JP2006287082A - Manufacturing method for optical system and euv exposure system - Google Patents

Manufacturing method for optical system and euv exposure system Download PDF

Info

Publication number
JP2006287082A
JP2006287082A JP2005107115A JP2005107115A JP2006287082A JP 2006287082 A JP2006287082 A JP 2006287082A JP 2005107115 A JP2005107115 A JP 2005107115A JP 2005107115 A JP2005107115 A JP 2005107115A JP 2006287082 A JP2006287082 A JP 2006287082A
Authority
JP
Japan
Prior art keywords
mirror
optical system
flare
correction amount
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005107115A
Other languages
Japanese (ja)
Other versions
JP4609162B2 (en
Inventor
Tetsuya Oshino
哲也 押野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005107115A priority Critical patent/JP4609162B2/en
Publication of JP2006287082A publication Critical patent/JP2006287082A/en
Application granted granted Critical
Publication of JP4609162B2 publication Critical patent/JP4609162B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an optical system in which the flare light quantity at a mirror surface does not fluctuate so much. <P>SOLUTION: Substrates are polished using an ion beam (Step S1). After the completion of polishing of the substrates, the mirror substrates are measured for undulation shape (Step S2). Subsequently, the in-field flare light quantity distribution of an optical system is computed based on the undulation shape distribution of each mirror (Step S3). Such a correction amount is computed for undulation shape distribution in mirror that unevenness in the light quantity of flare is reduced (Step S4). The mirror is polished again to be provided with the above undulation shape distribution (Step S5). These mirror substrates are coated with a multilayer film (Step S6), and a projection optical system is assembled (Step S7). This projection optical system is mounted on an aligner (Step S8), and exposure evaluation is carried out to measure flare amount distribution (Step S9). When the above steps were followed, unevenness of 2% was measured which is substantially the same value as of the flare distribution estimated from computation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、EUV露光装置(極端紫外線露光装置とも呼ばれ、本明細書、及び特許請求の範囲にいおいては、波長が50nm以下の紫外線を用いた露光装置をいう)に搭載される投影光学系等の光学系の製造方法、及びこの方法により製造された投影光学系を有するEUV露光装置に関するものである。   The present invention is a projection mounted on an EUV exposure apparatus (also called an extreme ultraviolet exposure apparatus, and in the present specification and claims, refers to an exposure apparatus using ultraviolet rays having a wavelength of 50 nm or less). The present invention relates to a manufacturing method of an optical system such as an optical system, and an EUV exposure apparatus having a projection optical system manufactured by this method.

近年、半導体集積回路の微細化に伴い、光の回折限界によって制限される光学系の解像力を向上させるために、従来の紫外線に代えてこれより短い波長(11〜14nm)のEUV光を使用した投影リソグラフィ技術が開発されている(例えば、D.Tichenor, et al, SPIE 2437 (1995) 292:非特許文献1参照)。この技術は、最近ではEUV(Extreme UltraViolet)リソグラフィと呼ばれており、従来の波長190nm程度の光線を用いた光リソグラフィでは実現不可能な解像力を得られる技術として期待されている。   In recent years, with the miniaturization of semiconductor integrated circuits, EUV light having a shorter wavelength (11 to 14 nm) is used in place of conventional ultraviolet rays in order to improve the resolving power of the optical system limited by the diffraction limit of light. Projection lithography techniques have been developed (see, for example, D. Tichenor, et al, SPIE 2437 (1995) 292: Non-Patent Document 1). This technique is recently called EUV (Extreme UltraViolet) lithography, and is expected as a technique that can obtain a resolution that cannot be achieved by conventional optical lithography using light having a wavelength of about 190 nm.

EUV光の波長領域では、従来のレンズのような透過屈折型の光学素子を使用できず、反射を利用した光学系が使用される。   In a wavelength region of EUV light, a transmission / refraction type optical element such as a conventional lens cannot be used, and an optical system utilizing reflection is used.

EUV露光装置の概要を図4に示す。EUV光源31から放出されたEUV光32は、照明光学系33に入射し、コリメータミラーとして作用する凹面ミラー34を介してほぼ平行光束となり、一対のフライアイミラー35a及び35bからなるオプティカルインテグレータ35に入射し、実質的な面光源が形成される。実質的な面光源からの光は、平面ミラー36により偏向された後、マスクM上に細長い円弧状の照明領域を形成する。照明されたマスクMのパターンからの光は、複数のミラー(図3では例示的に6つのミラーM1〜M6)からなる投影光学系PLを介して、ウエハW上にマスクパターンの像を形成する。   An outline of the EUV exposure apparatus is shown in FIG. The EUV light 32 emitted from the EUV light source 31 enters the illumination optical system 33 and becomes a substantially parallel light beam via a concave mirror 34 that acts as a collimator mirror, and enters an optical integrator 35 including a pair of fly-eye mirrors 35a and 35b. Incident and a substantial surface light source is formed. The light from the substantial surface light source is deflected by the plane mirror 36 and then forms an elongated arc-shaped illumination area on the mask M. The light from the pattern of the illuminated mask M forms an image of the mask pattern on the wafer W through the projection optical system PL composed of a plurality of mirrors (six mirrors M1 to M6 in FIG. 3 exemplarily). .

所望のパターンをウエハ上に形成するためには、投影光学系の収差を十分小さくすることが好ましく、特に投影光学系の波面収差(rms値)を波長の1/30以下に、かつパターン歪を露光線幅の1/10以下に保つと、コントラストの高い微細なパターンを形成することができる。   In order to form a desired pattern on the wafer, it is preferable to sufficiently reduce the aberration of the projection optical system. In particular, the wavefront aberration (rms value) of the projection optical system is reduced to 1/30 or less of the wavelength, and the pattern distortion is reduced. When the exposure line width is maintained at 1/10 or less, a fine pattern with high contrast can be formed.

例えば、露光波長が13.5nm、投影光学系のNAが0.25である場合、波面収差を0.5nm(rms)以下に、パターン歪を5nm以下にすると、線幅が45nm程度のサイズの良質なレジストパターンを形成することができる。   For example, when the exposure wavelength is 13.5 nm and the NA of the projection optical system is 0.25, the line width is about 45 nm when the wavefront aberration is 0.5 nm (rms) or less and the pattern distortion is 5 nm or less. A high-quality resist pattern can be formed.

