JP2006283226A - Flame-proofed fiber, carbon fiber and method for producing them - Google Patents

Flame-proofed fiber, carbon fiber and method for producing them Download PDF

Info

Publication number
JP2006283226A
JP2006283226A JP2005104231A JP2005104231A JP2006283226A JP 2006283226 A JP2006283226 A JP 2006283226A JP 2005104231 A JP2005104231 A JP 2005104231A JP 2005104231 A JP2005104231 A JP 2005104231A JP 2006283226 A JP2006283226 A JP 2006283226A
Authority
JP
Japan
Prior art keywords
fiber
flame
resistant
carbon fiber
specific gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005104231A
Other languages
Japanese (ja)
Inventor
Hidekazu Yoshikawa
秀和 吉川
Taro Oyama
太郎 尾山
Takafumi Munetsugi
啓文 宗次
Takaya Suzuki
貴也 鈴木
Harumitsu Enomoto
晴光 榎本
Takeshi Yamazaki
剛 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2005104231A priority Critical patent/JP2006283226A/en
Publication of JP2006283226A publication Critical patent/JP2006283226A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon fiber usable when producing a composite by compounding a matrix material with the carbon fiber, and having excellent surface/interface characteristics; and to provide a method for producing the carbon fiber. <P>SOLUTION: The carbon fiber having a fiber cross section cut by an arbitrary cutting face passing the fiber axis, having both edge shapes in the width direction formed into a wave shape repeating bending, and further having independent hollow parts 8 in the fiber at the mountain 4 parts of the wave shape is produced by carbonizing the flame-proofed fiber having >0.6 ratio (f/e) of the thickness (f) of a not-flame-proofed part to the thickness (e) of an already flame-proofed part in a white-black image of a fiber cross section obtained by a scanning probe microscope observation, and 1.32-1.41 specific gravity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、マトリックス材料と炭素繊維を複合化してコンポジットを作製する際に用いる、表面・界面特性に優れた炭素繊維、及びその製造用等に有用な耐炎化繊維、並びに、それらの製造方法に関する。   The present invention relates to a carbon fiber excellent in surface / interface characteristics used when a matrix material and a carbon fiber are composited to produce a composite, a flame resistant fiber useful for the production thereof, and a production method thereof. .

炭素繊維の製造方法としては、原料繊維にポリアクリロニトリル(PAN)等の前駆体繊維(プリカーサー)を使用し、耐炎化処理及び炭素化処理を経て炭素繊維を得る方法が広く知られている(例えば、特許文献1参照)。このようにして得られた炭素繊維は、高い比強度、比弾性率など良好な特性を有している。   As a method for producing carbon fiber, a method of obtaining carbon fiber by using a precursor fiber (precursor) such as polyacrylonitrile (PAN) as a raw material fiber and undergoing a flame resistance treatment and a carbonization treatment is widely known (for example, , See Patent Document 1). The carbon fibers thus obtained have good characteristics such as high specific strength and specific elastic modulus.

近年、炭素繊維を利用した複合材料[例えば、炭素繊維強化プラスチック(CFRP)など]の工業的な用途は、多目的に広がりつつある。特にスポーツ・レジャー分野、航空宇宙分野、自動車分野においては、(1)より高性能化(高強度化、高弾性化)、(2)より軽量化(繊維軽量化及び繊維含有量低減)、(3)複合した際のより高いコンポジット物性の発現性向上(炭素繊維表面・界面特性の向上)に向けた要求が強まっている。   In recent years, industrial applications of composite materials using carbon fibers [for example, carbon fiber reinforced plastic (CFRP) and the like] have been spreading to various purposes. Especially in the sports / leisure field, aerospace field, and automobile field, (1) higher performance (higher strength, higher elasticity), (2) lighter (fiber weight reduction and fiber content reduction), ( 3) There is an increasing demand for improving the appearance of higher composite properties when combined (improvement of carbon fiber surface / interface properties).

