JP2006286260A - Discharge lamp lighting device - Google Patents

Discharge lamp lighting device Download PDF

Info

Publication number
JP2006286260A
JP2006286260A JP2005101627A JP2005101627A JP2006286260A JP 2006286260 A JP2006286260 A JP 2006286260A JP 2005101627 A JP2005101627 A JP 2005101627A JP 2005101627 A JP2005101627 A JP 2005101627A JP 2006286260 A JP2006286260 A JP 2006286260A
Authority
JP
Japan
Prior art keywords
preheating
discharge lamp
control circuit
inverter
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005101627A
Other languages
Japanese (ja)
Inventor
Isamu Ogawa
勇 小川
Hiroaki Nishikawa
弘明 西川
Shinsuke Funayama
信介 船山
Naoki Wada
直樹 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Electric Lighting Corp
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Electric Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Electric Lighting Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005101627A priority Critical patent/JP2006286260A/en
Publication of JP2006286260A publication Critical patent/JP2006286260A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent breakdown due to overvoltage of a switching element of a preheating control circuit of a discharge lamp lighting device. <P>SOLUTION: The device 6 is provided with an inverter circuit 2 lighting hot-cathode discharge lamps 1a, 1b with high-frequency voltage generated from an alternate current power source E driven by a pair of switches Q1, Q2, an inverter control circuit 3 controlling operation states of preheating/driving/lighting of the discharge lamps by driving the switching elements of the inverter circuits, a series circuit of a coupling capacitor C6, a primary winding of a preheating transformer T2 without any gaps at the core, and a preheating switching element Q3, and a capacitor C7 connected in parallel with both ends of the preheating switching elements. The device is further provided with a preheating control circuit 4 passing current to filaments of the discharge lamp at its operating state of preheating/driving with control of the inverter circuit to preheat it, and restraining current flowing in the filaments of the discharge lamp at its operating state of lighting. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は熱陰極形の放電灯を高周波点灯させる放電灯点灯装置に係り、特に予熱制御回路のスイッチング素子の過電圧による破壊を防止するようにしたものである。   The present invention relates to a discharge lamp lighting device for high-frequency lighting of a hot cathode type discharge lamp, and in particular, prevents a switching element of a preheating control circuit from being damaged due to overvoltage.

従来の放電灯点灯装置は、一対のスイッチング素子の駆動により直流電源から生成した高周波電圧で熱陰極形の放電灯を点灯させるインバータ回路と、該インバータ回路のスイッチング素子を駆動して前記放電灯の予熱・始動・点灯の動作状態を制御するインバータ制御回路と、該インバータ制御回路の制御による前記放電灯の予熱・始動の動作状態で前記放電灯のフィラメントに電流を流して予熱し、前記放電灯の点灯の動作状態で前記放電灯のフィラメントに流れる電流を抑制する予熱制御回路とを備え、前記予熱制御回路は、コンデンサ、予熱トランスの一次巻線及び予熱スイッチの直列回路とからなるものである。   A conventional discharge lamp lighting device includes an inverter circuit for lighting a hot cathode discharge lamp with a high-frequency voltage generated from a DC power source by driving a pair of switching elements, and driving the switching element of the inverter circuit to drive the discharge lamp. An inverter control circuit for controlling a preheating / starting / lighting operation state; and preheating by supplying a current to a filament of the discharge lamp in the preheating / starting operation state of the discharge lamp under the control of the inverter control circuit; And a preheating control circuit that suppresses a current flowing through the filament of the discharge lamp in a lighting operation state, and the preheating control circuit includes a series circuit of a capacitor, a primary winding of a preheating transformer, and a preheating switch. .

そして、電源が投入されると、インバータ制御回路はインバータ回路の一対のスイッチング素子を駆動して放電灯には点灯できない程度の共振電圧を印加するよう制御する。このとき、予熱制御回路の予熱スイッチはオンしており、予熱トランスに矩形波状の高周波電圧が印加され、それが予熱トランスの二次巻線から放電灯のフィラメントに印加され、フィラメントを加熱して放電灯の予熱が行われる。
それから所定の時間が経過すると、インバータ制御回路はインバータ回路の一対のスイッチング素子を駆動して放電灯が点灯できるような共振電圧を印加するように制御し、放電灯を始動させ、その後インバータ回路の一対のスイッチング素子の駆動周波数を変化させて放電灯を通常点灯させる。このとき、予熱制御回路の予熱スイッチはオフして、予熱トランスの一次側への高周波電圧の印加が遮断されるため、二次側に流れるフィラメント電流は殆ど零になる(例えば、特許文献1参照)。
特開2004−193075号公報(第1頁、第1図)
When the power is turned on, the inverter control circuit controls a pair of switching elements of the inverter circuit so as to apply a resonance voltage that cannot be lit to the discharge lamp. At this time, the preheating switch of the preheating control circuit is turned on, and a rectangular high frequency voltage is applied to the preheating transformer, which is applied from the secondary winding of the preheating transformer to the filament of the discharge lamp to heat the filament. The discharge lamp is preheated.
After a predetermined time has elapsed, the inverter control circuit drives the pair of switching elements of the inverter circuit so as to apply a resonance voltage that can light the discharge lamp, starts the discharge lamp, and then starts the inverter circuit. The discharge lamp is normally lit by changing the drive frequency of the pair of switching elements. At this time, since the preheating switch of the preheating control circuit is turned off and the application of the high frequency voltage to the primary side of the preheating transformer is interrupted, the filament current flowing on the secondary side becomes almost zero (see, for example, Patent Document 1). ).
Japanese Unexamined Patent Publication No. 2004-193075 (first page, FIG. 1)