さらに投影光学系のフレアも十分小さく抑えることが好ましい。特にフレアに空間むらがあると像面内でレジストパターンの線幅にバラツキが生じるため、好ましくない。フレアは前記波面収差の原因ともなるミラー形状誤差のうち比較的空間周波数の高いうねり形状誤差によって生じる。概して空間周波数1mmから1μmの範囲のうねり形状がフレアに影響する。   Furthermore, it is preferable to keep the flare of the projection optical system sufficiently small. In particular, uneven flare is not preferable because the line width of the resist pattern varies in the image plane. The flare is caused by a wavy shape error having a relatively high spatial frequency among the mirror shape errors that cause the wavefront aberration. In general, a wavy shape in the spatial frequency range of 1 mm to 1 μm affects the flare.

フレアはミラーの枚数に概ね比例して増大するため、ミラー枚数が増えるほど、各ミラーの形状うねりは小さくしなければならない。例えば6枚のミラーで構成される投影光学系においてフレアを数%以下に抑えるためには、ミラーの形状うねりを0.1nm(rms)以下に低減する必要がある。さらにフレアのむらを低減するためには、ミラー形状うねりを0.1nm(rms)よりさらに小さい精度で制御する必要がある。   Since flare increases in proportion to the number of mirrors, the shape undulation of each mirror must be reduced as the number of mirrors increases. For example, in order to suppress flare to several percent or less in a projection optical system composed of six mirrors, it is necessary to reduce the waviness of the mirror to 0.1 nm (rms) or less. Further, in order to reduce the flare unevenness, it is necessary to control the mirror shape waviness with an accuracy smaller than 0.1 nm (rms).

従来の投影光学系の製作工程を図5に示す。最初に非球面ミラー基板を作製し、その表面に多層膜をコーティングする。複数の非球面ミラーを組み合わせて投影光学系を組み立て、その投影光学系をEUV露光機に設置して完成する。フレア量は、マスクに形成された所定線幅のパターンをレジスト上に露光し、レジストを現像して得られた線幅の広がりを測定することによって検出することができる。   A manufacturing process of a conventional projection optical system is shown in FIG. First, an aspherical mirror substrate is produced, and a multilayer film is coated on the surface. A projection optical system is assembled by combining a plurality of aspherical mirrors, and the projection optical system is installed in an EUV exposure machine to complete. The flare amount can be detected by exposing a pattern having a predetermined line width formed on the mask onto the resist and measuring the spread of the line width obtained by developing the resist.

D.Tichenor, et al, SPIE 2437 (1995) 292D. Tichenor, et al, SPIE 2437 (1995) 292 Proc. Of SPIE Vol 5374 p.897-905Proc. Of SPIE Vol 5374 p.897-905

しかしながら、一度の加工により上記ミラーの形状うねり誤差を設計値以下とするためには、高度の加工計測技術が必要であり、とくにうねり形状の空間分布を高精度に制御することは極めて難しい。このため、従来の工程で作製した投影光学系は、光学性能評価において所望の光学性能が得られない場合があった。   However, in order to reduce the shape waviness error of the mirror to the design value or less by a single machining, a high level machining measurement technique is required, and it is extremely difficult to control the spatial distribution of the waviness shape with high accuracy. For this reason, the projection optical system produced by the conventional process may not obtain desired optical performance in optical performance evaluation.

本発明は、このような事情に鑑みてなされたもので、像面でのフレア光量の変動の小さい光学系の製造方法、及びこの光学系を用いたEUV露光装置を提供することを課題とする。   The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a method for manufacturing an optical system in which the fluctuation of the flare light amount on the image plane is small, and an EUV exposure apparatus using the optical system. .

前記課題を解決するための第1の手段は、以下の工程を有することを特徴とする光学系の製造方法(請求項1)である。
(1) 光学系を構成する複数のミラーを、設計値に基づいて形状加工する工程
(2) 前記ミラーの、フレアに影響する形状誤差を測定する工程
(3) 前記形状誤差のデータに基づいて、像面におけるフレア光量むらを計算する工程
(4) 像面におけるフレア光量むらの均一性を向上するようなミラー形状誤差補正量を、少なくとも一つの前記ミラーについて計算する工程
(5) 前記ミラー形状補正量に基づいて、前記ミラー形状誤差補正量を計算したミラーを再加工する工程
本手段においては、実際に形状加工されたミラーについて、反射膜を成膜する前に、フレアに影響する形状誤差を測定し、この測定データに基づいて、像面におけるフレア光量むらを計算する。そして、像面におけるフレア光量むらの均一性を向上するようなミラー形状誤差補正量を、少なくとも一つのミラーについて計算し、計算したミラーについて、このミラー形状補正量に基づいて再加工を行っている。よって、像面におけるフレア光量むらを小さく抑えることができる。
A first means for solving the above-described problems is an optical system manufacturing method (claim 1) having the following steps.
(1) Process to shape a plurality of mirrors constituting an optical system based on design values
(2) Measuring the shape error of the mirror that affects flare
(3) A step of calculating flare light amount unevenness on the image plane based on the shape error data
(4) A step of calculating a mirror shape error correction amount for at least one of the mirrors so as to improve the uniformity of flare unevenness on the image plane.
(5) Based on the mirror shape correction amount, the step of reworking the mirror for which the mirror shape error correction amount has been calculated.In this means, before forming the reflective film on the actually shaped mirror, The shape error affecting the flare is measured, and the flare light amount unevenness on the image plane is calculated based on the measurement data. Then, a mirror shape error correction amount that improves the uniformity of flare unevenness on the image plane is calculated for at least one mirror, and the calculated mirror is reprocessed based on the mirror shape correction amount. . Therefore, the flare light amount unevenness on the image plane can be reduced.

ミラーの形状(主として表面粗さ)がフレア光量むらに与える影響を調べる方法は、例えば、Proc. Of SPIE Vol 5374 p.897-905 (非特許文献2)に記載されていて公知であるが、その1例の概要を以下に説明する。物面を所定の領域毎に区切ってその領域をO(i=1〜n)とし、それに対する像面の領域をIとする。 A method for examining the effect of the mirror shape (mainly surface roughness) on the flare light intensity unevenness is described in, for example, Proc. Of SPIE Vol 5374 p.897-905 (Non-patent Document 2), The outline of one example will be described below. The object plane is divided into predetermined areas, the areas are defined as O i (i = 1 to n), and the image plane area corresponding thereto is defined as I i .