炭素繊維と樹脂等のマトリックス材料との複合化において高性能化を追求する為には、マトリックス材料が有する特性も重要であるが、炭素繊維そのもの自体の表面特性を向上させることが必要不可欠である。つまり、炭素繊維表面とマトリックス材料との接着性が高いもの同士を複合化し、マトリックス材料と炭素繊維をより均一に分散することで、複合材料のより高性能なもの(高強度、高弾性)を得ることができる。   In order to pursue high performance in the composite of carbon fiber and resin or other matrix material, the characteristics of the matrix material are also important, but it is essential to improve the surface characteristics of the carbon fiber itself. . In other words, by combining materials with high adhesion between the carbon fiber surface and the matrix material, and dispersing the matrix material and the carbon fiber more uniformly, the composite material with higher performance (high strength, high elasticity) can be obtained. Obtainable.

しかし、従来上記要求を充分満たすものはなかった。
特開2001−131833号公報(特許請求の範囲、第5頁)
However, none of the above-mentioned requirements have been sufficiently satisfied.
JP 2001-131833 A (claims, page 5)

本発明者は、上記問題を解決するために種々検討しているうちに、プリカーサーの耐炎化進行状態に応じて、走査型プローブ顕微鏡(SPM)観察より得られる繊維断面の画像が、繊維断面外周部を示す外円と、繊維の外表面から繊維軸方向にかけて形成される既耐炎化部分と繊維軸を含む未耐炎化部分との境界で形成される内円との二重円が観察されるように、昇温時の比重増加に対する耐炎化処理時間を示す勾配係数Aを調節しつつプリカーサーを耐炎化処理することにより、以下の炭素繊維の製造用として有用な耐炎化繊維が得られることを見出した。   While the present inventor has made various studies in order to solve the above problems, an image of a fiber cross section obtained by scanning probe microscope (SPM) observation according to the progress of the flame resistance of the precursor is the outer circumference of the fiber cross section. A double circle is observed which consists of an outer circle indicating the portion and an inner circle formed at the boundary between the flame-resistant portion formed from the outer surface of the fiber toward the fiber axis and the non-flame-resistant portion including the fiber axis. As described above, flameproofing fibers useful for the production of the following carbon fibers can be obtained by flameproofing the precursor while adjusting the gradient coefficient A indicating the flameproofing treatment time against the specific gravity increase at the time of temperature rise. I found it.

即ち、この耐炎化繊維を炭素化して得られる炭素繊維は、繊維軸方向に沿って大径部と小径部とを交互に連続して形成してなり、大径部の繊維内に独立した中空部を有し、大径部と小径部とが所定間隔、所定直径差を有し、いわば空豆の殻の形状を有する。   That is, the carbon fiber obtained by carbonizing this flame resistant fiber is formed by alternately and continuously forming a large diameter portion and a small diameter portion along the fiber axis direction, and an independent hollow in the fiber of the large diameter portion. The large-diameter portion and the small-diameter portion have a predetermined interval and a predetermined diameter difference, so to speak, the shape of a shell of empty beans.

更に、この炭素繊維はマトリックス材料と複合化してコンポジットにした場合、マトリックス材料との良好な引っ掛かり性、接着性を発現することを見出し、本発明を完成するに到った。   Further, when this carbon fiber is combined with a matrix material to form a composite, it has been found that the carbon fiber exhibits good catching properties and adhesiveness with the matrix material, and the present invention has been completed.

よって、本発明の目的とするところは、上記問題を解決した炭素繊維、及びその製造用等に有用な耐炎化繊維、並びに、それらの製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a carbon fiber that has solved the above problems, a flame-resistant fiber that is useful for the production thereof, and a method for producing the same.

上記目的を達成する本発明は、以下に記載するものである。   The present invention for achieving the above object is described below.