従来の放電灯点灯装置では、予熱制御回路の予熱スイッチにMOSFETを使用した場合において、放電灯の予熱・始動が行われ、それから放電灯が点灯状態となった時に、予熱スイッチであるMOSFETがオフさせられるが、その時に予熱トランスの洩れインダクタンス分と、MOSFETのドレイン・ソース間及びドレイン・ゲート間の合成容量の共振により、MOSFETのドレイン・ソース間にはインバータ回路の発振周波数の毎サイクル毎にサージ的な電圧が印加されるため、高耐圧の予熱用スイッチ素子が必要であり、場合によっては予熱用スイッチ素子が過電圧で破壊してしまう等の問題点があった。
本発明はかかる問題点を解決するためになされたもので、予熱制御回路の予熱用スイッチ素子の過電圧による破壊を防止することができる放電灯点灯装置を得ることを目的とする。
In a conventional discharge lamp lighting device, when a MOSFET is used as a preheating switch of a preheating control circuit, the discharge lamp is preheated and started, and then the preheating switch MOSFET is turned off when the discharge lamp is turned on. At that time, due to the leakage inductance of the preheating transformer and the resonance of the combined capacitance between the drain and source of the MOSFET and between the drain and gate, between the drain and source of the MOSFET every cycle of the oscillation frequency of the inverter circuit Since a surge voltage is applied, a high withstand voltage preheating switch element is required. In some cases, the preheating switch element is broken by overvoltage.
The present invention has been made to solve such problems, and an object of the present invention is to provide a discharge lamp lighting device that can prevent the preheating switch element of the preheating control circuit from being damaged due to overvoltage.

本発明に係る放電灯点灯装置は、スイッチング素子の駆動により直流電源から生成した高周波電圧で熱陰極形の放電灯を点灯させるインバータ回路と、該インバータ回路のスイッチング素子を駆動して前記放電灯の予熱・始動・点灯の動作状態を制御するインバータ制御回路と、結合コンデンサ、コアにギャップがない予熱用変成器の一次巻線及び予熱用スイッチ素子の直列回路と、前記予熱用スイッチ素子の両端に並列接続されたコンデンサとを有し、該インバータ制御回路の制御による前記放電灯の予熱・始動の動作状態で前記放電灯のフィラメントに電流を流して予熱し、前記放電灯の点灯の動作状態で前記放電灯のフィラメントに流れる電流を抑制する予熱制御回路とを備えてなるものである。   A discharge lamp lighting device according to the present invention includes an inverter circuit for lighting a hot cathode discharge lamp with a high-frequency voltage generated from a DC power source by driving a switching element, and driving the switching element of the inverter circuit to drive the discharge lamp. Inverter control circuit for controlling the operation state of preheating, starting and lighting, a coupling capacitor, a primary circuit of a preheating transformer without a gap in the core and a series circuit of a preheating switch element, and both ends of the preheating switch element A capacitor connected in parallel, preheated by flowing a current through the filament of the discharge lamp in the preheating / starting operation state of the discharge lamp under the control of the inverter control circuit, and in the lighting operation state of the discharge lamp. A preheating control circuit for suppressing a current flowing in the filament of the discharge lamp.

本発明は以上説明したとおり、予熱制御回路の一部を構成する予熱用変成器はコアにギャップがない構造としたので、予熱用変成器の一次側の洩れインダクタンス分の洩れ磁束がでなくなり、予熱制御回路のLC共振要素がなくなることにより、予熱制御回路の予熱用スイッチ素子をオンからオフにした場合に、インバータ回路の発振の毎サイクル毎に発生するサージ的な高電圧が抑制されるため、予熱制御回路の一部を構成する予熱用スイッチ素子を必要以上に高耐圧品を選定する必要がなく、過電圧で破壊するおそれもなくなり、さらにその予熱用スイッチ素子の両端にコンデンサが並列接続されることで、予熱制御回路内の結合コンデンサとで分圧され、予熱用スイッチ素子の両端電圧は更に低く抑えられるため、過電圧に対する信頼性が向上するという効果がある。   As described above, since the preheating transformer that constitutes a part of the preheating control circuit has a structure without a gap in the core, the leakage flux corresponding to the leakage inductance on the primary side of the preheating transformer is not lost. Since the LC resonance element of the preheating control circuit is eliminated, when the preheating switch element of the preheating control circuit is turned from on to off, a surge high voltage generated every cycle of oscillation of the inverter circuit is suppressed. The preheating switch element that forms part of the preheating control circuit does not need to be selected with a higher withstand voltage than is necessary, and there is no risk of destruction due to overvoltage, and capacitors are connected in parallel across the preheating switch element. Therefore, the voltage is divided by the coupling capacitor in the preheating control circuit, and the voltage across the preheating switch element is further reduced. But there is an effect of improving.

