JP2006284937A - Wavelength converting device - Google Patents

Wavelength converting device Download PDF

Info

Publication number
JP2006284937A
JP2006284937A JP2005105031A JP2005105031A JP2006284937A JP 2006284937 A JP2006284937 A JP 2006284937A JP 2005105031 A JP2005105031 A JP 2005105031A JP 2005105031 A JP2005105031 A JP 2005105031A JP 2006284937 A JP2006284937 A JP 2006284937A
Authority
JP
Japan
Prior art keywords
optical waveguide
wavelength
light
wavelength conversion
blue light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005105031A
Other languages
Japanese (ja)
Inventor
Masaru Chinen
勝 知念
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005105031A priority Critical patent/JP2006284937A/en
Publication of JP2006284937A publication Critical patent/JP2006284937A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized wavelength converting device which has excellent wavelength conversion efficiency. <P>SOLUTION: The wavelength converting device includes a pseudo-phase matching type wavelength converting means which is made of a LiNbO3 crystal having an optical waveguide 11 whose polarizing direction is periodically inverted and wavelength-converts an infrared light I incident from an incidence end 11a of the optical waveguide into blue lights B1 and B2 while guiding it along the optical waveguide, a DBR 20 which is provided on the side of a projection reflecting end 11b of the optical waveguide and transmits only the blue light B1 wavelength-converted by the wavelength converting element 10 to project it from the side of the projection reflecting end of the optical waveguide and also reflects the remaining infrared light I to return it to the optical waveguide, and a multiplexing device 40 which multiplexes the blue light B1 projected from the projection reflecting end side of the optical waveguide and the blue light B2 wavelength-converted by the wavelength converting element and projected from the incidence end side of the optical waveguide after being returned to the optical waveguide. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、レーザ光源等に使用される光波長変換装置に関する。   The present invention relates to an optical wavelength conversion device used for a laser light source or the like.

近年、プロジェクションテレビの青色光源として、綺麗な青色光を作ることができる波長変換装置に期待が高まっている。図4(a)に示すように、この波長変換装置は、波長変換素子としてのLiNbO3結晶100に光導波路101を形成し、そこに電圧印加により周期分極反転構造(縞模様で示す)を形成することで、赤外光Iを青色光Bに変換している。   In recent years, there is an increasing expectation for a wavelength conversion device capable of producing beautiful blue light as a blue light source of a projection television. As shown in FIG. 4A, this wavelength conversion device forms an optical waveguide 101 in a LiNbO 3 crystal 100 as a wavelength conversion element, and forms a periodically poled structure (shown in a striped pattern) by applying a voltage thereto. Thus, the infrared light I is converted into the blue light B.

従来の波長変換装置では、波長変換効率を高めるために、周期分極反転構造のピッチ間隔を調整して、赤外光Iと青色光Bの位相整合条件を満足させていた(例えば、特許文献1参照。)。
特開2000−171844号公報
In the conventional wavelength conversion device, in order to increase the wavelength conversion efficiency, the pitch interval of the periodically poled structure is adjusted to satisfy the phase matching condition of the infrared light I and the blue light B (for example, Patent Document 1). reference.).
JP 2000-171844 A

ところで、波長変換素子の材料であるLiNbO3結晶は、青色に相当する400nm帯付近で吸収がある。そのため、青色光の存在比率が増加する光導波路の出射端側では、図4(b)に示すように、青色光の吸収により生じる熱で結晶温度が上昇し、LiNbO3結晶の膨張や屈折率の変化が生じる。その結果、光導波路の出射端側では、前述の位相整合条件がずれ、波長変換素子の実効的な作用長が短くなることがある。   By the way, the LiNbO3 crystal, which is the material of the wavelength conversion element, has absorption in the vicinity of the 400 nm band corresponding to blue. Therefore, on the exit end side of the optical waveguide where the abundance ratio of blue light increases, as shown in FIG. 4B, the crystal temperature rises due to heat generated by the absorption of blue light, and the expansion and refractive index of the LiNbO3 crystal increase. Change occurs. As a result, the phase matching condition described above may be deviated on the output end side of the optical waveguide, and the effective working length of the wavelength conversion element may be shortened.

