JP2006287696A - Dispersion compensation device, optical communication equipment using the same, and optical communication system - Google Patents

Dispersion compensation device, optical communication equipment using the same, and optical communication system Download PDF

Info

Publication number
JP2006287696A
JP2006287696A JP2005106096A JP2005106096A JP2006287696A JP 2006287696 A JP2006287696 A JP 2006287696A JP 2005106096 A JP2005106096 A JP 2005106096A JP 2005106096 A JP2005106096 A JP 2005106096A JP 2006287696 A JP2006287696 A JP 2006287696A
Authority
JP
Japan
Prior art keywords
dispersion
optical
wavelength
dispersion compensation
optical communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005106096A
Other languages
Japanese (ja)
Inventor
Takaaki Ogata
孝昭 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2005106096A priority Critical patent/JP2006287696A/en
Publication of JP2006287696A publication Critical patent/JP2006287696A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attain miniaturization and cost reduction of a dispersion compensation device by reducing the number of dispersion compensation means used in the dispersion compensation device. <P>SOLUTION: Dispersion of optical signals with two different wavelength is compensated by one dispersion compensation means by constituting the dispersion compensation device so as to input an optical signal with first wavelength in one end of an input/output terminal of the dispersion compensation means, to output the optical signal from the other end, to input an optical signal with second wavelength in the other end and to output the optical signal from one end by connecting directional couplers to both ends of the dispersion compensation means, respectively. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高密度波長多重(DWDM:Dense Wavelength Division Multiplexing)光通信システムの光信号伝送路で発生する波長分散の補償に関するものであり、特に、従来より少ない分散補償手段で波長分散を補償可能な分散補償器およびそれを用いた光通信装置、光通信システムに関する。   The present invention relates to compensation for chromatic dispersion generated in an optical signal transmission line of a DWDM (Dense Wavelength Division Multiplexing) optical communication system, and in particular, chromatic dispersion can be compensated with fewer dispersion compensation means than before. The present invention relates to a dispersion compensator, an optical communication apparatus using the same, and an optical communication system.

近年の情報通信産業の急成長に伴い、高速かつ大容量な光通信システムの需要が高まっている。たとえば、ここ数年で一般家庭向けに急速に普及の進んでいるADSL(Asymmetric Digital Subscriber Line)、FTTH(Fiber To The Home)、無線等のインターネット接続サービスの基幹通信系は光通信システムで構成されており、加入者、および伝送されるデータ量の増加に伴い、その通信トラフィック需要は急激に増大している。また、従来アナログ信号を用いていた固定電話なども、IP(Internet Protocol)化の進展により上記光通信システム(基幹通信系)に収容されつつある。このように、光通信システムへの高速かつ大容量化のニーズは一層高まっている。   With the rapid growth of the information and communication industry in recent years, the demand for high-speed and large-capacity optical communication systems is increasing. For example, the basic communication systems of Internet connection services such as ADSL (Asymmetric Digital Subscriber Line), FTTH (Fiber To The Home), and wireless, which have been rapidly spreading for general households in recent years, are composed of optical communication systems. With the increase of subscribers and the amount of data transmitted, the demand for communication traffic is rapidly increasing. In addition, fixed telephones and the like that conventionally use analog signals are also being accommodated in the optical communication system (core communication system) due to the progress of IP (Internet Protocol). Thus, there is a growing need for high speed and large capacity for optical communication systems.

そしてこの光通信の高速化、大容量化へのニーズに伴い、光信号の高ビットレート化、波長多重数の増加(以下、高多重化と称する)が急速に進んでいる。高ビットレート化では、一般的な光通信システムの伝送速度は、ここ数年で2.5Gbpsから10Gbpsに増大し、現在は40Gbpsレベルの普及に向けた開発が進められている。また、高多重化では、一般的な光通信システムの多重数は、ここ数年で4波程度から100波以上に増大しており、現在はさらなる高多重化に向けた開発が進められている。   Along with the need for higher speed and higher capacity of optical communication, an increase in the bit rate of optical signals and an increase in the number of wavelength multiplexing (hereinafter referred to as high multiplexing) are rapidly progressing. With a higher bit rate, the transmission speed of a general optical communication system has increased from 2.5 Gbps to 10 Gbps over the past few years, and development is now underway toward the spread of the 40 Gbps level. Also, with high multiplexing, the number of multiplexing in a general optical communication system has increased from about 4 waves to over 100 waves in the last few years, and development for further higher multiplexing is now underway. .

ところで、上記基幹通信系のうち、主要大都市間などの長距離を伝送するシステムでは、光信号のビットレートを高くするにつれ、当該光信号の受信端で受信した各ビットの識別が困難となり、受信エラーを生じる。これは波長分散と呼ばれる現象によるもので、媒質中の光の伝搬速度が波長により異なるために、伝送距離に比例して信号波形が歪むことに起因する。歪みが大きくなると、光信号の受信端で受信したあるビットとその前後のビットとが識別できなくなる。   By the way, in a system that transmits long distances such as between major metropolitan cities among the basic communication systems, as the bit rate of the optical signal is increased, it becomes difficult to identify each bit received at the receiving end of the optical signal, A reception error occurs. This is due to a phenomenon called chromatic dispersion. This is because the signal waveform is distorted in proportion to the transmission distance because the propagation speed of light in the medium differs depending on the wavelength. When the distortion becomes large, a certain bit received at the receiving end of the optical signal cannot be distinguished from the preceding and succeeding bits.

この問題の解決策として、分散補償器を用いて波長分散を補償する方法が知られている(例えば特許文献1参照)。分散補償器は、伝送路に用いる光ファイバ等とは分散特性の傾向が逆の分散補償ファイバ等を用い、伝送路で生じた波長分散を補償する。   As a solution to this problem, a method of compensating for chromatic dispersion using a dispersion compensator is known (see, for example, Patent Document 1). The dispersion compensator compensates for chromatic dispersion generated in the transmission line using a dispersion compensation fiber or the like having a dispersion characteristic tendency opposite to that of the optical fiber used in the transmission line.

