JP2006286859A - Manufacturing method for rare-earth magnet - Google Patents
Manufacturing method for rare-earth magnet Download PDFInfo
- Publication number
- JP2006286859A JP2006286859A JP2005103690A JP2005103690A JP2006286859A JP 2006286859 A JP2006286859 A JP 2006286859A JP 2005103690 A JP2005103690 A JP 2005103690A JP 2005103690 A JP2005103690 A JP 2005103690A JP 2006286859 A JP2006286859 A JP 2006286859A
- Authority
- JP
- Japan
- Prior art keywords
- closed circuit
- material alloy
- oxygen concentration
- raw material
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
本発明は、粉砕システムの閉回路内において原料合金粗粉を気流粉砕し、原料合金微粉を作製する希土類磁石の製造方法に関する。 The present invention relates to a method for producing a rare earth magnet in which raw material alloy coarse powder is air-flow pulverized in a closed circuit of a pulverization system to produce raw material alloy fine powder.
例えばNd−Fe−B磁石等のR−T−B系(Rは、Y、希土類元素から選ばれる1種以上である。Tは、Feを必須とし、必要に応じてその他の遷移金属元素を含む。)焼結磁石は、磁気特性に優れていること、主成分であるNdが資源的に豊富で比較的安価であること等の利点を有することから、近年、その需要は益々拡大する傾向にある。このような状況から、R−T−B系焼結磁石の磁気特性を向上するための研究開発や、品質の高い希土類焼結磁石を製造するための製造方法の改良等が各方面において進められている。 For example, an R—T—B system such as an Nd—Fe—B magnet (R is at least one selected from Y and rare earth elements. T is essential for Fe, and other transition metal elements are added as necessary. In recent years, the demand for sintered magnets has been increasing due to the advantages such as excellent magnetic properties, Nd, which is a main component, and a relatively low price. It is in. Under these circumstances, research and development for improving the magnetic properties of RTB-based sintered magnets and improvement of manufacturing methods for manufacturing high-quality rare-earth sintered magnets have been promoted in various fields. ing.
希土類焼結磁石の製造方法としては、粉末冶金法が一般的であり、溶解→鋳造→合金塊粗粉砕→微粉砕→プレス成形→焼結の各工程からなるプロセスが広く適用されている。具体的には、原料合金を粗粉砕及び微粉砕した後、磁場中にて加圧成形し、焼結及び熱処理することにより磁石体を得ている。 As a method for producing a rare earth sintered magnet, a powder metallurgy method is generally used, and a process including melting, casting, alloy lump coarse pulverization, fine pulverization, press molding, and sintering is widely applied. Specifically, the raw material alloy is coarsely pulverized and finely pulverized, then pressure-formed in a magnetic field, and sintered and heat-treated to obtain a magnet body.
このうち微粉砕処理においては、粉末の活性度を下げて扱いやすくするために、粉砕ガスとして、窒素等の不活性ガスに若干の酸素を導入する場合が多い。 Of these, in the fine pulverization treatment, in order to reduce the activity of the powder and make it easy to handle, a small amount of oxygen is often introduced into the inert gas such as nitrogen as the pulverization gas.
系内に酸素ガスを導入する粉砕装置としては、例えば特許文献1において、閉回路内の酸素濃度を0.5〜2.0%とする閉回路粉砕装置等が提案されている。特許文献1の発明によれば、閉回路内部に酸素含有ガス等の成分調整ガスを混入させることで被処理物の表面のみに予め燃焼活性の低い層を形成しておき、当該被処理物を大気中に取り出した際の、被処理物の酸化あるいは燃焼を防止することができるとされる。
近年、磁気特性のより一層の高特性化が要求されており、これに対処するため、使用する合金粉末についてもより一層の低酸素化が必要になってきている。特許文献1に記載されるように酸素ガスを供給し、合金粉末を酸化させると磁気特性の低下を招くので、今後は、閉回路内に酸素ガスを供給せずに前記閉回路内の酸素濃度をほぼゼロ(例えば0.2%未満)とした雰囲気下で粉砕を行うことが望まれる。粉砕して得た粉体がほとんど酸化されないので、高磁気特性の原料合金微粉を得る点では好ましいものである。 In recent years, there has been a demand for higher magnetic properties, and in order to cope with this, it is necessary to further reduce oxygen in the alloy powder used. As described in Patent Document 1, when oxygen gas is supplied and the alloy powder is oxidized, the magnetic properties are deteriorated. Therefore, in the future, the oxygen concentration in the closed circuit is not supplied in the closed circuit. It is desirable to perform pulverization in an atmosphere in which is approximately zero (for example, less than 0.2%). Since the powder obtained by pulverization is hardly oxidized, it is preferable in terms of obtaining a raw material alloy fine powder having high magnetic properties.
しかしながら、酸素含有量の低い原料合金微粉は、その活性度の高さから、微粉同士又は閉回路内部の粉砕機、配管壁等へ非常に付着しやすい傾向にある。また、粉砕機、配管壁等に酸素含有量の低い原料合金微粉が付着すると、その後、配管壁等から脱落させることは非常に困難となる。さらに粉砕機、配管壁等の狭小部あるいは屈曲部のようなデッドスペースにも微粉が残存する。このため、粉砕及び回収後の閉回路に、若干量の原料合金微粉が残存してしまう。ホッパーや回収保管容器等に回収されることなくシステム内に残存した原料合金微粉(以下、残粉と称する。)は、酸素含有量が低く活性度が高いので、例えば閉回路各部の点検や部品交換、あるいは残粉の手作業による除去等を目的として、粉砕及び回収終了後に閉回路を直ちに大気に開放すると、大気中の酸素と反応し、酸化による発熱・発火を生じるおそれがある。 However, the raw material alloy fine powder having a low oxygen content tends to adhere very much to the fine powder or to a pulverizer, a pipe wall, etc. inside the closed circuit because of its high activity. Moreover, if the raw material alloy fine powder having a low oxygen content adheres to a pulverizer, a piping wall, etc., it will be very difficult to drop off from the piping wall after that. Further, fine powder remains in a dead space such as a narrow portion or a bent portion of a pulverizer or a piping wall. For this reason, a small amount of raw material alloy fine powder remains in the closed circuit after pulverization and recovery. The raw material alloy fine powder (hereinafter referred to as residual powder) remaining in the system without being collected in a hopper or collection storage container has a low oxygen content and high activity. If the closed circuit is opened to the atmosphere immediately after completion of pulverization and collection for the purpose of replacement or manual removal of residual powder, etc., it may react with oxygen in the atmosphere and cause heat generation and ignition due to oxidation.
また、粉砕及び回収終了後、閉回路を直ちに大気に開放しない場合であっても、粉砕システム内に残存した原料合金微粉は以下のような不都合を引き起こす。具体的には、高磁気特性用材料の粉砕と、それよりも磁気特性の低い通常磁気特性用材料の粉砕とを順次行う場合が問題となる。この場合、中酸素濃度雰囲気(例えば0.2%〜0.5%)下での粉砕で得られた原料合金微粉に、低酸素濃度雰囲気(例えば0.2%未満)下で原料合金粗粉の粉砕時に残粉が混入する。前述の中酸素濃度雰囲気下で粉砕された合金粉末は、通常、大気中で安定であることから、成形工程等は大気中で行われる。そのため、この中に低酸素量の合金粉末(残粉)が混入していると、これが大気中の酸素と反応し、成形体もしくは原料合金微粉の酸化による発熱・発火につながる。発熱・発火後の原料合金微粉は、酸素含有量が著しく上昇しており、これを成形、焼結してなる希土類磁石の磁気特性に悪影響を及ぼす。 Further, even if the closed circuit is not immediately opened to the atmosphere after pulverization and recovery, the raw material alloy fine powder remaining in the pulverization system causes the following problems. Specifically, there is a problem when the high magnetic property material is pulverized and the normal magnetic property material having lower magnetic properties is sequentially pulverized. In this case, the raw material alloy fine powder obtained by pulverization under a medium oxygen concentration atmosphere (for example, 0.2% to 0.5%) is mixed with the raw material alloy coarse powder under a low oxygen concentration atmosphere (for example, less than 0.2%). Residual powder is mixed during grinding. Since the alloy powder pulverized in the above-mentioned medium oxygen concentration atmosphere is usually stable in the air, the forming process and the like are performed in the air. Therefore, if a low oxygen content alloy powder (residual powder) is mixed in this, it reacts with oxygen in the atmosphere, leading to heat generation and ignition due to oxidation of the compact or raw material alloy fine powder. The raw material alloy fine powder after heat generation and ignition has a markedly increased oxygen content, which adversely affects the magnetic properties of the rare earth magnet formed and sintered.