〔1〕 炭素繊維製造用耐炎化繊維の走査型プローブ顕微鏡観察により得られる繊維断面の白黒画像において、繊維断面の画像の白黒濃度分布は、繊維断面外周部の画像で形成される外円と、繊維の外表面から繊維軸方向に形成される既耐炎化部分と繊維軸を含む未耐炎化部分との境界で形成される内円との二重円構造を有し、既耐炎化部分の径方向厚み(e)と前記内円半径で示される未耐炎化部分の厚み(f)との比(f/e)が0.6より大きく、且つ比重が1.32〜1.41である耐炎化繊維。   [1] In the black and white image of the fiber cross section obtained by scanning probe microscope observation of the flameproof fiber for carbon fiber production, the black and white density distribution of the fiber cross section image is an outer circle formed by the image of the fiber cross section outer periphery, It has a double circular structure with an inner circle formed at the boundary between the flame-resistant portion formed in the fiber axis direction from the outer surface of the fiber and the non-flame-resistant portion including the fiber axis, and the diameter of the flame-resistant portion. Flame resistance in which the ratio (f / e) of the directional thickness (e) and the thickness (f) of the non-flame resistant portion indicated by the inner circle radius is greater than 0.6 and the specific gravity is 1.32 to 1.41 Fiber.

〔2〕 炭素繊維用プリカーサーを耐炎化処理する際、次式
勾配係数A=耐炎化処理時間(分)/比重増加
(ここで、比重増加=耐炎化繊維比重−プリカーサー比重)
で求められる勾配係数Aを200未満に保つことを特徴とする耐炎化繊維の製造方法。
[2] When a carbon fiber precursor is flameproofed, the following gradient coefficient A = flameproofing time (min) / specific gravity increase
(Here, specific gravity increase = flame-resistant fiber specific gravity−precursor specific gravity)
A method for producing a flame-resistant fiber, characterized in that the gradient coefficient A determined in step 1 is kept below 200.

〔3〕 〔1〕に記載の耐炎化繊維を不活性ガス雰囲気で熱処理することを特徴とする炭素繊維の製造方法。   [3] A method for producing a carbon fiber, comprising heat-treating the flame-resistant fiber according to [1] in an inert gas atmosphere.

本発明の炭素繊維は、繊維表面がその軸方向に空豆の殻状の凹凸を有するので、即ち、繊維軸を通る任意の切断面で切断した繊維断面の幅方向両端形状がそれぞれ曲折を繰返す波状形状に形成されてなるので、マトリックス材料と複合化してコンポジットにした場合、マトリックス材料との良好な分散性、引っ掛かり性、接着性を有する補強材として機能する。   In the carbon fiber of the present invention, the fiber surface has hollow bean shell-like irregularities in the axial direction, that is, both end shapes in the width direction of the fiber cross section cut at an arbitrary cut surface passing through the fiber axis are each wavy that repeats bending. Since it is formed into a shape, when it is combined with a matrix material to form a composite, it functions as a reinforcing material having good dispersibility, catching properties, and adhesiveness with the matrix material.

本発明の耐炎化繊維は、SPM観察より得られる繊維断面の画像が、繊維断面外周部を示す外円と、表層付近の既耐炎化部分と円の中心付近の未耐炎化部分との境界を示す内円との二重円を有し、既耐炎化部分の厚み(e)と未耐炎化部分の厚み(f)との比(f/e)が0.6より大きく、且つ比重が1.32〜1.41であるので、上記炭素繊維の製造用等に有用である。   In the flame-resistant fiber of the present invention, the image of the fiber cross section obtained by SPM observation shows the boundary between the outer circle showing the outer periphery of the fiber cross section, the flame-resistant part near the surface layer, and the non-flame-resistant part near the center of the circle. And a ratio (f / e) between the thickness (e) of the flameproofed portion and the thickness (f) of the nonflamed portion is larger than 0.6 and the specific gravity is 1 .32 to 1.41, it is useful for the production of the carbon fiber.