光学系にM枚のミラーがあるとして、各ミラーを所定の領域毎に区切って、その領域における表面粗さをrmjとする。ただし、mは各ミラーに対応しm=1〜Mであり、jは各ミラーの領域に対応し、各ミラー毎に1から所定の数までの値をとる。物面の領域Oの像が像面の領域Iに結像すると考えると、像面の領域Iにおけるフレア量FIiは、
Ii=FIi(r11,r12,…,r21,r22,…,…,rM1,rM2,…)
という関数で表すことができる。このような関数形は、各rmjを変化させてその結果得られるフレア量FIiから求めておくことができる。
Assuming that there are M mirrors in the optical system, each mirror is divided into predetermined regions, and the surface roughness in these regions is defined as rmj . However, m corresponds to each mirror, m = 1 to M, j corresponds to each mirror region, and takes a value from 1 to a predetermined number for each mirror. Given the image area O i of the object plane is imaged in the region I i of the image plane, the amount of flare F Ii in the region I i of the image plane,
F Ii = F Ii (r 11 , r 12 ,..., R 21 , r 22 ,..., R M1 , r M2 ,...)
It can be expressed by the function Such a function form can be obtained from the flare amount F Ii obtained as a result of changing each r mj .

フレア量は小さければ小さいほど好ましいが、ある程度の値を持つことは避けられず、その場合には、その大きさよりもフレア量のむらが問題となる。すなわち、像面位置においてフレア量の変動があると、結像精度が像面位置においてばらつくことになり好ましくない。よって、フレア量の変動を無くすように、ミラーの再加工を行う。   The smaller the amount of flare, the better. However, it is unavoidable to have a certain value, and in that case, the unevenness of the flare becomes a problem rather than the size. That is, if the flare amount varies at the image plane position, the imaging accuracy varies at the image plane position, which is not preferable. Therefore, the mirror is reworked so as to eliminate the fluctuation of the flare amount.

例えば、像面のIにおいて他の場所とフレア量が著しく異なっていたとする(実際には、Iは一つではなく、所定範囲の広がりを持っているが、説明のために簡略化して一つの領域として考える)。 For example, suppose that the flare amount is significantly different from other locations in I k on the image plane (in practice, I k is not one, but has a predetermined range, but it is simplified for the sake of explanation. Think of it as an area).

物面Oから出て像面のIに結像する光のうち、開口絞りを通って結像に寄与する光は、各ミラーにおいて異なる場所で反射されるが、フレア量を各像面位置で均一にするために再加工を行うべきミラーは、なるべくこの光が反射される領域と、物面の他の領域から出た光が反射される領域が異なっているものを選ぶと加工範囲が狭くて済む。一般に開口絞りの近くにあるミラーは、物面の大部分の領域から出た光が反射されるので、再加工をしても、像面の大部分の領域のフレア量が変化するだけで、所定部分のフレア量のみを調整するのには不向きである。 Of the light that exits the object plane O k and forms an image on the image plane I k , the light that contributes to the image formation through the aperture stop is reflected by each mirror at different locations. For the mirror to be reworked to make it uniform at the position, if the area where this light is reflected is different from the area where light emitted from other areas of the object is reflected, the machining range is selected. Is narrow. In general, a mirror near the aperture stop reflects light from most areas of the object surface, so even if it is reprocessed, only the flare amount in most areas of the image plane changes. It is not suitable for adjusting only the flare amount of a predetermined portion.

このようにして、調整すべきミラーを決定する(予め決定しておいてもよい)。例えば、決定されたミラーが6番目のミラー(M6ミラー)であったとする。   In this way, the mirror to be adjusted is determined (may be determined in advance). For example, assume that the determined mirror is the sixth mirror (M6 mirror).

Figure 2006287082
Figure 2006287082

を計算することにより、r61,r62,…の各々を、それぞれ単位量だけ変化させたときの、FIiの変化量が分かる。各r61,r62,…を調整して、FIkの変化量が調整しようとする変化量に近く、FIk以外のFIiの変化量が小さくなるような各r61,r62,…の組み合わせを見つける。先に述べたように、結像面の領域Iに結像する光を反射する領域が狭いようなミラーを選択することにより、この作業が容易になる。 , The change amount of F Ii when each of r 61 , r 62 ,... Is changed by the unit amount is known. Each r 61, r 62, ... by adjusting the near to the variation amount of change in F Ik is to adjust, each such as the amount of change in F Ii other than F Ik decreases r 61, r 62, ... Find a combination. As described above, this work is facilitated by selecting a mirror that has a narrow area for reflecting the light imaged on the area Ik of the imaging plane.

このようにして、求まったr61,r62,…の組み合わせが得られるように、ミラー形状補正量誤差を求めればよい。この作業は、以下の各手段において共通である。以上のような方法により、像面位置でのフレア量のばらつきを少なくすることができる。 In this way, the mirror shape correction amount error may be obtained so that the obtained combination of r 61 , r 62 ,... Can be obtained. This operation is common to the following means. By the method as described above, the variation in the flare amount at the image plane position can be reduced.

前記課題を解決するための第2の手段は、以下の工程を有することを特徴とする光学系の製造方法(請求項2)である。
(1) 光学系を構成する複数のミラーを、設計値に基づいて形状加工し、続いて、前記ミラーの表面に反射膜を形成する工程
(2) 前記光学系を組み立てて、像面におけるフレア光量むらを測定する工程
(3) 像面におけるフレア光量むらの均一性を向上するようなミラー形状誤差補正量を、少なくとも一つの前記ミラーについて計算する工程
(4) 前記ミラー形状誤差補正量を計算したミラーから、前記反射膜を剥離し、前記ミラー形状補正量に基づいて、前記ミラーを再加工する工程
前記第1の手段においては、ミラーに反射膜を形成する前にミラー形状を測定し、計算によって、フレア光量むらを小さくするようにミラーの再加工を行っていた。これに対し、本手段においては、ミラーを完成させた後、実際の露光装置に組む込んだ状態で、像面における実際のフレア光量むらを測定して、それに基づいて、像面におけるフレア光量むらの均一性を向上するようなミラー形状誤差補正量を求めて、これに基づいて、ミラー形状誤差補正量を計算したミラーから、前記反射膜を剥離し、当該ミラーの再加工を行っている。このように、実際のフレア光量むらに基づいて、像面におけるフレア光量むらの均一性を向上するようなミラー形状誤差補正量を求めているので、正確なミラー形状補正量を求めることができる。
A second means for solving the above problem is a method for manufacturing an optical system (Claim 2) including the following steps.
(1) A step of forming a plurality of mirrors constituting an optical system based on a design value, and subsequently forming a reflective film on the surface of the mirror
(2) Assembling the optical system and measuring the flare light amount unevenness on the image plane
(3) A step of calculating a mirror shape error correction amount for at least one of the mirrors so as to improve the uniformity of flare unevenness on the image plane.
(4) The step of peeling off the reflective film from the mirror for which the mirror shape error correction amount has been calculated, and reworking the mirror based on the mirror shape correction amount. Before forming the mirror, the mirror shape was measured, and the mirror was reworked to reduce the flare light unevenness by calculation. On the other hand, in this means, after the mirror is completed, the actual flare light amount unevenness on the image surface is measured in a state of being incorporated in an actual exposure apparatus, and based on this, the flare light amount unevenness on the image surface is measured. The mirror shape error correction amount that improves the uniformity is obtained, and based on this, the reflection film is peeled off from the mirror for which the mirror shape error correction amount is calculated, and the mirror is reworked. Thus, since the mirror shape error correction amount that improves the uniformity of the flare light amount unevenness on the image plane is obtained based on the actual flare light amount unevenness, an accurate mirror shape correction amount can be obtained.