本発明は前記事情に鑑みてなされたもので、その目的とするところは、変換効率が良好な小型の波長変換装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a small wavelength conversion device with good conversion efficiency.

前記課題を解決し目的を達成するために、本発明の波長変換装置は次のように構成されている。   In order to solve the above problems and achieve the object, the wavelength converter of the present invention is configured as follows.

(1)波長変換装置において、分極方向が周期的に反転する光導波路を有する非線形結晶からなり、前記光導波路の一端側から入射した光を、前記光導波路に沿って誘導しながら波長変換する擬似位相整合方式の波長変換手段と、前記光導波路の他端側に設けられ、前記波長変換手段で波長変換された光のみを透過させて、前記光導波路の他端側から出射させるとともに、残りの光を反射させて、前記光導波路に戻す反射透過手段と、前記光導波路の他端側から出射する光と、前記光導波路に戻され、前記波長変換手段で波長変換されたのち、前記光導波路の一端側から出射する光とを合成する合成手段とを具備する。 (1) In a wavelength conversion device, a pseudo crystal that is made of a nonlinear crystal having an optical waveguide whose polarization direction is periodically reversed and that converts the wavelength of light incident from one end of the optical waveguide while guiding the light along the optical waveguide. Phase matching type wavelength conversion means, provided on the other end side of the optical waveguide, transmits only the light wavelength-converted by the wavelength conversion means, emits it from the other end side of the optical waveguide, and the remaining Reflecting and transmitting means for reflecting light back to the optical waveguide, light emitted from the other end of the optical waveguide, and returning to the optical waveguide and wavelength-converted by the wavelength converting means, the optical waveguide Synthesizing means for synthesizing the light emitted from the one end side.

(2)(1)に記載された波長変換装置において、前記非線形結晶を均一に加熱あるいは冷却して、その温度を一定に制御する制御手段を更に具備する。 (2) The wavelength conversion device described in (1) further includes control means for uniformly heating or cooling the nonlinear crystal and controlling the temperature to be constant.

(3)(1)に記載された波長変換装置において、前記非線形結晶はLiNbO3の結晶であり、赤外光を青色光に変換する。 (3) In the wavelength converter described in (1), the nonlinear crystal is a LiNbO3 crystal, and converts infrared light into blue light.

本発明によれば、波長変換効率を向上することができる。また、波長変換装置を小型化することができる。   According to the present invention, the wavelength conversion efficiency can be improved. In addition, the wavelength converter can be reduced in size.

以下、図面を参照しながら本発明の一実施形態について説明する。
図1は本発明の一実施形態に係る波長変換装置の概略図である。図1に示すように、この波長変換装置は、波長変換素子10、DBR20、電気回路30、合成装置40、及び制御装置50を備えている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram of a wavelength converter according to an embodiment of the present invention. As illustrated in FIG. 1, the wavelength conversion device includes a wavelength conversion element 10, a DBR 20, an electric circuit 30, a synthesis device 40, and a control device 50.

波長変換素子10は、非線形光学効果を有するLiNbO3結晶からなり、その所定位置には赤外光を透過させて青色光に変換する光導波路11が形成されている。この光導波路11は、いわゆる周期分極反転構造(縞模様で示す)をしており、その一端が赤外光を入射させる入射端11aをなし、他端が赤外光を反射させ、且つ青色光を出射させる出射反射射端11bをなしている。なお、周期分極反転構造とは、結晶の分極方向が光導波路11の光軸方向に対して所定間隔で反転した構造である。   The wavelength conversion element 10 is made of a LiNbO3 crystal having a nonlinear optical effect, and an optical waveguide 11 that transmits infrared light and converts it into blue light is formed at a predetermined position. The optical waveguide 11 has a so-called periodic polarization reversal structure (shown in a striped pattern), one end of which forms an incident end 11a for incident infrared light, the other end that reflects infrared light, and blue light. Is formed as an outgoing reflection emitting end 11b. The periodic polarization reversal structure is a structure in which the polarization direction of the crystal is reversed at a predetermined interval with respect to the optical axis direction of the optical waveguide 11.