本発明は、このような従来の実情に鑑みて提案されたものであり、高磁気特性用の酸素含有量の低い原料合金微粉を得るとともに、粉砕システム内に残存した原料合金微粉(残粉)の取扱いを容易なものとすることが可能な希土類磁石の製造方法を提供することを目的とする。 The present invention has been proposed in view of such a conventional situation, and obtains a raw material alloy fine powder having a low oxygen content for high magnetic properties and a raw material alloy fine powder (residual powder) remaining in the grinding system. An object of the present invention is to provide a method for producing a rare earth magnet that can be easily handled.
前述の課題を解決するために、本発明に係る希土類磁石の製造方法は、粉砕システムの閉回路内において原料合金粗粉を気流粉砕し、原料合金微粉を作製する希土類磁石の製造方法であって、前記閉回路内の酸素濃度を0.2%未満に保持した状態で原料合金粗粉を気流粉砕し、回収した後、前記雰囲気中の酸素濃度を0.8%〜2.0%に所定時間保持することを特徴とする。 In order to solve the above-mentioned problems, a method for producing a rare earth magnet according to the present invention is a method for producing a rare earth magnet in which raw material alloy coarse powder is air-flow crushed in a closed circuit of a grinding system to produce raw material alloy fine powder. The raw material alloy coarse powder is air-flow pulverized and collected in a state where the oxygen concentration in the closed circuit is kept below 0.2%, and then the oxygen concentration in the atmosphere is set to 0.8% to 2.0%. It is characterized by holding time.
以上のような希土類磁石の製造方法では、0.2%未満の低酸素濃度雰囲気下で粉砕を行い、粉砕の結果得られる酸素含有量の低い原料合金微粉を回収した後、閉回路内の酸素濃度を0.8%〜2.0%の高酸素濃度雰囲気とすることによって、例えば配管壁や粉砕機等に付着して閉回路に残存した原料合金微粉(残粉)を徐酸化させ、安定化する。したがって、この後、残存した原料合金微粉(残粉)を大気中に取り出したとしても、当該原料合金微粉(残粉)は酸化による発熱・発火することなく、安定して存在する。 In the method for producing a rare earth magnet as described above, after pulverization in a low oxygen concentration atmosphere of less than 0.2%, the raw material alloy fine powder having a low oxygen content obtained as a result of pulverization is recovered, and then the oxygen in the closed circuit is recovered. By setting the atmosphere to a high oxygen concentration concentration of 0.8% to 2.0%, for example, the raw material alloy fine powder (residual powder) that remains on the closed circuit after adhering to the piping wall or pulverizer, etc. is gradually oxidized and stabilized. Turn into. Therefore, even if the remaining raw material alloy fine powder (residual powder) is taken out into the atmosphere after that, the raw material alloy fine powder (residual powder) is stably present without heat generation and ignition due to oxidation.
なお、前記特許文献1においては、成分調整ガス(酸素含有ガス)を閉回路内に導入するタイミングを全く考慮しておらず、被処理物である原料合金粉末の全量を徐酸化している。この場合、原料合金粉末に含まれる酸素量が増大し、結果として低い磁気特性の希土類磁石しか得られない。 In addition, in the said patent document 1, the timing which introduce | transduces a component adjustment gas (oxygen containing gas) in a closed circuit is not considered at all, and the whole quantity of the raw material alloy powder which is a to-be-processed object is gradually oxidized. In this case, the amount of oxygen contained in the raw material alloy powder increases, and as a result, only rare earth magnets with low magnetic properties can be obtained.
これに対し本発明では、徐酸化の前に大部分の原料合金微粉を回収しておき、回収後の原料合金微粉は0.8%〜2.0%の高酸素濃度雰囲気に接触させない。すなわち、残粉のみ徐酸化させる。したがって、希土類磁石の原料となる大部分の原料合金微粉においては、低酸素量が維持され、磁石に用いられた場合に高磁気特性が実現される。 In contrast, in the present invention, most of the raw material alloy fine powder is collected before the slow oxidation, and the recovered raw material alloy fine powder is not brought into contact with a high oxygen concentration atmosphere of 0.8% to 2.0%. That is, only residual powder is gradually oxidized. Therefore, in most raw material alloy fine powders that are raw materials for rare earth magnets, a low oxygen content is maintained, and high magnetic properties are realized when used in magnets.
本発明に係る希土類磁石の製造方法によれば、酸素含有量の低い原料合金微粉を用いて高磁気特性の希土類磁石を製造可能とするとともに、粉砕システム内に残存した原料合金微粉(残粉)の取扱いを容易なものとすることができる。 According to the method for producing a rare earth magnet according to the present invention, it is possible to produce a rare earth magnet having high magnetic properties using a raw material alloy fine powder having a low oxygen content, and the raw material alloy fine powder (residual powder) remaining in the grinding system. Can be handled easily.
以下、本発明を適用した希土類磁石の製造方法について、図面を参照して詳細に説明する。 Hereinafter, a method for producing a rare earth magnet to which the present invention is applied will be described in detail with reference to the drawings.
先ず、本発明の製造対象となる希土類磁石について、その概略を説明する。
希土類磁石、中でも希土類焼結磁石は、希土類元素、遷移金属元素を主成分とするものである。ここで、磁石組成(合金組成)は、目的に応じて任意に選択すればよい。例えば、R−T−B(Rは希土類元素の1種又は2種以上、但し希土類元素はYを含む概念である。TはFeまたはFe及びCoを必須とする遷移金属元素の1種または2種以上であり、Bはホウ素である。)系希土類焼結磁石とする場合、磁気特性に優れた希土類焼結磁石を得るためには、焼結後の磁石組成において、希土類元素Rが20〜40質量%、ホウ素Bが0.5〜4.5質量%、残部が遷移金属元素Tとなるような配合組成とすることが好ましい。ここで、Rは、希土類元素、すなわちY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb及びLuから選ばれる1種、または2種以上である。中でも、Ndは、資源的に豊富で比較的安価であることから、主成分をNdとすることが好ましい。また、Dyの含有は異方性磁界を増加させるため、保磁力Hcjを向上させる上で有効である。
First, an outline of a rare earth magnet to be manufactured according to the present invention will be described.
Rare earth magnets, especially rare earth sintered magnets, are mainly composed of rare earth elements and transition metal elements. Here, the magnet composition (alloy composition) may be arbitrarily selected according to the purpose. For example, R-T-B (R is a concept including one or more rare earth elements, where the rare earth element includes Y. T is one or two of transition metal elements essential for Fe or Fe and Co. In order to obtain a rare earth sintered magnet having excellent magnetic properties, the rare earth element R is 20 to 20 in the magnet composition after sintering. It is preferable that the composition be 40 mass%, boron B is 0.5 to 4.5 mass%, and the balance is the transition metal element T. Here, R is one or more selected from rare earth elements, that is, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and Lu. Especially, since Nd is abundant in resources and relatively inexpensive, the main component is preferably Nd. Further, the inclusion of Dy is effective in improving the coercive force Hcj because it increases the anisotropic magnetic field.
あるいは、添加元素Mを加えて、R−T−B−M系希土類焼結磁石とすることも可能である。この場合、添加元素Mとしては、Al、Cr、Mn、Mg、Si、Cu、C、Nb、Sn、W、V、Zr、Ti、Mo、Bi、Ga等を挙げることができ、これらの1種または2種以上を選択して添加することができる。これら添加元素Mの添加量は、残留磁束密度等の磁気特性を考慮して、3質量%以下とすることが好ましい。添加元素Mの添加量が多すぎると、磁気特性が劣化するおそれがある。 Alternatively, the additive element M can be added to form an R-T-B-M rare earth sintered magnet. In this case, examples of the additive element M include Al, Cr, Mn, Mg, Si, Cu, C, Nb, Sn, W, V, Zr, Ti, Mo, Bi, and Ga. A seed | species or 2 or more types can be selected and added. The addition amount of these additive elements M is preferably 3% by mass or less in consideration of magnetic characteristics such as residual magnetic flux density. If the amount of additive element M added is too large, the magnetic properties may be deteriorated.
勿論、これら組成に限らず、希土類焼結磁石として従来公知の組成全般に適用可能であることは言うまでもない。 Of course, it is needless to say that the present invention is not limited to these compositions, and can be applied to all known compositions as rare earth sintered magnets.