前記課題を解決するための第3の手段は、以下の工程を有することを特徴とする光学系の製造方法(請求項3)である。
(1) 光学系を構成する複数のミラーを、設計値に基づいて形状加工し、続いて、前記ミラーの表面に反射膜を形成する工程
(2) 前記光学系を組み立てて、像面におけるフレア光量むらを測定する工程
(3) 像面におけるフレア光量むらの均一性を向上するようなミラー形状誤差補正量を、少なくとも一つの前記ミラーについて計算する工程
(4) 前記ミラー形状誤差補正量を計算したミラーの前記反射膜を、前記ミラー形状補正量に基づいて、加工する工程
前記第2の手段においては、ミラーの再加工をするとき、反射膜を剥離してからミラーの再加工を行っていた。これに対して、本手段は、反射膜を剥離せず、反射膜を加工することにより、ミラー形状の修正を行っている。ミラー形状の修正量が小さいとき有効であり、反射膜を剥離する必要がないので、前記第2の手段に比して工程が簡単である。
A third means for solving the above problem is a method for manufacturing an optical system (Claim 3) including the following steps.
(1) A step of forming a plurality of mirrors constituting an optical system based on a design value, and subsequently forming a reflective film on the surface of the mirror
(2) Assembling the optical system and measuring the flare light amount unevenness on the image plane
(3) A step of calculating a mirror shape error correction amount for at least one of the mirrors so as to improve the uniformity of flare unevenness on the image plane.
(4) The step of processing the reflection film of the mirror for which the mirror shape error correction amount has been calculated based on the mirror shape correction amount In the second means, when the mirror is reprocessed, After peeling, the mirror was reworked. On the other hand, this means corrects the mirror shape by processing the reflective film without peeling off the reflective film. This is effective when the amount of correction of the mirror shape is small, and it is not necessary to peel off the reflective film, so that the process is simpler than that of the second means.

前記課題を解決するための第4の手段は、前記第1の手段から第3の手段のいずれかであって、前記ミラー形状誤差補正量を計算するミラーは、前記光学系を構成する複数のミラーのうち、光路に沿って見た場合に物体面、中間像面、像面に最も近いミラーのうち少なくとも1枚であることを特徴とするもの(請求項4)である。   A fourth means for solving the problem is any one of the first to third means, and a mirror for calculating the mirror shape error correction amount includes a plurality of mirrors constituting the optical system. Among the mirrors, when viewed along the optical path, at least one of the mirror closest to the object plane, the intermediate image plane, and the image plane is defined (claim 4).

これらのミラーは、いずれもフレア量の分布を補正する際に高い自由度を持つので、効率良くフレア量の制御を行うことができる。   Since these mirrors have a high degree of freedom when correcting the flare amount distribution, the flare amount can be controlled efficiently.

前記課題を解決するための第5の手段は、前記第1の手段から第4の手段のうちいずれかの光学系の製造方法で製造された投影光学系を有することを特徴とするEUV露光装置(請求項5)である。   An EUV exposure apparatus characterized in that a fifth means for solving the above-mentioned problems has a projection optical system manufactured by any one of the first to fourth means. (Claim 5).

本手段においては、像面でのフレア光量の変動を小さくすることができる。   In this means, the fluctuation of the flare light quantity on the image plane can be reduced.

本発明によれば、像面でのフレア光量の変動の小さい光学系の製造方法、及びこの光学系を用いたEUV露光装置を提供することができる。   According to the present invention, it is possible to provide an optical system manufacturing method in which the flare light amount variation on the image plane is small, and an EUV exposure apparatus using this optical system.

以下、図4に示されたような6枚の非球面ミラーで構成される投影光学系を例として、本発明の実施例を、図を用いて説明する。この投影光学系は光路の途中で中間像を形成する光学系で、像側から光路をたどって3番面のミラー(M3ミラー)が、中間像に最も近い位置に配置されている。
(実施例1)
図1は、前記第1の手段に対応する実施例を示す工程図であり、フレア光量分布の計算の結果に基づいて、ミラー形状誤差を補正する工程を有する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings, taking as an example a projection optical system composed of six aspherical mirrors as shown in FIG. This projection optical system is an optical system that forms an intermediate image in the middle of the optical path, and a third mirror (M3 mirror) is disposed at a position closest to the intermediate image along the optical path from the image side.
Example 1
FIG. 1 is a process diagram showing an embodiment corresponding to the first means, and includes a process of correcting a mirror shape error based on the result of calculation of the flare light quantity distribution.

最初に投影光学系を構成する非球面ミラーの基板を製作した。基板材料には、熱膨張率1ppb/K以下のセラミックガラスを使用した。イオンビームを用いて基板の研磨加工を行い(ステップS1)、フレアに影響するうねり形状を顕微干渉計で測定した。顕微干渉計とは数mm以下の微小な領域のうねりを干渉計測法によって測定する装置であり、フレアに影響する周波数帯(1mm〜1μm)の形状を測定できる。   First, an aspherical mirror substrate that constitutes the projection optical system was fabricated. As the substrate material, ceramic glass having a thermal expansion coefficient of 1 ppb / K or less was used. The substrate was polished using an ion beam (step S1), and the waviness shape affecting the flare was measured with a microscopic interferometer. A microscopic interferometer is a device that measures the undulation of a minute region of several mm or less by an interferometric method, and can measure the shape of a frequency band (1 mm to 1 μm) that affects flare.

