JP2006284751A - Silver halide emulsion, photographic sensitive material, method for growing silver halide grains, and filter material - Google Patents

Silver halide emulsion, photographic sensitive material, method for growing silver halide grains, and filter material Download PDF

Info

Publication number
JP2006284751A
JP2006284751A JP2005102573A JP2005102573A JP2006284751A JP 2006284751 A JP2006284751 A JP 2006284751A JP 2005102573 A JP2005102573 A JP 2005102573A JP 2005102573 A JP2005102573 A JP 2005102573A JP 2006284751 A JP2006284751 A JP 2006284751A
Authority
JP
Japan
Prior art keywords
silver halide
agx
emulsion
grains
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005102573A
Other languages
Japanese (ja)
Inventor
Mitsuo Saito
光雄 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2005102573A priority Critical patent/JP2006284751A/en
Publication of JP2006284751A publication Critical patent/JP2006284751A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silver Salt Photography Or Processing Solution Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silver halide emulsion that gives high sensitivity and high image quality. <P>SOLUTION: The silver halide emulsion comprises at least a dispersion medium and silver halide grains (AgX), wherein the grains which occupy 60-100% of the total projected area of the silver halide grains are grains (AgX<SB>1</SB>) having an AgI content of 85-100 mol%, a grain shape of a right-angled hexahedron whose angles and/or edges are optionally roundish, and a circle-equivalent projected diameter of 0.01-20 μm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は写真の分野で有用なハロゲン化銀(以下、「AgX」と記す)乳剤、ハロゲン化銀粒子の製造方法、及び写真感光材料(以下、「感材」と記す)に関する。またUV光、及び/又は、青光を吸収するフィルターに関する。   The present invention relates to a silver halide (hereinafter referred to as “AgX”) emulsion useful in the field of photography, a method for producing silver halide grains, and a photographic light-sensitive material (hereinafter referred to as “photosensitive material”). The present invention also relates to a filter that absorbs UV light and / or blue light.

I−1)従来、次の技術が公開されている。
1)AgIの結晶構造として、α型、β型、γ型、δ型が存在する事が、それらのX線回折データから確認されており、後記文献1の第1章と、文献2〜5の記載を参考にできる。
α型は体心立方構造で、約150℃以上の高温域で存在する事。それ以下の温度では、六方晶構造のβ型と、面心立方構造のγ型(Cubic−Phaseと呼ばれる)が存在する事、両者を完全に作り分ける事は困難である事。δ型はNaCl型結晶構造で、高温高圧の特殊な条件で存在する事。
2)文献6には、14面体、12面体、6角柱形状のAgI粒子が記載されている。
3)文献7には、平板状のAgI粒子が記載されている。
4)27℃以下にすると、不安定で消滅するα型AgIに関しては、文献3に記載されている。該消滅して、β型とγ型になる。しかし、27℃以下で該変化する材料は、実用できない。27℃以上で保存された該α型AgI乳剤粒子の、粉末法X線回折図が文献3に掲載されていて、β型相の(002)面の回折ピーク(β2)と、α型相の(110)面の回折ピーク(α1)の強度比=「α1のピーク強度/β2のピーク強度」が、0.35以下である。即ち、α型の含率が非常に低い態様である。
5)25℃以下でも、固有光吸収端波長が、β型よりも10nm以上、長波長側にあるAgI乳剤粒子に関しては、文献10に記載されている。該粒子はα型でも、β型でも、γ型でもなく、その混合物でもない、と記載されている。
6)AgI粒子形成を(Ag+濃度>I―濃度)条件で行うと、γ含率の高い粒子が得られ、(Ag+濃度<I―濃度)条件で行うと、β含率の高い粒子が得られる事が、文献3に記載されている。AgI結晶を温度変化させた時の挙動については、文献5に記載されている。
従来のAgI乳剤粒子の調整、その特性、およびその写真感光材料への利用に関しては、文献1〜10、及びその引用文献に記載されている。
7)β型とγ型の400〜430nm領域の光吸収は、直接遷移型である為に、その吸収係数がAgBrの該領域の吸収係数の約100倍大きい。これは青紫光を効率良く吸収
するという利点を有する。これに関しては文献8に記載されている。
該特性を利用して、カラー写真のUVフィルター層へ、UV吸収剤としてAgI粒子を用いる事に関しては、米国特許第2327764号に記載されている。
8)AgI粒子にエピタキシャルAgX部(以下、「エピ部」と略称する)を形成し、エピ部に化学増感核を形成し、そこに潜像を効率よく形成する態様が提案されている。これに関しては文献9に記載されている。
9)感光材料の分散媒層に高屈折率微粒子、及び/又は、原子、分子、イオンの1種以上を混入して、分散媒層の屈折率を上げて、AgX粒子の光散乱強度を減少させる事に関しては、文献11に記載されている。
10)高被覆率で分光増感したAgX平板粒子(AgBr含率が50モル%以上)の近傍に、高AgI含率の微粒子を存在させて、現像処理時のDye Stainの発生量を抑制する事に関しては、文献12に記載されている。
しかし、以上の文献には、本発明の直角6面体AgI粒子に関する記載はない。該6面体粒子比率の高い乳剤に関する記載はない。
米国特許第2327764号明細書 米国特許第4672026号明細書 B.L.J.Byerleyら、J.Photographic Science,1970年、18巻、53〜59頁(総説)。
I-1) Conventionally, the following techniques have been disclosed.
1) The presence of α-type, β-type, γ-type, and δ-type as AgI crystal structures has been confirmed from their X-ray diffraction data. You can refer to the description.
The α type has a body-centered cubic structure and exists in a high temperature range of about 150 ℃ or higher. At temperatures lower than that, there is a hexagonal structure β-type and a face-centered cubic structure γ-type (called Cubic-Phase), and it is difficult to completely separate them. The δ type has a NaCl type crystal structure and exists under special conditions of high temperature and pressure.
2) Document 6 describes tetrahedron, dodecahedron and hexagonal prism-shaped AgI particles.
3) Reference 7 describes tabular AgI particles.
4) The α-type AgI which is unstable and disappears at 27 ° C. or lower is described in Reference 3. It disappears and becomes β type and γ type. However, the material that changes at 27 ° C. or lower is not practical. The powder method X-ray diffraction pattern of the α-type AgI emulsion grains stored at 27 ° C. or higher is described in Reference 3, and the diffraction peak (β2) of the (002) plane of the β-type phase and the α-type phase The intensity ratio of the diffraction peak (α1) on the (110) plane = “α1 peak intensity / β2 peak intensity” is 0.35 or less. That is, this is an embodiment in which the α-type content is very low.
5) Regarding AgI emulsion grains having an intrinsic light absorption edge wavelength of 10 nm or more and longer wavelength than β type even at 25 ° C. or lower, it is described in Reference 10. It is described that the particles are neither α-type, β-type, γ-type nor a mixture thereof.
6) When the AgI particle formation is performed under the conditions (Ag + concentration> I−concentration), particles having a high γ content are obtained, and when the AgI particle formation is performed under the conditions (Ag + concentration <I−concentration), particles having a high β content are obtained. This is described in Document 3. The behavior when the temperature of the AgI crystal is changed is described in Reference 5.
The preparation of conventional AgI emulsion grains, their properties, and their use in photographic light-sensitive materials are described in References 1 to 10 and the references cited therein.
7) Since the light absorption in the 400 to 430 nm region of β-type and γ-type is a direct transition type, its absorption coefficient is about 100 times larger than the absorption coefficient of the region of AgBr. This has the advantage of efficiently absorbing blue-violet light. This is described in Document 8.
US Pat. No. 2,327,764 describes the use of AgI particles as a UV absorber for a color filter UV filter layer using this property.
8) An aspect has been proposed in which an epitaxial AgX portion (hereinafter abbreviated as “epi portion”) is formed on AgI particles, chemical sensitization nuclei are formed in the epi portion, and a latent image is efficiently formed there. This is described in Document 9.
9) Increasing the refractive index of the dispersion medium layer by reducing the light scattering intensity of the AgX particles by mixing high refractive index fine particles and / or one or more of atoms, molecules and ions into the dispersion medium layer of the photosensitive material. This is described in Document 11.
10) Fine particles with a high AgI content are present in the vicinity of AgX tabular grains (AgBr content is 50 mol% or more) spectrally sensitized at a high coverage, thereby suppressing the amount of dye stain generated during development processing. This is described in Document 12.
However, the above literature does not describe the right-angled hexahedral AgI particles of the present invention. There is no description regarding an emulsion having a high hexahedral grain ratio.
U.S. Pat. No. 2,327,764 US Pat. No. 4,672,026 B. L. J. et al. Byerley et al. Photographic Science, 1970, 18, 53-59 (review).

従来のAgX乳剤に対して、より高感度、高画質を与えるAgX乳剤、及び写真感光材料を提供する事。また、青紫光吸収特性の優れた青紫光吸収フィルター材料を提供する。   To provide an AgX emulsion and a photographic material that give higher sensitivity and higher image quality than conventional AgX emulsions. In addition, a blue-violet light absorbing filter material having excellent blue-violet light absorption characteristics is provided.

本発明の目的は次の実施態様によって達成された。
I−2)実施態様。
(1) 少なくとも分散媒とハロゲン化銀粒子(AgX0)を有するハロゲン化銀乳剤において、該粒子の投影面積の合計の50〜100、好ましくは60〜100、より好ましくは80〜100、更に好ましくは90〜100、特に好ましくは95〜100%の粒子が、AgI含率が80〜100、好ましくは85〜100、より好ましくは90〜100、更に好ましくは95〜100モル%であり、該粒子の形状が直角6面体(直方体を意味し、立方体も含む)、又は、その角及び/又はエッジが丸みを帯びた形状であり、該粒子の円相当投影直径(以下、直径、と記す)が、0.01〜20、0.02〜10、0.03〜3μmである粒子(AgX1)、である事を特徴とするハロゲン化銀乳剤(AgX4)。
(2) 該6面体の辺長比=「1個の粒子の1つの面で、(最長辺の辺長/最短辺の辺長)を指す」、又は、該丸みを帯びた粒子の辺の直線部又は面の平坦部を延長する事により、形成される直角6面体の該辺長比が、1.0〜1.4、好ましくは1.0〜1.3、より好ましくは1.0〜1.2、更に好ましくは1.0〜1.1、である事を特徴とする(1)記載のハロゲン化銀乳剤。
(3) 支持体の一方または両面上に1層以上、好ましくは1〜20層のハロゲン化銀乳剤を塗布した写真感光材料において、少なくとも1層、好ましくは1〜10層のハロゲン化銀乳剤が、(1)記載のハロゲン化銀乳剤である事を特徴とする写真感光材料。
(4) 少なくとも分散媒と水とハロゲン化銀種晶粒子(AgX10)を有するハロゲン化銀種晶乳剤(AgX11)に、AgI含率が80〜100、好ましくは85〜100、より好ましくは90〜100、更に好ましくは95〜100モル%のハロゲン化銀微粒子乳剤(AgX12)を添加し、添加した該微粒子を溶解させ、該種晶粒子上に沈積させる事によ
り、ハロゲン化銀種晶粒子を成長させる方法において、該微粒子が(1)記載のAgX1 を含有する事を特徴とするハロゲン化銀種晶粒子の成長方法。
The object of the present invention has been achieved by the following embodiments.
I-2) Embodiment.
(1) In a silver halide emulsion having at least a dispersion medium and silver halide grains (AgX 0 ), the total projected area of the grains is 50 to 100, preferably 60 to 100, more preferably 80 to 100, still more preferably. Are particles of 90 to 100, particularly preferably 95 to 100%, and have an AgI content of 80 to 100, preferably 85 to 100, more preferably 90 to 100, still more preferably 95 to 100 mol%. Is a right-angled hexahedron (meaning a rectangular parallelepiped, including a cube), or a shape whose corners and / or edges are rounded, and a circle equivalent projected diameter (hereinafter referred to as a diameter) of the particle is A silver halide emulsion (AgX 4 ), characterized by being grains (AgX 1 ) of 0.01 to 20, 0.02 to 10, 0.03 to 3 μm.
(2) Side length ratio of the hexahedron = “one side of one particle indicates (longest side length / shortest side length)” or the side of the rounded particle By extending the straight part or the flat part of the surface, the side length ratio of the right-angled hexahedron formed is 1.0 to 1.4, preferably 1.0 to 1.3, more preferably 1.0. The silver halide emulsion according to (1), wherein the silver halide emulsion is -1.2, more preferably 1.0-1.1.
(3) In a photographic light-sensitive material in which one or more layers, preferably 1 to 20 layers of silver halide emulsion are coated on one or both sides of a support, at least one layer, preferably 1 to 10 layers of silver halide emulsion A photographic light-sensitive material characterized by being a silver halide emulsion described in (1).
(4) The silver halide seed crystal emulsion (AgX 11 ) having at least a dispersion medium, water, and silver halide seed crystal grains (AgX 10 ) has an AgI content of 80 to 100, preferably 85 to 100, more preferably A silver halide seed crystal is added by adding 90-100 mol%, more preferably 95-100 mol% of a silver halide fine grain emulsion (AgX 12 ), dissolving the added fine grain, and depositing on the seed crystal grain. A method for growing silver halide seed crystal grains, characterized in that the fine grains contain AgX 1 described in (1).

(5) 該AgX12が該AgX4の態様である事、好ましくは、AgX12の平均直径(μm)が0.005〜0.3、好ましくは、0.02〜0.2である事、を特徴とする(4)記載のハロゲン化銀種晶粒子の成長方法。
(6) 該丸みを帯びた部分の曲率半径が、粒子の該直径の0.01〜20、好ましくは0.05〜10、より好ましくは0.2〜5倍、である事を特徴とする(1)記載のハロゲン化銀乳剤。
(7) 該直角6面体の各面の角の角度が、84〜96、好ましくは86〜94、より好ましくは88〜92度、である事を特徴とする(1)記載のハロゲン化銀乳剤。
(8) 該AgX1粒子、又は該AgX0粒子の該直径の分布の変動係数(標準偏差/平均値)=CVが、0.01〜0.5、好ましくは0.02〜0.3、より好ましくは0.03〜0.2、更に好ましくは0.03〜0.15である事を特徴とする(1)記載のハロゲン化銀乳剤。
(9) 該6面体粒子の1つの面を、基板面に対して平行にして基板面上に設置し、−100℃以下に冷却して、該面の上方から電子線を照射し、透過型電子顕微鏡像を撮影した時、該粒子の上面の直角4辺形の対角線方向に、線の両側でコントラストが異なる線が、1つの粒子中に1〜105本、好ましくは2〜104本、より好ましくは2〜103本観測される粒子が存在する事、を特徴とする(1)記載のハロゲン化銀乳剤。
(10) 該線が、結晶欠陥面である事を特徴とする(9)記載のハロゲン化銀乳剤。
(5) The AgX 12 is an embodiment of the AgX 4 , preferably the average diameter (μm) of the AgX 12 is 0.005 to 0.3, preferably 0.02 to 0.2, (4) The method for growing a silver halide seed crystal according to (4).
(6) The radius of curvature of the rounded portion is 0.01 to 20, preferably 0.05 to 10, more preferably 0.2 to 5 times the diameter of the particle. (1) The silver halide emulsion as described above.
(7) The silver halide emulsion as described in (1), wherein the angle of each face of the right-angled hexahedron is 84 to 96, preferably 86 to 94, more preferably 88 to 92 degrees. .
(8) Coefficient of variation (standard deviation / average value) = CV of the diameter distribution of the AgX 1 particles or the AgX 0 particles is 0.01 to 0.5, preferably 0.02 to 0.3. The silver halide emulsion according to (1), wherein the silver halide emulsion is more preferably 0.03 to 0.2, and still more preferably 0.03 to 0.15.
(9) One surface of the hexahedral particles is placed on the substrate surface parallel to the substrate surface, cooled to -100 ° C. or lower, irradiated with an electron beam from above the surface, and transmissive type When an electron microscope image is taken, 1 to 10 5 lines, preferably 2 to 10 4 lines, differ in contrast on both sides of the line in the diagonal direction of the right quadrilateral on the upper surface of the particle. More preferably, 2 to 10 3 grains are observed, and the silver halide emulsion as described in (1).
(10) The silver halide emulsion as described in (9), wherein the line is a crystal defect surface.