本発明の耐炎化繊維の製造方法によれば、昇温時の比重増加に対する耐炎化処理時間を示す勾配係数Aを所定範囲に調節しつつプリカーサーを耐炎化処理しているので、SPM観察より得られる繊維断面の画像が上記二重円の耐炎化繊維を安定して生産することができる。   According to the method for producing a flame-resistant fiber of the present invention, the precursor is flame-resistant while adjusting the gradient coefficient A indicating the flame resistance treatment time with respect to the increase in specific gravity at the time of temperature rise to a predetermined range. The resulting fiber cross-sectional image can stably produce the double-circle flame-resistant fiber.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

図1は、本発明の炭素繊維の一例を示す概略断面図である。図1に示されるように、本例の炭素繊維2は、繊維軸を通る任意の切断面で切断した繊維断面の幅方向両端形状がそれぞれ曲折を繰返す波状形状に形成されてなる。図1において、4は波状形状の山であり、6は波状形状の谷である。炭素繊維2は、波状形状の山4部分の繊維内に独立した中空部8を有する。   FIG. 1 is a schematic cross-sectional view showing an example of the carbon fiber of the present invention. As shown in FIG. 1, the carbon fiber 2 of this example is formed in a wavy shape in which both ends in the width direction of the fiber cross section cut at an arbitrary cut surface passing through the fiber axis repeat bending. In FIG. 1, 4 is a wave-shaped peak, and 6 is a wave-shaped valley. The carbon fiber 2 has an independent hollow portion 8 in the fiber of the corrugated crest 4 portion.

波状形状の山4は、繊維表面全周において大径部を形成している。aは大径部における繊維直径(繊維大径)を示す。波状形状の谷6は、繊維表面全周において小径部を形成している。bは小径部における繊維直径(繊維小径)を示す。   The corrugated crest 4 forms a large diameter portion around the entire fiber surface. a shows the fiber diameter (fiber large diameter) in a large diameter part. The corrugated valley 6 forms a small diameter portion on the entire circumference of the fiber surface. b shows the fiber diameter (small fiber diameter) in a small diameter part.

本発明の炭素繊維において、平均繊維直径は8.5〜12.0μmが好ましく、8.7〜11.0μmが更に好ましい。   In the carbon fiber of the present invention, the average fiber diameter is preferably 8.5 to 12.0 μm, and more preferably 8.7 to 11.0 μm.

本発明の炭素繊維は、下記の本発明の耐炎化繊維を不活性ガス雰囲気で熱処理することにより得られる。   The carbon fiber of the present invention can be obtained by heat-treating the following flame-resistant fiber of the present invention in an inert gas atmosphere.

本発明の耐炎化繊維は、炭素繊維用プリカーサーが耐炎化処理されてなる耐炎化繊維であって、比重が1.32〜1.41である。耐炎化繊維の繊維直径は、13μm以上が好ましく、14〜19μmが更に好ましい。   The flame-resistant fiber of the present invention is a flame-resistant fiber obtained by subjecting a carbon fiber precursor to flame resistance treatment, and has a specific gravity of 1.32 to 1.41. The fiber diameter of the flame resistant fiber is preferably 13 μm or more, and more preferably 14 to 19 μm.

図2は、本発明の耐炎化繊維の一例を示す概略断面図である。図2において、12は耐炎化繊維であり、14は耐炎化繊維断面外周部を示す外円である。この外円14の内側には、繊維表面から繊維軸(円の中心)18方向にかけて形成される既耐炎化部分16と、円の中心18付近の未耐炎化部分20との境界により内円22が形成されている。   FIG. 2 is a schematic cross-sectional view showing an example of the flameproof fiber of the present invention. In FIG. 2, 12 is a flame resistant fiber, and 14 is an outer circle showing the outer periphery of the flame resistant fiber cross section. Inside the outer circle 14, an inner circle 22 is formed by a boundary between the flame-resistant portion 16 formed from the fiber surface to the fiber axis (center of the circle) 18 and the non-flame-resistant portion 20 near the center 18 of the circle. Is formed.