各ミラーのうねり形状誤差が0.1nm(rms)以下となるまで、研磨加工を行った。さらに各ミラーのうねり形状誤差が面内で均一となるように制御し、面内分布が±10%以下となるように研磨した。   Polishing was performed until the waviness shape error of each mirror was 0.1 nm (rms) or less. Furthermore, the waviness shape error of each mirror was controlled to be uniform within the surface, and polishing was performed so that the in-plane distribution was ± 10% or less.

基板加工が完了した後、ミラー基板のうねり形状を測定した(ステップS2)。ミラー表面の複数点に対して測定を行い、うねり形状の分布情報を取得した。この測定はすべてのミラーに対して実施した。次に、各ミラーのうねり形状分布に基づいて、光学系のフィールド内フレア光量分布を計算した(ステップS3)。   After the substrate processing was completed, the waviness shape of the mirror substrate was measured (step S2). Measurement was performed on a plurality of points on the mirror surface, and wave shape distribution information was obtained. This measurement was performed on all mirrors. Next, the in-field flare light amount distribution of the optical system was calculated based on the wavy shape distribution of each mirror (step S3).

次に、各ミラーのうねり形状分布に基づいて、光学系のフィールド内フレア光量分布を計算した。その結果、フレア光量の平均値は9%で、その分布範囲は7%から11%の範囲であった。   Next, the in-field flare light amount distribution of the optical system was calculated based on the waviness shape distribution of each mirror. As a result, the average value of the flare light amount was 9%, and the distribution range was 7% to 11%.

次に、フレアの光量むらが低減されるような、ミラーのうねり分布を計算した。このうねり分布は6枚のミラーのうちM3ミラー対して計算した。M3ミラーは中間像面付近に配置されているため、このミラー面上にうねり形状分布を与えると、像面上のフレア分布を高い自由度で制御できる。測定されたM3ミラーのうねり形状は、平均値が0.10nm(rms)で、面内分布は0.06〜0.13nm(rms)であった。計算で得られたM3ミラー上のうねり形状は平均値が0.11nm(rms)で面内分布は0.09〜0.15nm(rms)の範囲であった。すなわち、M3ミラー全面に上記のうねり形状を与えれば、フレア光量分布を均一化できることが分かった。計算されたうねり形状(フレアに影響する周波数帯の形状であり、例えば周波数帯は1mm〜1μmとなる)と測定されたうねり形状の差をミラー(うねり)形状誤差補正量とする(ステップS4)。   Next, the waviness distribution of the mirror was calculated so that the unevenness in the amount of flare light was reduced. This swell distribution was calculated for M3 mirrors out of 6 mirrors. Since the M3 mirror is disposed in the vicinity of the intermediate image plane, the flare distribution on the image plane can be controlled with a high degree of freedom by providing a wavy shape distribution on the mirror plane. The measured swell shape of the M3 mirror had an average value of 0.10 nm (rms) and an in-plane distribution of 0.06 to 0.13 nm (rms). The waviness shape on the M3 mirror obtained by calculation had an average value of 0.11 nm (rms) and an in-plane distribution in the range of 0.09 to 0.15 nm (rms). That is, it was found that the flare light amount distribution can be made uniform by giving the above-mentioned swell shape to the entire surface of the M3 mirror. The difference between the calculated waviness shape (frequency band shape affecting flare, for example, the frequency band is 1 mm to 1 μm) and the measured waviness shape is used as a mirror (waviness) shape error correction amount (step S4). .

M3ミラーを再研磨し、上記うねり形状分布を設けた(ステップS5)。研磨後にうねり形状を顕微干渉計で計測したところ、目標のうねり形状分布に対して±10%の誤差範囲でうねり形状が形成された。このデータに基づいて、光学系のフレア光量分布を計算したところ、その平均値は10%、分布は9%から11%の範囲に収まった。すなわち、フレアのむら予測値は4%から2%に向上した。   The M3 mirror was re-polished to provide the waviness shape distribution (step S5). When the waviness shape was measured with a microscopic interferometer after polishing, a waviness shape was formed with an error range of ± 10% with respect to the target waviness shape distribution. When the flare light amount distribution of the optical system was calculated based on this data, the average value was 10%, and the distribution was within the range of 9% to 11%. That is, the predicted flare unevenness has improved from 4% to 2%.

次にこれらのミラー基板に多層膜をコーティングし(ステップS6)、投影光学系を組み立てた(ステップS7)。この投影光学系を露光装置に搭載して(ステップS8)露光評価を行い、フレア量分布を測定したところ(ステップS9)、計算から予想されたフレア分布と概ね同じ値である2%のむらが測定された。本露光装置により、所望のレジストパターンを得ることができた。
(実施例2)
図2は、前記第2の手段に対応する実施例を示す工程図であり、フレア光量分布測定の結果に基づいて、ミラーうねり形状誤差を補正する工程を有する。
Next, a multilayer film was coated on these mirror substrates (step S6), and the projection optical system was assembled (step S7). When this projection optical system is mounted on an exposure apparatus (step S8), exposure evaluation is performed, and flare amount distribution is measured (step S9). As a result, 2% unevenness, which is almost the same as the flare distribution predicted from the calculation, is measured. It was done. With this exposure apparatus, a desired resist pattern could be obtained.
(Example 2)
FIG. 2 is a process diagram showing an embodiment corresponding to the second means, and includes a process of correcting a mirror waviness shape error based on the result of flare light quantity distribution measurement.

最初に投影光学系を構成する非球面ミラーの基板を製作した(ステップS11)。基板材料には、熱膨張率1ppb/K以下のセラミックガラスを使用した。イオンビームを用いて基板の研磨加工を行い、フレアに影響するうねり形状を顕微干渉計で測定した。各ミラーのうねり形状誤差が0.1nm(rms)以下となるまで、研磨加工を行った。さらに各ミラーのうねり形状誤差は面内で均一となるように制御し、面内分布が±10%以下となるように研磨した。   First, an aspherical mirror substrate constituting the projection optical system was manufactured (step S11). As the substrate material, ceramic glass having a thermal expansion coefficient of 1 ppb / K or less was used. The substrate was polished using an ion beam, and the waviness shape affecting flare was measured with a microscopic interferometer. Polishing was performed until the waviness shape error of each mirror was 0.1 nm (rms) or less. Further, the waviness shape error of each mirror was controlled so as to be uniform within the surface, and polishing was performed so that the in-plane distribution was ± 10% or less.