周期分極反転構造の周期ピッチは、基準温度において赤外光と青色光の位相整合条件を満たすように設計されている。なお、位相整合条件とは、光導波路11内に混在する赤外光と青色光とが互いに弱め合わないための条件である。   The periodic pitch of the periodically poled structure is designed to satisfy the phase matching condition of infrared light and blue light at the reference temperature. The phase matching condition is a condition for preventing infrared light and blue light mixed in the optical waveguide 11 from weakening each other.

光導波路11の長さは、光導波路11の片道分で赤外光の略半分が青色光に変換されるように設計されている。言い換えれば、光導波路11の長さは、赤外光が光導波路11の入射端11aから出射反射端11bに伝播する間に、あるいは光導波路11の出射反射端11bから入射端11aに伝播する間に、その略半分が青色光に変換されるように設計されている。   The length of the optical waveguide 11 is designed so that approximately half of the infrared light is converted into blue light in one way of the optical waveguide 11. In other words, the length of the optical waveguide 11 is determined while infrared light propagates from the incident end 11a of the optical waveguide 11 to the outgoing reflection end 11b or during propagation from the outgoing reflection end 11b of the optical waveguide 11 to the incident end 11a. In addition, it is designed so that approximately half of it is converted into blue light.

DBR(分布ブラッグ反射器)20は、複数のブラッグ反射膜21から構成されるものであり、光導波路11の出射反射端11bに設けられている。ブラッグ反射膜21の積層ピッチ(以下、「DBR周期」とする。)Λは、ブラッグ反射条件に基づき、数式[1]のように設定されている。なお、ΛはDBR周期、λは赤外光の波長、nはブラッグ反射膜21の実効屈折率である。 The DBR (distributed Bragg reflector) 20 is composed of a plurality of Bragg reflector films 21 and is provided at the output reflection end 11 b of the optical waveguide 11. The lamination pitch (hereinafter referred to as “DBR period”) Λ of the Bragg reflection film 21 is set as shown in Equation [1] based on the Bragg reflection condition. Here, Λ is the DBR period, λ I is the wavelength of infrared light, and n is the effective refractive index of the Bragg reflection film 21.

Λ=2λn …[1]
これにより、DBR20は、赤外光だけを反射させ、青色光を透過させるようになっている。
Λ = 2λ I n ... [1]
As a result, the DBR 20 reflects only infrared light and transmits blue light.

図2は同実施形態に係る波長変換素子と電気回路30との関係図である。図2に示すように、電気回路30は、第1の系統31と第2の系統32から構成されている。第1、第2の系統31、32は、波長変換素子10の側面に形成された電極(図示しない)に対して交互に接続されており、それぞれLiNbO3結晶に逆極性の電圧を印加している。これにより、波長変換素子10の光導波路11には、前述の周期分極反転構造が形成される。   FIG. 2 is a relationship diagram of the wavelength conversion element and the electric circuit 30 according to the embodiment. As shown in FIG. 2, the electric circuit 30 includes a first system 31 and a second system 32. The first and second systems 31 and 32 are alternately connected to electrodes (not shown) formed on the side surface of the wavelength conversion element 10, and respectively apply reverse polarity voltages to the LiNbO 3 crystal. . As a result, the above-described periodic polarization inversion structure is formed in the optical waveguide 11 of the wavelength conversion element 10.

合成装置40は、ダイクロイックミラー41、第1のミラー42、第2のミラー43、偏光光学素子44、及びポラライザ45を備えている。   The synthesizer 40 includes a dichroic mirror 41, a first mirror 42, a second mirror 43, a polarizing optical element 44, and a polarizer 45.

ダイクロイックミラー41は、光導波路11の入射端11aに対向配置され、光源等(図示しない)からの赤外光を透過させて光導波路11の入射端11aに入射させ、また光導波路11の入射端11aから出射した青色光を略直角に反射させて第1のミラー42に誘導する。   The dichroic mirror 41 is disposed opposite to the incident end 11 a of the optical waveguide 11, transmits infrared light from a light source or the like (not shown) and enters the incident end 11 a of the optical waveguide 11, and the incident end of the optical waveguide 11. The blue light emitted from 11 a is reflected substantially at a right angle and guided to the first mirror 42.

