-03 Delphi Automotive Systems Lux Method of controlling braking of an multi-phase electrical motor
GB2586040B (en) * 2019-07-31 2023-04-26 Delphi Automotive Systems Lux Method of controlling braking of an multi-phase electrical motor
US11888426B2 (en) 2019-07-31 2024-01-30 Delphi Automotive Systems Luxembourg Sa Method of controlling braking of an multi-phase electrical motor
US20210237579A1 (en) * 2020-01-31 2021-08-05 Lear Corporation Method and system for notification of an active short circuit condition in an electric motor of a hybrid electric vehicle
US11167644B2 (en) * 2020-01-31 2021-11-09 Lear Corporation Method and system for notification of an active short circuit condition in an electric motor of a hybrid electric vehicle
US11332029B2 (en) 2020-01-31 2022-05-17 Lear Corporation Method and system for producing an active short circuit condition in an electric motor of a hybrid electric vehicle
US11462920B2 (en) 2020-01-31 2022-10-04 Lear Corporation Method and system for producing an active short circuit condition in an electric motor of a hybrid electric vehicle

Also Published As

Publication number Publication date
JP4350676B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
JP4350676B2 (en) Control device for hybrid vehicle
US8174220B2 (en) Apparatus for controlling permanent-magnet rotary electric machine
US7199540B2 (en) Motor drive apparatus having oscillation-reducing control function for output torque
US6984957B2 (en) Apparatus for controlling permanent-magnet rotary machine
JP3695342B2 (en) Electric motor control device
JP4515439B2 (en) Control device for hybrid vehicle
JP4574412B2 (en) Hybrid vehicle motor constant detection device and hybrid vehicle motor control device
JP2006296132A (en) Drive control unit for vehicle
JP2006094588A (en) Driving motor controller
JP5169797B2 (en) Control device for permanent magnet type rotating electrical machine
WO2016052234A1 (en) Control device for electric vehicle
JP3934130B2 (en) Motor controller for hybrid vehicle
JP2018070033A (en) Automobile
JP2009220665A (en) Vehicular driving controller
JP2008072858A (en) Controller of vehicle rotary electric machine
US20130278186A1 (en) Ac motor control apparatus
JP6870577B2 (en) Rotating machine control device
JP4643508B2 (en) Electric motor control device
JP2010004699A (en) Controller for rotating machine, and control system for rotating machine
JPH10178705A (en) Electric vehicle
JP4372770B2 (en) Vehicle control apparatus having a motor
JP5598244B2 (en) Rotating machine control device
JP2008001183A (en) Drive controller for vehicle
JP2007245967A (en) Vehicle drive controller
JP2006042575A (en) Control unit of motor for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140731

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees