JP2006286345A - Surface finishing method of hydrogen storage alloy, surface-finished hydrogen storage alloy, and nickel-hydrogen secondary battery using the same - Google Patents

Surface finishing method of hydrogen storage alloy, surface-finished hydrogen storage alloy, and nickel-hydrogen secondary battery using the same Download PDF

Info

Publication number
JP2006286345A
JP2006286345A JP2005103386A JP2005103386A JP2006286345A JP 2006286345 A JP2006286345 A JP 2006286345A JP 2005103386 A JP2005103386 A JP 2005103386A JP 2005103386 A JP2005103386 A JP 2005103386A JP 2006286345 A JP2006286345 A JP 2006286345A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
nickel
plating
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005103386A
Other languages
Japanese (ja)
Inventor
Shingo Kitamura
慎悟 北村
Keigo Obata
惠吾 小幡
Michinori Kobayashi
理規 小林
Jiro Mizuie
次朗 水家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Fine Chemicals Co Ltd
Arakawa Chemical Industries Ltd
Original Assignee
Daiwa Fine Chemicals Co Ltd
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Fine Chemicals Co Ltd, Arakawa Chemical Industries Ltd filed Critical Daiwa Fine Chemicals Co Ltd
Priority to JP2005103386A priority Critical patent/JP2006286345A/en
Publication of JP2006286345A publication Critical patent/JP2006286345A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemically Coating (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface finishing method of a hydrogen storage alloy, a surface-finished hydrogen storage alloy, and a nickel-hydrogen secondary battery using this alloy. <P>SOLUTION: The surface finishing method of the hydrogen storage alloy particle is characterized by improvement of the electrochemical performance, especially the initial cycle activity and high rate of discharging characteristics, as well as enhancement of the cycle life performance through formation of the durable nickel-coating film on a surface of the hydrogen storage alloy particle and control of its coating amount within the specified range. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、負極に水素吸蔵合金、正極に水酸化ニッケル、電解液に高濃度アルカリ水溶液を用いてなるニッケル−水素二次電池に関する。更に、本発明は、負極活物質である水素吸蔵合金の電気化学的特性、特にサイクル初期の活性と高率放電特性を向上させると同時にサイクル寿命特性を向上させるための表面処理方法に関する。   The present invention relates to a nickel-hydrogen secondary battery using a hydrogen storage alloy as a negative electrode, nickel hydroxide as a positive electrode, and a high-concentration alkaline aqueous solution as an electrolyte. Furthermore, the present invention relates to a surface treatment method for improving the electrochemical characteristics of a hydrogen storage alloy, which is a negative electrode active material, in particular, the activity at the beginning of the cycle and the high rate discharge characteristics and at the same time improving the cycle life characteristics.

従来から使用されているアルカリ蓄電池の一種であるニッケル−カドミウム二次電池は、負極にカドミウム、正極に水酸化ニッケル、電解液に高濃度アルカリ水溶液を用いてなり、低コストで耐久性が高く、又、大電流放電が容易に行えることから、電動工具やコードレス式の掃除機等、パワーを必要とする用途における電源として重宝されている。しかし、有害物質であるカドミウムを用いていることから、次第にその使用が制限されつつある。   Nickel-cadmium secondary battery, which is a type of alkaline storage battery that has been used in the past, uses cadmium for the negative electrode, nickel hydroxide for the positive electrode, and high-concentration alkaline aqueous solution for the electrolyte, and is low in cost and highly durable In addition, since it can easily discharge a large current, it is useful as a power source in applications requiring power, such as electric tools and cordless vacuum cleaners. However, since cadmium, which is a harmful substance, is used, its use is gradually being restricted.

一方、新しいタイプのアルカリ蓄電池として1990年に実用化されたニッケル−水素二次電池は、負極に水素吸蔵合金電極を用いている以外はニッケル−カドミウム電池と同様の構成であり、又、起電力も同一であること、ニッケル−カドミウム二次電池よりも容量が大きいこと、そして環境負荷の高い材料を用いていないこと等からニッケル−カドミウム二次電池の代替として、あるいは高容量であることからデジタルスチールカメラ用の電源として、又、最近ではハイブリッド自動車や電気自動車等の大型バッテリーとして、近年急速に普及している。   On the other hand, the nickel-hydrogen secondary battery put into practical use in 1990 as a new type of alkaline storage battery has the same configuration as the nickel-cadmium battery except that a hydrogen storage alloy electrode is used for the negative electrode. Are also the same, have a higher capacity than nickel-cadmium secondary batteries, and do not use materials with high environmental impact. In recent years, it has rapidly become widespread as a power source for still cameras, and recently as a large battery for hybrid vehicles and electric vehicles.

ところで、水素吸蔵合金は空気中の酸素の作用による表面酸化を受けやすい。特に市販されている水素吸蔵合金粉末は、合金塊を粉砕する過程や、又、それを保管している間に表面が酸化されて導電性の低い酸化被膜が形成されており、サイクル初期の活性が低い。
従って、かかる水素吸蔵合金粉末を用いて作製したニッケル−水素二次電池は、あらかじめ充放電を何度か繰り返し、活性化を行わなければならないという問題がある。又、このように導電性の低い水素吸蔵合金を用いると、電極内部における合金同士の接触抵抗が高くなり、放電時に発生する電流を高効率で採取することができない。従って、特に高率放電時における合金利用率が低下することが、ニッケル−水素二次電池の欠点とされている。
By the way, hydrogen storage alloys are susceptible to surface oxidation due to the action of oxygen in the air. In particular, commercially available hydrogen storage alloy powders have a process of crushing the alloy lump, and the surface is oxidized during storage to form an oxide film with low conductivity. Is low.
Therefore, a nickel-hydrogen secondary battery manufactured using such a hydrogen storage alloy powder has a problem that it must be activated by repeating charging and discharging several times in advance. In addition, when a hydrogen storage alloy with low conductivity is used, the contact resistance between the alloys inside the electrode increases, and the current generated during discharge cannot be collected with high efficiency. Therefore, it is regarded as a drawback of the nickel-hydrogen secondary battery that the alloy utilization rate is lowered particularly during high rate discharge.

更に、電動工具等の機器は、様々な環境下で使用できることが前提とされ、例えば高温での耐久性も電池には必要となる。しかし、ニッケル−水素二次電池は、負極活物質である水素吸蔵合金が脆弱であるため、特に高温下では合金構成物質の電解液中への溶出が顕著となる等、耐久性に問題を抱えている。従って、電動工具やコードレス式掃除機等、パワーを必要とし、かつ耐久性も求められるような用途では、未だに環境負荷の高いニッケル−カドミウム二次電池を使わざるを得ないのが現状である。   Furthermore, it is assumed that devices such as electric tools can be used in various environments. For example, durability at high temperatures is also required for batteries. However, since the hydrogen storage alloy, which is the negative electrode active material, is fragile, the nickel-hydrogen secondary battery has a problem in durability, such as the elution of the alloy constituent material into the electrolyte solution becomes remarkable particularly at high temperatures. ing. Therefore, in applications where power is required and durability is required, such as electric tools and cordless vacuum cleaners, the current situation is that nickel-cadmium secondary batteries with a high environmental load must still be used.

これらの課題を解決させる為の方法として、還元剤を用いる自己触媒型の湿式無電解めっき法により水素吸蔵合金粒子の表面を導電性のニッケルや銅の薄膜で被覆した、いわゆるマイクロカプセル化した水素吸蔵合金を用いる方法が提案されている(特許文献1、特許文献2、特許文献3)が、その効果は十分ではなく、実用化にも至っていない。   As a method for solving these problems, a so-called microencapsulated hydrogen in which the surface of a hydrogen storage alloy particle is coated with a conductive nickel or copper thin film by a self-catalytic wet electroless plating method using a reducing agent. A method using an occlusion alloy has been proposed (Patent Document 1, Patent Document 2, and Patent Document 3), but the effect is not sufficient and has not been put into practical use.

特に、特許文献2、特許文献3は、純ニッケルめっきを被覆した水素吸蔵合金粒子を開示している。特許文献2に開示された水素吸蔵合金粒子では、ニッケルめっきの被覆厚は0.5〜2μmとされ、0.5μmより薄いと導電性向上の点で効果が小さく、均一なめっき膜になっていないので合金粉末の脱落、剥離現象が生ずるようになり、又、2μmより厚いと均一被覆の膜にはならず、過剰のニッケル又はニッケル合金の粒子の凝集が認められ、全体として水素吸蔵能が劣化するとしている。この特許出願では、均一なめっき被膜であることを前提としている。特許文献3は、めっき厚さによる差については言及されず、めっき析出速度を0.7μm/h以下にするとのみ言及されている。この特許出願は、特殊なチタンニッケル系合金(実用化されていない)を使用しており、この導電性及び耐久性改良を主目的としているため、やや目的が異なる。尚、これらの特許出願におけるめっきの被膜厚は、合金粒子にめっきしたものから直接測定したのではなくて、平板上にめっき処理を行なったものから推算している。
又、これらの特許出願に開示された技術では、水素吸蔵合金を活性化させるために、予め水素吸蔵合金を水素化(水素を物理的に吸蔵・放出させること)を行なうことが必須であり、もしこのような活性化を行なわないと、性能が低下することが言及されている。
In particular, Patent Literature 2 and Patent Literature 3 disclose hydrogen storage alloy particles coated with pure nickel plating. In the hydrogen storage alloy particles disclosed in Patent Document 2, the coating thickness of nickel plating is 0.5 to 2 μm, and if it is thinner than 0.5 μm, the effect is small in terms of improving conductivity, and a uniform plating film is formed. As a result, the alloy powder falls off and peels off, and if it is thicker than 2 μm, it does not form a uniform coating film, and agglomeration of excess nickel or nickel alloy particles is observed, and the overall hydrogen storage capacity is low. It is supposed to deteriorate. This patent application presupposes a uniform plating film. Patent Document 3 does not mention the difference due to the plating thickness, but only mentions that the plating deposition rate is 0.7 μm / h or less. This patent application uses a special titanium-nickel alloy (not put into practical use), and its main purpose is to improve the conductivity and durability. In addition, the film thickness of the plating in these patent applications is not directly measured from the plating on the alloy particles, but is estimated from the plating performed on the flat plate.
Further, in the techniques disclosed in these patent applications, in order to activate the hydrogen storage alloy, it is essential to hydrogenate the hydrogen storage alloy in advance (physically storing and releasing hydrogen), It is mentioned that if such activation is not performed, the performance is degraded.

特開昭61−64069号公報JP-A 61-64069 特開昭61−163569号公報JP-A-61-163569 特開2003−309327号公報JP 2003-309327 A

このように、ニッケル−水素二次電池において、その電気化学的特性を向上させ、同時に耐久性を向上させることのできる水素吸蔵合金の表面処理方法は、今のところ見出されていないのが現状である。本発明は、この問題を解決するためのものであり、ニッケル−水素二次電池の負極活物質である水素吸蔵合金において、その電気化学的特性、特に初期活性と高率放電特性を向上させると同時に耐久性を得ることが可能な表面処理方法、並びにこれを用いたニッケル−水素二次電池を提供するものである。   Thus, in the nickel-hydrogen secondary battery, the surface treatment method of the hydrogen storage alloy capable of improving the electrochemical characteristics and at the same time improving the durability has not been found so far. It is. The present invention is to solve this problem, and in a hydrogen storage alloy which is a negative electrode active material of a nickel-hydrogen secondary battery, its electrochemical characteristics, particularly initial activity and high rate discharge characteristics are improved. A surface treatment method capable of simultaneously obtaining durability and a nickel-hydrogen secondary battery using the same are provided.

この課題を解決するため、発明者等は鋭意検討した結果、無電解純ニッケルめっき法を用い、めっき被覆膜の析出量を特定範囲内に制御することにより、水素吸蔵合金粒子の電気化学的特性を向上させると同時に耐久性を向上させることが可能であることを見出した。
つまり、純ニッケルめっきによる被覆膜の作用によって水素吸蔵合金からの構成成分の溶出が抑制されるため、サイクル寿命特性が向上し、同時に、純ニッケルの被覆膜の作用によって導電性が向上し、しかも、該被覆膜の量が水素の透過を妨げない様に厳密に制御されているために電気化学的特性も向上する。
In order to solve this problem, the inventors have conducted intensive studies, and as a result, by using an electroless pure nickel plating method and controlling the deposition amount of the plating coating film within a specific range, the electrochemical properties of the hydrogen storage alloy particles are reduced. It has been found that it is possible to improve the durability while improving the characteristics.
In other words, the elution of constituent components from the hydrogen storage alloy is suppressed by the action of the coating film by pure nickel plating, so that the cycle life characteristics are improved, and at the same time, the conductivity is improved by the action of the pure nickel coating film. Moreover, since the amount of the coating film is strictly controlled so as not to prevent the permeation of hydrogen, the electrochemical characteristics are also improved.

従って、本発明の主題は、水素吸蔵合金粒子の表面に耐久性ニッケル被覆膜を形成し、かつ、その被覆量を特定範囲内に制御することを特徴とする、水素吸蔵合金粒子の表面処理方法にある。
好ましい具体例によれば、前記耐久性ニッケル被覆膜は無電解ニッケルめっき法によって形成される。又、この無電解ニッケルめっき法が、リン及びホウ素を含まない無電解ニッケルめっきであることを特徴とする。
Accordingly, the subject of the present invention is a surface treatment of hydrogen storage alloy particles, characterized in that a durable nickel coating film is formed on the surface of the hydrogen storage alloy particles and the coating amount is controlled within a specific range. Is in the way.
According to a preferred embodiment, the durable nickel coating is formed by electroless nickel plating. The electroless nickel plating method is characterized by electroless nickel plating not containing phosphorus and boron.

本発明の更に好ましい具体例によれば、前記無電解ニッケルめっき法は3価のチタンイオンを還元剤とする無電解ニッケルめっき法である。更に好ましくは、この3価のチタンイオンを還元剤とする無電解ニッケルめっき法はめっき浴の電解還元再生を併用するめっき法である。   According to a further preferred embodiment of the present invention, the electroless nickel plating method is an electroless nickel plating method using trivalent titanium ions as a reducing agent. More preferably, the electroless nickel plating method using trivalent titanium ions as a reducing agent is a plating method in combination with electrolytic reduction regeneration of a plating bath.

特に、本発明の特定の主題は、形成される耐久性ニッケル被覆膜が、水素吸蔵合金粉末1gあたりニッケル換算で、0.005g〜0.02g形成されていることを特徴とする、上記の水素吸蔵合金粒子の表面処理方法にある。   In particular, the specific subject matter of the present invention is characterized in that the formed durable nickel coating film is formed in an amount of 0.005 g to 0.02 g in terms of nickel per 1 g of hydrogen storage alloy powder. A surface treatment method for hydrogen storage alloy particles.