(11) 該欠陥面が、AgI結晶のα型相、β型相、γ型相間のいずれかの相界面である事、を特徴とする(10)記載のハロゲン化銀乳剤。
(12) 該AgX。粒子の粉末法X線回折を測定した時、β型相の(002)面の回折ピーク(β2)と(101)面の回折ピーク(β3)の角度間に、回折ピーク(α1)を有する事、更に、「α1のピーク強度/β3のピーク強度」比が1.0〜106、好ましくは2.0〜105、より好ましくは5〜104、更に好ましくは10〜103 である事、を特徴とする(1)記載のハロゲン化銀乳剤。
(13) 該α1のピーク位置が、(該α1のピーク角度―該β2のピーク角度)/(該β3のピーク角度―該β2のピーク角度)=0.1〜0.9、好ましくは、0.2〜0.8、より好ましくは0.3〜0.7の領域にある事、を特徴とする(12)記載のハロゲン化銀乳剤。
(14) 該乳剤(AgX4)を25℃以下、好ましくは0〜20℃、より好ましくは0〜10℃で、2日以上、好ましくは10日以上、より好ましくは30日以上、保存しても、(12)記載のピーク強度比が保持されている事、を特徴とする(1)記載のハロゲン化銀乳剤。
(11) The silver halide emulsion as described in (10), wherein the defect surface is any phase interface between an α-type phase, a β-type phase and a γ-type phase of an AgI crystal.
(12) The AgX. When measuring the powder method X-ray diffraction of the particles, it has a diffraction peak (α1) between the angle of the diffraction peak (β2) of the (002) plane of the β-type phase and the diffraction peak (β3) of the (101) plane. Further, the ratio of “peak intensity of α1 / peak intensity of β3” is 1.0 to 10 6 , preferably 2.0 to 10 5 , more preferably 5 to 10 4 , and still more preferably 10 to 10 3. The silver halide emulsion as described in (1) above,
(13) The peak position of α1 is (the peak angle of α1−the peak angle of β2) / (the peak angle of β3−the peak angle of β2) = 0.1 to 0.9, preferably 0 The silver halide emulsion according to (12), wherein the silver halide emulsion is in the region of 2 to 0.8, more preferably 0.3 to 0.7.
(14) The emulsion (AgX 4 ) is stored at 25 ° C. or less, preferably 0 to 20 ° C., more preferably 0 to 10 ° C., for 2 days or more, preferably 10 days or more, more preferably 30 days or more. The silver halide emulsion of (1), wherein the peak intensity ratio of (12) is maintained.

(15) 該保存が、該乳剤を支持体上に塗布され、乾燥された塗布物の態様で成される事、を特徴とする(14)記載のハロゲン化銀乳剤。
(16) 該AgX1又はAgX0の固有光吸収の長波長端波長が、β型結晶相の該波長よりも、8〜50、好ましくは15〜50、より好ましくは25〜45nmだけ、長波側にある事、を特徴とする(1)記載のハロゲン化銀乳剤。
(17) 該AgX0 が、少なくとも該AgX1とAgX2粒子を含有し、AgX2粒子のAgI含率(モル%)が、80〜100、好ましくは85〜100、より好ましくは90〜100、更に好ましくは95〜100モル%であり、該粒子がβ型結晶構造を含有し、該β型の含有率(モル%)が30〜100、好ましくは50〜100、より好ましくは80〜100である事、を特徴とする(1)記載のハロゲン化銀乳剤。
(18) 該AgX2粒子の平均直径が、該AgX1粒子の平均直径の0.5〜5、好ましくは0.7〜2、より好ましくは0.9〜1.5倍である事、を特徴とする(17)記載のハロゲン化銀乳剤。
(19) 該AgX1粒子とAgX2粒子の投影面積比=(該AgX2粒子の投影面積の合計/該AgX1粒子の投影面積の合計)=A1、又は両者の粒子数比=(該AgX2粒子の粒子数の合計/該AgX1粒子の粒子数の合計)=A2が、10-5〜0.4、好ましくは10-4〜0.2、より好ましくは10-4〜0.1、更に好ましくは10-3〜0.01、である事を特徴とする(17)又は(18)記載のハロゲン化銀乳剤。
(15) The silver halide emulsion as described in (14), wherein the storage is carried out in the form of a coated product obtained by coating the emulsion on a support and drying.
(16) The long wavelength end wavelength of intrinsic light absorption of AgX 1 or AgX 0 is 8 to 50, preferably 15 to 50, more preferably 25 to 45 nm, longer than the wavelength of the β-type crystal phase. (1) The silver halide emulsion as described in (1) above.
(17) The AgX 0 contains at least the AgX 1 and AgX 2 particles, and the AgI content (mol%) of the AgX 2 particles is 80 to 100, preferably 85 to 100, more preferably 90 to 100, More preferably 95-100 mol%, the particles contain a β-type crystal structure, the β-type content (mol%) is 30-100, preferably 50-100, more preferably 80-100. The silver halide emulsion as described in (1) above,
(18) The average diameter of the AgX 2 particles is 0.5 to 5, preferably 0.7 to 2, more preferably 0.9 to 1.5 times the average diameter of the AgX 1 particles. The silver halide emulsion as described in (17), which is characterized in that
(19) Projected area ratio of the AgX 1 particles and AgX 2 particles = (total projected area of the AgX 2 particles / total projected area of the AgX 1 particles) = A1, or a ratio of the number of particles of both (the AgX (Total number of particles of 2 particles / total number of particles of AgX 1 particles) = A2 is 10 −5 to 0.4, preferably 10 −4 to 0.2, more preferably 10 −4 to 0.1. The silver halide emulsion according to (17) or (18), more preferably from 10 −3 to 0.01.

(20) 該AgX1粒子とAgX2粒子の投影面積比=A1、又は両者の粒子数比=A2が、10-5、より小さい事を特徴とする(17)記載のハロゲン化銀乳剤。
(21) 該AgX2粒子の形状が12個の平行四辺形状の外表面を有する12面体、又はその角および/またはエッジが丸みを帯びた形状、である事を特徴とする(17)記載のハロゲン化銀乳剤。
(22) 該AgX2粒子の少なくとも1つの面が、該β型結晶構造の{002}面である事、少なくとも1つの面が、該β型結晶構造の{101}面である事、を特徴とする(21)記載のハロゲン化銀乳剤。
(23) 該AgX2粒子の形状が12個の台形状の外表面と互いに平行な6角形の面を2個有する14面体、あるいはその角および/またはエッジが丸みを帯びた形状であり、両者の投影面積比=(該AgX2粒子の投影面積の合計/該AgX1粒子の投影面積の合計)=A1、又は両者の粒子数比=(該AgX2粒子の粒子数の合計/該AgX1粒子の粒子数の合計)=A2が、10-5〜0.4、好ましくは10-4〜0.2、より好ましくは10-4〜0.1、更に好ましくは10-4〜0.01、である事を特徴とする(17)記載のハロゲン化銀乳剤。
(24) 該AgX2粒子の該6角形の面が、該β型結晶構造の{002}面である事、該台形状の面の少なくとも1つが該β型結晶構造の{101}面である事、を特徴とする(23)記載のハロゲン化銀乳剤。
(20) The silver halide emulsion as described in (17), wherein the projected area ratio of the AgX 1 grains and AgX 2 grains = A1, or the ratio of the number of grains = A2 is smaller than 10 −5 .
(21) The shape of the AgX 2 particles is a dodecahedron having 12 parallelogram-shaped outer surfaces, or a shape whose corners and / or edges are rounded, (17) Silver halide emulsion.
(22) It is characterized in that at least one face of the AgX 2 particle is the {002} face of the β-type crystal structure and at least one face is the {101} face of the β-type crystal structure. The silver halide emulsion according to (21).
(23) The shape of the AgX 2 particles is a tetrahedron having two hexagonal surfaces parallel to 12 trapezoidal outer surfaces, or a shape having rounded corners and / or edges, Projected area ratio = (total projected area of the AgX 2 particles / total projected area of the AgX 1 particles) = A1, or the ratio of the number of particles = (total of the number of particles of the AgX 2 particles / the AgX 1 The total number of particles) = A2 is 10 −5 to 0.4, preferably 10 −4 to 0.2, more preferably 10 −4 to 0.1, and even more preferably 10 −4 to 0.01. The silver halide emulsion as described in (17) above,
(24) The hexagonal surface of the AgX 2 particles is the {002} plane of the β-type crystal structure, and at least one of the trapezoidal surfaces is the {101} plane of the β-type crystal structure (26) The silver halide emulsion as described in (23) above.

(25) 該6角形状の面の大きさが、1つの粒子中において異なり、(小さい6角形の面積/大きい6角形の面積)=A3が、0.05〜0.90、好ましくは0.1〜0.80、より好ましくは0.2〜0.7、更に好ましくは0.3〜0.6である事、を特徴とする(23)記載のハロゲン化銀乳剤。
(26) 該14面体粒子が、粒子表面上に更に、トラフ(樋状のくぼみ)を1〜10本有する事、を特徴とする(23)記載のハロゲン化銀乳剤。
(27) 該6面体の最大辺長比=「1個の粒子で、(最長辺の辺長/最短辺の辺長)を指す」、又は、該丸みを帯びた粒子の辺の直線部又は面の平坦部を延長する事により、形成される直角6面体の該最大辺長比が、1.0〜1.3、好ましくは1.0〜1.2、より好ましくは1.0〜1.1、更に好ましくは1.0〜1.05、である事を特徴とする(1)記載のハロゲン化銀乳剤。
(28) 該AgX2粒子が、該12面体粒子と該14面体粒子である事、好ましくは、(該12面体粒子数/該14面体粒子数)=0.1〜100、好ましくは0.5〜50、
より好ましくは1.0〜30、である事を特徴とする(17)記載のハロゲン化銀乳剤

(29) (該12面体粒子の直径/該14面体粒子の直径)=0.1〜5、好ましくは0.2〜0.9、より好ましくは0.2〜0.8、である事を特徴とする(28)記載のハロゲン化銀乳剤。
(25) The size of the hexagonal surface is different in one particle, and (small hexagonal area / large hexagonal area) = A3 is 0.05 to 0.90, preferably 0.00. The silver halide emulsion as described in (23), which is 1 to 0.80, more preferably 0.2 to 0.7, still more preferably 0.3 to 0.6.
(26) The silver halide emulsion as described in (23), wherein the tetradecahedral grains further have 1 to 10 troughs (basal depressions) on the grain surface.
(27) Maximum side length ratio of the hexahedron = “one particle indicates (longest side length / shortest side length)”, or a straight portion of the rounded particle side or By extending the flat portion of the surface, the maximum side length ratio of the right-angled hexahedron formed is 1.0 to 1.3, preferably 1.0 to 1.2, more preferably 1.0 to 1. 1. The silver halide emulsion as described in (1), which is preferably 1.0 to 1.05.
(28) The AgX 2 particles are the dodecahedron and the dodecahedron particles, preferably (the number of the dodecahedron particles / the number of the dodecahedron particles) = 0.1 to 100, preferably 0.5. ~ 50,
The silver halide emulsion as described in (17), wherein the silver halide emulsion is more preferably from 1.0 to 30.
(29) (Diameter of the dodecahedron particle / diameter of the tetrahedral particle) = 0.1-5, preferably 0.2-0.9, more preferably 0.2-0.8. The silver halide emulsion as described in (28), which is characterized in that

(30) 該成長方法において、該AgX12以外に、他の1種以上のAgX微粒子(AgX13)、Ag+、X-、の1種以上が添加される事、を特徴とする(4)記載の種晶粒子の成長方法。
(31) 該AgX13のAgX組成が、AgCl、AgBr、AgI、およびそれらの2種以上のあらゆる比率の混晶である事、を特徴とする(4)記載の種晶粒子の成長方法。
(32) 該種晶粒子のAgX組成が、AgCl、AgBr、AgI、およびそれらの2種以上のあらゆる比率の混晶である事、を特徴とする(4)記載のハロゲン化銀種晶粒子の成長方法。
(33) 該方法で成長させた粒子が、アスペクト比(投影直径/厚さ)が、2〜1000、好ましくは、4〜500の平板粒子である事、を特徴とする(4)記載の種晶粒子の成長方法。
(34) 該平板粒子が、互いに平行な双晶面を有する平行双晶平板粒子である事、または主平面が{100}面である平板粒子である事、を特徴とする(4)記載の種晶粒子の成長方法。
(30) The growth method is characterized in that, in addition to the AgX 12 , one or more other AgX fine particles (AgX 13 ), Ag + , X are added (4) The seed crystal grain growth method described.
(31) The method for growing seed crystal particles according to (4), wherein the AgX composition of the AgX 13 is AgCl, AgBr, AgI, and a mixed crystal of any ratio of two or more thereof.
(32) The silver halide seed crystal according to (4), wherein the AgX composition of the seed crystal grain is a mixed crystal of AgCl, AgBr, AgI, and any ratio of two or more thereof. Growth method.
(33) The seed according to (4), wherein the grains grown by the method are tabular grains having an aspect ratio (projected diameter / thickness) of 2 to 1000, preferably 4 to 500 Crystal grain growth method.
(34) The tabular grains are parallel twin tabular grains having twin planes parallel to each other, or tabular grains having a {100} plane as a main plane. Seed crystal grain growth method.

(35) 該沈積により、該種晶上にエピ部が形成される事、該エピ部が、該粒子表面上の総面積の0.1〜70、好ましくは0.5〜40%を占める事、を特徴とする(4)記載の種晶粒子の成長方法。
(36) 該エピ部との界面に、1種以上の結晶格子欠陥が導入される事、を特徴とする(35)記載の種晶粒子の成長方法。
(37) 該沈積により、該種晶に1種以上の結晶格子欠陥が導入される事、を特徴とする(4)記載の種晶粒子の成長方法。
(38) 該欠陥が少なくとも、刃状転位線を1粒子あたり、1〜50、好ましくは2〜30本含有する事、を特徴とする(36)、(37)記載の種晶粒子の成長方法。
(39) 該(AgX12)の直径が、1〜200、好ましくは5〜100、より好ましくは10〜50nmである事、を特徴とする(4)記載の種晶粒子の成長方法。
(35) By the deposition, an epi part is formed on the seed crystal, and the epi part occupies 0.1 to 70, preferably 0.5 to 40% of the total area on the particle surface. (4) The method for growing seed crystal particles according to (4).
(36) The seed crystal grain growth method according to (35), wherein one or more types of crystal lattice defects are introduced into the interface with the epi portion.
(37) The seed crystal grain growth method according to (4), wherein one or more crystal lattice defects are introduced into the seed crystal by the deposition.
(38) The method for growing seed crystal grains according to (36) or (37), wherein the defect contains at least 1 to 50, preferably 2 to 30 edge dislocation lines per grain. .
(39) The method for growing seed crystal particles according to (4), wherein the diameter of the (AgX 12 ) is 1 to 200, preferably 5 to 100, more preferably 10 to 50 nm.

(40) 該(AgX12)が、形成された後に、その1〜99.99、好ましくは10〜99.9、より好ましくは30〜99、更に好ましくは60〜97%の水分が除去された後に、添加される事、を特徴とする(4)記載の種晶粒子の成長方法。
(41) 該水分除去が、(限外ろ過処理)、(凝集沈降させ、上澄み液を除去する方法)、(遠心分離して、上澄み液を除去する)、のいずれかの方法でなされる事、を特徴とする(39)記載の種晶粒子の成長方法。
(42) 該AgX。粒子の粉末法X線回折を測定した時、β型相の(100)面の回折ピークを(β1)とすると、粒子の「α1のピーク強度/(β1)のピ―ク強度」比が1.0〜106、好ましくは2.0〜105、より好ましくは5〜104、更に好ましくは10〜103 である事、を特徴とする(12)記載のハロゲン化銀乳剤。
(43) 該AgX。粒子がAgI粒子である時、該粒子をCuKβ線で粉末法X線回
折を測定した時、該α1のピーク位置が、2θ=22.0〜22.7、好ましくは22.1〜22.6、より好ましくは22.15〜22.5度、の領域にある事、を特徴とする(12)記載のハロゲン化銀乳剤。
(40) After the (AgX 12 ) was formed, its 1 to 99.99, preferably 10 to 99.9, more preferably 30 to 99, and even more preferably 60 to 97% of water was removed. The seed crystal grain growth method according to (4), which is added later.
(41) The water removal is performed by any one of the methods (ultrafiltration treatment), (method of coagulating sedimentation, removing the supernatant), and (centrifuged to remove the supernatant). The method for growing seed crystal particles according to (39), wherein
(42) The AgX. When the powder method X-ray diffraction of the particles is measured, and the diffraction peak of the (100) plane of the β-type phase is (β1), the ratio of “peak intensity of α1 / peak intensity of (β1)” is 1. The silver halide emulsion according to (12), characterized in that it is from 0 to 10 6 , preferably from 2.0 to 10 5 , more preferably from 5 to 10 4 , still more preferably from 10 to 10 3 .
(43) The AgX. When the particle is an AgI particle, when the powder method X-ray diffraction is measured with CuKβ ray, the α1 peak position is 2θ = 22.0 to 22.7, preferably 22.1 to 22.6. The silver halide emulsion according to (12), characterized in that it is in the region of 22.15 to 22.5 degrees.