ところが、高多重化により波長帯域が広くなると、ひとつの分散補償器では全波長帯域にわたって適切に分散を補償することが困難になる。これは、分散補償器の分散特性と、伝送路に用いる光ファイバ等の分散特性とを広帯域にわたって精密に逆転させることが困難なため、全域にわたって精密に波長分散を補償しきれないからである。広帯域にわたって精密に波長分散を補償するには、帯域を分け、複数の分散補償器を用いることが必要となる。具体的には、波長多重光信号を波長(チャネル)毎に分波し、それぞれ別個の分散補償器で分散を補償する技術が知られている(例えば特許文献2および特許文献3参照) 。特許文献2には、図11に示すように、伝送路を伝搬してきた波長多重光信号を、分波器4でそれぞれの波長の光信号に分波し、波長ごとに分散補償器1を設けて分散を補償し、光受信機5で受信する構成が開示されている。また特許文献3には、図12に示すように、まず全波長の分散を一括して補償した後、各波長に分波して、それぞれ別個の分散補償器で各波長の残りの分散を補償する構成が開示されている。   However, when the wavelength band becomes wide due to high multiplexing, it becomes difficult for one dispersion compensator to appropriately compensate dispersion over the entire wavelength band. This is because it is difficult to precisely reverse the dispersion characteristics of the dispersion compensator and the dispersion characteristics of the optical fiber or the like used in the transmission line over a wide band, and thus chromatic dispersion cannot be accurately compensated over the entire area. In order to accurately compensate chromatic dispersion over a wide band, it is necessary to divide the band and use a plurality of dispersion compensators. Specifically, a technique is known in which a wavelength-multiplexed optical signal is demultiplexed for each wavelength (channel), and dispersion is compensated by separate dispersion compensators (see, for example, Patent Document 2 and Patent Document 3). In Patent Document 2, as shown in FIG. 11, a wavelength multiplexed optical signal propagated through a transmission line is demultiplexed into optical signals of respective wavelengths by a demultiplexer 4, and a dispersion compensator 1 is provided for each wavelength. A configuration in which dispersion is compensated and received by the optical receiver 5 is disclosed. In Patent Document 3, as shown in FIG. 12, first, the dispersion of all wavelengths is compensated in a lump and then demultiplexed to each wavelength, and the remaining dispersion of each wavelength is compensated by a separate dispersion compensator. The structure to perform is disclosed.

特開昭62−65529号公報JP-A-62-65529 特開平09−116493号公報JP 09-116493 A 特開平11−103286号公報JP-A-11-103286

上記従来例のようにチャネルごとに分散補償器を用いる方法では、当該分散補償器を収容する光通信装置が大型化し、高コスト化する問題があった。分散補償器は一般に、分散補償ファイバ(分散補償手段)をリールに巻き、ケースに収容して構成する。このリールは、1つの外径・幅が数十cmに及ぶため、たとえば64波多重で500kmを伝送する光通信システムを構成する場合、64個の分散補償器は、奥行き30cm×幅60cm×高さ200cmの機器収容架2架分の大きさとなる。これは、全体で4架の端局装置の約半分である。
上記問題に鑑み、本発明では、分散補償器所要数を削減し、光通信装置を小型化、低コスト化することを目的とする。
In the method of using a dispersion compensator for each channel as in the above-described conventional example, there is a problem that the optical communication apparatus that accommodates the dispersion compensator is increased in size and cost. Generally, a dispersion compensator is configured by winding a dispersion compensation fiber (dispersion compensation means) around a reel and housing the case in a case. Since this reel has an outer diameter and a width of several tens of centimeters, for example, when configuring an optical communication system that transmits 500 km by 64-wave multiplexing, 64 dispersion compensators are 30 cm deep × 60 cm wide × high It is the size of two 200cm equipment storage racks. This is about half of the total of four station devices.
In view of the above problems, an object of the present invention is to reduce the required number of dispersion compensators and reduce the size and cost of an optical communication device.

本発明は、2つの光信号の分散を1つの分散補償手段で補償するよう構成したことを特徴とする。   The present invention is characterized in that the dispersion of two optical signals is compensated by one dispersion compensation means.

本発明によれば、光通信装置に収容すべき分散補償器の数を半減できるので、当該光通信装置の大幅な小型化および低コスト化が可能となる。   According to the present invention, since the number of dispersion compensators to be accommodated in the optical communication apparatus can be halved, the optical communication apparatus can be significantly reduced in size and cost.

本発明の分散補償器は、分散補償手段の入出力端子の一端に第一の波長の光信号を入力し他端から出力するとともに、該他端に第二の波長の光信号を入力し前記一端から出力するよう構成する。好ましくは、隣接チャネルの2信号を、1つの分散補償器でそれぞれ分散が略ゼロとなるよう補償する。   In the dispersion compensator of the present invention, an optical signal having the first wavelength is input to one end of the input / output terminal of the dispersion compensating means and output from the other end, and an optical signal having the second wavelength is input to the other end. Configure to output from one end. Preferably, two signals of adjacent channels are compensated by a single dispersion compensator so that the dispersion becomes substantially zero.

図1は、本発明の第1の実施例を示したもので、2つの光信号の分散をひとつの分散補償手段で補償する分散補償器の構成図である。図中の10は分散補償手段、20および30は方向性結合器である。方向性結合器は光の分岐結合デバイスであり、本実施例に用いた方向性結合器は、例えば同図のポート21から入力した光信号をポート22に出力し、同22から入力した光信号を同23に出力する。   FIG. 1 shows a first embodiment of the present invention, and is a configuration diagram of a dispersion compensator that compensates for dispersion of two optical signals by one dispersion compensation means. In the figure, 10 is a dispersion compensation means, and 20 and 30 are directional couplers. The directional coupler is an optical branching and coupling device, and the directional coupler used in this embodiment outputs, for example, an optical signal input from the port 21 of FIG. Is output to 23.

ここで、波長λ1の光信号を入力1から、波長λ2の光信号を入力2からそれぞれ入力する場合の動作について説明する。まず波長λ1の光信号は、方向性結合器20(ポート21に入力、ポート22から出力)を介して、分散補償手段10に入力される。そして分散補償手段10で分散補償され、方向性結合器30(ポート31に入力、ポート32から出力)を介して、出力1から出力される。 Here, the operation when the optical signal of wavelength λ 1 is input from input 1 and the optical signal of wavelength λ 2 is input from input 2 will be described. First, an optical signal having a wavelength λ 1 is input to the dispersion compensation means 10 via the directional coupler 20 (input to the port 21 and output from the port 22). Then, the dispersion is compensated by the dispersion compensation means 10 and outputted from the output 1 through the directional coupler 30 (input to the port 31 and output from the port 32).