本発明の他の主題は、前記の表面処理方法が施されてなる水素吸蔵合金粒子にある。   Another subject of the present invention resides in hydrogen storage alloy particles subjected to the surface treatment method described above.

本発明の更に他の主題は、前記の表面処理が施されてなる水素吸蔵合金粒子を用いてなる二次電池並びにこのような水素吸蔵合金粒子を用いてなるニッケル−水素二次電池にある。   Still another subject matter of the present invention resides in a secondary battery using the hydrogen storage alloy particles subjected to the surface treatment and a nickel-hydrogen secondary battery using such hydrogen storage alloy particles.

本発明に従って、水素吸蔵合金粒子の表面に耐久性ニッケル被覆膜が形成されたことにより、ニッケル−水素二次電池の負極活物質である水素吸蔵合金の電気化学的特性、特にサイクル初期の活性と高率放電特性が向上されると同時にサイクル寿命特性が向上される。   According to the present invention, a durable nickel coating film is formed on the surface of the hydrogen storage alloy particles, so that the electrochemical characteristics of the hydrogen storage alloy, which is the negative electrode active material of the nickel-hydrogen secondary battery, particularly the activity at the beginning of the cycle. As a result, the high-rate discharge characteristic is improved and the cycle life characteristic is improved.

本発明に係る表面処理方法によれば、前記耐久性ニッケル被覆膜を、水素吸蔵合金粒子の表面に、直接、温和な条件で、簡便なプロセスで形成することができる。又、かかる被覆水素吸蔵合金粒子は、その表面のニッケル被覆膜によって導電性が付与されるため、これを負極に用いたニッケル−水素二次電池は、電池性能、特にサイクル初期の活性や高率放電特性を向上させることができる。又、かかるニッケル被覆膜は耐アルカリ性を有しており、それゆえ水素吸蔵合金からの構成成分の溶出を抑制する作用がある。従って、サイクル寿命特性を向上させることができる。   According to the surface treatment method of the present invention, the durable nickel coating film can be formed directly on the surface of the hydrogen storage alloy particles under a mild condition by a simple process. In addition, since the coated hydrogen storage alloy particles are imparted with conductivity by the nickel coating film on the surface thereof, the nickel-hydrogen secondary battery using the coated hydrogen storage alloy particles as a negative electrode has battery performance, particularly high activity and high initial cycle performance. The rate discharge characteristics can be improved. Further, such a nickel coating film has alkali resistance, and therefore has an action of suppressing elution of constituent components from the hydrogen storage alloy. Therefore, cycle life characteristics can be improved.

本発明において表面処理される水素吸蔵合金粒子は特に限定されるものではなく、合金自体としてはニッケル−水素二次電池負極用に用いられる公知のものの中から適宜選択して用いることができる。具体的には、例えばLaやCe等の希土類元素の混合物からなるミッシュメタル(Mm)とNi、Mn、Co、Al等を主成分とするAB5型や、Ni、Mg、Ti等を主成分とするAB2型のものが合金として好適であるが、サイクル寿命特性を得るという観点からAB5型のものが望ましい。又、該粒子のサイズは特に限定されないが、電極に加工する際の加工性や、電極にした場合の電池性能の点から、平均粒子径が1〜125μm程度、好ましくは1〜50μm程度であるものがよい。
本発明の方法によれば、市販の合金粒子に対して水素化等の処理を行わず、直接めっき処理を行うことができる。これにより、製造工程が簡略化できる特徴がある。
The hydrogen storage alloy particles to be surface-treated in the present invention are not particularly limited, and the alloy itself can be appropriately selected from known ones used for negative electrodes of nickel-hydrogen secondary batteries. Specifically, for example, misch metal (Mm) made of a mixture of rare earth elements such as La and Ce and AB 5 type mainly containing Ni, Mn, Co, Al, etc., and Ni, Mg, Ti, etc. as main ingredients. The AB 2 type is preferable as the alloy, but the AB 5 type is preferable from the viewpoint of obtaining cycle life characteristics. The size of the particles is not particularly limited, but the average particle diameter is about 1 to 125 μm, preferably about 1 to 50 μm, from the viewpoint of processability when processing into an electrode and battery performance when an electrode is formed. Things are good.
According to the method of the present invention, it is possible to perform direct plating without performing treatment such as hydrogenation on commercially available alloy particles. Thereby, there exists the characteristic which can simplify a manufacturing process.

水素吸蔵合金表面にニッケルめっきする方法は電気めっきと無電解めっきに大別されるが、前述のとおり、水素吸蔵合金粒子径が小さいため、めっき装置の点から、無電解めっきを行う方が現実的である。これまで工業的に利用されている無電解ニッケルめっきは、還元剤に、次亜リン酸ナトリウムや水素化ホウ素ナトリウム等を使用するものが主流である。しかしながらこれらの無電解ニッケルめっきの場合、ニッケルめっき被覆膜中にリンやホウ素が数パーセント〜十数パーセントと多量に取り込まれ、これらがニッケルめっき被覆膜の電気的、機械的あるいは化学的特性に影響を及ぼす。又、理由は明らかにされていないが、水素吸蔵合金表面にこのようなリンやホウ素を含むニッケルめっきを被覆し、それをニッケル−水素二次電池の負極に用いると、電池の耐久性が低くなることも知られている。又、めっき速度も比較的速く、本発明の主題である、ある特定範囲にめっき被膜の析出量を制御することは非常に困難である。
これに対し、本発明では、3価のチタンイオンを還元剤とするめっき液を用いることで、上記問題を解決した。即ち、このめっきプロセスでは、リンやホウ素を含まない純ニッケルめっきが析出するため、リンやホウ素が被覆膜の特性に悪影響を与えることがない。又、めっきの析出速度も比較的遅いため、めっき被覆膜の量が水素の透過を妨げない、つまり、めっき被覆膜が非常に薄い範囲に、膜厚を厳密に制御することが可能である。
The method of nickel plating on the surface of the hydrogen storage alloy is roughly divided into electroplating and electroless plating. As mentioned above, since the particle size of the hydrogen storage alloy is small, it is more practical to perform electroless plating in terms of the plating equipment. Is. The electroless nickel plating that has been used industrially so far mainly uses sodium hypophosphite or sodium borohydride as a reducing agent. However, in the case of these electroless nickel platings, phosphorus and boron are incorporated in a large amount of several percent to several tens of percent into the nickel plating coating film, and these are the electrical, mechanical or chemical characteristics of the nickel plating coating film. Affects. Although the reason is not clarified, if the surface of the hydrogen storage alloy is coated with such nickel plating containing phosphorus or boron and used as the negative electrode of a nickel-hydrogen secondary battery, the durability of the battery is low. It is also known that Also, the plating rate is relatively fast, and it is very difficult to control the deposition amount of the plating film within a specific range, which is the subject of the present invention.
On the other hand, in the present invention, the above problem was solved by using a plating solution containing trivalent titanium ions as a reducing agent. That is, in this plating process, pure nickel plating containing no phosphorus or boron is deposited, so that phosphorus or boron does not adversely affect the characteristics of the coating film. Also, since the deposition rate of plating is relatively slow, the amount of plating coating film does not hinder the permeation of hydrogen, that is, it is possible to strictly control the film thickness so that the plating coating film is very thin. is there.