(50) 該乳剤が、反応容器内の分散媒溶液中へ、攪拌しながら、Ag+塩溶液と、X-塩溶液をダブルジェット添加するバッチ方式で形成された乳剤、である事を特徴とする(1)記載のハロゲン化銀乳剤。
(51) 該乳剤が、少なくとも分散媒と水とAgI含率が80〜100、好ましくは85〜100、より好ましくは90〜100、更に好ましくは95〜100モル%のハロゲン化銀種晶粒子(AgX6)を有するハロゲン化銀種晶乳剤(AgX7)に、AgI含率が80〜100、好ましくは85〜100、より好ましくは90〜100、更に好ましくは95〜100モル%のハロゲン化銀微粒子(AgX13)を添加し、添加した該微粒子を溶解させ、該種晶粒子上に沈積させる事により、形成された粒子である事を特徴とする(1)記載のハロゲン化銀乳剤。
(52) 該乳剤が、連続法混合容器内へAg+塩溶液と、X-塩溶液を供給し、混合容器内で両者が混合され、混合液が送液管を通して連続的に排出される連続製造方式で形成された粒子、である事を特徴とする(1)記載のハロゲン化銀乳剤。
(53) 該Ag+塩溶液と、X-塩溶液が、中空管を通して、分散媒溶液中に液中添加される事、添加された後、迅速に両者が混合される事、好ましくは10-6〜1、より好ましくは10-6〜10-1、更に好ましくは10-6〜10-2秒の間に混合される事、を特徴とする(50)又は(52)記載のハロゲン化銀乳剤。
(54) 該Ag+塩溶液と、X-塩溶液の少なくとも一方、好ましくは両方に分散媒を0.01〜10、好ましくは0.1〜7、より好ましくは0.5〜3質量%含有させる事、を特徴とする(50)、(52)、(53)のいずれかに記載のハロゲン化銀乳剤。
(50) The emulsion is characterized in that it is an emulsion formed by a batch method in which an Ag + salt solution and an X - salt solution are added to a dispersion medium solution in a reaction vessel while stirring. The silver halide emulsion according to (1).
(51) The emulsion comprises silver halide seed crystal grains having at least a dispersion medium, water, and an AgI content of 80 to 100, preferably 85 to 100, more preferably 90 to 100, and still more preferably 95 to 100 mol%. A silver halide seed emulsion (AgX 7 ) having AgX 6 ) having an AgI content of 80 to 100, preferably 85 to 100, more preferably 90 to 100, still more preferably 95 to 100 mol%. The silver halide emulsion according to (1), wherein the silver halide emulsion is formed by adding fine grains (AgX 13 ), dissolving the added fine grains and depositing on the seed crystal grains.
(52) emulsion is a Ag + salt solution into a continuous process mixing vessel, X - continuous salt solution supply, is both in a mixing vessel are mixed and the mixture is continuously discharged through the liquid feed pipe The silver halide emulsion as described in (1), which is a grain formed by a production method.
(53) The Ag + salt solution and the X - salt solution are added into the dispersion medium solution through the hollow tube, and after the addition, both are quickly mixed, preferably 10 -6 to 1, more preferably 10 -6 to 10 -1, more preferably, wherein the, to be mixed between 10 -6 to 10 -2 seconds (50) or (52) halogenated according Silver emulsion.
(54) A dispersion medium is contained in at least one of the Ag + salt solution and the X - salt solution, preferably both in an amount of 0.01 to 10, preferably 0.1 to 7, and more preferably 0.5 to 3% by mass. The silver halide emulsion as described in any one of (50), (52) and (53),

(55) 該分散媒溶液の温度と、該添加溶液の温度との差が、0〜20、好ましくは0〜10、より好ましくは0〜5℃である事、を特徴とする(50)又は(52)記載のハロゲン化銀乳剤。
(56) 該Ag+塩溶液と、X-塩溶液の少なくとも一方、好ましくは両方の添加
が、添加孔数が2〜1015、好ましくは6〜1010、より好ましくは10〜1010 個である多孔添加系を用いて、成される事、を特徴とする(50)又は(52)記載のハロゲン化銀乳剤。
(55) The difference between the temperature of the dispersion medium solution and the temperature of the additive solution is 0 to 20, preferably 0 to 10, more preferably 0 to 5 ° C. (50) or (52) The silver halide emulsion as described above.
(56) Addition of at least one of the Ag + salt solution and the X - salt solution, preferably both, is 2 to 10 15 , preferably 6 to 10 10 , more preferably 10 to 10 10 The silver halide emulsion as described in (50) or (52), which is formed using a certain porous additive system.

(60) 該AgX12が、反応容器内の分散媒溶液中へ、攪拌しながら、Ag+塩溶液と、X-塩溶液をダブルジェット添加するバッチ方式で形成された微粒子、である事を特徴とする(4)記載のハロゲン化銀種晶粒子の成長方法。
(61) 該AgX12が、連続法混合容器内へAg+塩溶液と、X-塩溶液を供給し、混合容器内で両者が混合され、混合液が送液管を通して連続的に排出される連続製造方式で形成された微粒子、である事を特徴とする(4)記載のハロゲン化銀種晶粒子の成長方法。
(62) 該Ag+塩溶液と、X-塩溶液が中空管を通して供給され、該中空管〜混合容器〜送液管系の内部が、外気から遮断された閉鎖系、である事を特徴とする(61)記載のハロゲン化銀種晶粒子の成長方法。
(63) 該Ag+塩溶液と、X-塩溶液の少なくとも一方、好ましくは両方に分散媒を0.01〜10、好ましくは0.1〜7、より好ましくは0.5〜3質量%含有させる
事、を特徴とする(61)記載のハロゲン化銀種晶粒子の成長方法。
(64) 該混合が 磁気攪拌を用いて成される事、好ましくは、互いに逆方向に回転する攪拌羽根を用いて成される事、を特徴とする(61)記載のハロゲン化銀種晶粒子の成長方法。
(60) the AgX 12 is, the dispersion medium solution in the reaction vessel, while stirring, the Ag + salt solution, X -, wherein it is fine, which is formed in a batch method in which the double-jet addition of a salt solution (4) The method for growing silver halide seed crystal grains according to (4).
(61) the AgX 12 is a Ag + salt solution into a continuous process mixing vessel, X - salt solution supply, both are mixed in a mixing vessel, a mixture is continuously discharged through the liquid feed pipe (4) The method for growing silver halide seed crystal grains according to (4), wherein the grains are fine grains formed by a continuous production method.
(62) A closed system in which the Ag + salt solution and the X salt solution are supplied through a hollow tube, and the inside of the hollow tube, the mixing vessel, and the liquid feeding tube system is blocked from the outside air. The silver halide seed crystal growth method as described in (61), which is characterized in that
(63) and said Ag + salt solution X - at least one salt solution, preferably 0.01 to 10 both in the dispersion medium, preferably 0.1 to 7, more preferably containing 0.5 to 3 wt% (61) The method for growing silver halide seed crystal grains according to (61).
(64) The silver halide seed crystal according to (61), wherein the mixing is performed using magnetic stirring, preferably using stirring blades rotating in opposite directions. Growth method.

(71) (1)記載のAgX1粒子が、該粒子表面上(面、稜、角の1つ以上の部位)に、AgX1とはハロゲン組成の異なるエピ部を有する事、該ハロゲン組成が、I-含率で10〜100、好ましくは20〜100、より好ましくは30〜100モル%だけ異なる事、エピ部が、該粒子表面上の総面積の0.1〜70、好ましくは0.5〜40%を占める事、を特徴とする(1)記載のハロゲン化銀乳剤(AgX6)。
(72) 該エピ部のAgCl含率(mol%)が0〜100、好ましくは30〜100、より好ましくは60〜100、である事を特徴とする(71)記載のハロゲン化銀乳剤。
(73) 該エピ部のAgBr含率(mol%)が0〜100、好ましくは30〜100、より好ましくは60〜100、である事を特徴とする(71)記載のハロゲン化銀乳剤。
(74) (該エピ部のAgXmol量/ホスト粒子のAgXmol量)比が10-5〜2、好ましくは10-4〜0.6、より好ましくは10-3〜0.3、である事を特徴とする(71)記載のハロゲン化銀乳剤。
(75) (1)記載のAgX1粒子が、該粒子表面上に、AgX1とはハロゲン組成の異なるシェル層(AgX8)を有し、該ハロゲン組成が、I-含率で10〜100、好ましくは20〜100、より好ましくは30〜100モル%だけ異なるシェル層である事、を特徴とする(1)記載のハロゲン化銀乳剤(AgX9)。
(71) The AgX 1 particle according to (1) has an epi part having a halogen composition different from that of AgX 1 on the particle surface (one or more parts of a plane, a ridge, and a corner), , I content is different from 10 to 100, preferably 20 to 100, more preferably 30 to 100 mol%, and the epi part is 0.1 to 70, preferably 0.8, of the total area on the particle surface. The silver halide emulsion (AgX 6 ) according to (1), characterized by occupying 5 to 40%.
(72) The silver halide emulsion as described in (71), wherein the content of AgCl (mol%) in the epi part is 0 to 100, preferably 30 to 100, more preferably 60 to 100.
(73) The silver halide emulsion as described in (71), wherein the content of AgBr (mol%) in the epi portion is from 0 to 100, preferably from 30 to 100, more preferably from 60 to 100.
(74) The ratio (AgXmol amount of the epi part / AgXmol amount of the host particles) is 10 −5 to 2, preferably 10 −4 to 0.6, more preferably 10 −3 to 0.3. The silver halide emulsion as described in (71), which is characterized in that
(75) The AgX 1 particle according to (1) has a shell layer (AgX 8 ) having a halogen composition different from that of AgX 1 on the particle surface, and the halogen composition has an I content of 10 to 100. The silver halide emulsion (AgX 9 ) according to (1), characterized in that the shell layer is preferably different from 20 to 100, more preferably from 30 to 100 mol%.

(76) 該シェル層の該組成が、段階的に、又は連続的に変化した態様、である事を特徴とする(75)記載のハロゲン化銀乳剤。
(77) 該(AgX1)粒子の内部、シェル層、該シェル層(AgX8)、該エピ部の1つ以上に、銀、ハロゲン以外に原子番号が1〜92の原子の単体または化合物の1種以上をドープ剤として、合計量で10-9〜10-1、好ましくは10-8〜10-2(mol/molAgX)だけ含有する事、を特徴とする(1)、(71)、(75)のいずれかに記載のハロゲン化銀乳剤。
(78) 該ドープ剤が、金属原子「元素の長周期表においてホウ素BとAtを結ぶ線よりも左側にある原子」の単体、または該金属原子含有化合物の中性体またはイオン体である事、を特徴とする(77)記載のハロゲン化銀乳剤。
(79) 該化合物が該金属原子を1〜3個と、配位子を2〜20個を含有する金属錯体で、該配位子の1個〜全部が、無機配位子および/または、炭素数1〜30個を含有する有機配位子、である事を特徴とする(78)記載のハロゲン化銀乳剤。
(76) The silver halide emulsion as described in (75), wherein the composition of the shell layer is changed stepwise or continuously.
(77) A simple substance or a compound having an atomic number of 1 to 92 other than silver and halogen, in one or more of the inside of the (AgX 1 ) particle, the shell layer, the shell layer (AgX 8 ), and the epi part. (1), (71), characterized by containing only 10 −9 to 10 −1 , preferably 10 −8 to 10 −2 (mol / mol AgX) as one or more kinds of dopants. (75) The silver halide emulsion according to any one of (75).
(78) The dopant is a simple substance of a metal atom “an atom on the left side of a line connecting boron B and At in the element long periodic table” or a neutral or ionic substance of the metal atom-containing compound. The silver halide emulsion as described in (77) above,
(79) The compound is a metal complex containing 1 to 3 metal atoms and 2 to 20 ligands, wherein one to all of the ligands are inorganic ligands and / or The silver halide emulsion as described in (78), which is an organic ligand containing 1 to 30 carbon atoms.

(80) 該金属錯体が、テトラまたはヘキサ配位錯体、である事を特徴とする(79)記載のハロゲン化銀乳剤。
(81) 該金属錯体が該有機配位子を1または2個有し、残りの配位子が無機配位子である事、を特徴とする(79)又は(80)記載のハロゲン化銀乳剤。
(82) 該ドープされたものが、カルコゲン原子(S、Se、Teの1種以上)であり、ドープ量が10-8〜10-2、好ましくは10-7〜10-3(mol/molAgX)、である事、を特徴とする(77)記載のハロゲン化銀乳剤。
(83) 該エピ部形成が、該粒子にゼラチン以外の吸着剤を飽和吸着量の10〜100、好ましくは30〜97、より好ましくは60〜95%だけ吸着させた状態で、Ag+とX-を添加して、形成された事、及び/又は、X-を添加してハロゲン変換させる事により形成された事、を特徴とする(71)記載のハロゲン化銀乳剤。
(84) 該吸着剤がシアニン色素、かぶり記載のハロゲン化銀乳剤。
(85) 該AgX。が、該ホスト粒子内、該エピ部内、該シェル層内の1つ以上に還元銀を10-8〜10-2、好ましくは10-7〜10-3(モル/モルAgX)だけ含有する事、を特徴とする(1)、(71)、(75)のいずれかに記載のハロゲン化銀乳剤。
(80) The silver halide emulsion as described in (79), wherein the metal complex is a tetra- or hexa-coordination complex.
(81) The silver halide according to (79) or (80), wherein the metal complex has one or two organic ligands, and the remaining ligand is an inorganic ligand. emulsion.
(82) The doped one is a chalcogen atom (one or more of S, Se, Te), and the doping amount is 10 −8 to 10 −2 , preferably 10 −7 to 10 −3 (mol / mol AgX). The silver halide emulsion according to (77), which is characterized in that
(83) The epitaxial portion formation, 10-100 saturated adsorption amount of the adsorbent other than gelatin particles, preferably 30 to 97, more preferably adsorbed by 60% to 95% state, Ag + and X - by adding, that are formed, and / or, X - a is added that is formed by halogen conversion, characterized by (71), wherein the silver halide emulsion.
(84) A silver halide emulsion according to which the adsorbent is a cyanine dye and a fog.
(85) The AgX. However, it contains 10 −8 to 10 −2 , preferably 10 −7 to 10 −3 (mole / mole AgX) of reduced silver in one or more of the host grains, the epi part, and the shell layer. The silver halide emulsion as described in any one of (1), (71) and (75),

(86) 該乳剤に化学増感剤を添加して化学熟成する時、または増感色素を添加し、分光増感する時、該乳剤を支持体上に塗布する時、乳剤のpAgが3〜11、pHが3〜11、温度10〜90℃の最も好ましい組合せを選んで用いられる事、を特徴とする(1)記載のハロゲン化銀乳剤。
(87) 該乳剤が1種以上の化学増感剤が添加され、化学増感された乳剤である事、化学増感剤が、カルコゲン増感剤(イオウ、セレン、テルル増感剤)、貴金属増感剤(金、第8族金属化合物)、還元増感剤、の単独またはその2種以上(添加量比率はあらゆる比率)である事、各々の添加量(モル/モルAgX)が好ましくは10-9〜10-2、より好ましくは10-8〜10-3である事、を特徴とする(1)、(71)、(75)、(83)のいずれかに記載のハロゲン化銀乳剤。
(88) 該乳剤が1種以上のシアニン色素が添加され、分光増感された乳剤であり、該色素のAgXに対する吸着量が、飽和吸着量の1〜100、好ましくは10〜98、より好ましくは30〜95%である事、を特徴とする(1)記載のハロゲン化銀乳剤。
(89) 該乳剤に該粒子の格子間銀イオン(Agi+)濃度を低下させる化合物を添加し、粒子に吸着させる事により、粒子の該濃度を、添加前の0.9〜10、好ましくは0.5〜0.01倍に低下させた態様である事、を特徴とする(1)記載のハロゲン化銀乳剤。
(86) When a chemical sensitizer is added to the emulsion for chemical ripening, or when a sensitizing dye is added for spectral sensitization, or when the emulsion is coated on a support, the emulsion has a pAg of 3 to 3. 11. The silver halide emulsion as described in (1), wherein the most preferable combination having a pH of 3 to 11 and a temperature of 10 to 90 ° C. is selected and used.
(87) The emulsion is an emulsion obtained by adding one or more chemical sensitizers and chemically sensitized; the chemical sensitizer is a chalcogen sensitizer (sulfur, selenium, tellurium sensitizer), a noble metal A sensitizer (gold, a Group 8 metal compound) or a reduction sensitizer is used alone or in combination of two or more thereof (addition ratio is any ratio), and each addition amount (mol / mol AgX) is preferably The silver halide according to any one of (1), (71), (75), and (83), characterized in that it is 10 −9 to 10 −2 , more preferably 10 −8 to 10 −3. emulsion.
(88) The emulsion is a spectrally sensitized emulsion to which one or more cyanine dyes are added, and the adsorption amount of the dye to AgX is 1 to 100, preferably 10 to 98, more preferably a saturated adsorption amount. The silver halide emulsion as described in (1), characterized in that it is 30 to 95%.
(89) A compound that lowers the interstitial silver ion (Agi + ) concentration of the grains is added to the emulsion and adsorbed on the grains, so that the concentration of grains is 0.9 to 10 before the addition, preferably The silver halide emulsion as described in (1), wherein the silver halide emulsion is reduced to 0.5 to 0.01 times.