一方、波長λ2の光信号は、方向性結合器30(ポート33に入力、ポート31から出力)を介して、波長λ1とは逆方向に分散補償手段10に入力される。そして分散補償手段10で分散補償され、方向性結合器20(ポート22に入力、ポート23から出力)を介して、出力2から出力される。 On the other hand, the optical signal having the wavelength λ 2 is input to the dispersion compensation means 10 through the directional coupler 30 (input to the port 33 and output from the port 31) in the direction opposite to the wavelength λ 1 . Then, the dispersion is compensated by the dispersion compensating means 10 and outputted from the output 2 through the directional coupler 20 (input to the port 22 and output from the port 23).

このようにして、波長の異なる2信号を1つの分散補償器で分散補償する。好ましくは、隣接チャネルの2信号を、1つの分散補償器でそれぞれ分散が略ゼロとなるよう補償する。当該2信号は波長が異なるため、それぞれの分散をともに最適に補償することはできないが、隣接チャネル間の分散量の差は少なく、システム設計上の誤差範囲内に収まるので、許容できる。こうして波長の異なる2つの信号の分散を1つの分散補償手段で補償する構成を採用したことにより、本発明では分散補償手段の数を半減できた。   In this way, dispersion compensation of two signals having different wavelengths is performed by one dispersion compensator. Preferably, two signals of adjacent channels are compensated by a single dispersion compensator so that the dispersion becomes substantially zero. Since the two signals have different wavelengths, it is not possible to optimally compensate for the respective dispersions, but the difference in dispersion amount between adjacent channels is small and within the error range in the system design. By adopting a configuration in which the dispersion of two signals having different wavelengths is compensated by one dispersion compensation means, the number of dispersion compensation means can be halved in the present invention.

本実施例では、分散補償手段の両端に方向性結合器を追加しているが、この方向性結合器は分散補償ファイバと比較して大幅に小型かつ安価なものである。従い、方向性結合器を2個追加して分散補償手段を1つ削減したことで、分散補償装置を大幅に小型化、低コスト化する、格別の効果を奏することができた。   In this embodiment, directional couplers are added to both ends of the dispersion compensation means, but this directional coupler is much smaller and less expensive than the dispersion compensation fiber. Therefore, by adding two directional couplers and reducing one dispersion compensation means, the dispersion compensation device can be greatly reduced in size and cost, and an exceptional effect can be achieved.

図2は本発明の第2の実施例であり、第1の実施例における方向性結合器20および30をそれぞれ、光サーキュレータ200と光サーキュレータ300に置き換えたものである。光サーキュレータの挿入損失は一般的に1dB程度であり、方向性結合器(一般的に挿入損失は3dB以上)を用いた第1の実施例に比べて挿入損失を低減できる特徴がある。   FIG. 2 shows a second embodiment of the present invention, in which the directional couplers 20 and 30 in the first embodiment are replaced with an optical circulator 200 and an optical circulator 300, respectively. The insertion loss of an optical circulator is generally about 1 dB, and the insertion loss can be reduced compared to the first embodiment using a directional coupler (generally the insertion loss is 3 dB or more).

本実施例では、分散補償手段の両端に光サーキュレータを追加しているが、この光サーキュレータは分散補償ファイバと比較して大幅に小型かつ安価なものである。従い、光サーキュレータを2個追加して分散補償手段を1つ削減したことで、分散補償装置を大幅に小型化、低コスト化する、格別の効果を奏することができた。   In this embodiment, an optical circulator is added to both ends of the dispersion compensation means, but this optical circulator is much smaller and less expensive than the dispersion compensation fiber. Therefore, by adding two optical circulators and reducing one dispersion compensation means, the dispersion compensation device can be greatly reduced in size and cost, and an exceptional effect can be achieved.

図3は本発明の第3の実施例であり、第1の実施例における方向性結合器20および30をそれぞれ、3dB光カプラ201(301)と光アイソレータ202(302)で構成したものである。3dB光カプラとは、入射してきた光を2ポートに等分(パワー等分)する光デバイスである。   FIG. 3 shows a third embodiment of the present invention, in which the directional couplers 20 and 30 in the first embodiment are configured by a 3 dB optical coupler 201 (301) and an optical isolator 202 (302), respectively. . A 3 dB optical coupler is an optical device that equally divides incident light into two ports (equal power).

ここで、波長λ1の光信号を入力1から入力する場合の動作について説明する。波長λ1の光信号は、方向性結合器20のポート21から入力され、光アイソレータ202を通り光カプラ201に入力され、ポート22側と光カプラ開放端に等分配される。したがってポート22側から出力される波長λ1の光信号は、約3dBの損失を伴って、分散補償手段10に入力される。分散補償手段10で分散補償され、出力された波長λ1の光信号は、方向性結合器30のポート31から入り、光カプラ301によりポート32側とポート33側に等分配される。ここでポート33側に分岐した波長λ1の光信号は光アイソレータ302により阻止されるため、ポート32からのみ出力される。従い、3dBの損失を伴ってポート32からのみ出力することになる。このように、本実施例では方向性結合器20(30)の挿入損失(3dB)が、光サーキュレータ200(300)(挿入損失1dB)に比べて大きくなるが、光カプラ及び光アイソレータという、サーキュレータよりも安価なデバイスを用いることに特徴がある。従い、実施例1や実施例2に開示したような、方向性結合器や光サーキュレータを用いて構成される分散補償装置に比べ、さらにコストが削減される。また、光アイソレータ及び光カプラは共に、分散補償ファイバと比較して大幅に小型であり、分散補償装置の大幅な小型化も可能となる。従い、本実施例に示す構成の方向性結合器を2個追加して分散補償手段を1つ削減したことで、分散補償装置を大幅に小型化、低コスト化する、格別の効果を奏することができた。 Here, an operation when an optical signal having the wavelength λ 1 is input from the input 1 will be described. The optical signal having the wavelength λ 1 is input from the port 21 of the directional coupler 20, passes through the optical isolator 202, is input to the optical coupler 201, and is equally distributed to the port 22 side and the optical coupler open end. Therefore, the optical signal of wavelength λ 1 output from the port 22 side is input to the dispersion compensation means 10 with a loss of about 3 dB. The optical signal having the wavelength λ 1 that is dispersion-compensated by the dispersion compensation means 10 enters from the port 31 of the directional coupler 30 and is equally distributed to the port 32 side and the port 33 side by the optical coupler 301. Here, since the optical signal having the wavelength λ 1 branched to the port 33 side is blocked by the optical isolator 302, it is output only from the port 32. Therefore, it outputs only from port 32 with a loss of 3 dB. As described above, in this embodiment, the insertion loss (3 dB) of the directional coupler 20 (30) is larger than that of the optical circulator 200 (300) (insertion loss 1 dB). It is characterized by using a cheaper device. Accordingly, the cost can be further reduced as compared with the dispersion compensator configured using the directional coupler and the optical circulator as disclosed in the first and second embodiments. In addition, both the optical isolator and the optical coupler are significantly smaller than the dispersion compensating fiber, and the dispersion compensating apparatus can be greatly reduced in size. Therefore, by adding two directional couplers having the configuration shown in the present embodiment and reducing one dispersion compensation means, the dispersion compensation device can be greatly reduced in size and cost, and an exceptional effect can be achieved. I was able to.