通常、非金属若しくは触媒活性のない(又は低い)金属上に無電解めっきを施すための前処理である触媒付与には、スズを含む溶液で感応性を付与したのちパラジウムを含む溶液で触媒活性を付与する方法が採用されている。又、パラジウムとスズを一液にした溶液で処理する方法も広く行われている。本発明における水素吸蔵合金への無電解ニッケルめっきについても、これらのめっきの前処理を行った方が、スムーズにめっきが進行する。前処理方法は特に限定はされず、通常の前処理方法を採用すればよい。例えば、次工程の触媒付与を効率よく行うため、界面活性剤を主成分とする表面調整剤で、被めっき物を処理した後、パラジウムとスズを一液にした触媒化液に被めっき物を投入することにより、触媒付与を行う。この時、触媒となるパラジウムに加え、スズも一緒に被めっき物に一部吸着するが、このスズはめっき被膜の密着性を下げる等の悪影響を及ぼすため、除去する必要ある。そこでアクセレータ液で処理し、このスズを除去したのち、3価のチタンイオンを還元剤とする無電解ニッケルめっき液に被めっき物を投入し、ニッケルめっきを行う。   In general, for catalyst application, which is a pretreatment for electroless plating on non-metal or non-catalytic (or low) metal, after adding sensitivity with a solution containing tin, catalytic activity is achieved with a solution containing palladium. Is used. Also, a method of treating with a solution in which palladium and tin are made into one solution is widely performed. As for the electroless nickel plating on the hydrogen storage alloy in the present invention, the plating proceeds more smoothly when the pretreatment of these platings is performed. The pretreatment method is not particularly limited, and a normal pretreatment method may be adopted. For example, in order to efficiently apply the catalyst in the next step, after the object to be plated is treated with a surface conditioner comprising a surfactant as a main component, the object to be plated is applied to a catalyst solution containing palladium and tin as one solution. By adding the catalyst, the catalyst is applied. At this time, in addition to palladium serving as a catalyst, tin is also partially adsorbed on the object to be plated, but this tin needs to be removed because it adversely affects the adhesion of the plating film. Then, after processing with an accelerator liquid and removing this tin, a to-be-plated object is thrown into the electroless nickel plating liquid which uses a trivalent titanium ion as a reducing agent, and nickel plating is performed.

3価のチタンイオンを還元剤とするニッケルめっきの浴温は、20〜90℃が好ましく、20〜70℃が更に好ましい。20℃未満では、ニッケルめっき速度が非常に遅く、作業効率が悪くなり、90℃以上では、めっき浴が不安定になり、分解しやすくなる。めっき浴のpHは4〜11が好ましく、5〜10が更に好ましい。pHが4未満の場合、ニッケルめっきの析出が起こらず、pHが11以上の場合は、めっき浴が分解しやすくなる。   The bath temperature of nickel plating using trivalent titanium ions as a reducing agent is preferably 20 to 90 ° C, more preferably 20 to 70 ° C. If it is less than 20 ° C., the nickel plating speed is very slow and the working efficiency is deteriorated, and if it is 90 ° C. or more, the plating bath becomes unstable and easily decomposes. The pH of the plating bath is preferably 4 to 11, and more preferably 5 to 10. When the pH is less than 4, nickel plating does not precipitate. When the pH is 11 or more, the plating bath is easily decomposed.

還元剤である3価のチタンイオン濃度は、0.001〜0.1モル/リットル程度であるのが好ましく、0.005〜0.05モル/リットル程度であるのが更に好ましい。チタンイオン及びニッケルイオンをめっき液中に安定に存在させるための錯化剤、安定剤としては、例えば、エチレンジアミン、クエン酸、ニトリロ三酢酸、エチレンジアミン四酢酸等のカルボン酸や、そのナトリウム塩、カリウム塩、アンモニウム塩等の誘導体が挙げられ、これらを単独もしくは2種以上を併用してもよい。更に、ニッケルイオンを安定化する安定剤を添加してもよく、鉛等の金属イオン(例えばPb、Sn、As、Tl、Mo、In、Ga、Cu等)、KIO3等のヨウ化物、あるいはチオ尿素、チオジグリコール等の硫黄含有化合物の1種又は2種以上組み合わせが挙げられる。
又、これら錯化剤及び安定剤の濃度は、めっき液中に含有させるチタンイオン及びニッケルイオンの濃度に応じ、適宜設定すればよいが、通常は0.001〜2モル/リットル程度、特に0.01〜1モル/リットル程度であるのが好ましい。又、めっき液中には、そのpHを前述した好適な範囲に調整するため、ホウ酸等のpH緩衝剤を添加してもよく、その濃度は、0.001〜0.2モル/リットル程度であるのが好ましい。0.001モル/リットル未満では液のpHを安定化させる効果が充分ではなく、逆に、0.2モル/リットルより多い場合は、液温が室温以下に低下した際にpH緩衝剤が析出して、液の再生、活性化が困難となることがある。
The concentration of trivalent titanium ions as a reducing agent is preferably about 0.001 to 0.1 mol / liter, and more preferably about 0.005 to 0.05 mol / liter. Examples of complexing agents and stabilizers for stably presenting titanium ions and nickel ions in the plating solution include carboxylic acids such as ethylenediamine, citric acid, nitrilotriacetic acid, and ethylenediaminetetraacetic acid, and sodium salts and potassium thereof. Derivatives such as salts and ammonium salts may be mentioned, and these may be used alone or in combination of two or more. Furthermore, a stabilizer for stabilizing nickel ions may be added, metal ions such as lead (for example, Pb, Sn, As, Tl, Mo, In, Ga, Cu, etc.), iodides such as KIO 3 , or One type or a combination of two or more types of sulfur-containing compounds such as thiourea and thiodiglycol can be used.
The concentration of these complexing agent and stabilizer may be appropriately set according to the concentration of titanium ions and nickel ions contained in the plating solution, but is usually about 0.001 to 2 mol / liter, particularly 0. It is preferably about 0.01 to 1 mol / liter. Further, in the plating solution, a pH buffering agent such as boric acid may be added in order to adjust the pH to the above-mentioned preferred range, and the concentration is about 0.001 to 0.2 mol / liter. Is preferred. If it is less than 0.001 mol / liter, the effect of stabilizing the pH of the liquid is not sufficient. Conversely, if it exceeds 0.2 mol / liter, the pH buffering agent will precipitate when the liquid temperature falls below room temperature. Then, it may be difficult to regenerate and activate the liquid.

3価のチタンイオンを還元剤とする純ニッケルめっきは、通常の無電解めっき法と同様に行えばよい。即ち、めっき液を前述の範囲内で、一定温度、一定pHに維持しつつ、適当な前処理を行った被めっき物である水素吸蔵合金をめっき液に投入、攪拌すると、当該被めっき物の表面にニッケルイオンが還元、析出してめっき被覆膜が得られる。   Pure nickel plating using trivalent titanium ions as a reducing agent may be performed in the same manner as a normal electroless plating method. That is, while maintaining the plating solution at a constant temperature and a constant pH within the above-mentioned range, a hydrogen storage alloy that is an object to be plated that has been appropriately pretreated is put into the plating solution and stirred. Nickel ions are reduced and deposited on the surface to obtain a plating coating film.