(90) 該エピ部に優先的に該化学増感で化学増感核が形成され、(該エピ部/非エピ部)の化学増感核量比が1.2〜105、好ましくは2〜104、より好ましくは5〜104である事、を特徴とする(71)記載のハロゲン化銀乳剤。
(91) 該乳剤の製造において、粒子形成後で、乳剤の脱塩工程前の乳剤の銀量(モル/L)が0.05〜3、好ましくは0.1〜2、である事を特徴とする(1)記載のハロゲン化銀乳剤。
(92) 該シェル層のAgCl含率が1〜100、好ましくは10〜100、より好ましくは60〜100mol%である事を特徴とする(75)記載のハロゲン化銀乳剤。
(93) 該シェル層のAgBr含率が1〜100、好ましくは10〜100、より好ましくは60〜100mol%である事を特徴とする(75)記載のハロゲン化銀乳剤。
(90) Chemical sensitization nuclei are preferentially formed in the epi part by the chemical sensitization, and the chemical sensitization nucleus ratio of (the epi part / non-epi part) is 1.2 to 10 5 , preferably 2 The silver halide emulsion according to (71), wherein the silver halide emulsion is from 10 4 to 10 4 , more preferably from 5 to 10 4 .
(91) In the production of the emulsion, the silver amount (mol / L) of the emulsion after grain formation and before the desalting step of the emulsion is 0.05 to 3, preferably 0.1 to 2. The silver halide emulsion according to (1).
(92) The silver halide emulsion as described in (75), wherein the shell layer has an AgCl content of 1 to 100, preferably 10 to 100, more preferably 60 to 100 mol%.
(93) The silver halide emulsion as described in (75), wherein the AgBr content of the shell layer is 1 to 100, preferably 10 to 100, more preferably 60 to 100 mol%.

(100) 該感光材料が非感光性有機銀塩、熱現像剤及びバインダーを有する熱現像写真感光材料である事、を特徴とする(3)記載の写真感光材料。
(101) 該感光材料が、露光し、感光させた後に、該材料を80〜200、好ましくは90〜150℃に加熱して現像させる熱現像写真感光材料である事、を特徴とする(3)記載の写真感光材料。
(102) 該感光材料が青感層、緑感層、赤感層を有する感光材料である事、を特徴とする(3)記載の写真感光材料。
(103)該感光材料がカラー発色剤を含有するカラー感光材料である事、を特徴とする(102)記載の写真感光材料。
(104) 該(1)記載の乳剤が、該感光材料の紫外線吸収剤として用いられる事、好ましくは支持体からの距離が青感層よりも遠い層に用いられる事を特徴とする(3)記載の写真感光材料。
(100) The photographic material according to (3), wherein the photographic material is a photothermographic material having a non-photosensitive organic silver salt, a heat developer, and a binder.
(101) The photosensitive material is a photothermographic material which is exposed to light and exposed to light and then developed by heating the material to 80 to 200, preferably 90 to 150 ° C. (3) ) The photosensitive material described in the above.
(102) The photographic light-sensitive material as described in (3), wherein the light-sensitive material is a light-sensitive material having a blue-sensitive layer, a green-sensitive layer, and a red-sensitive layer.
(103) The photographic light-sensitive material as described in (102), wherein the photographic material is a color light-sensitive material containing a color developer.
(104) The emulsion described in (1) is used as an ultraviolet absorber of the light-sensitive material, preferably used in a layer farther from the support than the blue-sensitive layer (3) The photographic light-sensitive material described.

(105) 該(1)記載の乳剤が、該感光材料のイエローフィルター層(青光除去層)として用いられる事、好ましくは該層が青感層と緑感層の間に設置されている事を特徴とする(3)記載の写真感光材料。
(106) 該感光材料が、露光され、現像され、白黒像を与える感光材料である事、を特徴とする(3)記載の写真感光材料。
(107) 支持体上に1層以上のハロゲン化銀乳剤を塗布した短波長光カットフィルター材料において、少なくとも1層のハロゲン化銀乳剤が、(1)記載のハロゲン化銀乳剤である事を特徴とするフィルター材料。
(108) 該短波長光が、200〜600、好ましくは220〜500、より好ましくは230〜490、更に好ましくは250〜480nm波長光、である事を特徴とする(107)記載のフィルター材料。
(109) 該フィルター材料が、透過光型フィルター材料である事、を特徴とする(107)記載のフィルター材料。
(110) 該フィルター材料が、反射光型フィルター材料である事、を特徴とする(107)記載のフィルター材料。
(111) 該乳剤に、可視光領域に光吸収を有する色材が添加されている事を特徴とする(107)記載のフィルター材料。
(112) 該色材が、シアニン色素である事、を特徴とする(111)記載のフィルター材料。
(113) 該フィルター層(AgX0)粒子が、490nm以下の短波長光に対して非感光性であり、該感光材料の現像処理時に、実質的に現像されない事、定着処理時に、実質的に溶解除去される事、を特徴とする(105)記載の写真感光材料。
(105) The emulsion described in (1) is used as a yellow filter layer (blue light removing layer) of the light-sensitive material, preferably the layer is disposed between a blue-sensitive layer and a green-sensitive layer. (3) The photographic light-sensitive material according to (3).
(106) The photographic light-sensitive material as described in (3), wherein the light-sensitive material is a light-sensitive material that is exposed and developed to give a black and white image.
(107) In the short wavelength light cut filter material in which one or more silver halide emulsions are coated on a support, at least one silver halide emulsion is the silver halide emulsion described in (1). And filter material.
(108) The filter material according to (107), wherein the short-wavelength light is 200 to 600, preferably 220 to 500, more preferably 230 to 490, and still more preferably 250 to 480 nm.
(109) The filter material according to (107), wherein the filter material is a transmitted light type filter material.
(110) The filter material according to (107), wherein the filter material is a reflected light type filter material.
(111) The filter material according to (107), wherein a color material having light absorption in the visible light region is added to the emulsion.
(112) The filter material according to (111), wherein the colorant is a cyanine dye.
(113) The filter layer (AgX 0 ) particles are non-photosensitive to light having a short wavelength of 490 nm or less, and are not substantially developed during the development processing of the photosensitive material. The photosensitive material as described in (105), which is dissolved and removed.

本発明により、高感度、高画質を与えるAgX乳剤、及び写真感光材料を得るする事が出来、また、青紫光吸収特性の優れた青紫光吸収フィルター材料が得られる。   According to the present invention, an AgX emulsion and a photographic light-sensitive material giving high sensitivity and high image quality can be obtained, and a blue-violet light absorbing filter material having excellent blue-violet light absorption characteristics can be obtained.

この明細書、特許請求の範囲における「左数値」〜「右数値」は「左数値」以上「右数値」以下を意味するものとする。
(II)次に本発明を詳細に説明する。
(II−1)AgX粒子構造。
AgXの粒子構造例を図に示した。図1は、AgI含率が100モル%であるAgI粒子のカーボンレプリカ膜の透過型電子顕微鏡写真像(以下、TEM像と記す)である。乳剤を遠心分離し、ゼラチンを除去した粒子を、水で再分散した後、コロジオン膜を張った電顕メッシュ上にのせ、乾燥させる。次に真空中でAu−Pdでシャドウイングし、カーボン蒸着する。コロジオン膜を溶解除去し、定着液でAgX粒子を除去し、乾燥し、これをTEM撮影したものである。立方体状粒子の角とエッジが少し丸みを帯びている。該粒子の平坦面、又はエッジの直線部を延長する事により形成される6面体の該辺長比は、全てが1.0〜1.05である。更には、該最大辺長比も全てが1.0〜1.05である。吸着したゼラチンも残っているだろうし、レプリカ膜の収縮、粒子のかたむき等による変形もあるだろうが、いずれも、ほぼ1.0である。
又、粒子の面の角の角度は、全てが86〜94°であった。レプリカ膜の該変形もあるだろうが、いずれも、ほぼ90°である。
該粒子を、−150〜−100℃に冷却して、そのTEM像を撮影すると、図2に示す態様の縞模様が観察される。該6面体の主たる相を、α相とすると、α相上に他の結晶構造相が積層欠陥として、入っている事を示している。
該粒子に、前記12面体粒子や14面体粒子が、(19)〜(23)の態様で混入する事が多い。該粒子の詳細に関しては、特願2002−81020号の記載を参考にできる。これらの粒子は(17)の態様でβ型結晶構造を含有する。該12面体粒子や14面体粒子を、−150〜−100℃に冷却して、そのTEM像を撮影すると、縞模様が観察される。
これらの縞模様はα、β、γ型、AgI結晶のα型相、β型相、γ型相間のいずれかの相界面であると考えられる.
円相当投影直径とは、粒子を基板上に置き、それを真上から観察した時の投影面積と等しい面積の円の直径、を指す。
In this specification and claims, “left numerical value” to “right numerical value” mean “left numerical value” or more and “right numerical value” or less.
(II) Next, the present invention will be described in detail.
(II-1) AgX particle structure.
An example of the particle structure of AgX is shown in the figure. FIG. 1 is a transmission electron micrograph image (hereinafter referred to as TEM image) of a carbon replica film of AgI particles having an AgI content of 100 mol%. The emulsion is centrifuged, and the particles from which gelatin has been removed are redispersed with water and then placed on an electron microscope mesh covered with a collodion film and dried. Next, it is shadowed with Au—Pd in vacuum and carbon is deposited. The collodion film was dissolved and removed, the AgX particles were removed with a fixing solution, dried, and a TEM image was taken. The corners and edges of the cubic particles are slightly rounded. All of the side length ratios of the hexahedron formed by extending the flat surface of the particle or the straight part of the edge are 1.0 to 1.05. Further, all of the maximum side length ratios are 1.0 to 1.05. The adsorbed gelatin will remain, and there will be deformation due to shrinkage of the replica film, flaking of the particles, etc., but all are approximately 1.0.
Further, the angles of the surface of the particles were all 86-94 °. There will be this deformation of the replica film, but all are approximately 90 °.
When the particles are cooled to −150 to −100 ° C. and a TEM image is taken, a striped pattern as shown in FIG. 2 is observed. When the main phase of the hexahedron is an α phase, it indicates that another crystal structure phase is included as a stacking fault on the α phase.
In many cases, the dodecahedron particles and the dodecahedron particles are mixed in the particles in the modes (19) to (23). Regarding the details of the particles, reference can be made to the description in Japanese Patent Application No. 2002-81020. These particles contain a β-type crystal structure in the form of (17). When the dodecahedron particles and the tetrahedral particles are cooled to −150 to −100 ° C. and the TEM image is taken, a striped pattern is observed.
These striped patterns are considered to be α, β, γ type, or any phase interface between the α type phase, β type phase, and γ type phase of the AgI crystal.
The circle equivalent projected diameter refers to the diameter of a circle having an area equal to the projected area when a particle is placed on a substrate and observed from directly above.

(II−2)粒子のX線回折特性。
図1に示したAgI粒子をガラス基板上に載せて、25℃でCuKβ特性X線(波長1.39217Å)を用いて通常の粉末法X線回折測定した結果を図3(a)に示した。θは入射X線ビームと基板との角度を表す。回折特性は、(12)、(13)記載の特性を有する。
該粒子を180℃以上で約1時間アニールした後に、室温にゆっくりと冷却し、そのX線回折を測定すると、該α1のピーク強度が大きく減少し、β型結晶構造の(002)面の回折ピークが大きく増加する。
該粒子を平坦なガラス基板上に載せ、図1の粒子のように、基板面に平行に粒子表面を配向させた態様の粒子を多くして、測定したものを、図3(b)に示した。載せる粒子密度を更に低くして、該態様粒子の比率を増して測定したものを図3(b)に示した。該α1のピークがメインピークである事から、該α1ピークは、該立方体粒子の表面に平行な面の回折である。該ピークは、α型AgIの(110)面回折角度=22.424°に近い値である。
α1がこれだとすると、他の面は(100)面になるが、α型AgIの(200)面
回折角度=31.941°がない。α型AgIの(211)面回折角度=39.380°に近い39.95°の強い回折は存在するが、この面と該(110)面で立方体粒子を構成する事は両者の面角が90°ではないからできない。更なる検討が必要である。
(II-2) X-ray diffraction characteristics of particles.
FIG. 3 (a) shows the results obtained by placing the AgI particles shown in FIG. 1 on a glass substrate and performing ordinary powder X-ray diffraction measurement at 25 ° C. using CuKβ characteristic X-rays (wavelength: 1.39217Å). . θ represents the angle between the incident X-ray beam and the substrate. The diffraction characteristics have the characteristics described in (12) and (13).
The particles were annealed at 180 ° C. or higher for about 1 hour, and then slowly cooled to room temperature. When the X-ray diffraction was measured, the peak intensity of α1 was greatly reduced, and the diffraction on the (002) plane of the β-type crystal structure The peak increases greatly.
FIG. 3 (b) shows a measurement result obtained by placing the particles on a flat glass substrate and increasing the number of particles having the particle surface oriented parallel to the substrate surface like the particles in FIG. It was. FIG. 3B shows a result obtained by further decreasing the particle density to be mounted and increasing the ratio of the aspect particles. Since the α1 peak is the main peak, the α1 peak is diffraction of a plane parallel to the surface of the cubic particle. The peak has a value close to the (110) plane diffraction angle of 22.1424 ° of α-type AgI.
If α1 is this, the other surface is the (100) plane, but there is no (200) plane diffraction angle = 31.941 ° of α-type AgI. α-type AgI has a strong diffraction (39.95 °) close to the (211) plane diffraction angle = 39.380 °, and the formation of cubic particles by this plane and the (110) plane has a plane angle of both. It ’s not 90 °, so it ’s not possible. Further study is needed.

(II−3)粒子の光吸収特性。
図1に示した粒子からなる乳剤を無色透明のTAC支持体上に塗布し、その光吸収スペクトルを測定した結果を、図4に示した。試料の後面に反射板(白色酸化Mg板)を置き、日立カラーアナライザーを用いて、その光反射スペクトルを測定したものである。従来公知のβ型含率が90%以上であるAgI粒子の測定結果も示した。図4中、横軸は光の波長を、縦軸は反射%を表す。吸収端波長が、β型に比べて、長波長側にシフトしている。また、β型にはエキシトンピークに基づくこぶが見られるが、AgX0にはそれが見られない。
(II-3) Light absorption characteristics of particles.
FIG. 4 shows the results of coating the emulsion composed of the grains shown in FIG. 1 on a colorless and transparent TAC support and measuring the light absorption spectrum thereof. A reflection plate (white Mg oxide plate) is placed on the rear surface of the sample, and its light reflection spectrum is measured using a Hitachi color analyzer. The measurement results of AgI particles having a conventionally known β-type content of 90% or more are also shown. In FIG. 4, the horizontal axis represents the wavelength of light, and the vertical axis represents% reflection. The absorption edge wavelength is shifted to the long wavelength side compared to the β type. In addition, the β-type has a hump based on the exciton peak, but AgX 0 does not have it.