図4は本発明の第4の実施例であり、本発明の分散補償器1-1〜1-32を用いた、64波長多重光信号の受信側の光通信装置の構成図である。分波器4で波長多重光信号を波長λ〜λ64に分波し、分波した各波長の光信号の内、隣接する2波長(たとえば図4のλ1とλ2)の光信号を、分散補償器1-1の各入力ポート(λ1→入力1、λ2→入力2)に入力する。そして当該分散補償器で分散補償された波長λ1とλ2の光信号は、分散補償器1-1の出力ポート(出力1→λ1、出力2→λ2)から出力する。これらの光信号は、光受信器5-1と光受信器5-2でそれぞれ電気信号に変換される。なお本図は、分波器4の前段に全波長一括補償用の分散補償器を配置する/しないに係らず、分波器4から後段の構成は同様になるため、一括補償用の分散補償器は図示していない。分波器4の前段に全波長一括補償用の分散補償器を配置する場合においても、本実施例を適用可能なことはいうまでもない。また多重する波長数が変わっても(例えば32波、128波など)、2種類の光信号の分散を1つの分散補償手段で同時に補償できるようにする本実施例の構成に特段の変化は無い。 FIG. 4 shows a fourth embodiment of the present invention, and is a configuration diagram of an optical communication apparatus on the reception side of a 64-wavelength multiplexed optical signal using the dispersion compensators 1-1 to 1-32 of the present invention. The demultiplexer 4 demultiplexes the wavelength-multiplexed optical signal into wavelengths λ 1 to λ 64 , and optical signals of two adjacent wavelengths (for example, λ 1 and λ 2 in FIG. 4) among the demultiplexed optical signals. Is input to each input port (λ 1input 1, λ 2 → input 2) of the dispersion compensator 1-1. Then, the optical signals of wavelengths λ 1 and λ 2 that have been dispersion-compensated by the dispersion compensator are output from the output ports (output 1 → λ 1 , output 2 → λ 2 ) of the dispersion compensator 1-1. These optical signals are converted into electrical signals by the optical receiver 5-1 and the optical receiver 5-2, respectively. In this figure, the configuration of the subsequent stage from the demultiplexer 4 is the same regardless of whether or not the dispersion compensator for all-wavelength collective compensation is arranged before the demultiplexer 4, so that the dispersion compensation for collective compensation is the same. The vessel is not shown. Needless to say, this embodiment can also be applied to the case where a dispersion compensator for all-wavelength collective compensation is arranged in front of the duplexer 4. Even if the number of wavelengths to be multiplexed changes (for example, 32 waves, 128 waves, etc.), there is no particular change in the configuration of this embodiment in which dispersion of two types of optical signals can be compensated simultaneously by one dispersion compensation means. .

本実施例により、分散補償器の所要量が従来に比べて半減し、光通信装置を大幅に小型化、低コスト化する、格別の効果を奏することができた。   According to the present embodiment, the required amount of the dispersion compensator is halved compared with the prior art, and the optical communication apparatus can be significantly reduced in size and cost, and an exceptional effect can be achieved.

図5は本発明の第5の実施例であり、本発明の分散補償器1-1〜1-32を用いた、64波長多重光信号の送信側の光通信装置の構成である。前記実施例4では、光信号が伝送路を伝搬した後に、各波長の光信号の分散を補償するシステムを開示したが、本実施例は光信号が伝送路を伝搬する前に、当該伝送路を伝搬する事により発生する分散量相当分をあらかじめ補償しておく実施例である。光送信器8-1〜8-64から出力された、波長λ〜λ64の光信号の内、隣接する2波長(たとえばλ1とλ2)の光信号を、分散補償器1-1の各入力ポート(λ1→入力1、λ2→入力2)に入力する。そして当該分散補償器で分散補償された波長λ1とλ2の光信号は、分散補償器11の出力ポート(出力1→λ1、出力2→λ2)から出力される。以下同様に、隣接する2波長の光信号をそれぞれ1つの分散補償器に通した後、それぞれの分散補償器から出力された波長λ〜λ64の光信号を、合波器9に入力し、波長多重光信号にした後、伝送路に出力する。なお本図は、合波器9の後段に全波長一括補償用の分散補償器を配置する/しないに係らず、合波器9より前段の構成は同様になるため、一括補償用の分散補償器は図示していない。合波器9の後段に全波長一括補償用の分散補償器を配置する場合においても、本実施例を適用可能なことはいうまでもない。また多重する波長数が変わっても(例えば32波、128波など)、2種類の光信号の分散を1つの分散補償手段で同時に補償できるようにする本実施例の構成に特段の変化は無い。 FIG. 5 shows a fifth embodiment of the present invention, which is a configuration of an optical communication apparatus on the transmission side of a 64-wavelength multiplexed optical signal using the dispersion compensators 1-1 to 1-32 of the present invention. In the fourth embodiment, the system for compensating for the dispersion of the optical signal of each wavelength after the optical signal propagates through the transmission line is disclosed. However, in this embodiment, before the optical signal propagates through the transmission line, the transmission line This is an embodiment in which the amount corresponding to the amount of dispersion generated by propagating is compensated in advance. Of the optical signals of wavelengths λ 1 to λ 64 output from the optical transmitters 8-1 to 8-64, optical signals of two adjacent wavelengths (for example, λ 1 and λ 2 ) are converted into dispersion compensators 1-1. To each input port (λ 1input 1, λ 2 → input 2). The optical signal dispersion compensation wavelength lambda 1 and lambda 2 in the dispersion compensator is output from the dispersion compensator 1 1 output port (output 1 → lambda 1, the output 2 → λ 2). Similarly, after passing optical signals of two adjacent wavelengths through one dispersion compensator, the optical signals of wavelengths λ 1 to λ 64 output from the respective dispersion compensators are input to the multiplexer 9. After being converted into a wavelength multiplexed optical signal, it is output to the transmission line. In this figure, since the configuration of the preceding stage of the multiplexer 9 is the same regardless of whether or not the dispersion compensator for all-wavelength collective compensation is arranged at the subsequent stage of the multiplexer 9, the dispersion compensation for collective compensation is the same. The vessel is not shown. Needless to say, this embodiment can also be applied to the case where a dispersion compensator for all-wavelength collective compensation is arranged at the subsequent stage of the multiplexer 9. Even if the number of wavelengths to be multiplexed changes (for example, 32 waves, 128 waves, etc.), there is no particular change in the configuration of this embodiment in which dispersion of two types of optical signals can be compensated simultaneously by one dispersion compensation means. .