実施の形態1.
図1は本発明の実施の形態1に係る放電灯点灯装置の構成を示す回路図、図2は予熱制御回路のMOSFETのドレイン−ソース間の電圧波形を示し、(a)は従来例の波形図、(b)は実施の形態1の波形図である。
図1において、本発明の実施の形態1に係る放電灯点灯装置は、一対のスイッチング素子Q1、Q2の駆動により直流電源Eから生成した高周波電圧で熱陰極形の放電灯1a、1bを点灯させるインバータ回路2と、インバータ回路2のスイッチング素子Q1、Q2を交互に駆動して放電灯1a、1bの動作状態を制御するインバータ制御回路3と、放電灯1a、1bのフィラメントに流れる電流を制御する予熱制御回路4とを備えて大略構成されている。
Embodiment 1 FIG.
FIG. 1 is a circuit diagram showing a configuration of a discharge lamp lighting device according to Embodiment 1 of the present invention, FIG. 2 shows a voltage waveform between the drain and source of a MOSFET of a preheating control circuit, and FIG. FIG. 4B is a waveform diagram of the first embodiment.
In FIG. 1, a discharge lamp lighting device according to Embodiment 1 of the present invention lights hot cathode discharge lamps 1a and 1b with a high-frequency voltage generated from a DC power supply E by driving a pair of switching elements Q1 and Q2. The inverter circuit 2 and the inverter control circuit 3 for controlling the operating state of the discharge lamps 1a and 1b by alternately driving the switching elements Q1 and Q2 of the inverter circuit 2 and the current flowing through the filaments of the discharge lamps 1a and 1b are controlled. The preheating control circuit 4 is generally provided.

直流電源Eに、インバータ回路2の一対のスイッチング素子Q1、Q2の直列回路が接続されている。そのスイッチング素子Q2の両端には、結合コンデンサC6、予熱用変成器T2の一次巻線P2、予熱用スイッチ素子Q3の直列回路と、予熱用スイッチ素子Q3の両端に並列接続された分圧用のコンデンサC7とで構成される予熱制御回路4が並列接続されている。その予熱用スイッチ素子Q3はインバータ制御回路3によってオン・オフ駆動される。
予熱制御回路4の予熱用変成器T2の二次巻線S1はコンデンサC4を介して放電灯1aのフィラメントF1の両端子に接続され、そのフィラメントF1のコンデンサC4と接続されていない端子はバラストチョークT1の一次巻線P1を介してスイッチング素子Q2の一端と接続されている。
A series circuit of a pair of switching elements Q1 and Q2 of the inverter circuit 2 is connected to the DC power source E. A series circuit of a coupling capacitor C6, a primary winding P2 of the preheating transformer T2, a preheating switch element Q3, and a voltage dividing capacitor connected in parallel to both ends of the preheating switch element Q3 are connected to both ends of the switching element Q2. A preheating control circuit 4 composed of C7 is connected in parallel. The preheating switch element Q3 is driven on and off by the inverter control circuit 3.
The secondary winding S1 of the preheating transformer T2 of the preheating control circuit 4 is connected to both terminals of the filament F1 of the discharge lamp 1a via the capacitor C4, and the terminal not connected to the capacitor C4 of the filament F1 is a ballast choke. It is connected to one end of the switching element Q2 via the primary winding P1 of T1.

また、予熱用変成器T2の二次巻線S2はコンデンサC5を介して放電灯1bのフィラメントF4の両端子に接続され、そのフィラメントF4のコンデンサC5と接続されていない端子はコンデンサC3を介してスイッチング素子Q2の他端と接続されている。
さらに、予熱用変成器T2の二次巻線S3はバラストチョークT1の二次巻線S4を介して放電灯1aのフィラメントF2と放電灯1bのフィラメントF3の直列回路に接続されている。コンデンサC2の両端はフィラメントF1のコンデンサC4と接続されている端子とフィラメントF4のコンデンサC5と接続されている端子にそれぞれ接続されている。
Further, the secondary winding S2 of the preheating transformer T2 is connected to both terminals of the filament F4 of the discharge lamp 1b via the capacitor C5, and the terminal not connected to the capacitor C5 of the filament F4 is connected via the capacitor C3. The other end of the switching element Q2 is connected.
Further, the secondary winding S3 of the preheating transformer T2 is connected to a series circuit of the filament F2 of the discharge lamp 1a and the filament F3 of the discharge lamp 1b via the secondary winding S4 of the ballast choke T1. Both ends of the capacitor C2 are connected to a terminal connected to the capacitor C4 of the filament F1 and a terminal connected to the capacitor C5 of the filament F4.