(II−4)AgX乳剤の調整。
少なくとも水と分散媒を含む分散媒水溶液B1(好ましくは、pAg=1〜8、より好ましくは2〜6)中に、Ag+を含む水溶液(Ag+塩水溶液)と、X-を含む水溶液(X-塩水溶液)をダブルジェット添加して、形成される。反応容器内での極めて均一な、高速混合攪拌により得られ、(53)の態様が好ましい。Ag+とX-を、該混合する方法としては、次の方法が有効である。1)反応容器中に、小さい混合箱を設けて、両者をその混合箱中に添加し混合した後に、反応容器のバルク溶液中に吐出す方式。2)添加孔数が(56)記載の多孔添加系を用いて、添加される事。これに関しては文献23の記載を参考にできる。
Ag+塩水溶液は25℃の水1Lに対する溶解量(モル量)が、0.1〜∞、好ましくは0.3〜∞である銀塩の水溶液である。例えば硝酸銀、硫酸銀、シュウ酸銀があり、硝酸銀がより好ましい。X-塩水溶液は、ヨウ化物塩を主体とするハロゲン塩溶液である。例えばNaI、KI、NH4Iがある。これにCl-、Br-の塩の1種以上を、必要な量だけ添加する事ができる。
該反応容器の温度(℃)は、10〜70が好ましく、30〜65がより好ましく、38〜60が更に好ましい。該粒子の種晶が形成されると、その後の成長はより広い領域(pAg、pH、温度領域)で可能である。
該分散媒溶液の温度の均一性を高める為に、添加溶液の温度を予め調節し、反応容器または分散媒溶液の温度と、添加溶液の温度との差を、(55)の態様にする事が好ましい。その具体的な方法は次の通り。1)添加液用の中空管を分散媒溶液中に長く配置し、そこを通った後に、液中に添加する方式で、文献23の記載を参考にできる。2)分散媒溶液に入るまでの領域で、添加系の中空管を保温装置に通す。そこを通過する時に、添加溶液は温度調節される。該態様は(60)〜(64)の態様に対しても有効である。
粒子形成時のpHは2〜11が好ましく、4〜10がより好ましい。(該Ag+塩溶液の濃度/該X-塩溶液の濃度)=0.9〜1.1が好ましく、0.96〜1.04がより好ましく、0.98〜1.02が更に好ましい。
粒子形状が不明瞭な場合は、該粒子を該粒子表面のAgX組成とほぼ同じ組成で、45〜55℃で、pAg2〜8、好ましくは3〜6で高過飽和成長(臨界成長速度の20〜100、好ましくは50〜98%)で、1.1〜3、好ましくは1.3〜2倍長に成長させた時の形状が(1)の態様を示す。
(AgX1)粒子の比率の高い製造条件は、次のトライアンドエラー法で見つける事ができる。製造の各条件因子(温度、pAg、均一混合性)を高精度で制御する条件で、各因子を細かく、系統的に変化させ、その中の特に好適な条件を見つける事。粒子形成時、特にその種晶形成時の銀電位の振れ幅(mV)は、0〜60が好ましく、0〜30がより好ましく、0〜10がより好ましい。
(II-4) Preparation of AgX emulsion.
(Preferably, pAg = 1 to 8, more preferably 2 to 6) dispersant aqueous solution B1 containing at least water and a dispersion medium in a aqueous solution containing Ag + (Ag + salt solution), X - an aqueous solution containing ( X - salt solution) by double jet addition to, being formed. It can be obtained by high-speed mixing and stirring in the reaction vessel, and the embodiment (53) is preferred. The following method is effective as a method of mixing Ag + and X . 1) A method in which a small mixing box is provided in a reaction vessel, both are added to the mixing box, mixed, and then discharged into the bulk solution in the reaction vessel. 2) The number of added pores should be added using the porous addition system described in (56). In this regard, the description in Reference 23 can be referred to.
The Ag + salt aqueous solution is an aqueous solution of silver salt having a dissolution amount (molar amount) with respect to 1 L of water at 25 ° C. of 0.1 to ∞, preferably 0.3 to ∞. For example, there are silver nitrate, silver sulfate, and silver oxalate, and silver nitrate is more preferable. X - salt solution is a halogen salt solution mainly containing iodide salt. For example, there are NaI, KI, and NH 4 I. Cl to -, Br - one or more salts, can be added the necessary amount.
10-70 are preferable, as for the temperature (degreeC) of this reaction container, 30-65 are more preferable, and 38-60 are still more preferable. Once the seeds of the particles are formed, subsequent growth is possible over a wider region (pAg, pH, temperature region).
In order to improve the uniformity of the temperature of the dispersion medium solution, the temperature of the addition solution is adjusted in advance, and the difference between the temperature of the reaction vessel or the dispersion medium solution and the temperature of the addition solution is changed to the mode of (55). Is preferred. The specific method is as follows. 1) The description in Document 23 can be referred to by a method in which a hollow tube for an additive solution is placed long in the dispersion medium solution and then added to the solution after passing therethrough. 2) The hollow tube of the addition system is passed through the heat retaining device until it enters the dispersion medium solution. As it passes through, the additive solution is temperature adjusted. This aspect is also effective for the aspects (60) to (64).
2-11 are preferable and, as for pH at the time of particle formation, 4-10 are more preferable. (Concentration of the Ag + salt solution / concentration of the X salt solution) = 0.9 to 1.1 is preferable, 0.96 to 1.04 is more preferable, and 0.98 to 1.02 is still more preferable.
When the particle shape is unclear, the particle is almost the same composition as the AgX composition on the particle surface, and is highly supersaturated at a temperature of 45 to 55 ° C., pAg of 2 to 8, preferably 3 to 6 (with a critical growth rate of 20 to 100, preferably 50 to 98%), and the shape when grown to 1.1 to 3, preferably 1.3 to 2 times, shows the embodiment of (1).
Manufacturing conditions with a high ratio of (AgX 1 ) particles can be found by the following try-and-error method. Each condition factor (temperature, pAg, homogeneity) is controlled with high accuracy, and each factor is changed finely and systematically, and particularly suitable conditions are found. 0-60 are preferable, as for the fluctuation range (mV) of the silver potential at the time of grain formation, especially the seed crystal formation, 0-30 are more preferable, and 0-10 are more preferable.

(II−5)分散媒。
該分散媒として従来公知のあらゆる分散媒を用いる事ができ、その具体例に関しては、文献1,2、17、19、24の記載を参考にできる。分散媒の重量平均分子量は3000〜106が好ましく、6000〜30万がより好ましい。該濃度(質量%)は0.1〜20が好ましく、0.3〜10がより好ましい。ゼラチンが好ましく、牛、ブタの骨、皮、または魚の骨、皮、うろこから採取したゼラチンを用いる事ができる。
ゼラチンには、アルカリ処理ゼラチンと、酸処理ゼラチンがある。更にそれらを酸、アルカリ、加水分解酵素の1種以上を用いて低分子量化したゼラチン(その重量平均分子量が3000〜7万)。該分子量が10万〜30万の高分子量ゼラチン(β鎖含率を高くしたものや、硬膜剤で分子間架橋して高分子量化したもの)がある。それらの不純物含量を従来の0.9〜10-8、好ましくは0.1〜10-8倍に減じたEmptyゼラチンが好ましい。アミノ基、カルボン酸基、イミダゾール基、水酸基、チオエーテル基の1つから全部を化学修飾したゼラチン。該修飾率(%)は1〜100、好ましくは10〜98、より好ましくは30〜92である。好ましくは、炭素数1〜50、好ましくは2〜20、の有機化合物基(R1)で化学修飾したゼラチンである。例えば、アミノ基をフタル化、コハク化、トリメリト化、アセチル化したゼラチン。カルボン酸基を修飾したエステル化ゼラチン。メチオニン基(Met)のチオエーテル基にアルキル基を導入したゼラチン、該基をスルホニウム化したゼラチン。酸化剤を添加し、該基をスルフィニル基やスルホニル基に変化させたものが好ましい。Met含量(μmol/g)は0〜100のものを使う事ができるが、0〜30がより好ましい。
熱現像感材に該乳剤を適用する場合には、分散媒としてはアミノ基を前記R1で修飾したゼラチンが好ましい。その他、文献23の記載を参考にできる。
粒子形成前〜粒子形成後〜乳剤塗布直前、のいずれの時間においても、目的の分散媒を必要な量だけ添加する事ができる。
(II-5) Dispersion medium.
Any conventionally known dispersion medium can be used as the dispersion medium, and the specific examples thereof can be referred to the descriptions in Documents 1, 2, 17, 19, and 24. The weight average molecular weight of the dispersion medium is preferably 3000 to 10 6 , more preferably 6000 to 300,000. The concentration (mass%) is preferably from 0.1 to 20, and more preferably from 0.3 to 10. Gelatin is preferred, and gelatin collected from cow bone, pig bone, skin, or fish bone, skin, scales can be used.
Gelatin includes alkali-treated gelatin and acid-treated gelatin. Furthermore, gelatin obtained by reducing the molecular weight using at least one of acid, alkali, and hydrolase (its weight average molecular weight is 3000 to 70,000). There are high molecular weight gelatins having a molecular weight of 100,000 to 300,000 (those having a high β chain content or those having a high molecular weight by intermolecular crosslinking with a hardener). 0.9 to 10 their content of impurities prior -8, preferably Empty gelatin reduced to 0.1 to 10 -8 times. Gelatin in which amino groups, carboxylic acid groups, imidazole groups, hydroxyl groups, and thioether groups are all chemically modified. The modification rate (%) is 1 to 100, preferably 10 to 98, more preferably 30 to 92. Gelatin chemically modified with an organic compound group (R1) having 1 to 50 carbon atoms, preferably 2 to 20 carbon atoms is preferred. For example, gelatin in which the amino group is phthalated, succinylated, trimellitated or acetylated. Esterified gelatin modified with carboxylic acid groups. Gelatin in which an alkyl group is introduced into the thioether group of methionine group (Met), and gelatin obtained by sulfonating the group. What added the oxidizing agent and changed this group into the sulfinyl group and the sulfonyl group is preferable. A Met content (μmol / g) of 0 to 100 can be used, but 0 to 30 is more preferable.
When the emulsion is applied to a heat-developable photosensitive material, the dispersion medium is preferably gelatin whose amino group is modified with R1. In addition, the description in Reference 23 can be referred to.
The target dispersion medium can be added in a necessary amount at any time from before grain formation to after grain formation to immediately before emulsion coating.

(II−6)乳剤の増感等。
本発明の乳剤に化学増感剤を添加し、化学増感する事ができる。化学増感剤としては、カルコゲン増感剤(イオウ、セレン、テルル増感剤)、貴金属増感剤(金、第8族金属化合物)、還元増感剤、の単独またはその2種以上をあらゆる比率で用いる事ができる。各々の添加量(モル/モルAgX)は10-9〜10-2が好ましく、10-8〜10-3がより好ましい。
該乳剤に1〜20種の青感層用増感色素を添加し、光の吸収率を高め、その青感度を更に高めて、青感層に用いる事ができる。緑感層に用いる時には、1〜20種の緑感層用増感色素を添加し、赤感層に用いる時には、1〜20種の赤感層用増感色素を添加し、分光増感する事ができる。
(77)〜(82)の態様で、ドープ剤をドープする事ができる。該ドープ、ドープ剤の詳細に関しては、文献2、24の記載を参考にできる。
また、乳剤粒子に吸着させ、光を照射した時に、1光子を吸収して2〜4個の電子をAgX粒子に与える化合物(PA)を10-8〜10-1、好ましくは10-6〜10-2の添加量で、添加する事が好ましい。該化合物の詳細に関しては、文献13 の記載を参考にできる。
本発明の乳剤、使用する化合物種と添加量、製法と装置、その応用に関して、その他、文献14の記載を採用する事ができる。
本発明の乳剤の熱現像感材への適用に関しては、文献15の記載を、他の感材への適用に関しては、文献7、10の記載を採用する事ができる。
(100)記載の非感光性有機銀塩、熱現像剤(還元剤)、バインダー、支持体、色調剤に関しては、文献15の記載を採用する事ができる。
(II-6) Emulsion sensitization and the like.
Chemical sensitization can be carried out by adding a chemical sensitizer to the emulsion of the present invention. As chemical sensitizers, chalcogen sensitizers (sulfur, selenium, tellurium sensitizers), noble metal sensitizers (gold, Group 8 metal compounds), reduction sensitizers, or a combination of two or more thereof may be used. Can be used in proportion. Each addition amount (mol / mol AgX) is preferably 10 −9 to 10 −2 , and more preferably 10 −8 to 10 −3 .
1 to 20 kinds of sensitizing dyes for the blue-sensitive layer can be added to the emulsion to increase the light absorption rate and further enhance the blue sensitivity, and can be used for the blue-sensitive layer. When used for a green sensitive layer, 1 to 20 kinds of sensitizing dyes for green sensitive layer are added, and when used for a red sensitive layer, 1 to 20 kinds of sensitizing dyes for red sensitive layer are added and spectrally sensitized. I can do things.
In the modes (77) to (82), a dopant can be doped. For details of the dope and the dopant, the descriptions in Documents 2 and 24 can be referred to.
Further, a compound (PA) that absorbs one photon and gives 2 to 4 electrons to AgX grains when adsorbed to emulsion grains and irradiated with light is 10 −8 to 10 −1 , preferably 10 −6 to The addition amount is preferably 10 -2 . For details of the compound, the description in Reference 13 can be referred to.
Regarding the emulsion of the present invention, the type and amount of compound used, the production method and apparatus, and the application thereof, the description in Reference 14 can be employed.
Regarding the application of the emulsion of the present invention to a heat-developable light-sensitive material, the description in Reference 15 can be adopted, and as to the application to other light-sensitive materials, the descriptions in References 7 and 10 can be adopted.
With respect to the non-photosensitive organic silver salt, thermal developer (reducing agent), binder, support and toning agent described in (100), the description in Document 15 can be employed.

(II−7)その他。
1)(36)〜(38)記載の結晶格子欠陥。結晶格子の配列が乱れた状態を、結晶格子欠陥といい、点欠陥、線欠陥、面欠陥、体積欠陥がある。点欠陥の集合物を特に複合欠陥という。線欠陥は転位線であり、刃状転位線とらせん転位線、転位ループがある。面欠陥には、積層欠陥、双晶面、粒界がある。該格子欠陥は、その1種〜全部を指し、好ましくは少なくとも転位線、刃状転位線を含むものであり、好ましくは(38)の態様である。これらの欠陥の詳細に関しては、文献16、22の記載を参考にできる。
2)(33)記載の平板粒子。該平板粒子には、次の粒子がある。
a)NaCl型結晶構造で、主平面が{111}面である平板粒子。主平面に平行な双晶面を2〜3枚、好ましくは2枚有する粒子。その詳細は文献2、17、20の記載を参考にできる。
b)NaCl型結晶構造で、主平面が{100}面である平板粒子。その詳細は文献2,18,20の記載を参考にできる。AgCl、AgBr、AgBrIの単独、又はその2種以上のあらゆる比率の混晶。
c)AgI含率が80〜100モル%で、主平面に平行な積層欠陥面を2〜300枚有する粒子。その詳細は、文献2,7、19の記載を参考にできる。
3)エピタキシャルAgX部。1つの結晶が、それとは異なる他のホスト結晶の表面上に、ある定まった方位関係をとって成長する時、その状態をエピタクシーといい、該成長部をエピタキシャル部、という。該部がAgX結晶であるものを、エピタキシャルAgX部という。両者のAgX組成は、AgCl、AgBr、AgI含率の少なくとも1つの含率が、5〜100、好ましくは10〜100、より好ましくは20〜100モル%だけ異なる。
粒子に吸着剤を吸着させた状態で、粒子の特定部分にエピ部を形成し、次に、化学増感すると、エピ部が選択的に化学増感される。潜像形成場所が限定され、高感度になり、好ましい。まずエピ部が現像されるので、ホスト部が現像され難い粒子であっても、許容される利点がある。該エピ部を有する粒子に関しては文献9、22の記載を参考にできる。
AgXの溶解度の大きさ順は、(AgI<AgBr<AgCl)、であるが、これは、該分子の極性の大きさ順と対応しており、極性が大きい程、溶解度は大きくなる。AgI分子は極性が小さく、親油性有機物に近い為に、溶解度が小さい。この為に通常の現像処理では現像され難い。しかし、有機溶剤を1〜100、好ましくは10〜100、より好ましくは30〜100%だけ含有する現像処理液で処理すると、処理速度が速められて、好ましい。
該(AgX1)粒子は他の形状粒子に比べて、溶解度が高い。従って(4)及び、該関連の態様で添加した場合、すみやかに溶解、消失する利点がある。
(113)の態様で、実質的に現像されない事、とは、現像される粒子のモル%が、0〜20、好ましくは0〜5、より好ましくは0〜1を指す。また、実質的に溶解除去される事、とは、除去される粒子のモル%が、80〜100、好ましくは95〜100、より好ましくは99〜100を指す。該粒子を非感光性にする為には、減感剤を添加すればよい。減感剤をドープしたり、減感色素を吸着させるとよい。ここで用いられる該粒子の直径は、小さい為、該溶解速度は速い。該粒子は、該層から動かない為、他の層に害を加える事がなく、好ましい。該粒子に足りない光吸収特性は、(111)、(112)の態様で、色材を添加して、補正する事が好ましい。
(AgX4)乳剤にAgNO3、臭化物塩、塩化物塩の1種以上を添加し、過剰のI-の残留を抑制する事ができる。
(II-7) Others.
1) Crystal lattice defects according to (36) to (38). A state in which the arrangement of the crystal lattice is disturbed is called a crystal lattice defect, and there are a point defect, a line defect, a plane defect, and a volume defect. A collection of point defects is particularly called a composite defect. A line defect is a dislocation line, and includes an edge dislocation line, a screw dislocation line, and a dislocation loop. Surface defects include stacking faults, twin planes, and grain boundaries. The lattice defect refers to one to all of them, and preferably includes at least dislocation lines and edge dislocation lines, and is preferably the embodiment (38). Regarding the details of these defects, the descriptions in Documents 16 and 22 can be referred to.
2) Tabular grains according to (33). The tabular grains include the following grains.
a) Tabular grains having a NaCl-type crystal structure and a principal plane of {111} plane. Particles having 2 to 3, preferably 2 twin planes parallel to the main plane. The details can be referred to the descriptions in Documents 2, 17, and 20.
b) Tabular grains having a NaCl-type crystal structure and a main plane of {100} planes. The details can be referred to the descriptions in Documents 2, 18, and 20. AgCl, AgBr, AgBrI alone, or a mixed crystal of any ratio of two or more thereof.
c) Particles having an AgI content of 80 to 100 mol% and 2 to 300 stacking fault surfaces parallel to the main plane. The details can be referred to the descriptions in Documents 2, 7, and 19.
3) Epitaxial AgX part. When one crystal grows on the surface of another host crystal different from that with a certain orientation relationship, this state is called epitaxy, and the grown portion is called an epitaxial portion. The part in which the part is an AgX crystal is referred to as an epitaxial AgX part. The two AgX compositions differ in the content of at least one of AgCl, AgBr, and AgI by 5 to 100, preferably 10 to 100, and more preferably 20 to 100 mol%.
In the state in which the adsorbent is adsorbed on the particles, an epi part is formed on a specific part of the particle, and then chemical sensitization, the epi part is selectively chemically sensitized. The latent image forming location is limited, and high sensitivity is preferable. First, since the epi part is developed, even if the host part is difficult to develop, there is an acceptable advantage. Reference can be made to the descriptions in References 9 and 22 for the particles having the epi part.
The order of the solubility of AgX is (AgI <AgBr <AgCl), which corresponds to the order of the polarity of the molecules, and the greater the polarity, the greater the solubility. Since the AgI molecule has low polarity and is close to lipophilic organic matter, it has low solubility. For this reason, it is difficult to develop by ordinary development processing. However, the treatment with a developing solution containing an organic solvent in an amount of 1 to 100, preferably 10 to 100, more preferably 30 to 100% is preferred because the processing speed is increased.
The (AgX 1 ) particles have higher solubility than other shaped particles. Therefore, when added in (4) and the related aspects, there is an advantage that it quickly dissolves and disappears.
In the aspect of (113), being substantially undeveloped means that the mol% of the developed particles is 0 to 20, preferably 0 to 5, more preferably 0 to 1. Further, being substantially dissolved and removed means that the mole% of particles to be removed is 80 to 100, preferably 95 to 100, more preferably 99 to 100. In order to make the particles non-photosensitive, a desensitizer may be added. It is advisable to dope a desensitizer or adsorb a desensitizing dye. Since the diameter of the particles used here is small, the dissolution rate is fast. Since the particles do not move from the layer, they do not harm other layers, which is preferable. The light absorption characteristics that are insufficient for the particles are preferably corrected by adding a coloring material in the modes (111) and (112).
One or more of AgNO 3 , bromide salt, and chloride salt can be added to the (AgX 4 ) emulsion to suppress excessive I residue.