本実施例により、分散補償器の所要量が従来に比べて半減し、光通信装置を大幅に小型化、低コスト化する、格別の効果を奏することができた。   According to the present embodiment, the required amount of the dispersion compensator is halved compared with the prior art, and the optical communication apparatus can be significantly reduced in size and cost, and an exceptional effect can be achieved.

図6は本発明の第6の実施例であり、本発明の分散補償器1-1〜1-32を用いた、64波長多重光信号の光中継装置の構成例である。前記実施例4および5では、光信号の受信端局および送信端局における分散補償の例を開示したが、本実施例は、光中継装置内で光信号の分散を補償する例である。伝送路を伝搬してきた波長多重光信号を分波器4で波長λ〜λ64に分波し、分波した各波長の光信号の内、隣接する2波長(たとえばλ1とλ2)の光信号を、分散補償器11の各入力ポート(λ1→入力1、λ2→入力2)に入力する。そして当該分散補償器で分散補償された波長λ1とλ2の光信号は、分散補償器11の出力ポート(出力1→λ1、出力2→λ2)から出力される。以下同様に、隣接する2波長の光信号をそれぞれ1つの分散補償器に通した後、それぞれの分散補償器から出力された波長λ〜λ64の光信号を、合波器9に入力し、波長多重光信号にした後、伝送路に出力する。なお本図は、分波器4の前段や合波器9の後段に全波長一括補償用の分散補償器を配置する/しないに係らず、分波器4から合波器9までの構成は同様になるため、一括補償用の分散補償器は図示していない。分波器4の前段や合波器9の後段に全波長一括補償用の分散補償器を配置する場合においても、本実施例を適用可能なことはいうまでもない。また多重する波長数が変わっても(例えば32波、128波など)、2種類の光信号の分散を1つの分散補償手段で同時に補償できるようにする本実施例の構成に特段の変化は無い。 FIG. 6 shows a sixth embodiment of the present invention, which is a configuration example of an optical repeater for 64-wavelength multiplexed optical signals using the dispersion compensators 1-1 to 1-32 of the present invention. In the fourth and fifth embodiments, the example of dispersion compensation at the receiving terminal station and the transmitting terminal station of the optical signal is disclosed. However, the present embodiment is an example of compensating the dispersion of the optical signal in the optical repeater. The wavelength multiplexed optical signal propagated through the transmission line is demultiplexed into wavelengths λ 1 to λ 64 by the demultiplexer 4, and two adjacent wavelengths (for example, λ 1 and λ 2 ) among the demultiplexed optical signals. of the optical signal, inputted to the input port of the dispersion compensator 1 1 (λ 1 → input 1, lambda 2 → input 2). The optical signal dispersion compensation wavelength lambda 1 and lambda 2 in the dispersion compensator is output from the dispersion compensator 1 1 output port (output 1 → lambda 1, the output 2 → λ 2). Similarly, after passing optical signals of two adjacent wavelengths through one dispersion compensator, the optical signals of wavelengths λ 1 to λ 64 output from the respective dispersion compensators are input to the multiplexer 9. After being converted into a wavelength multiplexed optical signal, it is output to the transmission line. This figure shows the configuration from the demultiplexer 4 to the multiplexer 9 regardless of whether or not the dispersion compensator for collective compensation of all wavelengths is arranged before the demultiplexer 4 and after the multiplexer 9. For the same reason, the dispersion compensator for collective compensation is not shown. Needless to say, this embodiment can also be applied to the case where a dispersion compensator for all-wavelength collective compensation is arranged at the front stage of the duplexer 4 or the rear stage of the multiplexer 9. Even if the number of wavelengths to be multiplexed changes (for example, 32 waves, 128 waves, etc.), there is no particular change in the configuration of this embodiment in which dispersion of two types of optical signals can be compensated simultaneously by one dispersion compensation means. .

本実施例により、分散補償器の所要量が従来に比べて半減し、光通信装置を大幅に小型化、低コスト化する、格別の効果を奏することができた。   According to the present embodiment, the required amount of the dispersion compensator is halved compared with the prior art, and the optical communication apparatus can be significantly reduced in size and cost, and an exceptional effect can be achieved.