次に、本発明の実施の形態1に係る放電灯点灯装置の動作について図1に基づいて説明する。
インバータ回路2は、インバータ制御回路3からスイッチング素子Q1、Q2への駆動信号により、スイッチング素子Q1、Q2が交互にオン・オフ動作し、バラストチョークT1の一次巻線P1及び放電灯1a、1bとこれに並列接続されたコンデンサC2及びコンデンサC3からなる負荷回路とに矩形波状の高周波電圧を印加し、放電灯1a、1bを正弦波状の高周波で点灯させるものである。
Next, the operation of the discharge lamp lighting device according to Embodiment 1 of the present invention will be described with reference to FIG.
In the inverter circuit 2, the switching elements Q1 and Q2 are alternately turned on and off by a drive signal from the inverter control circuit 3 to the switching elements Q1 and Q2, and the primary winding P1 and the discharge lamps 1a and 1b of the ballast choke T1 A rectangular wave-shaped high-frequency voltage is applied to a load circuit composed of a capacitor C2 and a capacitor C3 connected in parallel to this, and the discharge lamps 1a and 1b are lit at a sinusoidal high-frequency.

電源が投入されると、インバータ制御回路3はインバータ回路2の一対のスイッチング素子Q1、Q2を高い周波数で駆動して発振を開始し、放電灯1a、1bには点灯しない程度の低い共振電圧が印加される。このとき、インバータ制御回路3は予熱制御回路4の予熱用スイッチ素子Q3をオンしており、予熱用変成器T2の一次巻線P2には矩形波状の高周波電圧が印加され、それが予熱用変成器T2の二次巻線S1、S2からコンデンサC4、C5を介して放電灯1a、1bのフィラメントF1、F4に印加され、フィラメントF1、F4を予熱する。また、予熱用変成器T2の二次巻線S3及びバラストチョークT1の二次巻線S4に発生する電圧は放電灯1a、1bのフィラメントF2、F3に印加され、フィラメントF2、F3を予熱する。   When the power is turned on, the inverter control circuit 3 drives the pair of switching elements Q1 and Q2 of the inverter circuit 2 at a high frequency to start oscillation, and the discharge lamps 1a and 1b have a low resonance voltage that does not light up. Applied. At this time, the inverter control circuit 3 turns on the preheating switch element Q3 of the preheating control circuit 4, and a rectangular high frequency voltage is applied to the primary winding P2 of the preheating transformer T2, which is converted into the preheating transformer. The filaments F1 and F4 are preheated by being applied to the filaments F1 and F4 of the discharge lamps 1a and 1b from the secondary windings S1 and S2 of the vessel T2 via the capacitors C4 and C5. Further, the voltage generated in the secondary winding S3 of the preheating transformer T2 and the secondary winding S4 of the ballast choke T1 is applied to the filaments F2 and F3 of the discharge lamps 1a and 1b to preheat the filaments F2 and F3.

それから所定の時間、予熱を行った後、インバータ制御回路3はインバータ回路2の駆動周波数を低い周波数に変化させ、放電灯1a、1bを点灯させる高い共振電圧を印加して放電灯1a、1bを点灯させる。
その後、インバータ制御回路3はインバータ回路2の駆動周波数を点灯周波数に変化させ、通常点灯状態に移行させる。また、このとき、インバータ制御回路3は予熱制御回路4の予熱用スイッチ素子Q3をオフさせる。そうすると、予熱用変成器T2の一次巻線P2への高周波電圧の印加が遮断されるため、予熱用変成器T2の二次側から流れるフィラメント電流は殆ど零となる。これにより、放電灯1a、1bの点灯時のフィラメント電流による損失を殆どなくすることができる。
Then, after preheating for a predetermined time, the inverter control circuit 3 changes the drive frequency of the inverter circuit 2 to a low frequency, applies a high resonance voltage for lighting the discharge lamps 1a and 1b, and sets the discharge lamps 1a and 1b. Light up.
Thereafter, the inverter control circuit 3 changes the drive frequency of the inverter circuit 2 to the lighting frequency and shifts to the normal lighting state. At this time, the inverter control circuit 3 turns off the preheating switch element Q3 of the preheating control circuit 4. Then, since the application of the high frequency voltage to the primary winding P2 of the preheating transformer T2 is interrupted, the filament current flowing from the secondary side of the preheating transformer T2 becomes almost zero. Thereby, the loss by the filament current at the time of lighting of the discharge lamps 1a and 1b can be almost eliminated.

この実施の形態1では、上述したように、放電灯1a、1bの予熱・始動が行われ、放電灯1a、1bが点灯状態となり、予熱制御回路4の予熱用スイッチ素子Q3をオフする時に予熱用変成器T2の洩れインダクタンス分の洩れ磁束によってインバータ回路2の発振周波数の毎サイクル毎にサージ的な電圧が発生するが、予熱制御回路4の一部を構成する予熱用変成器T2はコアにギャップがない構造としたので、予熱用変成器T2の洩れインダクタンス分の洩れ磁束がでなくなり、予熱制御回路4にLC共振要素がなくなる。そのため、インバータ回路2の発振の毎サイクル毎のサージ的な高電圧が抑制され、予熱制御回路4の一部を構成する予熱用スイッチ素子を必要以上に高耐圧品を選定する必要がなく、過電圧で破壊するおそれもなくなった。   In the first embodiment, as described above, the pre-heating / starting of the discharge lamps 1a, 1b is performed, the discharge lamps 1a, 1b are turned on, and pre-heating is performed when the pre-heating switch element Q3 of the pre-heating control circuit 4 is turned off. A surge voltage is generated at every cycle of the oscillation frequency of the inverter circuit 2 due to the leakage magnetic flux corresponding to the leakage inductance of the transformer T2, but the preheating transformer T2 constituting a part of the preheating control circuit 4 is provided in the core. Since the structure has no gap, the leakage magnetic flux corresponding to the leakage inductance of the preheating transformer T2 is eliminated, and the LC resonance element is eliminated in the preheating control circuit 4. Therefore, a surge high voltage for each cycle of oscillation of the inverter circuit 2 is suppressed, and it is not necessary to select a high-voltage product more than necessary for the preheating switch element constituting a part of the preheating control circuit 4. There is no longer any risk of destruction.