前述の希土類焼結磁石を製造するには、粉末冶金法が採用される。粉末冶金法による希土類焼結磁石の製造プロセスは、基本的には、合金化工程、粗粉砕工程、微粉砕工程、磁場中成形工程、焼結工程、時効工程、加工工程、及び表面処理工程とにより構成される。なお、酸化防止のために、時効後までの各工程は、ほとんどの工程を真空中、あるいは非酸化性ガス雰囲気中(窒素雰囲気中、Ar雰囲気中等)で行う。 Powder metallurgy is used to manufacture the aforementioned rare earth sintered magnet. The manufacturing process of rare earth sintered magnets by powder metallurgy is basically an alloying process, coarse pulverization process, fine pulverization process, magnetic field forming process, sintering process, aging process, processing process, and surface treatment process. Consists of. In order to prevent oxidation, most of the steps until aging are performed in a vacuum or in a non-oxidizing gas atmosphere (in a nitrogen atmosphere, an Ar atmosphere, etc.).
合金化工程では、原料となる金属、あるいは合金を磁石組成に応じて配合し、真空あるいは不活性ガス、例えばAr雰囲気中で溶解し、鋳造することにより合金化する。鋳造法としては、溶融した高温の液体金属を回転ロール上に供給し、合金薄板を連続的に鋳造するストリップキャスト法(連続鋳造法)が生産性等の観点から好適であるが、それに限られるものではない。原料金属(合金)としては、純希土類元素、希土類合金、純鉄、フェロボロン、さらにはこれらの合金等を使用することができる。 In the alloying step, a raw material metal or alloy is blended in accordance with the magnet composition, melted in a vacuum or an inert gas, for example, Ar atmosphere, and cast into an alloy. As a casting method, a strip casting method (continuous casting method) in which molten high-temperature liquid metal is supplied onto a rotating roll and an alloy thin plate is continuously cast is preferable from the viewpoint of productivity and the like, but is not limited thereto. It is not a thing. As the raw material metal (alloy), pure rare earth elements, rare earth alloys, pure iron, ferroboron, and alloys thereof can be used.
合金は、ほぼ最終磁石組成である単一の合金を用いても良いし、最終磁石組成になるように、組成の異なる複数種類の合金を混合しても良い。混合は、合金・原料粗粉・原料微粉のどの工程でもよい。 As the alloy, a single alloy having almost the final magnet composition may be used, or a plurality of types of alloys having different compositions may be mixed so as to have the final magnet composition. Mixing may be performed in any process of alloy, raw material coarse powder, and raw material fine powder.
粗粉砕工程では、先ず、鋳造した原料合金の薄板、あるいはインゴット等をある程度粉砕して、合金塊とし、水素吸蔵に供する。合金塊の寸法、形状に特に制限はないが、5〜50mm角程度とすることが好ましい。この粉砕は、例えばジョークラッシャ等により行えばよい。 In the coarse pulverization step, first, a cast raw alloy sheet or ingot is pulverized to some extent to form an alloy lump and used for hydrogen storage. Although there is no restriction | limiting in particular in the dimension and shape of an alloy lump, It is preferable to set it as about 5-50 mm square. This pulverization may be performed by, for example, a jaw crusher.
粗粉砕工程では、前記合金塊に対して水素吸蔵させ、粉砕を行う。原料合金塊に水素を吸蔵させると、相によって水素吸蔵量が異なり、これにより表面から自己崩壊的に粉砕が進行する。粗粉砕工程では、前記水素吸蔵処理の後、熱処理することが一般的である。更にディスクミル等の機械的粉砕を行うこともある。 In the coarse pulverization step, hydrogen is occluded in the alloy lump and pulverization is performed. When hydrogen is occluded in the raw material alloy lump, the hydrogen occlusion amount differs depending on the phase, and pulverization proceeds from the surface in a self-destructive manner. In the coarse pulverization step, heat treatment is generally performed after the hydrogen storage treatment. Further, mechanical grinding such as a disk mill may be performed.
前述の粗粉砕工程が終了した後、通常、粗粉砕した原料合金粗粉に粉砕助剤を添加する。粉砕助剤としては、例えばステアリン酸亜鉛、オレイン酸アミドといった脂肪酸系化合物あるいは金属せっけん等の添加剤を使用することができるが、特に、脂肪酸アミドを粉砕助剤として用いることで、良好な磁気特性を有する希土類焼結磁石を得ることができる。粉砕助剤の添加量としては、0.01〜0.3質量%程度とすることが好ましい。この範囲内で粉砕助剤を添加した場合、焼結後の残留炭素の量を抑制することができ、希土類焼結磁石の磁気特性を向上させる上で有効である。 After the coarse pulverization step is completed, a pulverization aid is usually added to the coarsely pulverized raw material alloy coarse powder. As the grinding aid, for example, additives such as fatty acid compounds such as zinc stearate and oleic acid amide or metal soap can be used. In particular, by using fatty acid amide as the grinding aid, good magnetic properties can be obtained. It is possible to obtain a rare earth sintered magnet having The addition amount of the grinding aid is preferably about 0.01 to 0.3% by mass. When the grinding aid is added within this range, the amount of residual carbon after sintering can be suppressed, which is effective in improving the magnetic properties of the rare earth sintered magnet.
粗粉砕工程の後、微粉砕工程を行う。微粉砕工程は、後述するような粉砕システムにおいて、例えばジェットミル等の気流式粉砕機を使用した気流粉砕により行われる。微粉砕の際の条件は、用いる気流式粉砕機等に応じて適宜設定すればよいが、本発明では、高磁気特性用の酸素含有量の低い原料合金微粉を得るために、微粉砕雰囲気中の酸素濃度を0.2%未満に制御する。原料合金粗粉は、平均粒径が1〜10μm程度、例えば3〜6μmとなるまで微粉砕する。ジェットミルは、高圧の不活性ガス(例えば窒素ガス)を狭いノズルより開放して高速のガス流を発生させ、この高速の搬送ガス流により粉体の粒子を加速し、粉体の粒子同士の衝突や、衝突板あるいは容器壁との衝突を発生させて粉砕する方法である。ジェットミルは、一般的に、流動層を利用するジェットミルや渦流を利用するジェットミル等気流生成手法により、或いは衝突板を用いるジェットミル等作用物もしくは機構により分類される。気流生成手法や作用物等の組合せ並びに条件により、粉砕粒径などを設定・制御する。 After the coarse pulverization step, a fine pulverization step is performed. The fine pulverization step is performed by airflow pulverization using an airflow pulverizer such as a jet mill in a pulverization system as described later. The conditions at the time of pulverization may be appropriately set according to the airflow pulverizer used, etc., but in the present invention, in order to obtain a raw material alloy fine powder having a low oxygen content for high magnetic properties, The oxygen concentration is controlled to less than 0.2%. The raw material alloy coarse powder is finely pulverized until the average particle size becomes about 1 to 10 μm, for example, 3 to 6 μm. The jet mill opens a high-pressure inert gas (for example, nitrogen gas) from a narrow nozzle to generate a high-speed gas flow, and the high-speed carrier gas flow accelerates the powder particles. This is a method of generating a collision and a collision with a collision plate or a container wall and crushing. Jet mills are generally classified according to an air flow generation method such as a jet mill using a fluidized bed or a jet mill using a vortex, or by an action or mechanism such as a jet mill using a collision plate. The pulverized particle size and the like are set and controlled according to the combination and conditions of the airflow generation method and the action substance.
微粉砕工程の後、磁場中成形工程において、原料合金微粉を磁場中にて成形する。具体的には、微粉砕工程にて得られた原料合金微粉を電磁石を配置した金型内に充填し、磁場印加によって結晶軸を配向させた状態で磁場中成形する。磁場中成形は、プレス方向に平行磁界を印加する縦磁場成形、プレス方向に垂直磁界を印加する横磁場成形のいずれであってもよい。この磁場中成形は、例えば400〜1600kA/mの磁場中で、50〜260MPa前後の圧力で行えばよい。磁場配向にはパルス磁界を用いても良く、また静磁界とパルス磁界の組み合わせでも良い。パルス磁界としては2400kA/m以上が望ましい。 After the pulverization step, the raw material alloy fine powder is formed in the magnetic field in the magnetic field forming step. Specifically, the raw material alloy fine powder obtained in the fine pulverization step is filled in a mold in which an electromagnet is arranged, and is molded in a magnetic field in a state where crystal axes are oriented by applying a magnetic field. Forming in a magnetic field may be either longitudinal magnetic field shaping in which a parallel magnetic field is applied in the pressing direction or transverse magnetic field shaping in which a vertical magnetic field is applied in the pressing direction. The forming in the magnetic field may be performed at a pressure of about 50 to 260 MPa in a magnetic field of 400 to 1600 kA / m, for example. For the magnetic field orientation, a pulse magnetic field may be used, or a combination of a static magnetic field and a pulse magnetic field may be used. The pulse magnetic field is preferably 2400 kA / m or more.