図7は本発明の第7の実施例であり、第4の実施例における分波器4が、インターリーバ6とAWG(Arrayed Waveguide Grating)7を用いて構成されている光通信装置である。インターリーバとは、波長多重光信号を、波長間隔が2倍の2組の信号系列に分波したり、逆に2組の波長多重光信号を波長間隔が半分の1つの信号系列に合波する機能を有するデバイスである。0.4nm間隔などの小さな間隔で波長を多重するDWDM光伝送システムにおいては、このように分波器をインターリーバ6および倍の波長間隔を有する分波器で構成することが多い。本実施例では、波長多重光信号を、分波器4中のインターリーバ6により奇数チャネル波長(λ1、λ3、・・・λ63)と偶数チャネル波長(λ2、λ4、・・・λ64)に分波し、その後それぞれをAWG7により各波長ごとに分波する。以下、前記の第4の実施例と同様に、波長の隣接した光信号を、1つの分散補償器で分散補償する。なお本図においても図4と同じく、分波器4の前段に全波長一括補償用の分散補償器を配置する/しないに係らず、分波器4から後段の構成は同様になるため、一括補償用の分散補償器は図示していない。分波器4の前段に全波長一括補償用の分散補償器を配置する場合においても、本実施例を適用可能なことはいうまでもない。また多重する波長数が変わっても(例えば32波、128波など)、2種類の光信号の分散を1つの分散補償手段で同時に補償できるようにする本実施例の構成に特段の変化は無い。 FIG. 7 shows a seventh embodiment of the present invention, which is an optical communication device in which the duplexer 4 in the fourth embodiment is configured using an interleaver 6 and an AWG (Arrayed Waveguide Grating) 7. An interleaver demultiplexes a wavelength-multiplexed optical signal into two sets of signal sequences whose wavelength interval is twice, or conversely combines two sets of wavelength-multiplexed optical signals into one signal sequence whose wavelength interval is half. It is a device having a function to perform. In a DWDM optical transmission system that multiplexes wavelengths at small intervals such as 0.4 nm intervals, the demultiplexer is often composed of the interleaver 6 and demultiplexers having double wavelength intervals. In this embodiment, the wavelength multiplexed optical signal is converted into an odd channel wavelength (λ 1 , λ 3 ,... Λ 63 ) and an even channel wavelength (λ 2 , λ 4 ,...) By an interleaver 6 in the demultiplexer 4 .・ Demultiplex to λ 64 ), and then demultiplex each by AWG7 for each wavelength. Thereafter, similarly to the fourth embodiment, the dispersion compensation of the optical signals having adjacent wavelengths is performed by one dispersion compensator. In this figure, as in FIG. 4, the configuration of the subsequent stage from the demultiplexer 4 is the same regardless of whether or not the dispersion compensator for all-wavelength collective compensation is arranged in the previous stage of the demultiplexer 4. A compensating dispersion compensator is not shown. Needless to say, this embodiment can also be applied to the case where a dispersion compensator for all-wavelength collective compensation is arranged in front of the duplexer 4. Even if the number of wavelengths to be multiplexed changes (for example, 32 waves, 128 waves, etc.), there is no particular change in the configuration of this embodiment in which dispersion of two types of optical signals can be compensated simultaneously by one dispersion compensation means. .

図8は本発明の第8の実施例であり、第5の実施例における合波器9が、インターリーバ6とAWG7を用いて構成されている光通信装置である。前記の第5の実施例と同様に、波長の隣接した光信号を、1つの分散補償器で分散補償を行う。その後合波器9中のAWG7により、奇数チャネル波長(λ1、λ3、・・・λ63)と、偶数チャネル波長(λ2、λ4、・・・λ64)をそれぞれ合波し、その後それらをインターリーバ6に入射させ、前記奇数チャネル及び前記偶数チャネルを合わせた波長λ〜λ64の波長多重光信号として伝送路に出力する。なお本図においても図5と同じく、合波器9の後段に全波長一括補償用の分散補償器を配置する/しないに係らず、合波器9より前段の構成は同様になるため、一括補償用の分散補償器は図示していない。合波器9の後段に全波長一括補償用の分散補償器を配置する場合においても、本実施例を適用可能なことはいうまでもない。また多重する波長数が変わっても(例えば32波、128波など)、2種類の光信号の分散を1つの分散補償手段で同時に補償できるようにする本実施例の構成に特段の変化は無い。 FIG. 8 shows an eighth embodiment of the present invention, which is an optical communication apparatus in which a multiplexer 9 in the fifth embodiment is configured using an interleaver 6 and an AWG 7. Similar to the fifth embodiment, dispersion compensation is performed on optical signals having adjacent wavelengths by using one dispersion compensator. Then, the odd channel wavelengths (λ 1 , λ 3 ,..., Λ 63 ) and the even channel wavelengths (λ 2 , λ 4 ,... Λ 64 ) are respectively multiplexed by the AWG 7 in the multiplexer 9. After that, they are made incident on the interleaver 6 and output to the transmission line as wavelength multiplexed optical signals of wavelengths λ 1 to λ 64 that combine the odd channels and the even channels. In this figure, as in FIG. 5, the configuration of the preceding stage of the multiplexer 9 is the same regardless of whether or not the dispersion compensator for all-wavelength collective compensation is arranged after the multiplexer 9. A compensating dispersion compensator is not shown. Needless to say, this embodiment can also be applied to the case where a dispersion compensator for all-wavelength collective compensation is arranged at the subsequent stage of the multiplexer 9. Even if the number of wavelengths to be multiplexed changes (for example, 32 waves, 128 waves, etc.), there is no particular change in the configuration of this embodiment in which dispersion of two types of optical signals can be compensated simultaneously by one dispersion compensation means. .