また、予熱制御回路4の予熱用スイッチ素子Q3にMOSFETを使用することにより、予熱用スイッチ素子Q3の駆動は電圧駆動となるため、予熱用スイッチ素子Q3のオン・オフの駆動制御を簡単に行うことができることとなった。
さらに、予熱制御回路4の予熱用スイッチ素子Q3の両端にコンデンサC7が並列接続されることで、予熱制御回路4内の結合コンデンサC6とで分圧され、予熱用スイッチ素子Q3の両端電圧は更に低く抑えられるため、過電圧に対する信頼性がより一層向上したものとなった。
Further, by using a MOSFET as the preheating switch element Q3 of the preheating control circuit 4, the preheating switch element Q3 is driven by voltage, so that the on / off drive control of the preheating switch element Q3 is easily performed. I was able to do it.
Further, the capacitor C7 is connected in parallel to both ends of the preheating switch element Q3 of the preheating control circuit 4, so that the voltage is divided by the coupling capacitor C6 in the preheating control circuit 4, and the voltage across the preheating switch element Q3 is further increased. Since it was kept low, the reliability against overvoltage was further improved.

図2の(a)を見ると、従来例の予熱制御回路のMOSFETのドレイン−ソース間の電圧波形には、予熱制御回路4の予熱用スイッチ素子Q3のオフ時におけるインバータ回路2の矩形波の立ち上り時にサージ電圧が発生していることが分かるが、図2の(b)を見ると、本発明の実施の形態1のMOSFETのドレイン−ソース間の電圧波形には、予熱制御回路4の予熱用スイッチ素子Q3のオフ時におけるインバータ回路2の矩形波の立ち上り時にサージ電圧の発生が抑制されていることが分かる。   Referring to FIG. 2A, the voltage waveform between the drain and the source of the MOSFET of the preheating control circuit of the conventional example shows the rectangular wave of the inverter circuit 2 when the preheating switch element Q3 of the preheating control circuit 4 is off. Although it can be seen that a surge voltage is generated at the rising edge, when looking at FIG. 2B, the voltage waveform between the drain and source of the MOSFET according to the first embodiment of the present invention shows the preheating of the preheating control circuit 4. It can be seen that the generation of surge voltage is suppressed when the rectangular wave of the inverter circuit 2 rises when the switching element Q3 is turned off.

実施の形態2.
図3は本発明の実施の形態2に係る放電灯点灯装置の構成を示す回路図、図4は放電灯点灯装置の各部位の電圧波形を示し、(a)は従来例の波形図、(b)は実施の形態2の波形図である。
この実施の形態2で、実施の形態1と同様の構成は同一符号を付して重複した構成の説明を省略する。
この実施の形態2では、予熱制御回路4の一部を構成する結合コンデンサC6の両端に、インバータ回路2の出力端子側がカソードとなるようにダイオードD1が並列接続されている。
Embodiment 2. FIG.
3 is a circuit diagram showing a configuration of a discharge lamp lighting device according to Embodiment 2 of the present invention, FIG. 4 shows voltage waveforms of respective parts of the discharge lamp lighting device, (a) is a waveform diagram of a conventional example, b) is a waveform diagram of the second embodiment.
In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description of the overlapping components is omitted.
In the second embodiment, a diode D1 is connected in parallel to both ends of a coupling capacitor C6 constituting a part of the preheating control circuit 4 so that the output terminal side of the inverter circuit 2 becomes a cathode.

この実施の形態2は、放電灯1a、1bの予熱・始動が行われ、放電灯1a、1bが点灯状態となり、予熱制御回路4の予熱用スイッチ素子Q3をオフしているときで、放電灯1a、1bのフィラメントF1、F4が断線した時には、予熱制御回路4の予熱用変成器T2の二次側が開放されて一次側だけとなるため、予熱用変成器T2は等価的にインダクタンス値が小さくなる。
この場合、予熱制御回路4の両端、即ちスイッチング素子Q2のドレイン−ソース(D−S)間の電圧は矩形波なので、結合コンデンサC6に接続されている予熱用変成器T2の一次巻線P2と予熱用スイッチ素子Q3の直列回路の両端の電圧も矩形波となるが、予熱用スイッチ素子Q3のドレイン−ソース(D−S)間、即ちコンデンサC7の両端の電圧は、予熱用変成器T2の一次巻線P2の上述した小さくなったインダクタンス値とコンデンサC7の容量により、矩形波の傾きが変化して三角波状となる。
In the second embodiment, the discharge lamps 1a and 1b are preheated and started, the discharge lamps 1a and 1b are turned on, and the preheating switch element Q3 of the preheating control circuit 4 is turned off. When the filaments F1 and F4 of 1a and 1b are disconnected, the secondary side of the preheating transformer T2 of the preheating control circuit 4 is opened and becomes only the primary side, so the preheating transformer T2 has an equivalently small inductance value. Become.
In this case, since the voltage between both ends of the preheating control circuit 4, that is, the drain-source (DS) of the switching element Q2, is a rectangular wave, the primary winding P2 of the preheating transformer T2 connected to the coupling capacitor C6 The voltage at both ends of the series circuit of the preheating switch element Q3 is also a rectangular wave, but the voltage between the drain and source (DS) of the preheating switch element Q3, that is, the both ends of the capacitor C7 is the voltage of the preheating transformer T2. The slope of the rectangular wave changes due to the above-described reduced inductance value of the primary winding P2 and the capacitance of the capacitor C7, resulting in a triangular wave shape.