雰囲気中の酸素濃度を0.2%未満に制御して微粉砕を行っているので、得られる原料合金微粉の酸素含有量は低く、活性度が高い。したがって、本発明では、磁場中成形工程を例えば0.2%未満の低酸素濃度雰囲気下で行うことが望ましい。 Since fine pulverization is performed by controlling the oxygen concentration in the atmosphere to less than 0.2%, the obtained raw material alloy fine powder has a low oxygen content and a high activity. Therefore, in the present invention, it is desirable to perform the forming step in a magnetic field in a low oxygen concentration atmosphere of, for example, less than 0.2%.
次に焼結工程・時効工程において、焼結及び時効処理を実施する。すなわち、焼結工程は原料合金微粉を磁場中成形後、成形体を真空または不活性ガス雰囲気中で焼結する。焼結温度は、組成、粉砕方法、粒度と粒度分布の違い等、諸条件により調整する必要があるが、例えば1000〜1150℃で5時間程度焼結すればよい。焼結後、得られた焼結体に時効処理を施すことが好ましい。この時効工程は、得られる希土類焼結磁石の保磁力Hcjを制御する上で重要な工程であり、例えば不活性ガス雰囲気中あるいは真空中で時効処理を施す。時効処理としては、2段時効処理が好ましく、1段目の時効処理工程では、800℃前後の温度で1〜3時間保持する。次いで、室温〜200℃の範囲内にまで冷却する第1冷却工程を設ける。2段目の時効処理工程では、550℃前後の温度で1〜3時間保持する。次いで、室温まで冷却する第2冷却工程を設ける。600℃近傍の熱処理で保磁力Hcjが大きく増加するため、時効処理を一段で行う場合には、600℃近傍の時効処理を施すとよい。 Next, in the sintering process / aging process, sintering and aging treatment are performed. That is, in the sintering step, after the raw material alloy fine powder is formed in a magnetic field, the formed body is sintered in a vacuum or an inert gas atmosphere. Although it is necessary to adjust sintering temperature by various conditions, such as a composition, a grinding | pulverization method, and the difference of a particle size and a particle size distribution, for example, what is necessary is just to sinter at 1000-1150 degreeC for about 5 hours. After sintering, the obtained sintered body is preferably subjected to aging treatment. This aging step is an important step in controlling the coercive force Hcj of the obtained rare earth sintered magnet. For example, an aging treatment is performed in an inert gas atmosphere or in a vacuum. As the aging treatment, a two-stage aging treatment is preferable, and in the first aging treatment step, the temperature is maintained at a temperature of about 800 ° C. for 1 to 3 hours. Then, the 1st cooling process cooled to the range of room temperature-200 degreeC is provided. In the second stage aging treatment step, the temperature is maintained at about 550 ° C. for 1 to 3 hours. Next, a second cooling step for cooling to room temperature is provided. Since the coercive force Hcj is greatly increased by heat treatment at around 600 ° C., when aging treatment is performed in a single stage, it is advisable to perform aging treatment at around 600 ° C.
前記焼結工程・時効工程の後、加工工程及び表面処理工程を行う。加工工程は、得られた焼結体に切断加工、研削加工、研磨加工等を行い、所望の形状に機械的に加工する工程である。表面処理工程は、得られた希土類焼結磁石の酸化や割れ・クラックなどを抑えるため、あるいは接着性を改善させるためなどに行う工程であり、例えばメッキ被膜や樹脂被膜を希土類焼結磁石の表面に形成する。なお、前記焼結工程後、加工工程を行い、時効工程、表面処理工程を行ってもよい。 After the sintering step and the aging step, a processing step and a surface treatment step are performed. The processing step is a step of mechanically processing the obtained sintered body into a desired shape by cutting, grinding, polishing, or the like. The surface treatment process is a process performed to suppress oxidation, cracking, cracking, etc. of the obtained rare earth sintered magnet, or to improve adhesiveness. For example, a plating film or a resin film is applied to the surface of the rare earth sintered magnet. To form. In addition, after the sintering step, a processing step may be performed, and an aging step and a surface treatment step may be performed.
以下、前述の微粉砕工程で用いられる粉砕システムについて、図1を参照しながら説明する。 Hereinafter, the pulverization system used in the fine pulverization step will be described with reference to FIG.
図1に示す粉砕システムは、原料合金粗粉を粉砕システムの系(閉回路)L内に供給するためのフィーダ(供給装置)10、フィーダ10から送り込まれた原料合金粗粉をキャリアガスで搬送し、粉砕する粉砕機(気流式粉砕機)20、粉砕機20で粉砕された原料合金微粉(粉砕物)のうち、所定の範囲の粒径のものを回収するサイクロン30、サイクロン30で回収された原料合金微粉を収容するホッパー40、ホッパー40で収容された後、初期の段階で粉砕された原料合金微粉と終了の段階で粉砕された原料合金微粉とを均一に撹拌・混合するためのミキサ50、ミキサ50で撹拌・混合された原料合金微粉末を系L外へ取り出すための回収保管容器51、サイクロン30で回収されなかった原料合金微粉を回収するバグフィルタ(捕集装置)60及びアフターフィルタ61、アフターフィルタ61を通過したキャリアガスを再度粉砕機20に循環させ、系Lを閉回路とするための低圧タンク62、コンプレッサ63及び高圧タンク64を備えている。
The pulverization system shown in FIG. 1 is a feeder (supply device) 10 for supplying raw material alloy coarse powder into a system (closed circuit) L of the pulverization system, and the raw material alloy coarse powder fed from the
また、粉砕システムは、系L内に窒素ガス等の不活性ガスを供給する不活性ガス供給装置71、系L内に酸素ガスを供給する酸素含有ガス供給装置72、不活性ガスと酸素含有ガスとを混合するガス混合器73を備えている。なお、ガス混合器73を設けずに不活性ガス供給装置71、酸素含有ガス供給装置72によりそれぞれのガスを個別に系L内に供給するようにしてもよい。また、粉砕システムは、ガス混合器73における酸素濃度を測定する酸素濃度計74、系L内のガスを回収するガス回収タンク75を備えている。さらに、粉砕システムは、サイクロン30で回収した微粉の粒度分布を測定するためのオンラインの粒度分布測定装置80を備えている。
The pulverization system includes an inert
図1に示す粉砕機20は、ジェットミルである。この粉砕機20は、いわゆる縦型の粉砕機であり、上下方向に軸線を有する外筒(容器)21と、外筒21の軸線方向に沿って設けられた内筒22と、外筒21の底部に設けられたエジェクタノズル(図示せず)と、内筒22の内径側に取り付けられた内筒22の衝突板23とを備えるものである。外筒21内において、内筒22の上端部の上方には、粉砕された原料合金微粉を分級する分級ロータ24が設けられる。分級ロータ24は、略水平方向(粉砕装置内において原料合金微粉の流れに略直交する方向)に軸線を有した円筒状で、その外周面には、所定幅のスリットが複数形成されており、外筒21の外部に設けられた図示しない駆動モータにより、その軸線周りに回転駆動されるようになっている。また、分級ロータ24の側方には、分級ロータ24の内部空間に連通し、分級された原料合金微粉をサイクロン30に送り込む微粉搬送配管(排出部)25が設けられている。
The pulverizer 20 shown in FIG. 1 is a jet mill. The pulverizer 20 is a so-called vertical pulverizer, and includes an outer cylinder (container) 21 having an axial line in the vertical direction, an
フィーダ10から配管11を介して送り込まれ、外筒21内に投入された原料合金粗粉は、エジェクタノズルからキャリアガスとともに噴出され、衝突板23に当たって粉砕される。粉砕の結果得られた原料合金微粉は、キャリアガスの流れに乗って上昇し、分級ロータ24において分級される。分級ロータ24のスリットを通過した所定寸法以下の原料合金微粉のみが微粉搬送配管25を通ってサイクロン30へ送り込まれる一方、残りの原料合金微粉は外筒21と内筒22との隙間を通って落下し、粉砕機20内を再び循環する。
The raw material alloy coarse powder fed from the
粉砕機20で粉砕して得られた原料合金微粉は、サイクロン30において、重量に基づき、さらに所定の粒径範囲のもののみが回収され、配管31を介してホッパー40に回収される。
The raw material alloy fine powder obtained by pulverization by the pulverizer 20 is further collected in the