本発明における、3価のチタンイオンを還元剤とする無電解ニッケルめっきの場合、ニッケルイオンの還元に費やされた3価のチタンイオンは4価のチタンイオンになる。この反応は電子が一つ奪われるだけという単純なメカニズムのため、反応の可逆性が非常に高い。つまり、ニッケルイオンの還元に費やされて酸化された4価のチタンイオンを逆に、電気化学的に還元し、3価のチタンイオンに戻すことが非常に容易な系である。そのような観点で、ニッケルめっきの進行に伴い増加する4価チタンイオンを含むめっき液を、めっき槽とは別に設けた電解槽に移し、そこで電気分解で還元することにより、3価のチタンイオンに戻すプロセスを行うことが好ましい。このようなプロセスにより、還元剤の再生利用、即ち、めっき液の活性化が可能となり一度めっき液を建浴すれば、理論上、還元剤を追加投入する必要がなくなる。めっき液の廃棄については、最近、環境問題の点から非常に問題になっており、環境に優しいめっき液の開発やめっき液の再生システムの開発が重要になっている。このめっき液の活性化のプロセスを用いることで、使用後のめっき液廃液を大幅に減らすことが可能となる。又、このめっき液の活性化はめっき工程の任意の時点で行うことができるが、例えば、めっき工程と並行して行うことにより、めっき液を長期間にわたって連続使用することができ、作業性という点でも非常に効果があるプロセスといえる。   In the case of electroless nickel plating using trivalent titanium ions as a reducing agent in the present invention, the trivalent titanium ions spent for the reduction of nickel ions become tetravalent titanium ions. This reaction has a very high reversibility due to a simple mechanism in which only one electron is taken away. In other words, the tetravalent titanium ions that have been consumed for the reduction of nickel ions and are oxidized are reduced electrochemically to return them to trivalent titanium ions. From such a point of view, the plating solution containing tetravalent titanium ions, which increase with the progress of nickel plating, is transferred to an electrolytic bath provided separately from the plating bath, where it is reduced by electrolysis, thereby trivalent titanium ions. It is preferable to perform the process of returning to. By such a process, it is possible to recycle the reducing agent, that is, to activate the plating solution. Once the plating solution is built, it is theoretically unnecessary to add the reducing agent. Recently, the disposal of plating solutions has become very problematic from the viewpoint of environmental problems, and it is important to develop environmentally friendly plating solutions and plating solution recycling systems. By using this plating solution activation process, it is possible to significantly reduce the plating solution waste solution after use. In addition, the activation of the plating solution can be performed at an arbitrary point in the plating process. For example, by performing it in parallel with the plating process, the plating solution can be used continuously over a long period of time. This is also a very effective process.

該被覆粒子表面に形成されたニッケル被覆膜の重量割合、即ち、被覆水素吸蔵合金粒子1g当たりのニッケル被覆膜の析出量は、当該被覆水素吸蔵合金粒子を希硝酸に溶解し、そのニッケル量を原子吸光分析法にて定量することによってニッケル換算値として算出した。なお、測定装置としては「偏光ゼーマン原子吸光光度計Z−5710」(日立ハイテクノロジーズ(株)製)を用いた。又、該被覆水素吸蔵合金粒子表面のめっき状態は、「電界放射型走査電子顕微鏡S−800」(日立製作所(株)製)を用いて観察した。
本発明による表面処理方法によれば、被覆量は水素吸蔵合金粉末1gあたり0.005g〜0.02gであるのが好ましい。被覆量が0.005g未満では十分な効果が得られず、0.02gを超えると水素透過が阻害され、電気化学的特性が損なわれる。又、合金表面が均一に被覆されている必要はなく、被覆されている部分と被覆されていない部分があっても良い。
本発明では、表面処理した合金を酸に溶解させ、原子吸光分光法を用いることにより被覆量を正確に定量できることを見出し、工程の管理方法とした。この方法を用いてめっき処理条件を調整することで、めっき被覆状態、電池性能を管理することができる。
The weight ratio of the nickel coating film formed on the surface of the coated particles, that is, the amount of precipitation of the nickel coating film per gram of the coated hydrogen storage alloy particles is determined by dissolving the coated hydrogen storage alloy particles in dilute nitric acid. The amount was calculated as a nickel equivalent by quantifying the amount by atomic absorption spectrometry. As a measuring apparatus, “polarized Zeeman atomic absorption photometer Z-5710” (manufactured by Hitachi High-Technologies Corporation) was used. Further, the plating state on the surface of the coated hydrogen storage alloy particles was observed using a “field emission scanning electron microscope S-800” (manufactured by Hitachi, Ltd.).
According to the surface treatment method of the present invention, the coating amount is preferably 0.005 g to 0.02 g per 1 g of the hydrogen storage alloy powder. If the coating amount is less than 0.005 g, a sufficient effect cannot be obtained, and if it exceeds 0.02 g, hydrogen permeation is inhibited and electrochemical characteristics are impaired. Further, the alloy surface need not be uniformly coated, and there may be a coated portion and a non-coated portion.
In the present invention, the surface treatment alloy is dissolved in an acid, and the amount of coating can be accurately quantified by using atomic absorption spectroscopy. By adjusting the plating treatment conditions using this method, the plating coating state and battery performance can be managed.

次に、本発明に係るニッケル−水素二次電池用負極について説明する。当該負極は、本発明に係る被覆水素吸蔵合金粒子を活物質に用いたものであり、各種公知の手段により作製することができる。具体的には、該被覆水素吸蔵合金粒子と公知のバインダーとを混合してペースト状にしたものを、例えば発泡ニッケル基板といった三次元多孔基板やパンチングメタル基板等の二次元基板等に塗布し、乾燥した後に加圧成型することにより得ることができる。バインダーとしては特に限定されるものではなく、ポリビニルアルコール、メチルセルロース、カルボキシメチルセルロース、ポリエチレンオキシド、ポリテトラフッ化エチレン等が挙げられ、これらはそれぞれ単独あるいは二種以上併用して用いることができる。又、バインダーは被覆水素吸蔵合金粒子に対して0.1〜20重量%程度(固形分)用いればよい。又、負極にはNi、Co、Cu粉、アセチレンブラック、カーボンブラック、酸化イットリウム等の導電助剤を、該被覆水素吸蔵合金粒子に対して0.1〜10重量%用いてもよい。   Next, the negative electrode for a nickel-hydrogen secondary battery according to the present invention will be described. The negative electrode uses the coated hydrogen storage alloy particles according to the present invention as an active material, and can be prepared by various known means. Specifically, the coated hydrogen storage alloy particles and a known binder are mixed and applied to a two-dimensional substrate such as a three-dimensional porous substrate such as a foamed nickel substrate or a punching metal substrate. It can be obtained by pressure molding after drying. The binder is not particularly limited, and examples thereof include polyvinyl alcohol, methyl cellulose, carboxymethyl cellulose, polyethylene oxide, and polytetrafluoroethylene, and these can be used alone or in combination of two or more. The binder may be used in an amount of about 0.1 to 20% by weight (solid content) with respect to the coated hydrogen storage alloy particles. Moreover, you may use 0.1-10 weight% of conductive support agents, such as Ni, Co, Cu powder | flour, acetylene black, carbon black, and yttrium oxide, with respect to this covering hydrogen storage alloy particle for a negative electrode.

最後に、本発明に係るニッケル−水素二次電池を説明する。当該電池は、前記負極と、例えば焼結式水酸化ニッケル極といった公知の正極と、ポリプロピレン製やアクリル製の不織布のような公知セパレータと、公知のアルカリ電解液と、公知の収納容器とを用いて、電池に組み立てたものである。   Finally, the nickel-hydrogen secondary battery according to the present invention will be described. The battery uses the negative electrode, a known positive electrode such as a sintered nickel hydroxide electrode, a known separator such as a polypropylene or acrylic nonwoven fabric, a known alkaline electrolyte, and a known storage container. And assembled into a battery.