基板加工が完了した後、ミラー基板に多層膜をコーティングし(ステップS12)、投影光学系を組み立てた(ステップS13)。この投影光学系を露光装置に搭載して(ステップS14)露光評価を行い、フレア量分布を取得したところ(ステップS15)、フレア光量の平均値は9%で、その分布は7%から11%の範囲であった。   After the substrate processing was completed, the mirror substrate was coated with a multilayer film (step S12), and the projection optical system was assembled (step S13). When this projection optical system is mounted on an exposure apparatus (step S14) and exposure evaluation is performed to obtain a flare amount distribution (step S15), the average flare light amount is 9%, and the distribution is 7% to 11%. Range.

次に、フレアの光量むらが低減されるような、ミラーのうねり分布を計算した(ステップS16)。このうねり分布は6枚のミラーのうちM3ミラー対して計算した。測定されたM3ミラーのうねり形状は、平均値が0.10nm(rms)で、面内分布は0.06〜0.13nm(rms)であった。計算で得られたM3ミラー上のうねり形状は0.11nm(rms)で面内分布は平均0.09〜0.15nm(rms)の範囲であった。計算されたうねり形状(フレアに影響する周波数帯の形状であり、例えば周波数帯は1mm〜1μmとなる)と測定されたうねり形状の差をミラーの形状誤差補正量とする(ステップS16)。   Next, the waviness distribution of the mirror was calculated so as to reduce the unevenness in the amount of flare light (step S16). This swell distribution was calculated for M3 mirrors out of 6 mirrors. The measured swell shape of the M3 mirror had an average value of 0.10 nm (rms) and an in-plane distribution of 0.06 to 0.13 nm (rms). The wavy shape on the M3 mirror obtained by calculation was 0.11 nm (rms), and the in-plane distribution was in the range of 0.09 to 0.15 nm (rms) on average. The difference between the calculated waviness shape (the shape of the frequency band affecting flare, for example, the frequency band is 1 mm to 1 μm) and the measured waviness shape is used as the mirror shape error correction amount (step S16).

M3ミラーを光学系から取り外し(ステップS17)、ウエットエッチングにより多層膜を除去した(ステップS18)。ウエットエッチングには硝酸を主成分とする酸性液を用いた。ミラー形状補正量に基づきミラーを再研磨し、上記うねり形状分布を設けた(ステップS19)。研磨後にうねり形状を顕微干渉計で計測したところ、目標のうねり形状分布に対して±10%の誤差範囲でうねり形状が形成された。   The M3 mirror was removed from the optical system (step S17), and the multilayer film was removed by wet etching (step S18). An acid solution containing nitric acid as a main component was used for wet etching. The mirror was re-polished based on the mirror shape correction amount to provide the waviness shape distribution (step S19). When the waviness shape was measured with a microscopic interferometer after polishing, a waviness shape was formed with an error range of ± 10% with respect to the target waviness shape distribution.

次にM3ミラー基板に再度多層膜をコーティング(ステップS20)し、投影光学系を組み立てた(ステップS21)。この投影光学系を露光装置に搭載して(ステップS22)露光評価を行い、フレア量分布を取得したところ(ステップS23)、観測されたフレア量のむらは2%以下であった。本露光装置により、所望のレジストパターンを得ることができた。
(実施例3)
図3は、前記第3の手段に対応する実施例を示す工程図であり、フレア光量分布測定の結果に基づいて、光学性能を補正する工程を有する。工程のほとんどは図2の例と同じであるが、その相違点に絞って説明する。
Next, the M3 mirror substrate was again coated with a multilayer film (step S20), and the projection optical system was assembled (step S21). When this projection optical system was mounted on an exposure apparatus (step S22), exposure evaluation was performed and a flare amount distribution was acquired (step S23), the observed flare amount unevenness was 2% or less. With this exposure apparatus, a desired resist pattern could be obtained.
(Example 3)
FIG. 3 is a process diagram showing an embodiment corresponding to the third means, and includes a process of correcting the optical performance based on the result of the flare light quantity distribution measurement. Most of the steps are the same as in the example of FIG. 2, but only the differences will be described.

本実施例においては、フレア光量むらの測定結果(ステップS35)に基づいて、ミラーのうねり形状分布計算を行った。ここまでの工程は、図2に示す実施例と同じであるが、図2に示す実施例ではミラー基板に対して再研磨を施したのに対し、本実施例では多層膜の表面に研磨加工を施す(S38)点が異なっている。通常の多層膜ミラーの散乱光は、多層膜に存在する複数の界面のうねり形状によって発生する。一方、多層膜ミラーの多層膜の表面に研磨加工を施して、多層膜の最表面の膜表面に所定のうねり形状を設けることによって、入射光のごく一部を散乱させ、かつ、その下から帰ってくる反射光も散乱させることができる。つまり、所定のうねり形状を設けた部分を通過する光によるフレアを大きくすることができる。従って、結像面でのフレア量が他の部分に比して小さい部分があったとき、その部分に結像する光線が通過する反射鏡の多層膜表面にうねりを形成することによりフレア量を増加させ、フレアの分布を均一にすることができる。   In this example, the waviness shape distribution calculation of the mirror was performed based on the measurement result of the flare light amount unevenness (step S35). The steps up to here are the same as those of the embodiment shown in FIG. 2, but in the embodiment shown in FIG. 2, the mirror substrate is re-polished, whereas in this embodiment, the surface of the multilayer film is polished. (S38) is different. The scattered light of a normal multilayer mirror is generated by the undulation shape of a plurality of interfaces existing in the multilayer film. On the other hand, by polishing the surface of the multilayer film of the multilayer film mirror and providing a predetermined undulation shape on the outermost film surface of the multilayer film, a small part of incident light is scattered, and from below The reflected light that comes back can also be scattered. That is, the flare caused by the light passing through the portion provided with the predetermined undulation shape can be increased. Therefore, when there is a portion where the amount of flare on the imaging surface is small compared to other portions, the amount of flare is reduced by forming undulations on the surface of the multilayer film of the reflecting mirror through which the light beam that forms an image passes. The flare distribution can be made uniform.