第1のミラー42は、ダイクロイックミラー41の側方に配設され、ダイクロイックミラー41で反射した青色光を略直角に反射させ、第2のミラー43に誘導する。   The first mirror 42 is disposed on the side of the dichroic mirror 41, reflects blue light reflected by the dichroic mirror 41 at a substantially right angle, and guides it to the second mirror 43.

第2のミラー43は、ポラライザ45の側方に配置され、第1のミラー42で反射した青色光を略直角に反射させ、偏光光学素子44に誘導する。   The second mirror 43 is disposed on the side of the polarizer 45, reflects the blue light reflected by the first mirror 42 at a substantially right angle, and guides it to the polarizing optical element 44.

偏光光学素子44は、第2のミラー43とポラライザ45との間に配設され、第2のミラー43で反射してポラライザ45に進む青色光の偏光角を90度回転させる。   The polarization optical element 44 is disposed between the second mirror 43 and the polarizer 45, and rotates the polarization angle of the blue light reflected by the second mirror 43 and traveling to the polarizer 45 by 90 degrees.

ポラライザ45は、光導波路11の出射反射端11bに対向配置され、光導波路11の出射反射端11bから出射した青色光を透過させるとともに、偏光光学素子44により偏光角が90度回転された青色光を略直角に反射して、これらを合成する。   The polarizer 45 is disposed opposite to the output reflection end 11 b of the optical waveguide 11, transmits the blue light emitted from the output reflection end 11 b of the optical waveguide 11, and has a polarization angle rotated by 90 degrees by the polarization optical element 44. Are reflected at a substantially right angle to synthesize them.

制御装置50は、波長変換素子10を均一に冷却して、その温度が前述の基準温度になるように温度制御する。   The control device 50 cools the wavelength conversion element 10 uniformly and controls the temperature so that the temperature becomes the above-described reference temperature.

前記構成の波長変換装置において、光導波路11の入射端11aに入射した赤外光Iは、光導波路11の出射反射端11bに到達するまでの間に、その略半分が青色光B1に変換される。この青色光B1は、DBR20を透過したのち、ポラライザ45を透過する。一方、光導波路11の出射反射端11bに到達するまでの間に波長変換されなかった赤外光Iは、DBR20で反射したのち、光導波路11を逆方向、すなわち光導波路11の入射端11aに向かって進み、光導波路11の入射端11aに到達するまでの間に殆んど青色光B2に変換される。この青色光B2は、光導波路11の入射端11aから出射し、第1のミラー42、第2のミラー43、偏光光学素子44、及びポラライザ45を経由して、ポラライザ45を透過した前記青色光B1と合成される。   In the wavelength conversion device having the above-described configuration, approximately half of the infrared light I incident on the incident end 11a of the optical waveguide 11 is converted into the blue light B1 before reaching the output reflection end 11b of the optical waveguide 11. The The blue light B1 passes through the polarizer 45 after passing through the DBR 20. On the other hand, the infrared light I that has not been wavelength-converted before reaching the output reflection end 11 b of the optical waveguide 11 is reflected by the DBR 20, and then passes through the optical waveguide 11 in the reverse direction, that is, to the incident end 11 a of the optical waveguide 11. The light travels toward the incident end 11a of the optical waveguide 11 and is almost converted into blue light B2. The blue light B2 is emitted from the incident end 11a of the optical waveguide 11, and passes through the polarizer 45 through the first mirror 42, the second mirror 43, the polarizing optical element 44, and the polarizer 45. Synthesized with B1.

本実施形態によれば、擬似位相整合方式の波長変換装置において、光導波路11の出射反射端11bに赤外光Iのみを反射させるDBR20を設けている。そして、光導波路11の入射端11aから出射反射端11bまでの間に変換されなかった赤外光IをDBR20で反射させて光導波路11に戻すことで、その後、赤外光Iが光導波路11の入射端11aに到達するまでの間を利用して波長変換を行うようにしている。   According to the present embodiment, in the quasi phase matching type wavelength converter, the DBR 20 that reflects only the infrared light I is provided at the output reflection end 11b of the optical waveguide 11. The infrared light I that has not been converted between the incident end 11 a and the outgoing reflection end 11 b of the optical waveguide 11 is reflected by the DBR 20 and returned to the optical waveguide 11, so that the infrared light I is thereafter converted into the optical waveguide 11. The wavelength conversion is performed using the time until the incident end 11a is reached.