以下、実施例によって本発明を更に詳述するが、本発明はこれによって何等制限を受けるものではなく、その要旨を変更しない範囲において、適宜変更して実施できるものとする。又、以下の本文中、「%」は特に説明がない場合は「重量%」を、「部」は「重量部」を示す。   EXAMPLES Hereinafter, although an Example further demonstrates this invention in full detail, this invention does not receive any restriction | limiting by this, In the range which does not change the summary, it shall change suitably. In the following text, “%” means “% by weight” and “parts” means “parts by weight” unless otherwise specified.

実施例1
水素吸蔵合金粉末としては、ニッケル−水素二次電池用として一般的に流通しているAB5型のもの(平均粒子径35μm)を用いた。
水素吸蔵合金を、純ニッケルめっきに先立ち、予め定法に従って、表面調整、触媒化、アクセレータ処理を行った。即ち、まず、20gの水素吸蔵合金を表面調整剤 (大和化成、ダインクリーナー PB-810) 1Lに投入し、60℃、3分間攪拌処理した。次に、一般的な無電解めっき用パラジウム−スズコロイド触媒液 1Lに投入し、25℃、3分間攪拌処理した。更に、アクセレータ液(2%硫酸)1Lに投入し、25℃、3分間攪拌処理した。以上のようなめっき前処理工程を経た後、3価のチタンイオンを還元剤とする無電解純ニッケルめっき液 (大和化成、ダインニッケルSD)1Lを50℃、pH8.5に調整し、そこに前記前処理を行った水素吸蔵合金粉末を投入し、攪拌しながら90分間めっきを行った。めっき終了後、水洗、真空乾燥させ、純ニッケル被覆サンプルを作製した。なお、めっき期間中、イオン交換膜で仕切った陰極室にめっき液を連続的に流入させ、3価のチタンイオンの電解再生を行いながらめっきを行った。
無電解純ニッケルめっき処理した水素吸蔵合金表面へのニッケル被覆膜の析出量は、めっき前後の水素吸蔵合金粉末を所定量秤量し、これを希硫酸に完全に溶解させ、含有されたニッケル量を原子吸光法により測定、定量することにより算出した。
実施例1で得られた、無電解純ニッケルめっき処理水素吸蔵合金表面のSEM像(50,000倍)を図1に示す。
Example 1
As the hydrogen storage alloy powder, an AB 5 type (average particle diameter of 35 μm) generally used for nickel-hydrogen secondary batteries was used.
Prior to pure nickel plating, the hydrogen storage alloy was subjected to surface adjustment, catalysis and accelerator treatment in accordance with a conventional method. That is, first, 20 g of a hydrogen storage alloy was put into 1 L of a surface conditioner (Daiwa Kasei, Dine Cleaner PB-810), and stirred at 60 ° C. for 3 minutes. Next, it was put into 1 L of a general palladium-tin colloid catalyst solution for electroless plating and stirred at 25 ° C. for 3 minutes. Furthermore, it was put into 1 L of accelerator liquid (2% sulfuric acid), and stirred at 25 ° C. for 3 minutes. After the plating pretreatment process as described above, 1 L of electroless pure nickel plating solution (Daiwa Kasei, Dyne Nickel SD) using trivalent titanium ions as a reducing agent is adjusted to 50 ° C. and pH 8.5, The pretreated hydrogen storage alloy powder was added, and plating was performed for 90 minutes with stirring. After the completion of plating, washing with water and vacuum drying were performed to prepare a pure nickel-coated sample. During the plating period, the plating solution was continuously flowed into the cathode chamber partitioned by the ion exchange membrane, and plating was performed while electrolytic regeneration of trivalent titanium ions was performed.
The amount of nickel coating film deposited on the surface of the hydrogen storage alloy that has been subjected to electroless pure nickel plating is determined by weighing a predetermined amount of the hydrogen storage alloy powder before and after plating and completely dissolving it in dilute sulfuric acid. Was calculated by measuring and quantifying by an atomic absorption method.
The SEM image (50,000 times) of the surface of the electroless pure nickel-plated hydrogen storage alloy obtained in Example 1 is shown in FIG.

実施例2
無電解純ニッケルめっきにおけるめっき時間を60分間にした以外は、実施例1と同様に処理を行い、純ニッケル被覆サンプルを作製した。
実施例2で得られた、無電解純ニッケルめっき処理した水素吸蔵合金表面のSEM像(50,000倍)を図2に示す。
Example 2
Except that the plating time in electroless pure nickel plating was 60 minutes, the same treatment as in Example 1 was performed to prepare a pure nickel-coated sample.
FIG. 2 shows an SEM image (50,000 times) of the surface of the hydrogen storage alloy obtained in Example 2 and treated with electroless pure nickel plating.

比較例1
無電解純ニッケルめっきにおけるめっき時間を300分間にした以外は、実施例1と同様に処理を行い、純ニッケル被覆サンプルを作製した。
比較例1で得られた、無電解純ニッケルめっき処理した水素吸蔵合金表面のSEM像(50,000倍)を図3に示す。
Comparative Example 1
A pure nickel-coated sample was prepared in the same manner as in Example 1 except that the plating time in electroless pure nickel plating was 300 minutes.
FIG. 3 shows an SEM image (50,000 times) of the surface of the hydrogen storage alloy obtained by Comparative Example 1 and treated with electroless pure nickel plating.

比較例2
又、比較のために、めっき処理を行っていない水素吸蔵合金粉末を準備した。この水素吸蔵合金粒子の表面のSEM像(50,000倍)を図4に示す。
Comparative Example 2
Moreover, the hydrogen storage alloy powder which has not performed the plating process was prepared for the comparison. FIG. 4 shows an SEM image (50,000 times) of the surface of the hydrogen storage alloy particles.

電極の作製
前記無電解純ニッケルめっき処理(実施例1、実施例2及び比較例1)を施した水素吸蔵合金粉末を所定量秤量し、2%ポリビニルアルコール水溶液と混合して、水素吸蔵合金98部と、ポリビニルアルコール固形分2部とからなるペーストを調製した。これを発泡ニッケル基板(ニッケル目付け575g/m3、2×4cm)に塗布し、減圧加熱乾燥を行った。次いで、この基板をプレスし、リード線としてニッケルリボンを電気溶接することにより、水素吸蔵合金負電極を作製した。又、めっき処理を行っていない水素吸蔵合金粉末(比較例2)を用いて同様に電極を作製した。
Production of Electrode A predetermined amount of the hydrogen storage alloy powder subjected to the electroless pure nickel plating treatment (Example 1, Example 2 and Comparative Example 1) was weighed and mixed with a 2% aqueous polyvinyl alcohol solution to obtain a hydrogen storage alloy 98. Part and 2 parts of polyvinyl alcohol solid content were prepared. This was applied to a foamed nickel substrate (nickel weight 575 g / m 3 , 2 × 4 cm) and dried under reduced pressure. Next, this substrate was pressed, and a nickel ribbon as a lead wire was electrically welded to produce a hydrogen storage alloy negative electrode. Moreover, the electrode was similarly produced using the hydrogen storage alloy powder (comparative example 2) which has not been plated.

ニッケル−水素二次電池オープンモデルセルを組み立て
前記水素吸蔵合金負電極1枚を、正極として焼結式水酸化ニッケル極2枚と、セパレータとしてアクリル系不織布をそれぞれの電極間に介して挟み込んだ。
更にこれら3枚の電極板を、2枚のアクリル板で挟み込み、ボルトで固定することによって、負極規制のニッケル−水素二次電池モデルセルを組み立てた。作製したモデルセルを用い、電解液として6M水酸化カリウム水溶液を使用して、ニッケル−水素二次電池オープンモデルセルを組み立てた。
A nickel-hydrogen secondary battery open model cell was assembled. One negative electrode of the hydrogen storage alloy was sandwiched between two electrodes of a sintered nickel hydroxide electrode as a positive electrode and an acrylic non-woven fabric as a separator.
Further, these three electrode plates were sandwiched between two acrylic plates and fixed with bolts to assemble a negative electrode-regulated nickel-hydrogen secondary battery model cell. Using the prepared model cell, a nickel-hydrogen secondary battery open model cell was assembled using a 6M aqueous potassium hydroxide solution as an electrolyte.