サイクロン30から原料合金微粉をホッパー40に供給する配管31には、開閉可能なダンパーが2段階に設けられたダブルダンパ41が設けられる。このダブルダンパ41を適宜作動させることで、系L内とホッパー40とのガス圧を遮断可能としている。また、粉砕システムは、ホッパー40の入り口側にバルブ43を備え、このバルブ43により系L内とホッパー40とのガスの流通を遮断可能としている。ホッパー40に回収された原料合金微粉は、配管42を介してミキサ50に送り込まれる。
A
ミキサ50で撹拌・混合された原料合金微粉末は、回収保管容器51へ送り込まれ、回収保管容器51の弁を閉じることによって系L外へ取り出されて磁場中成形工程に供給される。回収保管容器51に送り込まれた原料合金微粉を系L外に取り出す際、配管42の弁を閉じることにより、系L内への大気の侵入を防ぎ、系Lの雰囲気を所定酸素濃度に維持することができる。なお、粉砕システムは、回収保管容器51を複数個備えるとともに、回収保管容器51を任意のタイミング(例えばロット毎)で交換可能な構成とされている。図1においては、回収保管容器51を1つだけ図示する。
The raw material alloy fine powder stirred and mixed by the
配管31には、サイクロン30で回収した原料合金微粉の粒度分布を測定するための粒度分布測定装置80が設けられる。粒度分布測定装置80は、配管31の壁面に開口した開口部(図示無し)に接続されたサンプリング管(流路)81と、このサンプリング管81内にレーザ光等を照射し、その透過度合いに基づいて粒度分布を測定する測定装置本体(粒度分布測定計)82と、測定装置本体82を通過した原料合金微粉を回収するサイクロン83とを備えている。なお、粒度分布測定装置80としては、図1に示すような配管31とサイクロン83との間にサンプリング管81を設ける形式に限定されるものではなく、原料合金微粉をサンプリング可能であればいかなる形式であってもよい。例えば、粒度分布測定装置80は、微粉搬送配管25から分岐してサイクロン30に至る形式でも構わない。
The
低圧タンク62とコンプレッサ63とをつなぐ配管65には、ガス混合器73で混合された不活性ガスを供給するためのガス供給管76が接続される。不活性ガス供給装置71及び酸素含有ガス供給装置72からそれぞれ供給されたガスは、ガス混合器73で所望の酸素含有量等に調整された後、ガス供給管76を通って配管65(系L内)へ供給される。ガス混合器73を備えずに不活性ガス供給装置71及び酸素含有ガス供給装置72を直接配管65へ供給してもよい。酸素濃度計74は、ガス混合器73中の酸素濃度を測定する。なお、図1においては、ガス混合器73に酸素濃度計74を設けた例を図示したが、粉砕システムは酸素濃度計74を系Lの各部に複数備える構成であってもよい。こうすることによって、所望の酸素含有量等に調整されていることが確認し易くなる。ガス混合器73を備えずに不活性ガス供給装置71及び酸素含有ガス供給装置72を直接配管65へ供給する場合であっても同様である。低圧タンク62とガス回収タンク75、及び高圧タンク64とガス回収タンク75との間の配管には、それぞれバルブ77,78が設けられている。
A
以上の構成を有する粉砕システムを用いて原料合金粗粉を微粉砕するには、先ず、不活性ガス供給装置71、酸素含有ガス供給装置72等から供給したガスをキャリアガスとして、フィーダ10から供給された原料合金粗粉を粉砕機20において気流粉砕する。その後、分級ロータ24及びサイクロン30を介して、粉砕物のうち所定の粒径の原料合金微粉を回収し、ホッパー40又は回収保管容器51内に収容する。この微粉砕工程の間、系L内の雰囲気の酸素濃度を0.2%未満に保持する。
In order to finely pulverize the raw material alloy coarse powder using the pulverization system having the above configuration, first, the gas supplied from the inert
ところで、フィーダ10から系L内に投入した原料合金粗粉の全量を原料合金微粉として回収保管容器51で回収することが望ましいが、実際には、回収作業後の粉砕システム内(例えば系Lを構成する配管壁、粉砕機20の内部、サイクロン30の内部等)に、若干量の原料合金微粉が残粉として残存してしまう。系L内の酸素濃度は0.2%未満とされているので、残粉の酸素含有量も非常に低いものであり、大気中に取り出すと大気中の酸素と激しく反応して酸化し、発熱・発火する。
By the way, it is desirable that the entire amount of the raw material alloy coarse powder charged into the system L from the
そこで本発明では、系L内の残粉を取り出したときの発熱・発火を抑制する目的で、系L内の酸素濃度を0.8%〜2.0%に所定時間保持し、残粉を徐酸化させる。具体的には、系L内から原料合金微粉の大部分を回収保管容器51に回収した後、配管42あるいは回収保管容器51の弁を閉じることで回収保管容器51へのガスの流通を遮断した状態とする。また、ホッパー40の入り口側のバルブ43を閉じることで、ホッパー40、ミキサ50及び回収保管容器51へのガスの流通を遮断した状態としてもよい。この状態で不活性ガス供給装置71、酸素含有ガス供給装置72、ガス混合器73をそれぞれ作動させることにより、系L内の酸素濃度を0.8%〜2.0%に上昇させ所定時間保持する。この操作により、系L内の残粉が徐酸化されて安定化し、大気中での取扱いが容易なものとなる。
Therefore, in the present invention, for the purpose of suppressing heat generation and ignition when the residual powder in the system L is taken out, the oxygen concentration in the system L is maintained at 0.8% to 2.0% for a predetermined time, Slow oxidation. Specifically, after collecting most of the raw material alloy fine powder from the system L in the
一方で、先に回収した大部分の原料合金微粉は、バルブ43及び回収保管容器51の弁を閉じることで系Lと遮断された空間(回収保管容器51)に収容されているので、酸素濃度0.8%〜2.0%の雰囲気に接触しない。すなわち、大部分の原料合金微粉は、徐酸化されることなく、低い酸素含有量を維持する。したがって、回収保管容器51に回収済みの原料合金微粉を、希土類磁石の原料粉末として利用することにより、高い磁気特性を示す希土類磁石を製造することができる。
On the other hand, most of the raw material alloy fine powder collected earlier is contained in a space (recovery storage container 51) that is shut off from the system L by closing the
系L内の残粉を徐酸化させるには、系L内の雰囲気中の酸素濃度を0.8%〜2.0%に上昇させることが必要である。前記範囲未満であると、残粉の徐酸化に長時間を要したり、残粉の徐酸化が不十分となり、大気中で酸化し、発熱・発火する等の問題がある。逆に前記範囲を上回る場合、系L内において残粉の酸化反応が急速に進行して発熱・発火するおそれがある。また、徐酸化の酸素濃度が前記範囲を上回る場合、次の粉砕を行う目的で系L内の酸素濃度を低下させる際、所望の酸素濃度まで低下させるのに長時間を要し、生産効率の低下を招くおそれがある。 In order to gradually oxidize the residual powder in the system L, it is necessary to increase the oxygen concentration in the atmosphere in the system L to 0.8% to 2.0%. When the amount is less than the above range, there is a problem that it takes a long time to slowly oxidize the residual powder, or the gradual oxidation of the residual powder becomes insufficient, which causes oxidation in the atmosphere, heat generation and ignition. On the other hand, when the above range is exceeded, there is a risk that the oxidation reaction of the residual powder proceeds rapidly in the system L and heat generation / ignition occurs. Also, when the oxygen concentration of the slow oxidation exceeds the above range, when reducing the oxygen concentration in the system L for the purpose of performing the next pulverization, it takes a long time to reduce to the desired oxygen concentration, and the production efficiency is reduced. There is a risk of lowering.
系L内の雰囲気中の酸素濃度を0.8%〜2.0%に保持する時間は、大気中で残粉が発熱・発火しない程度に残粉が酸化される時間に設定すればよく、例えば20分間〜180分間とすることができる。系Lの規模にもよるが、効率的な徐酸化条件に雰囲気を設定しておけば20分間〜150分間程度でよい。 The time for maintaining the oxygen concentration in the atmosphere in the system L at 0.8% to 2.0% may be set to a time during which the residual powder is oxidized to the extent that the residual powder does not generate heat or ignite in the atmosphere. For example, it can be 20 minutes to 180 minutes. Although depending on the scale of the system L, it may be about 20 minutes to 150 minutes if the atmosphere is set to efficient gradual oxidation conditions.
前述のように残粉を徐酸化した後、系Lを大気に開放してもよい。残粉の大気中での発熱・発火が抑制されているので、粉砕システムの各部の点検作業や部品交換作業、あるいは系L内の残粉の機械的な除去作業等の系Lを大気に開放する作業を、特別な安全設備等を要することなく簡単に実施することができる。 The system L may be opened to the atmosphere after the residual powder is gradually oxidized as described above. Heat generation and ignition of residual powder in the atmosphere are suppressed, so system L such as inspection work and parts replacement work of each part of the grinding system or mechanical removal work of residual powder in system L is opened to the atmosphere. The work to be performed can be easily performed without requiring special safety equipment.