フレアの光量むらが低減されるような、多層膜表面に与えるうねり分布を計算した。このうねり分布は6枚のミラーのうちM3ミラーに対して計算した。測定されたM3ミラーのうねり形状は、平均値が0.10nm(rms)で、面内分布は0.06〜0.13nm(rms)であった。計算で得られたM3ミラー上のうねり形状は0.5nm(rms)で面内分布は0.1〜0.75nm(rms)の範囲であった。すなわち、M3ミラー全面に上記のうねり形状を与えれば、フレア光量分布を均一化できることが分かった。計算されたうねり形状(フレアに影響する周波数帯の形状であり、例えば周波数帯は1mm〜1μmとなる)と測定されたうねり形状の差をミラーの形状誤差補正量とする(ステップS36)。   The waviness distribution given to the surface of the multilayer film was calculated so as to reduce the unevenness of the flare light amount. This swell distribution was calculated for M3 mirrors out of 6 mirrors. The measured swell shape of the M3 mirror had an average value of 0.10 nm (rms) and an in-plane distribution of 0.06 to 0.13 nm (rms). The wave shape on the M3 mirror obtained by calculation was 0.5 nm (rms) and the in-plane distribution was in the range of 0.1 to 0.75 nm (rms). That is, it was found that the flare light amount distribution can be made uniform by giving the above-mentioned swell shape to the entire surface of the M3 mirror. The difference between the calculated waviness shape (the shape of the frequency band affecting flare, for example, the frequency band is 1 mm to 1 μm) and the measured waviness shape is used as the mirror shape error correction amount (step S36).

ミラー形状誤差補正量に基づき、多層膜表面に上記のようなうねりが形成されるように研磨を施したM3ミラーを用いて、投影光学系を組み立てた。この投影光学系を露光装置に搭載して露光評価を行い、フレア量分布を取得したところ、フレア量のむらは2%以下であった。本露光装置により、所望のレジストパターンを得ることができた。   Based on the mirror shape error correction amount, a projection optical system was assembled using an M3 mirror that had been polished so that the swell as described above was formed on the multilayer film surface. When this projection optical system was mounted on an exposure apparatus and exposure evaluation was performed to obtain a flare amount distribution, the flare amount unevenness was 2% or less. With this exposure apparatus, a desired resist pattern could be obtained.

なお、上述の実施例では、研磨によって形状の補正を行ったが、他の加工方法によって形状補正を行ってもよい。又、以上述べた実施例においては、M3ミラーのうねり形状を補正したが、補正をするミラーはM3に限らない。しかし、光路に沿って見たときに像面あるいは物体面に最も近いミラー、又は中間像面に対して一番近いミラーの少なくとも一つに対して補正を行うことが好ましい。これらのミラーは、フレア光量分布を補正する自由度が高い。   In the above-described embodiment, the shape is corrected by polishing. However, the shape may be corrected by another processing method. In the embodiment described above, the waviness shape of the M3 mirror is corrected, but the mirror to be corrected is not limited to M3. However, it is preferable to correct at least one of the mirror closest to the image plane or the object plane when viewed along the optical path, or the mirror closest to the intermediate image plane. These mirrors have a high degree of freedom for correcting the flare light amount distribution.

第1の手段に対応する実施例を示す工程図である。It is process drawing which shows the Example corresponding to a 1st means. 第2の手段に対応する実施例を示す工程図である。It is process drawing which shows the Example corresponding to a 2nd means. 第3の手段に対応する実施例を示す工程図である。It is process drawing which shows the Example corresponding to a 3rd means. EUV露光装置の概要を示す図である。It is a figure which shows the outline | summary of an EUV exposure apparatus. 従来の投影光学系の製作工程を示す図である。It is a figure which shows the manufacturing process of the conventional projection optical system.

Claims (5)

以下の工程を有することを特徴とする光学系の製造方法。
(1) 光学系を構成する複数のミラーを、設計値に基づいて形状加工する工程
(2) 前記ミラーの、フレアに影響する形状誤差を測定する工程
(3) 前記形状誤差のデータに基づいて、像面におけるフレア光量むらを計算する工程
(4) 像面におけるフレア光量むらの均一性を向上するようなミラー形状誤差補正量を、少なくとも一つの前記ミラーについて計算する工程
(5) 前記ミラー形状補正量に基づいて、前記ミラー形状誤差補正量を計算したミラーを再加工する工程
The manufacturing method of the optical system characterized by having the following processes.
(1) Process to shape a plurality of mirrors constituting an optical system based on design values
(2) Measuring the shape error of the mirror that affects flare
(3) A step of calculating flare light amount unevenness on the image plane based on the shape error data
(4) A step of calculating a mirror shape error correction amount for at least one of the mirrors so as to improve the uniformity of flare unevenness on the image plane.
(5) A step of reworking the mirror for which the mirror shape error correction amount is calculated based on the mirror shape correction amount
以下の工程を有することを特徴とする光学系の製造方法。
(1) 光学系を構成する複数のミラーを、設計値に基づいて形状加工し、続いて、前記ミラーの表面に反射膜を形成する工程
(2) 前記光学系を組み立てて、像面におけるフレア光量むらを測定する工程
(3) 像面におけるフレア光量むらの均一性を向上するようなミラー形状誤差補正量を、少なくとも一つの前記ミラーについて計算する工程
(4) 前記ミラー形状誤差補正量を計算したミラーから、前記反射膜を剥離し、前記ミラー形状補正量に基づいて、前記ミラーを再加工する工程
The manufacturing method of the optical system characterized by having the following processes.
(1) A step of forming a plurality of mirrors constituting an optical system based on a design value, and subsequently forming a reflective film on the surface of the mirror
(2) Assembling the optical system and measuring the flare light amount unevenness on the image plane
(3) A step of calculating a mirror shape error correction amount for at least one of the mirrors so as to improve the uniformity of flare unevenness on the image plane.
(4) A step of peeling the reflective film from the mirror for which the mirror shape error correction amount has been calculated and reworking the mirror based on the mirror shape correction amount
以下の工程を有することを特徴とする光学系の製造方法。
(1) 光学系を構成する複数のミラーを、設計値に基づいて形状加工し、続いて、前記ミラーの表面に反射膜を形成する工程
(2) 前記光学系を組み立てて、像面におけるフレア光量むらを測定する工程
(3) 像面におけるフレア光量むらの均一性を向上するようなミラー形状誤差補正量を、少なくとも一つの前記ミラーについて計算する工程
(4) 前記ミラー形状誤差補正量を計算したミラーの前記反射膜を、前記ミラー形状補正量に基づいて、加工する工程
The manufacturing method of the optical system characterized by having the following processes.
(1) A step of forming a plurality of mirrors constituting an optical system based on a design value, and subsequently forming a reflective film on the surface of the mirror
(2) Assembling the optical system and measuring the flare light amount unevenness on the image plane
(3) A step of calculating a mirror shape error correction amount for at least one of the mirrors so as to improve the uniformity of flare unevenness on the image plane.
(4) Process of processing the reflection film of the mirror for which the mirror shape error correction amount is calculated based on the mirror shape correction amount
前記ミラー形状誤差補正量を計算するミラーは、前記光学系を構成する複数のミラーのうち、光路に沿って見た場合に物体面、中間像面、像面に最も近いミラーのうち少なくとも1枚であることを特徴とする請求項1から請求項3のうちいずれか1項に記載の光学系の製造方法。 The mirror for calculating the mirror shape error correction amount is at least one of a plurality of mirrors constituting the optical system, the mirror closest to the object plane, the intermediate image plane, and the image plane when viewed along the optical path. The method of manufacturing an optical system according to any one of claims 1 to 3, wherein: 請求項1から請求項4のうちいずれか1項に記載の光学系の製造方法で製造された投影光学系を有することを特徴とするEUV露光装置。 An EUV exposure apparatus comprising a projection optical system manufactured by the optical system manufacturing method according to claim 1.
JP2005107115A 2005-04-04 2005-04-04 Optical system manufacturing method and EUV exposure apparatus Active JP4609162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005107115A JP4609162B2 (en) 2005-04-04 2005-04-04 Optical system manufacturing method and EUV exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005107115A JP4609162B2 (en) 2005-04-04 2005-04-04 Optical system manufacturing method and EUV exposure apparatus