そして、この場合のコンデンサC7(予熱用スイッチ素子Q3のD−S間)の電圧は、次式で表すことができる。
C7の電圧=Q2のD−S間の電圧−C6の電圧−T2のP1の電圧
上記式において、Q2のD−S間の電圧は一定、T2のP1の電圧もほぼ一定である。
このときの結合コンデンサC6の充放電を考えると、充電の場合には結合コンデンサC6の電圧は、マイナス方向に充電されてしまうため、上記式を成立させるのにはコンデンサC7(予熱用スイッチ素子Q3のD−S間)の電圧で結合コンデンサC6の電圧のマイナス方向分を補う必要があるため、予熱用スイッチ素子Q3はスイッチング素子Q1、Q2より高い電圧が印加される場合がある。そのため、予熱用スイッチ素子Q3はスイッチング素子Q1、Q2より高耐圧の部品が必要になる。
そこで、この実施の形態2では、結合コンデンサC6の両端に、インバータ回路2の出力端子側がカソードとなるようにダイオードD1を並列接続するようにしたので、ダイオードD1により結合コンデンサC6のマイナス方向の充電が抑制されるため、予熱用スイッチ素子Q3を必要以上に高耐圧にしなくて済むこととなった。
In this case, the voltage of the capacitor C7 (between D and S of the preheating switch element Q3) can be expressed by the following equation.
C7 voltage = Q2 DS voltage -C6 voltage -T2 P1 voltage In the above equation, the Q2 DS voltage is constant, and the T2 P1 voltage is also substantially constant.
Considering charging / discharging of the coupling capacitor C6 at this time, in the case of charging, the voltage of the coupling capacitor C6 is charged in the minus direction. Therefore, the capacitor C7 (preheating switch element Q3) is used to establish the above equation. Therefore, a voltage higher than that of the switching elements Q1 and Q2 may be applied to the preheating switch element Q3. For this reason, the preheating switch element Q3 requires components having a higher breakdown voltage than the switching elements Q1 and Q2.
Therefore, in the second embodiment, since the diode D1 is connected in parallel to both ends of the coupling capacitor C6 so that the output terminal side of the inverter circuit 2 becomes the cathode, the diode D1 charges the coupling capacitor C6 in the negative direction. Therefore, the preheating switch element Q3 does not have to have a higher withstand voltage than necessary.

図4の(a)を見ると、従来例の予熱制御回路のMOSFETのドレイン−ソース間の電圧の三角波形は、高い電圧が発生していることが分かるが、図4の(b)を見ると、本発明の実施の形態2のMOSFETのドレイン−ソース間の電圧の三角波形は、低い電圧が発生していることが分かる。
なお、結合コンデンサC6の電圧も従来例より本実施の形態2では低くなっており、予熱用変成器T2の一次巻線P2の電圧は従来例と本実施の形態2でも変化がないことが分かる。
4A, it can be seen that a high voltage is generated in the triangular waveform of the voltage between the drain and source of the MOSFET of the preheating control circuit of the conventional example, but FIG. 4B is seen. It can be seen that a low voltage is generated in the triangular waveform of the drain-source voltage of the MOSFET according to the second embodiment of the present invention.
Note that the voltage of the coupling capacitor C6 is also lower in the second embodiment than in the conventional example, and it can be seen that the voltage of the primary winding P2 of the preheating transformer T2 is not changed between the conventional example and the second embodiment. .