また、前述のように残粉を徐酸化した後、系Lを大気に開放することなく、粉砕システムを用いて次の原料合金粗粉の微粉砕を行ってもよい。次の微粉砕を行う前に残粉を徐酸化しておけば、1つの粉砕システムで高磁気特性用材料の粉砕(雰囲気中の酸素濃度0.2%未満)と、次の原料合金粗粉として通常磁気特性用材料の粉砕(雰囲気中の酸素濃度0.2%〜0.5%)とを連続して行う場合であっても、低酸素量残粉の混入に起因する原料合金微粉もしくは成形体の発熱・発火を抑制することができる。 Further, after the residual powder is gradually oxidized as described above, the next raw material alloy coarse powder may be finely pulverized using a pulverization system without opening the system L to the atmosphere. If the residual powder is gradually oxidized before the next fine pulverization, the pulverization of the material for high magnetic properties (the oxygen concentration in the atmosphere is less than 0.2%) and the next raw material alloy coarse powder by one pulverization system Even when the material for normal magnetic properties is continuously pulverized (oxygen concentration in atmosphere is 0.2% to 0.5%), the raw material alloy fine powder resulting from the mixing of low oxygen residual powder or Heat generation and ignition of the molded body can be suppressed.
なお、徐酸化された残粉の酸素含有量は3000ppm〜6000ppm程度であるので、徐酸化後の残粉が混入した中酸素濃度雰囲気(例えば0.2%〜0.5%)粉砕の原料合金微粉を用いて希土類磁石を製造した場合であっても、磁気特性の低下はほとんど問題とならない。 Since the oxygen content of the gradually oxidized residual powder is about 3000 ppm to 6000 ppm, a raw material alloy for pulverization in a medium oxygen concentration atmosphere (for example, 0.2% to 0.5%) mixed with the residual powder after the slow oxidation. Even when a rare earth magnet is manufactured using fine powder, a decrease in magnetic properties hardly poses a problem.
ところで、前述のように残粉を徐酸化した後の系L内には、徐酸化で用いた高酸素濃度(0.8%〜2.0%)のガスが充填されている。そのため、系Lを大気に開放することなく、次の原料合金粗粉の微粉砕を行う場合、先ず、系L内を所望の酸素濃度(0.2%〜0.5%)まで低下させる必要がある。しかし、単に前記範囲の酸素濃度の不活性ガスを系L内に供給するだけでは、コストの面では有利であるが、所望の酸素濃度まで低下させるのに長時間を要し、生産効率の悪化を招く。 By the way, in the system L after the residual powder is gradually oxidized as described above, a gas having a high oxygen concentration (0.8% to 2.0%) used in the slow oxidation is filled. Therefore, when the next raw material alloy coarse powder is finely pulverized without opening the system L to the atmosphere, first, the inside of the system L needs to be reduced to a desired oxygen concentration (0.2% to 0.5%). There is. However, simply supplying an inert gas having an oxygen concentration in the above range to the system L is advantageous in terms of cost, but it takes a long time to reduce the oxygen concentration to a desired level, resulting in deterioration in production efficiency. Invite.
そこで、系L内を短時間で所望の酸素濃度とする観点では、系L内に高純度の不活性ガスを短時間供給することが望ましい。ここで用いる高純度不活性ガスは、高純度であるほど好ましく、その酸素濃度は、例えば0.002%以下であることが好ましい。工業的に用いられるいわゆる純窒素ガス(例えば純度99.999%以上の純窒素ガス)の酸素濃度は0.5ppm(0.00005%)程度である。一方で、コスト面等を考慮すると、純度を下げていくことになるが、系L内の酸素濃度を迅速に低下させる観点から酸素濃度は上記0.002%以下であることが好ましい。系Lの規模にもよるが、その供給時間は1分間〜10分間、粉砕時とほぼ同等の圧力、流量に設定すればよい。不活性ガス供給の圧力を高くしたり流量を多くしたりすることで系L内の酸素濃度を早く下げることができる。 Therefore, from the viewpoint of setting the system L to a desired oxygen concentration in a short time, it is desirable to supply a high-purity inert gas into the system L for a short time. The high purity inert gas used here is preferably as high as possible, and the oxygen concentration is preferably 0.002% or less, for example. The oxygen concentration of so-called pure nitrogen gas (for example, pure nitrogen gas having a purity of 99.999% or more) used industrially is about 0.5 ppm (0.00005%). On the other hand, considering the cost and the like, the purity will be lowered, but from the viewpoint of rapidly reducing the oxygen concentration in the system L, the oxygen concentration is preferably 0.002% or less. Although it depends on the scale of the system L, the supply time may be set to a pressure and a flow rate substantially the same as those during pulverization for 1 to 10 minutes. The oxygen concentration in the system L can be quickly lowered by increasing the pressure of the inert gas supply or increasing the flow rate.
また、系L内を短時間で所望の酸素濃度まで低下させる手法として、高圧タンク64及び/又は低圧タンク62に設けられたバルブ77及び/又は78を開放して、高圧タンク64及び/又は低圧タンク62内の高酸素濃度ガスをガス回収タンク75へ廃棄することも有効である。高純度不活性ガス供給及びタンク内の高酸素濃度ガスの廃棄は、両方を実施してもよいし、それぞれ独立に実施してもよい。例えば、系L内の酸素濃度を1.4%から0.4%に低下させようとする場合、従来の方法を行ったとき、すなわち高純度不活性ガス供給及びタンク内の高酸素濃度ガスの廃棄の両方を実施することなく、粉砕システムを空運転(系L内にキャリアガスを所定時間流す)したときには、おおよそ120分を要していた。これに対し、タンク内の高酸素濃度ガスを廃棄した後、空運転したときには、約20分程度で達成することができる。また、系L内に前記高純度不活性ガスを供給したときには、約3分程度で達成することができる。
Further, as a technique for reducing the inside of the system L to a desired oxygen concentration in a short time, the
さらに、残粉を徐酸化した後、系Lを大気に開放することなく、ホッパー40又は回収保管容器51に残粉を回収してもよい。残粉は、徐酸化されることで表面の活性度が低下し、配管壁等から脱落し易い状態とされる。したがって、配管に衝撃を加えて残粉を脱落させた後、回収保管容器51へ収容するといった簡単な操作で、残粉を系L外へ効率よく取り除くことができる。徐酸化した後の残粉を系L外へ取り除くことで、その後中酸素濃度雰囲気(例えば0.2%〜0.5%)で粉砕を行った場合、得られる原料合金微粉への残粉の混入を抑制できる。その結果、残粉の混入に起因する原料合金微粉の発熱・発火を抑制させることができる。また、ホッパー40に回収された残粉の量が多い場合には、中酸素濃度雰囲気(例えば0.2%〜0.5%)粉砕の原料合金微粉に混入することで、原料合金微粉の組成変動、ひいてはこれを原料として製造される希土類焼結磁石の磁気特性、機械的特性、耐蝕性等の変動を引き起こす原因となりかねないが、残粉を系L外へ効率よく取り除くことができるので、こういった不具合も解消できる。
Furthermore, after the residual powder is gradually oxidized, the residual powder may be collected in the
以上、R−T−B系希土類焼結磁石の製造を例にして、本発明の希土類磁石の製造方法の実施形態について説明したが、本発明がこの実施形態に限定されるものでないことは言うまでもない。例えば、対象となる原料合金粉末としては、R−T−B系合金粉末に限らず、例えばSmCo系合金粉末等にも適用可能である。ただし、その場合には、適用する合金粉末の種類に応じて、不活性ガス中の酸素濃度を適正な範囲に設定する必要がある。 The embodiment of the method for producing a rare earth magnet of the present invention has been described above by taking the production of an R-T-B rare earth sintered magnet as an example, but it goes without saying that the present invention is not limited to this embodiment. Yes. For example, the target raw material alloy powder is not limited to the R—T—B type alloy powder, but can be applied to, for example, an SmCo type alloy powder. However, in that case, it is necessary to set the oxygen concentration in the inert gas within an appropriate range according to the type of alloy powder to be applied.
以下、本発明の具体的な実施例について、実験結果を基に説明する。 Hereinafter, specific examples of the present invention will be described based on experimental results.