すなわち、本実施形態の波長変換装置では、赤外光Iに光導波路11を往復させ、その往路と復路の両方で波長変換を行うようにしている。そのため、従来の波長変換装置に対して作用長を2倍程度まで長くすることができる。逆に言えば、所望量の青色光を得るために必要な波長変換素子10の長さを従来の1/2程度まで短くすることができる。   That is, in the wavelength conversion device of this embodiment, the optical waveguide 11 is reciprocated with the infrared light I, and wavelength conversion is performed in both the forward path and the return path. Therefore, the working length can be increased up to about twice that of the conventional wavelength converter. In other words, the length of the wavelength conversion element 10 necessary for obtaining a desired amount of blue light can be reduced to about ½ of the conventional length.

また、赤外光Iが光導波路11の入射端11a側に進む復路においても波長変換が行われるから、光導波路11の入射端11a付近での青色光が増加し、光導波路11内の青色光Bの存在比率が光導波路11全体に亘って均一化する。   Further, since wavelength conversion is also performed in the return path in which the infrared light I travels toward the incident end 11 a of the optical waveguide 11, the blue light near the incident end 11 a of the optical waveguide 11 increases, and the blue light in the optical waveguide 11 is increased. The abundance ratio of B is uniform over the entire optical waveguide 11.

そのため、波長変換素子10として、400nm帯で吸収があるLiNbO3結晶を使用した場合でも、図3(b)に示すように、波長変換素子10の温度を均一化することができるから、制御装置50で波長変換素子10全体を均一に冷却するだけで、波長変換素子10全体を基準温度に維持することが可能となる。   Therefore, even when a LiNbO3 crystal having absorption in the 400 nm band is used as the wavelength conversion element 10, the temperature of the wavelength conversion element 10 can be made uniform as shown in FIG. Thus, it is possible to maintain the entire wavelength conversion element 10 at the reference temperature only by cooling the entire wavelength conversion element 10 uniformly.

その結果、赤外光Iと青色光Bの位相整合条件が維持され、波長変換素子10の光導波路11全体が波長変換に使用されるから、従来よりも波長変換素子10を小型化することができる。   As a result, the phase matching conditions of the infrared light I and the blue light B are maintained, and the entire optical waveguide 11 of the wavelength conversion element 10 is used for wavelength conversion. Therefore, the wavelength conversion element 10 can be made smaller than before. it can.

本発明は、前記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、前記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   The present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

本発明の一実施形態に係る波長変換装置の概略的構成図。1 is a schematic configuration diagram of a wavelength conversion device according to an embodiment of the present invention. 同実施形態に係る波長変換素子と電気回路との関係図。FIG. 3 is a relationship diagram between a wavelength conversion element and an electric circuit according to the embodiment. 同実施形態係る波長変換素子の概略的構成と温度分布を示す概略図。Schematic which shows the schematic structure and temperature distribution of the wavelength conversion element which concern on the same embodiment. 従来の波長変換装置の概略的構成と温度分布を示す概略図。Schematic which shows the schematic structure and temperature distribution of the conventional wavelength converter.

符号の説明Explanation of symbols

10…波長変換素子(波長変換手段)、11…光導波路、20…DBR(反射透過手段)、40…合成装置(合成手段)、50…制御装置(制御手段)。   DESCRIPTION OF SYMBOLS 10 ... Wavelength conversion element (wavelength conversion means), 11 ... Optical waveguide, 20 ... DBR (reflection / transmission means), 40 ... Synthesis apparatus (synthesis means), 50 ... Control apparatus (control means).