実施の形態3.
この実施の形態3は、放電灯1a、1bの予熱・始動が行われ、それから放電灯1a、1bが点灯状態となった時に予熱制御回路4の予熱用スイッチ素子Q3がオフさせられる場合における予熱用スイッチ素子Q3の動作時間に関するものである。
この実施の形態3では、インバータ制御回路3は、インバータ回路2が発振を開始する前に予熱制御回路4の予熱用スイッチ素子Q3であるMOSFETをオンさせるようにしたので、MOSFETのドレイン・ソース間に過電圧が印加されるのを抑制できる。
さらに、MOSFETのオンからオフへの制御を、MOSFETのゲート電圧を徐々に下げてインバータ回路2の発振周波数の一周期の時間より長い時間(例えば0.3秒かけて)で行うことにより、予熱制御回路4内のコンデンサC7と、インバータ回路2、予熱制御回路4等を構成するプリント基板の配線パターン等によるインダクタンス成分とのLC共振回路が構成されても、逆起電力の発生が抑えられて共振電圧が発生しないため、MOSFETのオンからオフ時にドレイン・ソース間に過電圧が印加されるのを抑制することができる。
Embodiment 3 FIG.
In the third embodiment, preheating / starting of the discharge lamps 1a, 1b is performed, and then the preheating switch element Q3 of the preheating control circuit 4 is turned off when the discharge lamps 1a, 1b are turned on. This relates to the operation time of the switch element Q3.
In the third embodiment, the inverter control circuit 3 turns on the MOSFET that is the preheating switch element Q3 of the preheating control circuit 4 before the inverter circuit 2 starts oscillating. It is possible to suppress the application of an overvoltage.
Further, preheating is performed by controlling the MOSFET from on to off in a time (eg, over 0.3 seconds) that is longer than one period of the oscillation frequency of the inverter circuit 2 by gradually decreasing the gate voltage of the MOSFET. Even if an LC resonance circuit is formed with the capacitor C7 in the control circuit 4 and an inductance component such as the wiring pattern of the printed circuit board constituting the inverter circuit 2, the preheating control circuit 4, etc., generation of back electromotive force is suppressed. Since no resonance voltage is generated, it is possible to suppress an overvoltage from being applied between the drain and the source when the MOSFET is turned on and off.

図5の(a)を見ると、本発明の実施の形態1の予熱制御回路のMOSFETのドレイン−ソース間の電圧波形には、予熱制御回路4の予熱用スイッチ素子Q3のオフ時におけるインバータ回路2の矩形波の立ち上り時にサージ電圧が発生していることが分かるが、図5の(b)を見ると、本発明の実施の形態3のMOSFETのドレイン−ソース間の電圧波形には、予熱制御回路4の予熱用スイッチ素子Q3のオフ時におけるインバータ回路2の矩形波の立ち上り時にサージ電圧の発生が抑制されていることが分かる。   5A, the voltage waveform between the drain and source of the MOSFET of the preheating control circuit according to the first embodiment of the present invention shows an inverter circuit when the preheating switch element Q3 of the preheating control circuit 4 is off. It can be seen that a surge voltage is generated at the rise of the rectangular wave 2, but when FIG. 5B is seen, the voltage waveform between the drain and source of the MOSFET according to the third embodiment of the present invention is preheated. It can be seen that the occurrence of surge voltage is suppressed when the rectangular wave of the inverter circuit 2 rises when the preheating switch element Q3 of the control circuit 4 is off.

本発明の実施の形態1に係る放電灯点灯装置の構成を示す回路図。The circuit diagram which shows the structure of the discharge lamp lighting device which concerns on Embodiment 1 of this invention. 予熱制御回路のMOSFETのドレイン−ソース間の電圧波形を示し、(a)は従来例の波形図、(b)は実施の形態1の波形図。The voltage waveform between the drain-source of MOSFET of a preheating control circuit is shown, (a) is a wave form diagram of a prior art example, (b) is a wave form diagram of Embodiment 1. FIG. 本発明の実施の形態2に係る放電灯点灯装置の構成を示す回路図。The circuit diagram which shows the structure of the discharge lamp lighting device which concerns on Embodiment 2 of this invention. 放電灯点灯装置の各部位の電圧波形を示し、(a)は従来例の波形図、(b)は実施の形態2の波形図。The voltage waveform of each site | part of a discharge lamp lighting device is shown, (a) is a waveform diagram of a prior art example, (b) is a waveform diagram of Embodiment 2. FIG. 放電灯点灯装置の予熱制御回路のMOSFETのドレイン−ソース間の電圧波形とフィラメント電流の波形図を示し、(a)は実施の形態1の波形図、(b)は実施の形態3の波形図。The voltage waveform between the drain-source of MOSFET of a preheating control circuit of a discharge lamp lighting device, and the waveform figure of a filament current are shown, (a) is the waveform diagram of Embodiment 1, (b) is the waveform diagram of Embodiment 3. FIG. .

符号の説明Explanation of symbols

1a,1b 放電灯、2 インバータ回路、3 インバータ制御回路、E 直流電源、Q1 スイッチング素子、Q2 スイッチング素子、Q3 予熱用スイッチ素子(MOSFET)、T1 バラストチョーク、P1、P2 一次巻線、S1〜S4 二次巻線、T2 予熱用変成器、C6 結合コンデンサ、C7 コンデンサ。
1a, 1b Discharge lamp, 2 inverter circuit, 3 inverter control circuit, E DC power supply, Q1 switching element, Q2 switching element, Q3 preheating switch element (MOSFET), T1 ballast choke, P1, P2 primary winding, S1 to S4 Secondary winding, T2 preheating transformer, C6 coupling capacitor, C7 capacitor.