<実施例1>
質量百分率でNd30.3%、Dy1.0%、B1.0%、Zr0.15%、Co0.5%、Al0.2%、Cu0.07%、残部Feなる組成を有するNd−Fe−B系原料合金粗粉(目の開き2mmの篩を通過)を用い、図1に示す粉砕システムを用いて微粉砕を行った。微粉砕は、酸素濃度0.5ppmの純窒素ガスをキャリアガスとして使用し、平均粒径が4.1μmとなるまで気流粉砕を行った。その後、回収保管容器に、所定の粒径を有する原料合金微粉を回収した。原料合金粗粉の投入質量800kgに対し、回収保管容器に収容された原料合金微粉の質量は785kgであった。バグフィルタ及びアフターフィルタにて捕集されたさらに微細な粉末の質量も差し引くと、粉砕システムの系内に残存した原料合金微粉(残粉)質量は、4.5kgと推測される。粉砕中に系内の酸素が微粉に吸着されるため、回収後の粉砕システム系内の酸素濃度は実質的に0%であった。
<Example 1>
Nd-Fe-B system having a composition of Nd30.3%, Dy1.0%, B1.0%, Zr0.15%, Co0.5%, Al0.2%, Cu0.07%, balance Fe in mass percentage The raw material alloy coarse powder (passed through a sieve having a 2 mm opening) was used for fine pulverization using the pulverization system shown in FIG. Fine pulverization was performed by airflow pulverization until the average particle size became 4.1 μm using pure nitrogen gas having an oxygen concentration of 0.5 ppm as a carrier gas. Thereafter, the raw material alloy fine powder having a predetermined particle size was recovered in a recovery storage container. The mass of the raw material alloy fine powder accommodated in the collection storage container was 785 kg with respect to the input mass of the raw material alloy coarse powder of 800 kg. If the mass of finer powder collected by the bag filter and after filter is also subtracted, the mass of the raw material alloy fine powder (residual powder) remaining in the system of the pulverization system is estimated to be 4.5 kg. Since the oxygen in the system was adsorbed by the fine powder during pulverization, the oxygen concentration in the pulverization system after the recovery was substantially 0%.
次に、原料合金微粉収容後の回収保管容器と配管とを遮断し、その後、不活性ガス供給装置と酸素含有ガス供給装置からのガスを混合し供給することにより、系内の酸素濃度を上昇させた。具体的には、系内の酸素濃度を0%から1.3%まで約50分間かけて上昇させた。その後、系内の酸素濃度1.3%の状態を60分間保持した。系内の酸素濃度を0.8%以上に保持した時間は、合わせて85分間であった。 Next, shut off the collection storage container and piping after containing the raw material alloy fine powder, then increase the oxygen concentration in the system by mixing and supplying the gas from the inert gas supply device and oxygen-containing gas supply device I let you. Specifically, the oxygen concentration in the system was increased from 0% to 1.3% over about 50 minutes. Thereafter, the state of 1.3% oxygen in the system was maintained for 60 minutes. The total time for maintaining the oxygen concentration in the system at 0.8% or more was 85 minutes.
その後、配管を振動させ、粉砕システムの別の回収保管容器に残粉を回収した。回収された残粉は3.7kgであった。回収された残粉を大気中に取り出したところ、残粉の発熱・発火は起きなかった。また、回収された残粉の酸素含有量を測定した結果、5500ppmであった。この酸素含有量は、希土類磁石の原料合金微粉として問題ない値であり、中酸素濃度雰囲気(例えば0.2%〜0.5%)粉砕の原料合金微粉に適宜量の混合をさせても十分使用可能な値であった。残粉の回収量にもよるが、残粉の混合比が極僅かであれば低酸素濃度雰囲気(0.2%未満)粉砕の原料合金微粉に混合させても使用可能な値であった。 Thereafter, the piping was vibrated to collect residual powder in another collection storage container of the pulverization system. The recovered residual powder was 3.7 kg. When the recovered residual powder was taken out into the atmosphere, no heat or ignition of the residual powder occurred. Moreover, it was 5500 ppm as a result of measuring the oxygen content of the collect | recovered residual powder. This oxygen content is a value that does not cause a problem as a raw material alloy fine powder of a rare earth magnet, and it is sufficient to mix an appropriate amount of the raw material alloy fine powder in a medium oxygen concentration atmosphere (for example, 0.2% to 0.5%). It was a usable value. Although it depends on the amount of residual powder recovered, it was a value that could be used even if it was mixed with the raw material alloy fine powder in a low oxygen concentration atmosphere (less than 0.2%) if the mixing ratio of the residual powder was very small.
以上の実験結果から、低酸素濃度で粉砕を行った後の粉砕システムの閉回路内に、適度な酸素濃度の不活性ガスを供給することで、大気に取り出したとき発熱・発火を起こさず、且つ徐酸化後の原料を希土類磁石の原料としたとき磁気特性に影響を及ぼさない程度に、システム内の残粉を酸化させられることが確認された。また、低酸素濃度での粉砕後、適度な酸素濃度の不活性ガスを供給することで、系Lを開放することなく、残粉4.5kgのうち3.7kgを回収することができた。 From the above experimental results, by supplying an inert gas with an appropriate oxygen concentration into the closed circuit of the pulverization system after pulverization at a low oxygen concentration, no heat generation or ignition occurs when taken out to the atmosphere. Moreover, it was confirmed that the residual powder in the system can be oxidized to the extent that the magnetic properties are not affected when the raw material after the slow oxidation is used as the raw material for the rare earth magnet. Further, by supplying an inert gas having an appropriate oxygen concentration after pulverization at a low oxygen concentration, 3.7 kg of the residual powder of 4.5 kg could be recovered without opening the system L.
10 フィーダ、20 粉砕機、30 サイクロン、40 ホッパー、50 ミキサ、51 回収保管容器、60 バグフィルタ、71 不活性ガス供給装置、72 酸素含有ガス供給装置73 ガス混合器、74 酸素濃度計、75 ガス回収タンク、77,78 バルブ、80 粒度分布測定装置
DESCRIPTION OF
Claims (6)
前記閉回路内の酸素濃度を0.2%未満に保持した状態で原料合金粗粉を気流粉砕し、原料合金微粉を回収した後、前記閉回路内の酸素濃度を0.8%〜2.0%に所定時間保持することを特徴とする希土類磁石の製造方法。 A method for producing a rare earth magnet in which a raw material alloy coarse powder is air-flow crushed in a closed circuit of a grinding system to produce a raw material alloy fine powder,
The raw material alloy coarse powder is air-flow pulverized while the oxygen concentration in the closed circuit is kept below 0.2%, and the raw material alloy fine powder is collected. A method for producing a rare earth magnet, which is maintained at 0% for a predetermined time.