定電流充放電試験
このオープンモデルセルに定電流充放電試験装置を接続し、電流密度200mA/gで2時間充電し、10分間休止後、200mA/gで正負極間電位差が0.9Vになるまで放電し、放電終了後10分間休止するという充放電サイクル試験を実施した。この充放電サイクル試験は20サイクル繰り返して行い、20サイクル目の放電容量を以って、その水素吸蔵合金の放電容量とみなした。なお、この充放電サイクル試験は、恒温器中30℃条件下で実施した。得られた結果を表1に示す。
Constant current charge / discharge test A constant current charge / discharge test device was connected to this open model cell, charged at a current density of 200 mA / g for 2 hours, rested for 10 minutes, and then the potential difference between positive and negative electrodes became 0.9 V at 200 mA / g. A charge / discharge cycle test was conducted in which the battery was discharged until the end of the discharge and rested for 10 minutes. This charge / discharge cycle test was repeated 20 cycles, and the discharge capacity of the 20th cycle was regarded as the discharge capacity of the hydrogen storage alloy. In addition, this charging / discharging cycle test was implemented on 30 degreeC conditions in the thermostat. The obtained results are shown in Table 1.

高率放電特性試験
前記充放電サイクル試験終了後、引き続き高率放電特性試験を実施した。
即ち、200mA/gで2時間充電し、10分間休止後、1回目の放電として1000mA/gで正負極間電位差が0.9Vになるまで放電した。次いで、10分間休止後、2回目の放電として40mA/gで正負極間電位差が0.9Vになるまで放電した。高率放電特性は、1回目の放電容量をC1、2回目の放電容量をC2とし、次式によって算出した。
高率放電特性(%)=C1/(C1+C2)×100
得られた結果を表1に示す。又、実施例1と比較例2につき、電流密度200mA/g及び1000mA/gで放電した際の放電曲線を、図5に示す。
High-rate discharge characteristic test After the charge / discharge cycle test, a high-rate discharge characteristic test was continuously performed.
That is, the battery was charged at 200 mA / g for 2 hours, rested for 10 minutes, and then discharged as a first discharge at 1000 mA / g until the potential difference between the positive and negative electrodes became 0.9V. Next, after a 10-minute pause, discharging was performed at 40 mA / g until the potential difference between the positive and negative electrodes became 0.9 V as a second discharge. The high rate discharge characteristics were calculated by the following equation, assuming that the first discharge capacity is C 1 and the second discharge capacity is C 2 .
High rate discharge characteristics (%) = C 1 / (C 1 + C 2 ) × 100
The obtained results are shown in Table 1. In addition, FIG. 5 shows discharge curves for Example 1 and Comparative Example 2 when discharged at current densities of 200 mA / g and 1000 mA / g.

耐久性の評価
次いで、前記ニッケル−水素二次電池オープンモデルセルを、45℃、湿度80%RHに設定した恒温恒湿器内に設置し、電流密度200mA/gで2時間充電し、10分間休止後、200mA/gで正負極間電位差が0.9Vになるまで放電し、放電終了後10分間休止するという充放電サイクル寿命試験を実施した。この試験は200サイクル繰り返して行い、200サイクル後の放電容量を測定し、充放電容量の保持率を比較することにより耐久性を評価した。得られた結果を表1に示す。
Evaluation of durability Next, the nickel-hydrogen secondary battery open model cell was placed in a thermo-hygrostat set to 45 ° C. and humidity 80% RH, charged at a current density of 200 mA / g for 2 hours, and then 10 minutes. After the rest, a charge / discharge cycle life test was conducted in which the battery was discharged at 200 mA / g until the potential difference between the positive and negative electrodes became 0.9 V, and rested for 10 minutes after the end of the discharge. This test was repeated 200 cycles, the discharge capacity after 200 cycles was measured, and the durability was evaluated by comparing the charge / discharge capacity retention rate. The obtained results are shown in Table 1.

表1より、無電解純ニッケルめっき処理を施した実施例1では、めっき処理をしていない水素吸蔵合金と比べて放電容量が大きく向上し、又、高率放電特性も向上していることがわかる。又、被覆量を減らした実施例2では、放電容量及び45℃200サイクル後容量保持率が実施例1よりやや低下しているものの、高率放電特性は向上していることがわかる。析出量を増やした比較例1では、45℃200サイクル後容量保持率は向上しているが、放電容量と高率放電特性は低下していることがわかる。このことから、めっき被膜の被覆量を制御することにより、電池性能と耐久性を両立した表面処理が可能であることがわかり、本発明の効果が実証されたといえる。
図5の放電曲線を比較すると、無電解純ニッケルめっき処理を施した実施例1を用いて作製した電池は、めっき処理をしていない水素吸蔵合金を用いて作製した電池と比べて放電時の電圧が高い。特に、1000mA/gの高率放電時には、その効果が顕著に現れている。このことは、大電流を必要とするパワー用途においても、高い電圧を維持しながら効率よく電流を採ることが可能であることを意味しており、本発明の効果が現れているといえる。
From Table 1, it can be seen that in Example 1 subjected to the electroless pure nickel plating treatment, the discharge capacity was greatly improved as compared with the hydrogen storage alloy not subjected to the plating treatment, and the high rate discharge characteristics were also improved. Recognize. In Example 2 where the coating amount was reduced, the discharge capacity and the capacity retention after 200 cycles at 45 ° C. were slightly lower than in Example 1, but it was found that the high rate discharge characteristics were improved. In Comparative Example 1 in which the precipitation amount was increased, the capacity retention after 200 cycles at 45 ° C. was improved, but the discharge capacity and the high rate discharge characteristics were decreased. From this, it can be said that by controlling the coating amount of the plating film, it is possible to perform surface treatment that achieves both battery performance and durability, and it can be said that the effect of the present invention has been demonstrated.
When the discharge curves of FIG. 5 are compared, the battery produced using Example 1 subjected to the electroless pure nickel plating treatment was more discharged than the battery produced using the hydrogen storage alloy not subjected to the plating treatment. The voltage is high. In particular, the effect appears remarkably at the time of high rate discharge of 1000 mA / g. This means that even in a power application that requires a large current, it is possible to efficiently take a current while maintaining a high voltage, and it can be said that the effect of the present invention appears.

本発明によって作製したニッケル−水素二次電池は、高い放電容量及び良好な高率放電特性を有し、大電流を必要とするパワー用途、特に1000mA/gレベルの高率放電時にその効果が顕著であることから、ニッケル−水素二次電池の通常の用途はもとより、電動工具やコードレス式掃除機等、パワーを必要とし、かつ耐久性も求められるような用途にも用いることができるものである。     The nickel-hydrogen secondary battery produced according to the present invention has a high discharge capacity and good high rate discharge characteristics, and its effect is remarkable at the time of power use requiring a large current, especially at a high rate discharge of 1000 mA / g level. Therefore, it can be used not only for normal applications of nickel-hydrogen secondary batteries, but also for applications that require power and require durability, such as electric tools and cordless vacuum cleaners. .