Claims (3)

分極方向が周期的に反転する光導波路を有する非線形結晶からなり、前記光導波路の一端側から入射した光を、前記光導波路に沿って誘導しながら波長変換する擬似位相整合方式の波長変換手段と、
前記光導波路の他端側に設けられ、前記波長変換手段で波長変換された光のみを透過させて、前記光導波路の他端側から出射させるとともに、残りの光を反射させて、前記光導波路に戻す反射透過手段と、
前記光導波路の他端側から出射する光と、前記光導波路に戻され、前記波長変換手段で波長変換されたのち、前記光導波路の一端側から出射する光とを合成する合成手段と、
を具備することを特徴とする波長変換装置。
A quasi-phase-matching wavelength converting means comprising a non-linear crystal having an optical waveguide whose polarization direction is periodically reversed, and performing wavelength conversion while guiding light incident from one end side of the optical waveguide along the optical waveguide; ,
The optical waveguide is provided on the other end side of the optical waveguide, transmits only the light wavelength-converted by the wavelength converting means, emits the light from the other end side of the optical waveguide, and reflects the remaining light. Reflection and transmission means to return to
Combining means for combining the light emitted from the other end side of the optical waveguide, and the light emitted from the one end side of the optical waveguide after being returned to the optical waveguide and wavelength-converted by the wavelength converting means;
A wavelength conversion device comprising:
前記非線形結晶を均一に加熱あるいは冷却して、その温度を一定に制御する制御手段を更に具備することを特徴とする請求項1記載の波長変換装置。   2. The wavelength converter according to claim 1, further comprising control means for uniformly heating or cooling the nonlinear crystal and controlling the temperature to be constant. 前記非線形結晶はLiNbO3の結晶であり、赤外光を青色光に変換することを特徴とする請求項1記載の波長変換装置。   2. The wavelength conversion device according to claim 1, wherein the nonlinear crystal is a LiNbO3 crystal and converts infrared light into blue light.
JP2005105031A 2005-03-31 2005-03-31 Wavelength converting device Pending JP2006284937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005105031A JP2006284937A (en) 2005-03-31 2005-03-31 Wavelength converting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005105031A JP2006284937A (en) 2005-03-31 2005-03-31 Wavelength converting device

Publications (1)

Publication Number Publication Date
JP2006284937A true JP2006284937A (en) 2006-10-19

Family

ID=37406935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005105031A Pending JP2006284937A (en) 2005-03-31 2005-03-31 Wavelength converting device

Country Status (1)

Country Link
JP (1) JP2006284937A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5312947B2 (en) * 2006-10-27 2013-10-09 パナソニック株式会社 Short wavelength light source and laser image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5312947B2 (en) * 2006-10-27 2013-10-09 パナソニック株式会社 Short wavelength light source and laser image forming apparatus

Similar Documents

Publication Publication Date Title
US7423802B2 (en) Illumination module
US7583431B2 (en) Wavelength conversion optical device, laser light source, and image display optical device
US7826500B2 (en) Fiber laser and optical device
US8390920B2 (en) Laser device, laser display apparatus, laser radiating apparatus, and nonlinear optical element
WO2009104392A1 (en) Light source device, lighting device and image display device
JPWO2009050876A1 (en) Short wavelength light source and optical device
US7426223B2 (en) Coherent light source and optical device
US8228960B2 (en) Laser device, laser display device, and laser irradiation device
JPWO2005099054A1 (en) Coherent light source and optical device
JP6293385B1 (en) Laser oscillator
JP2006019603A (en) Coherent light source and optical device
JP5529153B2 (en) Wavelength conversion laser light source and image display device
JP5330261B2 (en) Wavelength converter and image display device using the same
JP5161605B2 (en) Wavelength converter
US8351108B2 (en) Wavelength conversion laser and image display device
US20090161700A1 (en) Fiber laser
JP2006284937A (en) Wavelength converting device
JP4930036B2 (en) External resonant laser light source device, monitor device using the same, and image display device
US20070236779A1 (en) Laser display radiation source and method
US7817334B2 (en) Wavelength conversion element, light source device, image display device, and monitor device
JP2009253007A (en) Waveguide type wavelength conversion laser light source and image display device
JP4862960B2 (en) Wavelength conversion laser device and image display device
KR100716959B1 (en) Light source assembly and projection display apparatus adapting it
JP2008152057A (en) Optical variable delay unit and optical variable delay device
JP2007013181A (en) Up-conversion optical fiber laser with external resonance structure