図9は本発明の第9の実施例であり、第6の実施例における分波器4および合波器9のうち少なくとも1つが、インターリーバ6とAWG7によって構成されている光中継装置である。本実施例では、分波器4および合波器9が共にインターリーバ6とAWG7によって構成されている例を示すが、インターリーバ6とAWG7によって構成されるのは分波器のみでもよく、また合波器のみでもよい。分波器4中のインターリーバ6により波長多重光信号を、奇数チャネル波長(λ1、λ3、・・・λ63)と、偶数チャネル波長(λ2、λ4、・・・λ64)に分波し、その後それぞれをAWG7により各波長に分波する。以下、前記の第6の実施例と同様に、波長の隣接した光信号を、1つの分散補償器で分散補償を行う。その後、それぞれの分散補償器から出力された波長λ〜λ64の光信号を、合波器9中のAWG7により、奇数チャネル波長(λ1、λ3、・・・λ63)と、偶数チャネル波長(λ2、λ4、・・・λ64)をそれぞれ合波し、その後それらをインターリーバ6に入射させ、前記奇数チャネル及び前記偶数チャネルを合わせた波長λ〜λ64の波長多重光信号として伝送路に出力する。なお本図においても図6と同じく、分波器4の前段や合波器9の後段に全波長一括補償用の分散補償器を配置する/しないに係らず、分波器4から合波器9までの構成は同様になるため、一括補償用の分散補償器は図示していない。分波器4の前段や合波器9の後段に全波長一括補償用の分散補償器を配置する場合においても、本実施例を適用可能なことはいうまでもない。また多重する波長数が変わっても(例えば32波、128波など)、2種類の光信号の分散を1つの分散補償手段で同時に補償できるようにする本実施例の構成に特段の変化は無い。 FIG. 9 shows a ninth embodiment of the present invention, which is an optical repeater in which at least one of the duplexer 4 and the multiplexer 9 in the sixth embodiment is constituted by an interleaver 6 and an AWG 7. . In the present embodiment, the duplexer 4 and the multiplexer 9 are both configured by the interleaver 6 and the AWG 7, but only the duplexer may be configured by the interleaver 6 and the AWG 7. Only a multiplexer may be used. A wavelength multiplexed optical signal is converted into an odd channel wavelength (λ 1 , λ 3 ,..., Λ 63 ) and an even channel wavelength (λ 2 , λ 4 ,... Λ 64 ) by an interleaver 6 in the duplexer 4. Then, each is demultiplexed to each wavelength by AWG7. Thereafter, similarly to the sixth embodiment, the dispersion compensation is performed on the optical signals having adjacent wavelengths by using one dispersion compensator. Thereafter, the optical signals of the wavelengths λ 1 to λ 64 output from the respective dispersion compensators are set to odd channel wavelengths (λ 1 , λ 3 ,... Λ 63 ) and even numbers by the AWG 7 in the multiplexer 9. The channel wavelengths (λ 2 , λ 4 ,... Λ λ 64 ) are combined and then incident on the interleaver 6, and wavelength multiplexing of wavelengths λ 1 to λ 64 , which combines the odd channel and the even channel. Output to the transmission line as an optical signal. In this figure, similarly to FIG. 6, regardless of whether or not a dispersion compensator for all-wavelength collective compensation is arranged before the duplexer 4 and after the multiplexer 9, the duplexer 4 to the multiplexer Since the configuration up to 9 is the same, the dispersion compensator for collective compensation is not shown. Needless to say, this embodiment can also be applied to the case where a dispersion compensator for all-wavelength collective compensation is arranged at the front stage of the duplexer 4 or the rear stage of the multiplexer 9. Even if the number of wavelengths to be multiplexed changes (for example, 32 waves, 128 waves, etc.), there is no particular change in the configuration of this embodiment in which dispersion of two types of optical signals can be compensated simultaneously by one dispersion compensation means. .

図10は本発明の第10の実施例であり、海底系や、陸上基幹系の中長距離光通信伝送路に適用される光通信システムにおいて、前記実施例4〜9に記載の光通信装置のうち少なくとも1つを用いる事を特徴とする光通信システムの一例である。このように、光通信装置に搭載される分散補償器数を半減する事により、当該光通信システムを構成するためのコストを大幅に低減する、格別の効果を奏することができた。   FIG. 10 shows a tenth embodiment of the present invention. In an optical communication system applied to a submarine system or a land-based trunk medium-to-long distance optical communication transmission line, the optical communication apparatus according to any of the fourth to ninth embodiments. It is an example of the optical communication system characterized by using at least 1 among these. As described above, by halving the number of dispersion compensators mounted in the optical communication apparatus, it was possible to achieve a special effect of significantly reducing the cost for configuring the optical communication system.

本発明の第1の実施例を示す図The figure which shows the 1st Example of this invention 本発明の第2の実施例を示す図The figure which shows the 2nd Example of this invention 本発明の第3の実施例を示す図The figure which shows the 3rd Example of this invention 本発明の第4の実施例を示す図The figure which shows the 4th Example of this invention 本発明の第5の実施例を示す図The figure which shows the 5th Example of this invention 本発明の第6の実施例を示す図The figure which shows the 6th Example of this invention 本発明の第7の実施例を示す図The figure which shows the 7th Example of this invention 本発明の第8の実施例を示す図The figure which shows the 8th Example of this invention 本発明の第9の実施例を示す図The figure which shows the 9th Example of this invention 本発明の第10の実施例を示す図The figure which shows the 10th Example of this invention 波長多重光信号に対する従来の分散補償方法を示す図The figure which shows the conventional dispersion compensation method with respect to a wavelength multiplexing optical signal 波長多重光信号に対する従来の分散補償方法を示す図The figure which shows the conventional dispersion compensation method with respect to a wavelength multiplexing optical signal

符号の説明Explanation of symbols

1 :分散補償器
10 :分散補償手段
20、30 :方向性結合器
21、22、23、
31、32、33 :入出力端
200、300 :光サーキュレータ
201、301 :3dB光カプラ
202、302 :光アイソレータ
4 :分波器
5 :光受信器
6 :インターリーバ
7 :AWG(Arrayed Waveguide Grating)
8 :光送信器
9 :合波器
11 :光通信装置(送信側)
12 :光中継装置
13 :光通信装置(受信側)
1: dispersion compensator 10: dispersion compensation means 20, 30: directional couplers 21, 22, 23,
31, 32, 33: input / output terminals 200, 300: optical circulator 201, 301: 3 dB optical coupler 202, 302: optical isolator 4: duplexer 5: optical receiver 6: interleaver 7: AWG (Arrayed Waveguide Grating)
8: Optical transmitter 9: Multiplexer 11: Optical communication device (transmission side)
12: Optical repeater 13: Optical communication device (receiving side)

Claims (11)