Claims (4)

スイッチング素子の駆動により直流電源から生成した高周波電圧で熱陰極形の放電灯を点灯させるインバータ回路と、
該インバータ回路のスイッチング素子を駆動して前記放電灯の予熱・始動・点灯の動作状態を制御するインバータ制御回路と、
結合コンデンサ、コアにギャップがない予熱用変成器の一次巻線及び予熱用スイッチ素子の直列回路と、前記予熱用スイッチ素子の両端に並列接続されたコンデンサとを有し、
該インバータ制御回路の制御による前記放電灯の予熱・始動の動作状態で前記放電灯のフィラメントに電流を流して予熱し、前記放電灯の点灯の動作状態で前記放電灯のフィラメントに流れる電流を抑制する予熱制御回路と、
を備えることを特徴とする放電灯点灯装置。
An inverter circuit for lighting a hot cathode discharge lamp with a high-frequency voltage generated from a DC power source by driving a switching element;
An inverter control circuit that drives the switching element of the inverter circuit to control the operation state of preheating, starting, and lighting of the discharge lamp;
A coupling capacitor, a primary winding of the preheating transformer with no gap in the core and a series circuit of the preheating switch element, and a capacitor connected in parallel to both ends of the preheating switch element;
The current is supplied to the filament of the discharge lamp in the pre-heating / starting operation state of the discharge lamp by the control of the inverter control circuit to pre-heat, and the current flowing to the filament of the discharge lamp is suppressed in the operating state of the discharge lamp. A preheating control circuit to perform,
A discharge lamp lighting device comprising:
前記予熱制御回路は前記インバータ回路の出力端子間に接続され、該予熱制御回路の結合コンデンサの両端に、前記インバータ回路の出力端子側がカソードとなるようにダイオードを並列接続したことを特徴とする請求項1記載の放電灯点灯装置。   The preheating control circuit is connected between output terminals of the inverter circuit, and diodes are connected in parallel to both ends of a coupling capacitor of the preheating control circuit so that the output terminal side of the inverter circuit becomes a cathode. Item 2. A discharge lamp lighting device according to Item 1. 前記インバータ制御回路は、前記インバータ回路が発振を開始する前に前記予熱制御回路の予熱用スイッチ素子をオンさせると共に、該予熱用スイッチ素子のオンからオフへの制御を前記インバータ回路の発振周波数の一周期の時間より長い時間で行うようにしたことを特徴とする請求項1又は2に記載の放電灯点灯装置。   The inverter control circuit turns on the preheating switch element of the preheating control circuit before the inverter circuit starts oscillating, and controls the preheating switch element from on to off of the oscillation frequency of the inverter circuit. The discharge lamp lighting device according to claim 1 or 2, wherein the discharge lamp lighting device is operated in a time longer than one cycle. 前記予熱制御回路の予熱用スイッチ素子は、MOSFETであることを特徴とする請求項1〜3のいずれかに記載の放電灯点灯装置。
The discharge lamp lighting device according to any one of claims 1 to 3, wherein the preheating switch element of the preheating control circuit is a MOSFET.
JP2005101627A 2005-03-31 2005-03-31 Discharge lamp lighting device Withdrawn JP2006286260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005101627A JP2006286260A (en) 2005-03-31 2005-03-31 Discharge lamp lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005101627A JP2006286260A (en) 2005-03-31 2005-03-31 Discharge lamp lighting device

Publications (1)

Publication Number Publication Date
JP2006286260A true JP2006286260A (en) 2006-10-19

Family

ID=37407973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005101627A Withdrawn JP2006286260A (en) 2005-03-31 2005-03-31 Discharge lamp lighting device

Country Status (1)

Country Link
JP (1) JP2006286260A (en)

Similar Documents

Publication Publication Date Title
US6819057B2 (en) Ballast self oscillating inverter with phase controlled voltage feedback
JP2004531036A (en) High frequency drive for driving cold cathode fluorescent lamps
EP1499166B1 (en) Inverter circuit for discharge lamps with a voltage step-up circuit for supplying the gate driver of the inverter switches
JP2004509584A (en) Electronic ballast using start-up transient voltage suppression circuit
JP2005513755A (en) Circuit that lights one or more lamps
US20070085492A1 (en) Matrix inverter for driving multiple discharge lamps
JP2008544740A (en) Method for driving an inverter of a gas discharge supply circuit
JP2006286260A (en) Discharge lamp lighting device
JP3374301B2 (en) Push-pull inverter
JP2008524787A (en) High-intensity discharge ballast
US6031339A (en) Efficient electronic ballast for fluorescent tubes
JP4144526B2 (en) Discharge lamp lighting device, lighting device, projector
JP2005038814A (en) Discharge lamp lighting device, illumination device, and projector
JP2008084579A (en) Discharge lamp lighting device
JP2005011798A (en) High voltage pulse generating device and discharge lamp lighting device
JP3314399B2 (en) Discharge lamp lighting device
JP2005100829A (en) High pressure discharge lamp lighting device and lighting system using it
JP2006085962A (en) Cold-cathode tube lighting device
JP4399650B2 (en) High pressure discharge lamp lighting device
JP2006228676A (en) Discharge lamp lighting device
KR100359072B1 (en) Resonance circuit of transformer having preventive function of over current
KR100237610B1 (en) Electronics ballast circuit
JP2004193075A (en) Discharge lamp lighting device
JP2015130255A (en) discharge lamp lighting device
JP5491810B2 (en) Discharge lamp lighting device and lighting fixture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603