前記閉回路内の酸素濃度を0.8%〜2.0%に所定時間保持した後であって、前記閉回路内の酸素濃度を0.2%〜0.5%に保持する前に、前記タンク内のガスを前記閉回路の外部へ廃棄することを特徴とする請求項3記載の希土類磁石の製造方法。 The closed circuit comprises a tank for compressing and storing gas circulating in the closed circuit;
After maintaining the oxygen concentration in the closed circuit at 0.8% to 2.0% for a predetermined time, and before maintaining the oxygen concentration in the closed circuit at 0.2% to 0.5%, The method for producing a rare earth magnet according to claim 3, wherein the gas in the tank is disposed outside the closed circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005103690A JP4640585B2 (en) | 2005-03-31 | 2005-03-31 | Rare earth magnet manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005103690A JP4640585B2 (en) | 2005-03-31 | 2005-03-31 | Rare earth magnet manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006286859A true JP2006286859A (en) | 2006-10-19 |
JP4640585B2 JP4640585B2 (en) | 2011-03-02 |
Family
ID=37408443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005103690A Active JP4640585B2 (en) | 2005-03-31 | 2005-03-31 | Rare earth magnet manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4640585B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008251778A (en) * | 2007-03-30 | 2008-10-16 | Tdk Corp | Manufacturing method of metal sintered magnet |
JP2008259946A (en) * | 2007-04-11 | 2008-10-30 | Mitsui Mining Co Ltd | Crushing and distribution system |
WO2011013489A1 (en) * | 2009-07-31 | 2011-02-03 | 日立金属株式会社 | Method and device for recovering hydrogen pulverization dust of raw-material alloy for rare-earth magnet |
JP2011216720A (en) * | 2010-03-31 | 2011-10-27 | Nitto Denko Corp | Permanent magnet and method for manufacturing the same |
JP2011216669A (en) * | 2010-03-31 | 2011-10-27 | Nitto Denko Corp | Permanent magnet and method for manufacturing the same |
JP2011216727A (en) * | 2010-03-31 | 2011-10-27 | Nitto Denko Corp | Permanent magnet and method for manufacturing the same |
WO2012105399A1 (en) * | 2011-01-31 | 2012-08-09 | 日立金属株式会社 | Method for producing r-t-b system sintered magnet |
JP2012158792A (en) * | 2011-01-31 | 2012-08-23 | Hitachi Metals Ltd | Method and apparatus for recovering hydrogen-pulverized powder of raw material alloy for rare earth magnet |
JP2012160545A (en) * | 2011-01-31 | 2012-08-23 | Hitachi Metals Ltd | Method for manufacturing hydrogen pulverized powder of raw material alloy for rare-earth magnet, and manufacturing apparatus therefor |
JP2020151645A (en) * | 2019-03-19 | 2020-09-24 | 日立金属株式会社 | Cyclone collection device, rare earth magnet alloy crushing system, and method for manufacturing r-t-b-based sintered magnet |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0693309A (en) * | 1991-12-26 | 1994-04-05 | Taiheiyo Kinzoku Kk | Method and device for producing superfine particles |
JP2004321914A (en) * | 2003-04-23 | 2004-11-18 | Tdk Corp | Fine powder treatment method, pulverization method, pulverization system, and recovery apparatus |
JP2004337742A (en) * | 2003-05-15 | 2004-12-02 | Tdk Corp | Crushing system, method for manufacturing r-t-b type permanent magnet and r-t-b type permanent magnet |
JP2005076045A (en) * | 2003-08-28 | 2005-03-24 | Tdk Corp | Alloy powder for permanent magnet, and method for producing rare earth permanent magnet |
JP2006283099A (en) * | 2005-03-31 | 2006-10-19 | Tdk Corp | Method for production of rare earth alloy fine powder |
JP2006283098A (en) * | 2005-03-31 | 2006-10-19 | Tdk Corp | Production method of rare earth alloy fine powder |
-
2005
- 2005-03-31 JP JP2005103690A patent/JP4640585B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0693309A (en) * | 1991-12-26 | 1994-04-05 | Taiheiyo Kinzoku Kk | Method and device for producing superfine particles |
JP2004321914A (en) * | 2003-04-23 | 2004-11-18 | Tdk Corp | Fine powder treatment method, pulverization method, pulverization system, and recovery apparatus |
JP2004337742A (en) * | 2003-05-15 | 2004-12-02 | Tdk Corp | Crushing system, method for manufacturing r-t-b type permanent magnet and r-t-b type permanent magnet |
JP2005076045A (en) * | 2003-08-28 | 2005-03-24 | Tdk Corp | Alloy powder for permanent magnet, and method for producing rare earth permanent magnet |
JP2006283099A (en) * | 2005-03-31 | 2006-10-19 | Tdk Corp | Method for production of rare earth alloy fine powder |
JP2006283098A (en) * | 2005-03-31 | 2006-10-19 | Tdk Corp | Production method of rare earth alloy fine powder |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008251778A (en) * | 2007-03-30 | 2008-10-16 | Tdk Corp | Manufacturing method of metal sintered magnet |
JP2008259946A (en) * | 2007-04-11 | 2008-10-30 | Mitsui Mining Co Ltd | Crushing and distribution system |
CN102470442B (en) * | 2009-07-31 | 2014-01-01 | 日立金属株式会社 | Method and device for recovering hydrogen pulverized powder of raw-material alloy for rare-earth magnet |
WO2011013489A1 (en) * | 2009-07-31 | 2011-02-03 | 日立金属株式会社 | Method and device for recovering hydrogen pulverization dust of raw-material alloy for rare-earth magnet |
US9643253B2 (en) | 2009-07-31 | 2017-05-09 | Hitachi Metals, Ltd. | Method and device for recovering hydrogen pulverized powder of raw-material alloy for rare-earth magnet |
US8979973B2 (en) | 2009-07-31 | 2015-03-17 | Hitachi Metals, Ltd. | Method and device for recovering hydrogen pulverized powder of raw-material alloy for rare-earth magnet |
JP4840544B2 (en) * | 2009-07-31 | 2011-12-21 | 日立金属株式会社 | Method and apparatus for recovering hydrogen pulverized powder of raw material alloy for rare earth magnet |
CN102470442A (en) * | 2009-07-31 | 2012-05-23 | 日立金属株式会社 | Method and device for recovering hydrogen pulverized powder of raw-material alloy for rare-earth magnet |
KR101166662B1 (en) | 2009-07-31 | 2012-07-18 | 히타치 긴조쿠 가부시키가이샤 | Method and device for recovering hydrogen pulverization dust of raw-material alloy for rare-earth magnet |
JP2011216727A (en) * | 2010-03-31 | 2011-10-27 | Nitto Denko Corp | Permanent magnet and method for manufacturing the same |
JP2011216669A (en) * | 2010-03-31 | 2011-10-27 | Nitto Denko Corp | Permanent magnet and method for manufacturing the same |
JP2011216720A (en) * | 2010-03-31 | 2011-10-27 | Nitto Denko Corp | Permanent magnet and method for manufacturing the same |
JP2012158792A (en) * | 2011-01-31 | 2012-08-23 | Hitachi Metals Ltd | Method and apparatus for recovering hydrogen-pulverized powder of raw material alloy for rare earth magnet |
JP2012160545A (en) * | 2011-01-31 | 2012-08-23 | Hitachi Metals Ltd | Method for manufacturing hydrogen pulverized powder of raw material alloy for rare-earth magnet, and manufacturing apparatus therefor |
JP5163839B2 (en) * | 2011-01-31 | 2013-03-13 | 日立金属株式会社 | Method for producing RTB-based sintered magnet |
US20130309122A1 (en) * | 2011-01-31 | 2013-11-21 | Hitachi Metals, Ltd. | Producing method of r-t-b-based sintered magnet |
WO2012105399A1 (en) * | 2011-01-31 | 2012-08-09 | 日立金属株式会社 | Method for producing r-t-b system sintered magnet |
KR101522805B1 (en) * | 2011-01-31 | 2015-05-26 | 히타치 긴조쿠 가부시키가이샤 | Method for producing r-t-b system sintered magnet |
EP2671958A4 (en) * | 2011-01-31 | 2018-02-21 | Hitachi Metals, Ltd. | Method for producing r-t-b system sintered magnet |
US10056188B2 (en) | 2011-01-31 | 2018-08-21 | Hitachi Metals, Ltd. | Producing method of R-T-B-based sintered magnet |
JP2020151645A (en) * | 2019-03-19 | 2020-09-24 | 日立金属株式会社 | Cyclone collection device, rare earth magnet alloy crushing system, and method for manufacturing r-t-b-based sintered magnet |
Also Published As
Publication number | Publication date |
---|---|
JP4640585B2 (en) | 2011-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4640585B2 (en) | Rare earth magnet manufacturing method | |
EP2671958B1 (en) | Method for producing r-t-b system sintered magnet | |
JP6481682B2 (en) | Manufacturing method of RTB-based alloy powder and manufacturing method of RTB-based sintered magnet | |
JP2015113525A (en) | Method for preparing high coercive force magnet | |
JP2006283099A (en) | Method for production of rare earth alloy fine powder | |
JP6432406B2 (en) | R-T-B system alloy powder and R-T-B system sintered magnet | |
WO2007063969A1 (en) | Rare earth sintered magnet and method for producing same | |
CN1938115B (en) | Method for producing raw material powder for rare earth sintered magnet, method for producing rare earth sintered magnet, granule and sintered article | |
JP2006351688A (en) | Producing method of samarium-iron-nitrogen-based magnet fine powder | |
JP4955217B2 (en) | Raw material alloy for RTB-based sintered magnet and method for manufacturing RTB-based sintered magnet | |
JP4403998B2 (en) | Method for producing rare earth alloy fine powder | |
JP2005197299A (en) | Rare earth sintered magnet and manufacturing method thereof | |
WO2005043558A1 (en) | Method for producing sintered rare earth element magnet | |
JP2005197301A (en) | Rare earth sintered magnet and manufacturing method thereof | |
JP4305927B2 (en) | Lubricant removal method | |
JP4556727B2 (en) | Manufacturing method of rare earth sintered magnet | |
JP2010232587A (en) | Method of manufacturing rare earth sintered magnet | |
JP4076080B2 (en) | Rare earth permanent magnet manufacturing method | |
JP5188674B2 (en) | Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet | |
JP2021097067A (en) | Rare earth sintered magnet | |
JP2005294557A (en) | Method of manufacturing rare-earth sintered magnet | |
JP4591748B2 (en) | Manufacturing method and manufacturing apparatus of rare earth sintered magnet | |
JP2005197300A (en) | Rare earth sintered magnet and manufacturing method thereof | |
JP3954062B2 (en) | Manufacturing method of raw powder for RTB-based permanent magnet, RTB-based permanent magnet, and pulverization processing system | |
JP4353430B2 (en) | Method for removing lubricant and method for producing rare earth sintered magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071122 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100526 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100726 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20100819 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101015 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101104 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101117 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4640585 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131210 Year of fee payment: 3 |