光通信システムに用いられる、1または複数の分散補償手段を具備する分散補償器において、少なくとも1つの分散補償手段の入出力端子の一端に第一の波長の光信号を入力し他端から出力するとともに、該他端に第二の波長の光信号を入力し前記一端から出力するよう構成したことを特徴とする、分散補償器。 In a dispersion compensator having one or a plurality of dispersion compensation means used in an optical communication system, an optical signal having a first wavelength is inputted to one end of an input / output terminal of at least one dispersion compensation means and outputted from the other end. The dispersion compensator is characterized in that an optical signal having a second wavelength is input to the other end and output from the one end. 前記分散補償手段の入出力両端に方向性結合器が接続されていることを特徴とする、請求項1に記載の分散補償器。 2. The dispersion compensator according to claim 1, wherein directional couplers are connected to both input and output ends of the dispersion compensation means. 前記分散補償手段の入出力両端に光サーキュレータが接続されていることを特徴とする、請求項1に記載の分散補償器。 2. The dispersion compensator according to claim 1, wherein optical circulators are connected to both input and output ends of the dispersion compensation means. 前記方向性結合器が光カプラと光アイソレータとからなることを特徴とする、請求項2に記載の分散補償器。 The dispersion compensator according to claim 2, wherein the directional coupler includes an optical coupler and an optical isolator. 波長多重光信号を分波する分波器と、該分波器の出力する光信号の分散を補償する分散補償装置と、該分散補償装置の出力する光信号を受信する光受信器とを含む光通信装置において、前記分散補償装置は、請求項1乃至4に記載の分散補償器を少なくとも1つ用いて構成したことを特徴とする、光通信装置。 A demultiplexer for demultiplexing the wavelength-multiplexed optical signal; a dispersion compensation device for compensating for dispersion of the optical signal output from the demultiplexer; and an optical receiver for receiving the optical signal output from the dispersion compensation device. An optical communication apparatus, wherein the dispersion compensator is configured by using at least one dispersion compensator according to any one of claims 1 to 4. 光源と、該光源の出力する光信号の分散を補償する分散補償装置と、該分散補償装置の出力する光信号を合波し伝送路に出力する合波器とを含む光通信装置において、前記分散補償装置は、請求項1乃至4に記載の分散補償器を少なくとも1つ用いて構成したことを特徴とする、光通信装置。 In the optical communication device comprising: a light source; a dispersion compensation device that compensates for dispersion of an optical signal output from the light source; and a multiplexer that combines the optical signals output from the dispersion compensation device and outputs the multiplexed signals to a transmission path. An optical communication apparatus, wherein the dispersion compensator is configured by using at least one dispersion compensator according to claim 1. 波長多重光信号を分波する分波器と、該分波器の出力する光信号の分散を補償する分散補償装置と、該分散補償装置の出力する光信号を合波し伝送路に出力する合波器とを含む光通信装置において、前記分散補償装置は、請求項1乃至4に記載の分散補償器を少なくとも1つ用いて構成される光通信装置。 A demultiplexer for demultiplexing a wavelength-multiplexed optical signal, a dispersion compensation device for compensating for dispersion of the optical signal output from the demultiplexer, and an optical signal output from the dispersion compensation device are combined and output to a transmission line. 5. An optical communication apparatus including a multiplexer, wherein the dispersion compensation apparatus is configured using at least one dispersion compensator according to claim 1. 前記分波器が、AWG(Arrayed Waveguide Grating)とインターリーバからなる事を特徴とする、請求項5に記載の光通信装置。 6. The optical communication apparatus according to claim 5, wherein the duplexer includes an arrayed waveguide grating (AWG) and an interleaver. 前記合波器が、AWGとインターリーバとからなる事を特徴とする、請求項6に記載の光通信装置。 The optical communication apparatus according to claim 6, wherein the multiplexer includes an AWG and an interleaver. 前記合波器および前記分波器のうち少なくとも1つが、AWGとインターリーバからなる事を特徴とする、請求項7に記載の光通信装置。 8. The optical communication apparatus according to claim 7, wherein at least one of the multiplexer and the duplexer includes an AWG and an interleaver. 請求項5乃至10に記載の光通信装置のうち少なくとも1つを用いる事を特徴とする、波長多重光通信システム。 A wavelength division multiplexing optical communication system using at least one of the optical communication apparatuses according to claim 5.
JP2005106096A 2005-04-01 2005-04-01 Dispersion compensation device, optical communication equipment using the same, and optical communication system Withdrawn JP2006287696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005106096A JP2006287696A (en) 2005-04-01 2005-04-01 Dispersion compensation device, optical communication equipment using the same, and optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005106096A JP2006287696A (en) 2005-04-01 2005-04-01 Dispersion compensation device, optical communication equipment using the same, and optical communication system

Publications (1)

Publication Number Publication Date
JP2006287696A true JP2006287696A (en) 2006-10-19

Family

ID=37409107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005106096A Withdrawn JP2006287696A (en) 2005-04-01 2005-04-01 Dispersion compensation device, optical communication equipment using the same, and optical communication system

Country Status (1)

Country Link
JP (1) JP2006287696A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009225142A (en) * 2008-03-17 2009-10-01 Nec Corp Optical communication device, optical transmission system, and method for reducing nonlinear degradation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009225142A (en) * 2008-03-17 2009-10-01 Nec Corp Optical communication device, optical transmission system, and method for reducing nonlinear degradation

Similar Documents

Publication Publication Date Title
US20120087658A1 (en) Wavelength Selective Switch Band Aggregator and Band Deaggregator and Systems and Methods Using Same
KR100334432B1 (en) Bidirectional add/drop optical amplifier module using one arrayed-waveguide grating multiplexer
US20070243456A1 (en) Thread-Type Flexible Battery
EP3605879B1 (en) Optical transmission system
US7519296B2 (en) Optical demultiplexing method and optical multiplexing method, and optical transmission apparatus using same
US20100028007A1 (en) Optical transmission apparatus
WO2018193835A1 (en) Bidirectional optical transmission system and bidirectional optical transmission method
JP2001333015A (en) Device and method for optical multiplexing
US20080019696A1 (en) Optical Transmission System of Ring Type
JP2003283438A (en) Optical transmission apparatus and optical transmission method
JP5438838B2 (en) Introducing channel side dispersion shift
US8195048B2 (en) Optical transport system architecture for remote terminal connectivity
US6552834B2 (en) Methods and apparatus for preventing deadbands in an optical communication system
US20010038477A1 (en) High-isolation wavelength managing module for bi-directional wavelength division multiplexing optical communication system
KR20020027058A (en) Band-split bidirectional add/drop multiplexer and amplifier module with common mid-stage devices
JP2002101045A (en) Wavelength dispersion compensator, and optical transmission path
US20070297800A1 (en) Wavelength Division Multiplexing Passive Optical Network System
JP2006287696A (en) Dispersion compensation device, optical communication equipment using the same, and optical communication system
JP2005027210A (en) Optical transmission apparatus
KR100454960B1 (en) Interleaving bidirectional optcial add/drop multiplexer
JP6251206B2 (en) Optical transmission / reception system
JP4161491B2 (en) Optical communication system and signal channel assignment method
US11523193B2 (en) Optical communications module link extender including ethernet and PON amplification
JP2007535268A (en) Center duplex wavelength division multiplexing passive optical network system
US20220263577A1 (en) Optical communications module link extender including ethernet and pon amplification

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080613

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090511

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100203