Publications (2)

Publication Number Publication Date
JP2006287082A true JP2006287082A (en) 2006-10-19
JP4609162B2 JP4609162B2 (en) 2011-01-12

Family

ID=37408623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005107115A Active JP4609162B2 (en) 2005-04-04 2005-04-04 Optical system manufacturing method and EUV exposure apparatus

Country Status (1)

Country Link
JP (1) JP4609162B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6233056B1 (en) * 1998-10-21 2001-05-15 The Regents Of The University Of California Interferometric at-wavelength flare characterization of EUV optical systems
JP2002286989A (en) * 2001-03-27 2002-10-03 Nikon Corp Manufacturing method for optical system, and exposure device equipped with optical system produced by the manufacturing method
JP2003077805A (en) * 2001-09-03 2003-03-14 Nikon Corp Optical system manufacturing method and euv aligner
JP2004152833A (en) * 2002-10-29 2004-05-27 Nikon Corp Method of inspecting extreme ultraviolet optical barrel, extreme ultraviolet reflection optical element, exposure system, and extreme ultraviolet optical system
US6815129B1 (en) * 2000-09-26 2004-11-09 Euv Llc Compensation of flare-induced CD changes EUVL
JP2005012006A (en) * 2003-06-19 2005-01-13 Canon Inc Surface shape correcting method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6233056B1 (en) * 1998-10-21 2001-05-15 The Regents Of The University Of California Interferometric at-wavelength flare characterization of EUV optical systems
US6815129B1 (en) * 2000-09-26 2004-11-09 Euv Llc Compensation of flare-induced CD changes EUVL
JP2002286989A (en) * 2001-03-27 2002-10-03 Nikon Corp Manufacturing method for optical system, and exposure device equipped with optical system produced by the manufacturing method
JP2003077805A (en) * 2001-09-03 2003-03-14 Nikon Corp Optical system manufacturing method and euv aligner
JP2004152833A (en) * 2002-10-29 2004-05-27 Nikon Corp Method of inspecting extreme ultraviolet optical barrel, extreme ultraviolet reflection optical element, exposure system, and extreme ultraviolet optical system
JP2005012006A (en) * 2003-06-19 2005-01-13 Canon Inc Surface shape correcting method

Also Published As

Publication number Publication date
JP4609162B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
US7327436B2 (en) Method for evaluating a local flare, correction method for a mask pattern, manufacturing method for a semiconductor device and a computer program product
US7771898B2 (en) Multilayer mirror, evaluation method, exposure apparatus, device manufacturing method
US7952726B2 (en) Measurement apparatus, exposure apparatus having the same, and device manufacturing method
TWI239033B (en) Adjustment method and apparatus of optical system, and exposure apparatus
EP2068326B1 (en) Exposure mirror and exposure apparatus having same
KR20020048291A (en) Correcting member and manufacturing method thereof, projection optical system and manufacturing method thereof, exposure apparatus and manufacturing method thereof, exposure method, manufacturing method of microdevice, and adjusting method of exposure apparatus
US7283206B2 (en) Projection optical system, exposure apparatus, and device manufacturing method
KR20030006968A (en) Lithographic apparatus, device manufacturing methods, devices manufactured thereby, method of manufacturing a reflector, reflector manufactured thereby and phase shift mask
US20050134980A1 (en) Projection objective and method for its manufacture
US7543948B2 (en) Multilayer mirror manufacturing method, optical system manufacturing method, exposure apparatus, and device manufacturing method
CN109581821A (en) Extreme ultraviolet lithography apparatus, process control method and the method for assessing focus controlling
JP2009218492A (en) Method of measuring wavefront error, method of adjusting wavefront error, and method of manufacturing semiconductor device
US20230273011A1 (en) Measurement apparatus, measurement method, lithography apparatus and article manufacturing method
JP2004054092A (en) Mask and its manufacturing method
JP2001044116A (en) Optical correction plate and application in lithography projector
JP3632264B2 (en) X-ray projection exposure apparatus
JP3958261B2 (en) Optical system adjustment method
JP4609162B2 (en) Optical system manufacturing method and EUV exposure apparatus
US20090233189A1 (en) Device and method for obtaining exposure correction information, and manufacturing method of semiconductor device
JP3541262B2 (en) X-ray projection exposure equipment
JP2005172988A (en) Projection optical system and exposure device equipped with the projection optical system
US20240152046A1 (en) Method of controlling semiconductor process and semiconductor processing apparatus
CN118033984A (en) Overlay correction method, exposure method, and semiconductor device manufacturing method
JP2006120899A (en) Projection optical system, adjustment method thereof, projection aligner, projection exposure method, and adjustment method of projection aligner
JP4307039B2 (en) Illumination apparatus, exposure apparatus, and device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4609162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250