(文献)下記文献とその引用文献。
1.T.H.James編、The Theory of The Photographic Process、第4版、Macmillan、New York(1077年)。
2.Research Disclosure誌、item17643(1978年12月)、同item38957(1996年9月)。
3.B.L.J.Byerleyら、J. Photographic Science,18巻、53〜59(1970年)。総説。
4.JCPDSカード(従来公知の粉末X線回折データ集。日本では理学電気社から購入できる)。
5.α、β、γ型AgI。S.Hoshino、J.Phys.Soc.Japan、12、315〜326(1957)。J.E.Maskasky、Physical Review,B43巻、5769〜5772(1991年)。温度変化挙動。
6.12面体、14面体粒子等、米国特許第4094684号、特開平2004−4586号。
7.アスペクト比が8以上のAgI平板粒子に関しては、特開昭59−119350号を、γ含率が90モル%以上で、アスペクト比が8以上のAgI平板粒子に関しては、特開昭59−119344号の記載を参考にできる。
8.光吸収。G.C.Farnell、J.Photographic Science,22巻、228〜237(1974年)。
9.エピ。J.E.Maskasky、Photogr.Sci.Eng.25巻、96〜101(1981年)、米国特許第4094084号、同第4142900号、同第4459353号。
10.黄色のAgI粒子。25℃以下。米国特許第4672026号。
12.米国特許第4520098号。
13.PED。特願2001−800号、特開2002−287293号、同2000−22162号、米国特許第5747235号、同5747236号、同6054260号、同5994051号。
14.化合物等。特開2001−201810号、同2001−255611号、同2003−172983号。
15.熱現像。特開2001−33911号、同2003−162025号、同2004−233397号、特願2001−349031号、同2001−342983号。
16.格子欠陥。理化学辞典(岩波書店)、化学辞典(東京化学同人)、結晶成長ハンドブック(共立出版)。
17.(111)平板。米国特許第4433048号、同5210013号、同5494788号、特開平2−838号、同8−82883号。同8−227117号、特開2000−171928号。
18.(100)平板。特開平6−308648号、同7−234470号、同7−146522号、同8−339044号、米国特許第5908739号、欧州特許第0534395A号。
19.AgI平板。特願2004−309505号。
20.微粒子添加、装置。特開平4−34544号、同2−222940号、特開2003−172983号。
21.現像。T.H.Jamesら、Phot.Sci.Eng.,5巻、21〜29(1961年)。
22.エピ、転位線。特公平6−12404号、同6−93080号、米国特許第4865962号、同4435501号、同6607874B2号、同6114105号、同5275930号、同5695923号、欧州特許出願公開第699944〜699951(A1)号、同932077(A2)号、Maskasky、J.Imaging Science.,32,160〜177(1988).Sugimotoら、J.Colloid and Interface Science、140巻、335、348(1990年).特開平11−223895号、同11−184029号、特開昭63−220238号、同58−108526号。
23.装置。特開2004−305809号。特願2004−309505号、特開平4−193336号。
24.添加剤等。特開2003−172983号、同2004−233397号、同2004−240182号、特開平8−101473号、特開2003−15246号。
(Reference) The following references and references cited.
1. T. T. et al. H. Edited by James, The Theory of The Photographic Process, 4th edition, McCillan, New York (1077).
2. Research Disclosure, item 17643 (December 1978), item 38957 (September 1996).
3. B. L. J. et al. Byerley et al. Photographic Science, 18, 53-59 (1970). Review article.
4). JCPDS card (a collection of conventionally known powder X-ray diffraction data. In Japan, it can be purchased from Rigaku Corporation).
5. α, β, γ type AgI. S. Hoshino, J. et al. Phys. Soc. Japan, 12, 315-326 (1957). J. et al. E. Maskasky, Physical Review, B43, 5769-5772 (1991). Temperature change behavior.
6. Dodecahedron, tetrahedral particles, US Pat. No. 4,094,684, JP-A-2004-4586.
7). For AgI tabular grains having an aspect ratio of 8 or more, JP-A-59-119350, and for AgI tabular grains having a γ content of 90 mol% or more and an aspect ratio of 8 or more, JP-A-59-119344. You can refer to the description.
8). Light absorption. G. C. Farnell, J.M. Photographic Science, 22, 228-237 (1974).
9. Epi. J. et al. E. Maskasky, Photogr. Sci. Eng. 25, 96-101 (1981), U.S. Pat. Nos. 4,940,084, 4,142,900 and 4,459,353.
10. Yellow AgI particles. 25 ° C or less. U.S. Pat. No. 4,672,026.
12 U.S. Pat. No. 4,520,0098.
13. PED. Japanese Patent Application Nos. 2001-800, 2002-287293, 2000-22162, U.S. Pat. Nos. 5,747,235, 5747236, 6054260, and 5994051.
14 Compounds and the like. JP 2001-201810, JP 2001-255611, and JP 2003-172983.
15. Thermal development. JP-A Nos. 2001-33911, 2003-162025, 2004-233397, Japanese Patent Application Nos. 2001-349031, and 2001-342983.
16. Lattice defects. Riken Dictionary (Iwanami Shoten), Chemistry Dictionary (Tokyo Kagaku Doujin), Crystal Growth Handbook (Kyoritsu Publishing).
17. (111) Flat plate. U.S. Pat. Nos. 4,433,048, 5,211,013, 5,494,788, JP-A-2-838, and 8-82883. No. 8-227117, JP-A No. 2000-171928.
18. (100) Flat plate. JP-A-6-308648, JP-A-7-234470, JP-A-7-146522, JP-A-8-339044, US Pat. No. 5,908,739, and European Patent 0534395A.
19. AgI flat plate. Japanese Patent Application No. 2004-309505.
20. Fine particle addition, equipment. JP-A-4-34544, JP-A-2-222940, JP-A-2003-172983.
21. developing. T. T. et al. H. James et al., Photo. Sci. Eng. 5, 21-29 (1961).
22. Epi, dislocation line. Japanese Patent Publication Nos. 6-12404, 6-93080, U.S. Pat. Nos. 4,865,962, 4,435,501, 6,607,874B2, 6,114,105, 5,275,930, 5,695,923, European Patent Application Publication Nos. 699944-699951 (A1) No. 932077 (A2), Maskasky, J. et al. Imaging Science. 32, 160-177 (1988). Sugimoto et al., J. MoI. Colloid and Interface Science, 140, 335, 348 (1990). JP-A-11-223895, JP-A-11-184029, JP-A-62-220238, JP-A-58-108526.
23. apparatus. JP2004-305809A. Japanese Patent Application No. 2004-309505, Japanese Patent Application Laid-Open No. 4-193336.
24. Additives etc. JP2003-172983, JP200423333397, JP2004240182, JP8-101473A, JP2003-15246A.

[実施例]
次に実施例により本発明を更に詳細に説明するが、本発明の実施態様はこれに限定されるものではない。
[Example]
EXAMPLES Next, although an Example demonstrates this invention further in detail, the embodiment of this invention is not limited to this.

反応容器に分散媒溶液1(水1.3L、Empty型のアルカリ処理牛骨ゼラチン1を25gを含み、NaOHでpH=6に調節)を入れ、温度を50℃に保ち、高速攪拌しながら、Ag−1液(AgNO3 34g/Lの水溶液)とX−1液(KI 33.2g/Lの水溶液)を同時添加法で、4.0mL/分で10分間、定量添加した。
2分間攪拌した後、次にAg−2液(AgNO3 10g/L水溶液)と、X−2液(KI9.765g/L水溶液)を、銀電位を180mVに保ちながら、同時添加した。Ag−2は初期流量2.5mL/分、加速流量0.2mL/分で30分間、添加した。次に、Ag−3液(AgNO3 200g/L水溶液)と、X−3液(KI、195.3g/L水溶液)を、銀電位を180mVに保ちながら、CDJ添加した。Ag−3は初期流量4.2mL/分、加速流量0.12mL/分で65分間、添加した。銀電位の振れ幅はいずれも、5mV以下であった。2分間攪拌した後、温度を40℃に下げ、増感色素1を飽和吸着量の90%量で添加し、吸着させた。
乳剤を2mL採取し、遠心分離処理をした後、生成した粒子を電子顕微鏡で観察した。図2に粒子のカーボンレプリカのTEM像を示した。粒子数の99%以上が立方体状(辺長比が1.0〜1.1)の粒子であった。従ってその最大辺長比も1.0〜1.1である。その平均粒子直径は、約0.1μm、該AgX1粒子のCVは約0.05であり、該AgX0粒子のCVは約0.06であった。約1%の12面体粒子が存在した。
また、該粒子を−120℃以下の低温で、TEM像を撮影した。それが図2である。(9)記載の欠陥線が見られる。
乳剤に沈降剤を添加し、pHを4.0近傍に下げ、凝集沈降水洗法で乳剤を30℃で水洗して、脱塩した。pHを6.4にし、温度を40℃に上げ、再分散した。AgNO3 とKIを用いて、pAgを5.5に調節した。40℃でAgX量1モル当り、化学増感剤1を合計モル量で5×10-4モルと金増感剤1(塩化金酸とNaSCNが1:20モル比の水溶液)を金量で10-6モルを添加し、次に温度を60℃に上げ、50分間熟成した。
In a reaction vessel, put dispersion medium solution 1 (containing 1.3 g of water, 25 g of Empty-type beef bone gelatin 1 of Empty type, adjusted to pH = 6 with NaOH), keeping the temperature at 50 ° C., stirring at high speed, Ag-1 solution (AgNO 3 34 g / L aqueous solution) and X-1 solution (KI 33.2 g / L aqueous solution) were added quantitatively at 4.0 mL / min for 10 minutes by the simultaneous addition method.
After stirring for 2 minutes, Ag-2 solution (AgNO 3 10 g / L aqueous solution) and X-2 solution (KI 9.765 g / L aqueous solution) were added simultaneously while maintaining the silver potential at 180 mV. Ag-2 was added at an initial flow rate of 2.5 mL / min and an acceleration flow rate of 0.2 mL / min for 30 minutes. Next, CDJ was added to the Ag-3 solution (AgNO 3 200 g / L aqueous solution) and the X-3 solution (KI, 195.3 g / L aqueous solution) while maintaining the silver potential at 180 mV. Ag-3 was added at an initial flow rate of 4.2 mL / min and an acceleration flow rate of 0.12 mL / min for 65 minutes. The amplitude of silver potential was 5 mV or less. After stirring for 2 minutes, the temperature was lowered to 40 ° C., and sensitizing dye 1 was added in an amount of 90% of the saturated adsorption amount for adsorption.
2 mL of the emulsion was collected and centrifuged, and the produced particles were observed with an electron microscope. FIG. 2 shows a TEM image of the carbon replica of the particles. More than 99% of the number of particles was cubic (side length ratio: 1.0 to 1.1). Therefore, the maximum side length ratio is 1.0 to 1.1. The average particle diameter was about 0.1 μm, the CV of the AgX 1 particles was about 0.05, and the CV of the AgX 0 particles was about 0.06. About 1% of dodecahedron particles were present.
Further, a TEM image of the particles was taken at a low temperature of −120 ° C. or lower. This is FIG. (9) Defect lines described can be seen.
A precipitating agent was added to the emulsion, the pH was lowered to around 4.0, and the emulsion was washed with water at 30 ° C. by the coagulation sedimentation washing method to desalinate. The pH was brought to 6.4, the temperature was raised to 40 ° C. and redispersed. The pAg was adjusted to 5.5 using AgNO 3 and KI. Chemical sensitizer 1 in a total molar amount of 5 × 10 −4 mol and gold sensitizer 1 (aqueous solution of chloroauric acid and NaSCN in a 1:20 molar ratio) in gold amount per mol of AgX at 40 ° C. 10 −6 mol was added, then the temperature was raised to 60 ° C. and aged for 50 minutes.

温度を40℃に下げ、PA1化合物を10-3モル/モルAgX量で添加し、次にかぶり防止剤1を10-3 モル/モルAgX量で添加し、pH6.4、pAg5.5に調節し、20分間攪拌した。該乳剤を硬膜剤1含有(0.01g/gゼラチン)の保護層と共にPETベース上に塗布し、乾燥させた。密閉容器に入れ、40℃で15時間保持し、硬膜反応を促進した。
このようにして得られた塗布試料(実施例1)を、光学ウェッジを通して10-2秒間の青光(500nm以下の波長光)露光、又は−blue(マイナスブルー)露光し、文献21に記載のピロガロール現像液で、40℃、50分間現像した。停止液に1分間入れた後、定着液(Super Fuji Fix)に30分間入れて定着し、次に水洗し、乾燥した。そのセンシトメトリーを行い、(感度/粒状度)比の結果を表1に示した。比較試料に対し、本発明の試料が、(感度/粒状度)比で優れている事が確認された。
感度は(かぶり+0.2)の濃度を与える露光量(ルックス・秒)の逆数で表し、粒状度は、試料を(かぶり+0.2)の濃度を与える光量で0.1秒間、一様に露光し、現像処理を行い、直系48μmの円形開孔を用い、ミクロデンシトメータ濃度のばらつきを測定し、rms粒状度σを求めた。その詳細については文献1の第21章E節に記載されている。
The temperature is lowered to 40 ° C., PA1 compound is added in an amount of 10 −3 mol / mol AgX, then antifoggant 1 is added in an amount of 10 −3 mol / mol AgX, and adjusted to pH 6.4 and pAg 5.5. And stirred for 20 minutes. The emulsion was coated on a PET base with a protective layer containing hardener 1 (0.01 g / g gelatin) and dried. It put into the airtight container and it hold | maintained at 40 degreeC for 15 hours, and accelerated the dural reaction.
The coated sample thus obtained (Example 1) was exposed to blue light (with a wavelength of 500 nm or less) for 10 −2 seconds or −blue (minus blue) through an optical wedge. Developed with pyrogallol developer at 40 ° C. for 50 minutes. After putting in the stop solution for 1 minute, it was fixed in a fixer (Super Fuji Fix) for 30 minutes, then washed with water and dried. The sensitometry was performed, and the result of the (sensitivity / granularity) ratio is shown in Table 1. It was confirmed that the sample of the present invention was superior in the (sensitivity / granularity) ratio with respect to the comparative sample.
Sensitivity is expressed as the reciprocal of the exposure amount (lux · second) that gives a density of (fog +0.2), and the granularity is uniform for 0.1 second with the amount of light that gives the density of (fog +0.2). Exposure, development processing was performed, the variation in microdensitometer density was measured using a circular aperture of direct line 48 μm, and rms granularity σ was obtained. Details thereof are described in Chapter 21, Section E of Document 1.