実施例1で得られた、無電解純ニッケルめっき処理水素吸蔵合金表面のSEM像(50,000倍)である。2 is an SEM image (50,000 times) of the surface of an electroless pure nickel-plated hydrogen storage alloy obtained in Example 1. FIG. 実施例2で得られた、無電解純ニッケルめっき処理水素吸蔵合金表面のSEM像(50,000倍)。The SEM image (50,000 times) of the electroless pure nickel plating process hydrogen storage alloy surface obtained in Example 2. FIG. 比較例1で得られた、無電解純ニッケルめっき処理水素吸蔵合金表面のSEM像(50,000倍)である。2 is an SEM image (50,000 times) of the surface of an electroless pure nickel-plated hydrogen storage alloy obtained in Comparative Example 1. FIG. めっき処理を行っていない水素吸蔵合金表面のSEM像(50,000倍)である。It is a SEM image (50,000 times) of the hydrogen storage alloy surface which has not performed plating processing. 実施例1及び比較例2における放電曲線である。It is a discharge curve in Example 1 and Comparative Example 2.

Claims (9)

水素吸蔵合金粒子の表面に耐久性ニッケル被覆膜を形成することからなり、しかもその被覆量を特定範囲内に制御することを特徴とする、水素吸蔵合金粒子の表面処理方法。   A surface treatment method for hydrogen storage alloy particles, comprising forming a durable nickel coating film on the surface of the hydrogen storage alloy particles, and controlling the coating amount within a specific range. 前記耐久性ニッケル被覆膜を無電解ニッケルめっき法によって形成することを特徴とする、請求項1記載の水素吸蔵合金粒子の表面処理方法。   2. The surface treatment method for hydrogen storage alloy particles according to claim 1, wherein the durable nickel coating film is formed by an electroless nickel plating method. 前記無電解ニッケルめっき法がリン及びホウ素を含まない無電解ニッケルめっきであることを特徴とする、請求項1又は2に記載の水素吸蔵合金粒子の表面処理方法。   The surface treatment method for hydrogen storage alloy particles according to claim 1 or 2, wherein the electroless nickel plating method is electroless nickel plating not containing phosphorus and boron. 前記無電解ニッケルめっき法が3価のチタンイオンを還元剤とする無電解ニッケルめっき法であることを特徴とする、請求項1〜3のいずれかに記載の水素吸蔵合金粒子の表面処理方法。   The surface treatment method for hydrogen storage alloy particles according to claim 1, wherein the electroless nickel plating method is an electroless nickel plating method using trivalent titanium ions as a reducing agent. 前記3価のチタンイオンを還元剤とする無電解ニッケルめっき法がめっき浴の電解還元再生を併用するめっき法である、請求項1〜4のいずれかに記載の水素吸蔵合金粒子の表面処理方法。   The surface treatment method for hydrogen storage alloy particles according to any one of claims 1 to 4, wherein the electroless nickel plating method using trivalent titanium ions as a reducing agent is a plating method in which electrolytic reduction regeneration of a plating bath is used in combination. . 形成される耐久性ニッケル被覆膜が、水素吸蔵合金粉末1gあたりニッケル換算で0.005g〜0.02g形成されていることを特徴とする、請求項1〜5のいずれかに記載の水素吸蔵合金粒子の表面処理方法。   6. The hydrogen storage film according to claim 1, wherein the formed durable nickel coating film is formed in an amount of 0.005 g to 0.02 g in terms of nickel per 1 g of hydrogen storage alloy powder. A method for surface treatment of alloy particles. 請求項1〜6のいずれかに記載の表面処理方法が施されてなる水素吸蔵合金粒子。   The hydrogen storage alloy particle by which the surface treatment method in any one of Claims 1-6 is given. 請求項7に記載の水素吸蔵合金粒子を用いてなる二次電池。   A secondary battery using the hydrogen storage alloy particles according to claim 7. 請求項8に記載の水素吸蔵合金粒子を用いてなるニッケル−水素二次電池。
A nickel-hydrogen secondary battery using the hydrogen storage alloy particles according to claim 8.
JP2005103386A 2005-03-31 2005-03-31 Surface finishing method of hydrogen storage alloy, surface-finished hydrogen storage alloy, and nickel-hydrogen secondary battery using the same Withdrawn JP2006286345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005103386A JP2006286345A (en) 2005-03-31 2005-03-31 Surface finishing method of hydrogen storage alloy, surface-finished hydrogen storage alloy, and nickel-hydrogen secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005103386A JP2006286345A (en) 2005-03-31 2005-03-31 Surface finishing method of hydrogen storage alloy, surface-finished hydrogen storage alloy, and nickel-hydrogen secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2006286345A true JP2006286345A (en) 2006-10-19

Family

ID=37408044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005103386A Withdrawn JP2006286345A (en) 2005-03-31 2005-03-31 Surface finishing method of hydrogen storage alloy, surface-finished hydrogen storage alloy, and nickel-hydrogen secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2006286345A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150307994A1 (en) * 2014-04-29 2015-10-29 Lam Research Corporation ELECTROLESS DEPOSITION OF CONTINUOUS NICKEL LAYER USING COMPLEXED Ti3+ METAL IONS AS REDUCING AGENTS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150307994A1 (en) * 2014-04-29 2015-10-29 Lam Research Corporation ELECTROLESS DEPOSITION OF CONTINUOUS NICKEL LAYER USING COMPLEXED Ti3+ METAL IONS AS REDUCING AGENTS

Similar Documents

Publication Publication Date Title
JP5119577B2 (en) Nickel metal hydride battery
JP4678130B2 (en) Sealed nickel metal hydride storage battery and its manufacturing method
WO2013132818A1 (en) Positive electrode for alkaline storage battery and alkaline storage battery using same
JP2012227106A (en) Nickel-metal hydride battery
WO2010051356A1 (en) Cathode active material
CN113707890A (en) Au/Cu 2 O composite material, super-assembly preparation method and application
CN1187853C (en) Positive electrode active material for alkaline storage battery
Yuan et al. Characteristics and electrochemical performance of Ni-coated ZnO prepared by an electroless plating process
JP2006286345A (en) Surface finishing method of hydrogen storage alloy, surface-finished hydrogen storage alloy, and nickel-hydrogen secondary battery using the same
CN100359722C (en) Closed nickel-hydrogen storage battery and its production method
Morimoto et al. Improvement of the conductive network of positive electrodes and the performance of Ni-MH battery
JP2000340221A (en) Nickel electrode, nickel hydrogen storage battery using same as positive electrode
JPH09171835A (en) Method for activating alkaline secondary battery
JPH05159798A (en) Hydrogen storage alloy electrode and alkaline secondary cell using it
JPWO2018190390A1 (en) Anode material, anode, and iron-air battery
JP4370746B2 (en) Method for producing nickel electrode active material and method for producing active material paste for nickel electrode
JPH1186852A (en) Nickel electrode for alkaline secondary battery
JP3547920B2 (en) Method for producing hydrogen storage alloy electrode
JP2006219722A (en) Method for producing coated hydrogen storage alloy particle, coated hydrogen storage alloy particle obtained by the method, negative pole for nickel-hydrogen secondary battery using the particle, nickel-hydrogen secondary battery and coating method for hydrogen storage alloy particle
JP4706163B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery using the same
JP2003229134A (en) Fuel cell
JP2008269888A (en) Nickel-hydrogen storage battery
JP2022115451A (en) Iron-carbon composite material, manufacturing method of the same, negative electrode, and nickel-hydrogen battery
JP3530309B2 (en) Method for producing hydrogen storage alloy electrode
JP4617632B2 (en) Method for producing alkaline storage battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603