[比較例1−1]
反応容器に分散媒溶液1とKIを0.2gを入れ、温度を45℃に保ち、攪拌しながら、Ag−1液(AgNO3 34g/Lの水溶液)とX−1液(KI 33.2g/Lの水溶液)を同時添加法で、4.0mL/分で10分間、定量添加した。
2分間攪拌した後、次にAg−2液(AgNO3 10g/L水溶液)と、X−2液(KI9.765g/L水溶液)を、銀電位を−50mVに保ちながら、CDJ添加した。Ag−2は初期流量2.5mL/分、加速流量0.2mL/分で30分間、添加した。次に、Ag−3液(AgNO3 20g/L水溶液)と、X−3液(KI、19.53g/L水溶液)を、銀電位を−50mVに保ちながら、同時添加した。Ag−3は初期流量4.2mL/分、加速流量0.12mL/分で75分間、添加した。添加はすべて従来法で行った。2分間攪拌した後、温度を40℃に下げ、増感色素1を飽和吸着量の90%量で添加し、吸着させた。
乳剤を採取し、生成した粒子を電顕で観察した所、公知の14面体状の粒子であった。平均直径は約0.1μm、該AgX1粒子のCVは約0.06であった。
乳剤に沈降剤を添加し、後は実施例1と同じ処理をして、塗布銀量が同一の塗布試料(比較例1−1)を得、その写真特性を得た。結果を表1に示した。
[Comparative Example 1-1]
0.2 g of dispersion medium solution 1 and KI are put in a reaction vessel, and the temperature is kept at 45 ° C., while stirring, Ag-1 solution (AgNO 3 34 g / L aqueous solution) and X-1 solution (KI 33.2 g). / L aqueous solution) was added at a rate of 4.0 mL / min for 10 minutes by the simultaneous addition method.
After stirring for 2 minutes, CDJ was then added to Ag-2 solution (AgNO 3 10 g / L aqueous solution) and X-2 solution (KI 9.765 g / L aqueous solution) while maintaining the silver potential at −50 mV. Ag-2 was added at an initial flow rate of 2.5 mL / min and an acceleration flow rate of 0.2 mL / min for 30 minutes. Next, Ag-3 solution (AgNO 3 20 g / L aqueous solution) and X-3 solution (KI, 19.53 g / L aqueous solution) were simultaneously added while maintaining the silver potential at −50 mV. Ag-3 was added at an initial flow rate of 4.2 mL / min and an acceleration flow rate of 0.12 mL / min for 75 minutes. All additions were made by conventional methods. After stirring for 2 minutes, the temperature was lowered to 40 ° C., and sensitizing dye 1 was added in an amount of 90% of the saturated adsorption amount for adsorption.
The emulsion was collected, and the produced grains were observed with an electron microscope. As a result, they were known tetrahedral grains. The average diameter was about 0.1 μm, and the CV of the AgX 1 particles was about 0.06.
A precipitating agent was added to the emulsion, and thereafter the same treatment as in Example 1 was performed to obtain a coated sample (Comparative Example 1-1) having the same coating silver amount, and its photographic characteristics were obtained. The results are shown in Table 1.

[比較例1−2]
文献10の実施例1に従って、AgI粒子乳剤を調製した。その後の水洗工程からは、実施例1と同じにして、塗布銀量が同一の塗布試料(比較例1−2)を得、その写真特性を得た。結果を表1に示した。
該水洗工程前に採取した乳剤を、更に、Ag−3液と、X−3液を添加して成長させた所、立方体粒子数比率は、30%以下であった。
[Comparative Example 1-2]
An AgI grain emulsion was prepared according to Example 1 of reference 10. From the subsequent water washing step, the same coated sample as in Example 1 was obtained (Comparative Example 1-2), and the photographic characteristics were obtained. The results are shown in Table 1.
The emulsion collected before the water washing step was further grown by adding Ag-3 solution and X-3 solution, and the cubic particle number ratio was 30% or less.

[比較例1−3]
文献3の(実験)項の記載に従って、温度70℃、pI2.5でゼラチン溶液にAgNO3液とKI液を25分間添加してAgI粒子乳剤を調製した。
その後の水洗工程からは、実施例1と同じにして、塗布銀量が同一の塗布試料(比較1−3)を得、その写真特性を得た。結果を表1に示した。
該水洗工程前に採取した乳剤を、更に、Ag−3液と、X−3液を添加して成長させた所、立方体粒子数比率は、30%以下であった。
[Comparative Example 1-3]
An AgI grain emulsion was prepared by adding AgNO 3 solution and KI solution to a gelatin solution at a temperature of 70 ° C. and a pI of 2.5 for 25 minutes according to the description in the (Experiment) section of Reference 3.
From the subsequent water washing step, a coated sample having the same coated silver amount (Comparative 1-3) was obtained in the same manner as in Example 1, and the photographic characteristics were obtained. The results are shown in Table 1.
The emulsion collected before the water washing step was further grown by adding Ag-3 solution and X-3 solution, and the cubic particle number ratio was 30% or less.

実施例1でゼラチン1をゼラチン2に置換える以外は同じにして、塗布試料(実施例2)を得た。実施例1と同じ処理をして、写真特性を得、結果を表1に示した。
ゼラチン2=アルカリ処理牛骨ゼラチンで、フタル化率が83%。
A coated sample (Example 2) was obtained in the same manner as in Example 1 except that gelatin 1 was replaced with gelatin 2. The same processing as in Example 1 was performed to obtain photographic characteristics, and the results are shown in Table 1.
Gelatin 2 = alkali-treated bovine bone gelatin with a phthalation rate of 83%.

実施例1で粒子形成が終了し、水洗工程に入る前に、温度を40℃に下げ、Ag−3液とX−4液(NaCl、71g/L水溶液)を銀電位を120mVに保ちながら、3分間、CDJ添加した。Ag−3液の添加速度は、32mL/分である。次にX−4液で銀電位を90mVに調節した。2分間攪拌した後、増感色素1を飽和吸着量の90%量で添加し、吸着させた。
乳剤を採取し、実施例1と同様にして、生成した粒子の該レプリカのTEM像を観察した。立方体AgI粒子上にAgClシェル層が積層され、丸みを帯びた立方体にった。該粒子のX線回折と電子線回折の測定結果から、AgIコアとAgClシェルからなるコアシェル粒子である事が分った。乳剤に沈降剤を添加し、沈降水洗法で乳剤を30℃で水洗して、脱塩した。pHを6.4にし、温度を40℃に上げ、再分散した。AgNO3液とNaCl液を用いて、pAgを6に調節した。40℃で次に化学増感剤1を合計モル量で5×10-4モル/モルAgX量で添加し、50℃に上げ、30分間熟成した。PA1化合物を10-3モル/モルAgX量で添加し、次にかぶり防止剤1を10-3モル/モルAgX量で添加し、pH6.4、pAg6に調節し、20分間攪拌した。後は実施例1と同様に、該乳剤を硬膜剤1含有の保護層と共にPETベース上に塗布し、乾燥させ、硬膜した塗布試料(実施例3)を得た。
Before the particle formation was completed in Example 1 and before the water washing step, the temperature was lowered to 40 ° C., and the Ag-3 solution and the X-4 solution (NaCl, 71 g / L aqueous solution) were kept at a silver potential of 120 mV. CDJ was added for 3 minutes. The addition rate of the Ag-3 solution is 32 mL / min. Next, the silver potential was adjusted to 90 mV with the X-4 solution. After stirring for 2 minutes, Sensitizing Dye 1 was added and adsorbed at 90% of the saturated adsorption amount.
The emulsion was collected and a TEM image of the replica of the produced grains was observed in the same manner as in Example 1. An AgCl shell layer was laminated on the cubic AgI particles to form a rounded cube. From the measurement results of X-ray diffraction and electron diffraction of the particles, it was found that they were core-shell particles composed of an AgI core and an AgCl shell. A precipitating agent was added to the emulsion, and the emulsion was washed with water at 30 ° C. by a precipitation water washing method to desalinate. The pH was brought to 6.4, the temperature was raised to 40 ° C. and redispersed. The pAg was adjusted to 6 using AgNO 3 solution and NaCl solution. At 40 ° C., chemical sensitizer 1 was then added in a total molar amount of 5 × 10 −4 mol / mol AgX, raised to 50 ° C. and aged for 30 minutes. PA1 compound was added in an amount of 10 −3 mol / mol AgX, then antifoggant 1 was added in an amount of 10 −3 mol / mol AgX, adjusted to pH 6.4 and pAg6, and stirred for 20 minutes. Thereafter, in the same manner as in Example 1, the emulsion was coated on a PET base together with a protective layer containing a hardener 1 and dried to obtain a hardened coated sample (Example 3).

実施例1で粒子形成が終了し、水洗工程に入る前に、Ag−3液とX−5液(KBr、142g/L水溶液)を銀電位を120mVに保ちながら、3分間、CDJ添加した。Ag−3液の添加速度は、30mL/分である。2分間攪拌した後、増感色素1を飽和吸着量の90%量で添加し、吸着させた。
乳剤を採取し、実施例1と同様にして、生成した粒子のレプリカのTEM像を観察した。立方体AgI粒子上にAgBrシェル層が積層され、丸みを帯びた立方体になった。該粒子のX線回折と電子線回折の測定結果から、AgIコアとAgBrシェルからなるコアシェル粒子である事が分った。
乳剤に沈降剤を添加し、沈降水洗法で乳剤を30℃で水洗して、脱塩した。pHを6.4にし、温度を40℃に上げ、再分散した。AgNO3液とKBr液を用いて、pAgを7に調節した。次に化学増感剤1を合計モル量で5x10-4モル/モルAgX量で添加し、40分間熟成した。PED1化合物を10-3モル/モルAgX量で添加し、次にかぶり防止剤1を10-3モル/モルAgX量で添加し、pH6.4、pAg7に調節し、20分間攪拌した。後は実施例1と同様に、該乳剤を硬膜剤1含有の保護層と共にPETベース上に塗布し、乾燥させ、硬膜した塗布試料(実施例4)を得た。
実施例3、4を、実施例1と同様に露光し、D−19現像液で20℃で16分間、現像した。停止、定着、水洗、乾燥を行い、その写真特性を得た。結果を表1に示した。いずれも、比較例に対して、(感度/粒状度)比が優っていた。
Particle formation was completed in Example 1, and before entering the washing step, CD-3 was added to Ag-3 solution and X-5 solution (KBr, 142 g / L aqueous solution) for 3 minutes while maintaining the silver potential at 120 mV. The addition rate of the Ag-3 solution is 30 mL / min. After stirring for 2 minutes, Sensitizing Dye 1 was added and adsorbed at 90% of the saturated adsorption amount.
The emulsion was collected and a TEM image of the replica of the produced grains was observed in the same manner as in Example 1. An AgBr shell layer was laminated on the cubic AgI particles to form a rounded cube. From the measurement results of X-ray diffraction and electron diffraction of the particles, it was found that they were core-shell particles composed of an AgI core and an AgBr shell.
A precipitating agent was added to the emulsion, and the emulsion was washed with water at 30 ° C. by a precipitation water washing method to desalinate. The pH was brought to 6.4, the temperature was raised to 40 ° C. and redispersed. The pAg was adjusted to 7 using AgNO 3 solution and KBr solution. Next, chemical sensitizer 1 was added in a total molar amount of 5 × 10 −4 mol / mol AgX and aged for 40 minutes. The PED1 compound was added in an amount of 10 −3 mol / mol AgX, then antifoggant 1 was added in an amount of 10 −3 mol / mol AgX, adjusted to pH 6.4 and pAg7, and stirred for 20 minutes. Thereafter, in the same manner as in Example 1, the emulsion was coated on a PET base together with a protective layer containing a hardener 1 and dried to obtain a coated sample (Example 4).
Examples 3 and 4 were exposed in the same manner as in Example 1, and developed with a D-19 developer at 20 ° C. for 16 minutes. Stopping, fixing, washing and drying were carried out to obtain photographic characteristics. The results are shown in Table 1. In all cases, the (sensitivity / granularity) ratio was superior to the comparative example.

1)主平面が{111}面である平板種粒子の形成。
反応容器に分散媒溶液2(水1.25L、KBrを1.0g、アルカリ処理牛骨ゼラチン3を2g含み、NaOHでpH=6に調節)を入れ、温度を20℃に保ち、攪拌しながら、Ag−6液(AgNO3 50g/Lの水溶液)とX−6液(1L当り、KBr 36g、ゼラチン2を1.7g含むpH6の水溶液)を同時添加法で、20mL/分で1分間、定量添加した。Met含量が0のゼラチンの水溶液とKBr溶液を加えながら、75℃に昇温した。12分間熟成した後、Ag−3液とX−7液(KBr148g/L)を用いて、銀電位−20mVのCDJ添加した。Ag−3液の添加速度は、スタート流量(mL/分)が1.6、加速流量が0.1で10分間添加した。
次に、Ag−3液とX−8(KBr145g、KI2g/L)液を用いて、銀電位0mVのCDJ添加した。Ag−3液の添加速度は、スタート流量(mL/分)が5.0、加速流量が0.6で40分間添加した。次に、Ag−3液とX−7液を用いて、銀電位0mVのCDJ添加を、3分間行った。Ag−3液の流量は30(mL/分)。
ゼラチン3=Met含量が0μmol/gで、重量平均分子量が1.5万のゼラチン。
1) Formation of tabular seed grains whose main plane is the {111} plane.
Dispersion medium solution 2 (containing 1.25 L of water, 1.0 g of KBr, 2 g of alkali-treated beef bone gelatin 3 and adjusted to pH = 6 with NaOH) is put in a reaction vessel, and the temperature is kept at 20 ° C. while stirring. , Ag-6 solution (AgNO 3 50 g / L aqueous solution) and X-6 solution (KBr 36 g, pH 6 aqueous solution containing 1.7 g of gelatin 2 per liter) are added simultaneously, 20 mL / min for 1 minute. A fixed amount was added. While adding an aqueous solution of gelatin having a Met content of 0 and a KBr solution, the temperature was raised to 75 ° C. After aging for 12 minutes, a CDJ with a silver potential of −20 mV was added using Ag-3 solution and X-7 solution (KBr 148 g / L). The Ag-3 solution was added at a start flow rate (mL / min) of 1.6 and an acceleration flow rate of 0.1 for 10 minutes.
Next, CDJ with a silver potential of 0 mV was added using Ag-3 solution and X-8 (KBr145 g, KI2 g / L) solution. The Ag-3 solution was added at a start flow rate (mL / min) of 5.0 and an acceleration flow rate of 0.6 for 40 minutes. Next, using Ag-3 solution and X-7 solution, CDJ addition with a silver potential of 0 mV was performed for 3 minutes. The flow rate of Ag-3 liquid is 30 (mL / min).
Gelatin 3 = gelatin having a Met content of 0 μmol / g and a weight average molecular weight of 15,000.

2)転位平板粒子の形成。
該種平板乳剤の温度を75℃にし、KBr液を添加し、次に後記立方体AgI乳剤を、0.01モル添加した。次にAg−3液43mLとX−7液 10mLを、15分間で添加した。熟成後に沈降剤を添加し、凝集沈降水洗し、40℃で、pH6.5、pBr2.5に調節した。増感色素1を飽和吸着量の90%で吸着させ、60℃に昇温し、AgX量1モル当り、化学増感剤1を合計モル量で1×10-5モルと、金増感剤1を金量で5×10-6モルを添加し、30分間熟成した。温度を40℃に下げ、PA1化合物を10-4モル/モルAgX量で添加し、次にかぶり防止剤1を10-3モル/モルAgX量で添加し、pH6.4、pAg5.5に調節し、20分間攪拌した。後は実施例1と同様に、該乳剤を硬膜剤1含有の保護層と共にPETベース上に塗布し、乾燥させ、硬膜した塗布試料(実施例5)を得た。
該粒子のレプリカのTEM像より、平均直径が1.65μm、厚さが0.11μm、平板粒子数比率が99%以上、その直径の変動係数が0.18の平板粒子が得られた。
2) Formation of dislocation tabular grains.
The temperature of the seed tabular emulsion was brought to 75 ° C., KBr solution was added, and then 0.01 mol of cubic AgI emulsion described later was added. Next, 43 mL of Ag-3 solution and 10 mL of X-7 solution were added in 15 minutes. After aging, a precipitating agent was added, washed with agglomerated sedimentation water, and adjusted to pH 6.5 and pBr 2.5 at 40 ° C. Sensitizing dye 1 is adsorbed at 90% of the saturated adsorption amount, heated to 60 ° C., and the chemical sensitizer 1 is 1 × 10 −5 mol in total mol amount per mol of AgX. 1 was added in a gold amount of 5 × 10 −6 mol and aged for 30 minutes. The temperature is lowered to 40 ° C., PA1 compound is added in an amount of 10 −4 mol / mol AgX, then antifoggant 1 is added in an amount of 10 −3 mol / mol AgX, and the pH is adjusted to 6.4 and pAg 5.5. And stirred for 20 minutes. Thereafter, in the same manner as in Example 1, the emulsion was coated on a PET base together with a protective layer containing a hardener 1 and dried to obtain a hardened coated sample (Example 5).
From the TEM image of the replica of the grains, tabular grains having an average diameter of 1.65 μm, a thickness of 0.11 μm, a tabular grain number ratio of 99% or more, and a coefficient of variation in diameter of 0.18 were obtained.

[比較例5a]
実施例5で立方体AgIの代りに、後記14面体AgIを添加する以外は同じにして、塗布試料(比較例5a)を調製した。
[Comparative Example 5a]
A coated sample (Comparative Example 5a) was prepared in the same manner as in Example 5 except that a tetrahedral AgI described later was added instead of the cubic AgI.

[比較例5b]
実施例5で立方体AgIの代りに、文献10の実施例1の水洗前の乳剤を添加する以外は同じにして、塗布試料(比較例5b)を調製した。
実施例5と比較例5a、5bを実施例1と同様に露光し、D−19現像液で、20℃で10分間、現像し、停止、定着、水洗、乾燥を行い、その写真特性を得た。結果を表2に示した。比較例5a、5bに対して、実施例5の(感度/粒状度)比が優っていた。
[Comparative Example 5b]
A coated sample (Comparative Example 5b) was prepared in the same manner as in Example 5 except that the emulsion before washing in Example 1 of Reference 10 was added instead of cubic AgI.
Example 5 and Comparative Examples 5a and 5b were exposed in the same manner as in Example 1, developed with D-19 developer at 20 ° C. for 10 minutes, stopped, fixed, washed with water, and dried to obtain photographic characteristics. It was. The results are shown in Table 2. The (sensitivity / granularity) ratio of Example 5 was superior to Comparative Examples 5a and 5b.

2)立方体AgI微粒子乳剤の形成。
反応容器に分散媒溶液3(水1.5L、ゼラチン4を25gを含み、NaOHでpH=6に調節)を入れ、温度を40℃に保ち、高速攪拌しながら、Ag−8液(AgNO3 100g/Lの水溶液)とX−8液(KI 97.6g、ゼラチン4を5g/Lの水溶液)を同時添加法で、10mL/分で10分間、定量添加した。次にAg−8液とX−8液を、銀電位180mVのCDJ添加した。Ag−8液の添加速度は、スタート流量(mL/分)が16、加速流量が1.2で12分間添加した。
生成した粒子のレプリカのTEM像より、直径が約0.04μm、立方体状粒子比率が98%、12面体粒子が1%、14面体粒子が、1%であった。該比率は該粒子を更に50℃で成長させて、確認したものである。
ゼラチン4=ゼラチン1をH22で酸化し、Met含量が0μmol/gのもの。
2) Formation of cubic AgI fine grain emulsion.
Dispersion medium solution 3 (containing 1.5 g of water and 25 g of gelatin 4 and adjusted to pH = 6 with NaOH) is put in a reaction vessel, and the temperature is kept at 40 ° C., while stirring at high speed, Ag-8 solution (AgNO 3 100 g / L aqueous solution) and X-8 solution (KI 97.6 g, gelatin 4 5 g / L aqueous solution) were added at a rate of 10 mL / min for 10 minutes by the simultaneous addition method. Next, CDJ with a silver potential of 180 mV was added to the Ag-8 solution and the X-8 solution. The Ag-8 solution was added at a start flow rate (mL / min) of 16 and an acceleration flow rate of 1.2 for 12 minutes.
From the TEM image of the replica of the generated particles, the diameter was about 0.04 μm, the cubic particle ratio was 98%, the dodecahedron particles were 1%, and the tetrahedral particles were 1%. The ratio is confirmed by further growing the particles at 50 ° C.
Gelatin 4 = Gelatin 1 oxidized with H 2 O 2 and having a Met content of 0 μmol / g.

3)14面体AgI微粒子乳剤の形成。
反応容器に分散媒溶液3(水1.5L、KIを0.12g、ゼラチン4を25gを含み、NaOHでpH=6に調節)を入れ、温度を40℃に保ち、高速攪拌しながら、Ag−8液(AgNO3 100g/Lの水溶液)とX−8液(KI 97.6g、ゼラチン4を5g/Lの水溶液)を同時添加法で、10mL/分で10分間、定量添加した。次にAg−8液とX−8液を、銀電位180mVのCDJ添加した。Ag−8液の添加速度は、スタート流量(mL/分)が16、加速流量が1.2で12分間添加した。
生成した粒子のレプリカのTEM像より、直径が約0.04μm、14面体状粒子が90%以上を占めた。該比率は該粒子を更に50℃で成長させて、確認したものである。
3) Formation of a tetrahedral AgI fine grain emulsion.
Dispersion medium solution 3 (1.5 L of water, 0.12 g of KI, 25 g of gelatin 4 and adjusted to pH = 6 with NaOH) was put in the reaction vessel, and the temperature was kept at 40 ° C. while stirring at high speed. -8 solution (AgNO 3 100 g / L aqueous solution) and X-8 solution (KI 97.6 g, gelatin 4 5 g / L aqueous solution) were added simultaneously at 10 mL / min for 10 minutes by the simultaneous addition method. Next, CDJ with a silver potential of 180 mV was added to the Ag-8 solution and the X-8 solution. The Ag-8 solution was added at a start flow rate (mL / min) of 16 and an acceleration flow rate of 1.2 for 12 minutes.
From the TEM image of the replica of the generated particles, the diameter was about 0.04 μm, and the tetrahedral particles accounted for 90% or more. The ratio is confirmed by further growing the particles at 50 ° C.

実施例5で、該10分間添加した所までを、同じにした。次にAg−3液とX−7液を用いて、銀電位−20mVのCDJ添加した。Ag−3液の添加速度は、スタート流量(mL/分)が15、加速流量が0.6で40分間添加した。この時、同時並行添加で、該立方体AgI乳剤を、添加した。添加速度はAgBrI(1モル%)が形成される速度であり、(AgIの添加速度/AgNO3の添加速度)=0.01モル比、である。
次に、Ag−3液とX−7液を用いて、銀電位0mVのCDJ添加を行う所以後は、実施例5と同じにして、塗布試料を得た。
該粒子のレプリカのTEM像より、平均直径が1.7μm、厚さが0.10μm、平板粒子数比率が99%以上、その直径の変動係数が0.16の平板粒子が得られた。
In Example 5, the process up to the addition of 10 minutes was the same. Next, a CDJ with a silver potential of −20 mV was added using the Ag-3 solution and the X-7 solution. The Ag-3 solution was added at a start flow rate (mL / min) of 15 and an acceleration flow rate of 0.6 for 40 minutes. At this time, the cubic AgI emulsion was added in parallel addition. The addition rate is the rate at which AgBrI (1 mol%) is formed, (AgI addition rate / AgNO 3 addition rate) = 0.01 molar ratio.
Next, using the Ag-3 solution and the X-7 solution, a coating sample was obtained in the same manner as in Example 5 except that CDJ was added at a silver potential of 0 mV.
From a TEM image of the replica of the grains, tabular grains having an average diameter of 1.7 μm, a thickness of 0.10 μm, a tabular grain number ratio of 99% or more, and a coefficient of variation in diameter of 0.16 were obtained.

[比較例6a]
実施例6で、立方体AgI乳剤の代りに、該14面体乳剤を添加する以外は同じにして、比較試料を作った。
これらの試料を実施例5と同じ様に露光し、現像し、写真特性を求め、表2に示した。比較例6aに対する実施例6の優位性が確認された。
[Comparative Example 6a]
A comparative sample was prepared in the same manner as in Example 6 except that the tetrahedral emulsion was added instead of the cubic AgI emulsion.
These samples were exposed and developed in the same manner as in Example 5 to obtain photographic characteristics, and are shown in Table 2. The superiority of Example 6 over Comparative Example 6a was confirmed.

[比較例6b]
実施例6で、立方体AgI乳剤の代りに、文献10の実施例1の水洗前の乳剤を添加する以外は同じにして、比較試料を作った。
これらの試料を実施例5と同じ様に露光し、現像し、写真特性を求め、表2に示した。比較例6bに対する実施例6の優位性が確認された。
[Comparative Example 6b]
A comparative sample was prepared in the same manner as in Example 6 except that the emulsion before washing in Example 1 of Reference 10 was added instead of the cubic AgI emulsion.
These samples were exposed and developed in the same manner as in Example 5 to obtain photographic characteristics, and are shown in Table 2. The superiority of Example 6 over Comparative Example 6b was confirmed.

実施例5の2)で調製した立方体AgI微粒子乳剤を、水洗し、ゼラチンを加えてpH6.4で再分散した。特開2003−15246号の実施例3に記載の塗布試料において、イエローフィルター層を、該再分散乳剤に置き換える以外は同じにした。露光、現像処理、濃度測定を同様に行い、結果を表3に示した。該層の塗布銀量は、0.7g/m2である。
[比較例7−1]
実施例5の3)で調製した14面体AgI微粒子乳剤を、水洗し、ゼラチンを加えてpH6.4で再分散した。特開2003−15246号の実施例3に記載の塗布試料において、イエローフィルター層を、該再分散乳剤に置き換える以外は同じにした。露光、現像処理、濃度測定を同様に行い、結果を表3に示した。該層の塗布銀量は、1g/m2である。
ここで、色分離度=青光を照射して現像処理した時の、(緑感層の濃度/青感層の濃度)、を表す。値が小さい方が、イエローフィルターの性能が良い。実施例7の試料の方が、フィルターの性能が良かった。
The cubic AgI fine grain emulsion prepared in 2) of Example 5 was washed with water, gelatin was added and redispersed at pH 6.4. In the coated sample described in Example 3 of JP-A-2003-15246, the yellow filter layer was the same except that the redispersed emulsion was replaced. Exposure, development, and density measurement were performed in the same manner, and the results are shown in Table 3. The applied silver amount of this layer is 0.7 g / m 2 .
[Comparative Example 7-1]
The tetrahedral AgI fine grain emulsion prepared in 3) of Example 5 was washed with water, gelatin was added and redispersed at pH 6.4. In the coated sample described in Example 3 of JP-A-2003-15246, the yellow filter layer was the same except that the redispersed emulsion was replaced. Exposure, development, and density measurement were performed in the same manner, and the results are shown in Table 3. The coating silver amount of this layer is 1 g / m 2 .
Here, the degree of color separation = (green-sensitive layer density / blue-sensitive layer density) when developing with blue light. The smaller the value, the better the performance of the yellow filter. The sample of Example 7 had better filter performance.

なお、実施例のAgI粒子形成は、常に高均一性の攪拌下で行った。(Ag+塩水溶液)と、(X-塩水溶液)の定量添加はいずれも高精度定流量ポンプで添加した。該添加液はすべて、分散媒溶液と同じ温度に制御して、送液管を通して、該溶液中の混合箱中に直接に添加した。その添加孔数は50こであった。CDJ添加=Controlled Double Jet添加、を表す。 In addition, AgI particle | grain formation of the Example was always performed under highly uniform stirring. The quantitative additions of (Ag + salt aqueous solution) and (X - salt aqueous solution) were both added with a high-precision constant flow pump. All of the additive liquids were controlled directly at the same temperature as the dispersion medium solution, and added directly to the mixing box in the solution through a liquid feeding tube. The number of added holes was 50. CDJ addition = Controlled Double Jet addition.

6面体AgI粒子の粒子構造を表すTEM像例を表す。倍率約5万倍。The example of the TEM image showing the particle structure of hexahedral AgI particle | grains is represented. Approx. 50,000 times magnification. 6面体AgI粒子の粒子構造を表す低温TEM像例を表す。倍率約20万 倍。The example of the low-temperature TEM image showing the particle structure of a hexahedral AgI particle | grain is represented. The magnification is about 200,000 times. 6面体AgI粒子のCuβX線によるX線回折測定図を表す。The X-ray-diffraction measurement figure by Cu (beta) X-ray of hexahedral AgI particle | grains is represented. AgI粒子乳剤の光反射スペクトルを表す。1 represents a light reflection spectrum of an AgI grain emulsion.

Claims (6)

少なくとも分散媒とハロゲン化銀粒子を有するハロゲン化銀乳剤において、該粒子の投影面積の合計の60〜100%の粒子が、AgI含率が85〜100モル%であり、該粒子形状が直角6面体、あるいは、その角及び/又はエッジが丸みを帯びた形状であり、該粒子の円相当投影直径が、0.01〜20μmである粒子(AgX1)、である事を特徴とするハロゲン化銀乳剤。 In a silver halide emulsion having at least a dispersion medium and silver halide grains, 60 to 100% of the total projected area of the grains has an AgI content of 85 to 100 mol%, and the grain shape has a right angle of 6 Halogenation characterized in that it is a face or a particle (AgX 1 ) having a rounded shape at its corners and / or edges and a circle equivalent projected diameter of 0.01 to 20 μm. Silver emulsion. 該6面体の辺長比「1個の粒子の1つの面で、(最長辺の辺長/最短辺の辺長)」、又は、該丸みを帯びた粒子の辺の直線部又は面の平坦部を延長する事により、形成される直角6面体の該辺長比が、1.0〜1.3である事を特徴とする請求項1記載のハロゲン化銀乳剤。   Side length ratio of the hexahedron “one side of one particle (the length of the longest side / the length of the shortest side)”, or the straight part or the flatness of the side of the rounded particle 2. The silver halide emulsion according to claim 1, wherein the length ratio of the right hexahedron formed by extending the part is 1.0 to 1.3. 支持体の一方または両面上に1層以上のハロゲン化銀乳剤を塗布した写真感光材料において、少なくとも1層のハロゲン化銀乳剤が、請求項1記載のハロゲン化銀乳剤である事を特徴とする写真感光材料。   2. A photographic light-sensitive material in which one or more silver halide emulsions are coated on one or both sides of a support, wherein at least one silver halide emulsion is the silver halide emulsion according to claim 1. Photosensitive material. 少なくとも分散媒と水とハロゲン化銀種晶粒子(AgX10)を有するハロゲン化銀種晶乳剤に、AgI含率が85〜100モル%のハロゲン化銀微粒子(AgX12)を添加し、添加した該微粒子を溶解させ、該種晶粒子上に沈積させる事により、種晶粒子を成長させるハロゲン化銀粒子の成長方法において、該微粒子が請求項1記載のAgX1を含有する事を特徴とするハロゲン化銀粒子の成長方法。 To a silver halide seed crystal emulsion having at least a dispersion medium, water, and silver halide seed crystal grains (AgX 10 ), silver halide fine grains (AgX 12 ) having an AgI content of 85 to 100 mol% were added and added. In the method for growing silver halide grains, wherein the fine grains are dissolved and deposited on the seed crystal grains, the fine grains contain AgX 1 according to claim 1. Method for growing silver halide grains. 該感光材料が熱現像写真感光材料であり、露光し、感光させた後に、該材料を80〜200℃に加熱して現像させる事、を特徴とする請求項3記載の写真感光材料。   4. The photographic light-sensitive material according to claim 3, wherein the light-sensitive material is a heat-developable photographic light-sensitive material, which is exposed to light and exposed to light, and then heated to 80 to 200 [deg.] C. for development. 支持体上に1層以上のハロゲン化銀乳剤を塗布した短波長光カットフィルター材料であって、少なくとも1層のハロゲン化銀乳剤が、請求項1記載のハロゲン化銀乳剤である事を特徴とするフィルター材料。   A short wavelength light cut filter material in which one or more silver halide emulsions are coated on a support, wherein at least one silver halide emulsion is the silver halide emulsion according to claim 1. Filter material to do.
JP2005102573A 2005-03-31 2005-03-31 Silver halide emulsion, photographic sensitive material, method for growing silver halide grains, and filter material Pending JP2006284751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005102573A JP2006284751A (en) 2005-03-31 2005-03-31 Silver halide emulsion, photographic sensitive material, method for growing silver halide grains, and filter material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005102573A JP2006284751A (en) 2005-03-31 2005-03-31 Silver halide emulsion, photographic sensitive material, method for growing silver halide grains, and filter material

Publications (1)

Publication Number Publication Date
JP2006284751A true JP2006284751A (en) 2006-10-19

Family

ID=37406781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005102573A Pending JP2006284751A (en) 2005-03-31 2005-03-31 Silver halide emulsion, photographic sensitive material, method for growing silver halide grains, and filter material

Country Status (1)

Country Link
JP (1) JP2006284751A (en)

Similar Documents

Publication Publication Date Title
JPH0228638A (en) Silver halide photographic emulsion and its production
JP3025585B2 (en) Silver halide emulsion
JP3383397B2 (en) Silver halide emulsion
EP0645670B1 (en) Silver halide emulsion
JP2794247B2 (en) Silver halide emulsion
JP2006284751A (en) Silver halide emulsion, photographic sensitive material, method for growing silver halide grains, and filter material
US5155017A (en) Silver halide photographic material
JPH02234151A (en) Silver halide photographic sensitive material
EP1528428A2 (en) Silver halide emulsion
JP2006099026A (en) Silver halide emulsion
JP3999147B2 (en) Silver halide emulsion, process for producing the same and photographic light-sensitive material
JP2002090925A (en) Silver halide emulsion, method for preparing the same and silver halide photosensitive material
JP3637475B2 (en) Silver halide photographic material
JP3388914B2 (en) Silver halide emulsion
JP2835607B2 (en) Silver halide emulsion
JP3668828B2 (en) Silver halide photographic material
JP4225664B2 (en) Method for producing silver halide emulsion
JPH04110935A (en) Silver halide photographic emulsion
JP2000187295A (en) Silver halide photographic emulsion, its production and silver halide photographic sensitive material
JPH11119361A (en) Silver halide color photographic sensitive material
JPH07128767A (en) Silver halide photographic sensitive material
JPH10142721A (en) Silver halide color photo-graphic sensitive material
EP0462543A1 (en) Silver halide emulsions having high sensitivity and pressure resistance
JPH09146202A (en) Silver halide emulsion, its production and silver halide photographic sensitive material using that
JP2001201811A (en) Silver halide emulsion and silver halide color photographic sensitized material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061127