SPMは原子間力顕微鏡(AFM)に代表され、それを用いて耐炎化繊維断面観察する場合、繊維断面における既耐炎化部分16と未耐炎化部分20との物性の違いが画像化される。即ち、耐炎化繊維12は、その断面のSPM画像が二重円になる。   The SPM is typified by an atomic force microscope (AFM). When the cross section of the flame-resistant fiber is observed using the SPM, the difference in physical properties between the flame-resistant portion 16 and the non-flame-resistant portion 20 in the fiber cross-section is imaged. That is, the SPM image of the cross section of the flameproof fiber 12 becomes a double circle.

図3は、耐炎化処理中のプリカーサー12の一例を示す図面代用のSPM写真である。この耐炎化処理途中のプリカーサーにおいて、図3に見られるように繊維断面の画像の白黒濃度分布は、繊維断面外周部の画像で形成している外円と、既耐炎化部分と未耐炎化部分との境界で形成している内円との二重円を示している。   FIG. 3 is a SPM photograph in place of a drawing showing an example of the precursor 12 during the flameproofing treatment. In the precursor in the middle of the flameproofing treatment, as shown in FIG. 3, the black and white density distribution of the image of the fiber cross section is the outer circle formed by the image of the fiber cross section outer peripheral part, the flameproofed part and the non-flameproof part. A double circle with an inner circle formed at the boundary is shown.

図2において、eは既耐炎化部分16の厚みを示し、fは未耐炎化部分20の厚みを示す。本発明の耐炎化繊維は、既耐炎化部分の厚み(e)と未耐炎化部分の厚み(f)との比(f/e)が0.6より大きく、好ましくは0.6〜0.9である。   In FIG. 2, e indicates the thickness of the flameproof portion 16, and f indicates the thickness of the non-flameproof portion 20. In the flame-resistant fiber of the present invention, the ratio (f / e) of the thickness (e) of the flame-resistant portion to the thickness (f) of the non-flame-resistant portion is larger than 0.6, preferably 0.6 to 0.00. Nine.

耐炎化繊維の比(f/e)、比重、繊維直径が上記範囲を逸脱する場合は、得られる炭素繊維の配向、強力が低下することの少なくとも何れかが起こるので好ましくない。   When the ratio (f / e), specific gravity, and fiber diameter of the flameproof fiber deviate from the above ranges, at least one of the orientation and strength of the obtained carbon fiber is not preferable.

図4は、比(f/e)が0である従来の耐炎化繊維の一例を示す図面代用のSPM写真である。この耐炎化繊維は既耐炎化部分だけで未耐炎化部分が無いので、SPM画像は繊維断面が均一な白黒濃度分布になり、何ら白黒濃度の偏りにより特定の形状を示すことはない。即ち、図4に見られるように繊維断面の画像において円を形成する画像は繊維断面外周部のみで、SPM観察より得られる繊維断面の画像は図2に示すような二重円にはならない。   FIG. 4 is a SPM photograph in place of a drawing showing an example of a conventional flameproof fiber having a ratio (f / e) of 0. Since this flame-resistant fiber has only a flame-resistant portion and no non-flame-resistant portion, the SPM image has a black and white density distribution with a uniform fiber cross section, and does not show a specific shape due to any bias in the black and white density. That is, as shown in FIG. 4, the image forming the circle in the fiber cross-sectional image is only the outer periphery of the fiber cross-section, and the image of the fiber cross-section obtained by SPM observation is not a double circle as shown in FIG.

SPMの測定原理は電子線プローブで試料表面をなぞり、試料形状(試料表面の高さ)を離散的に測定し、コンピューター上で画像解析処理するものである。その特徴としては、高さ情報の精度が高いことが上げられる。   The measurement principle of SPM is to trace the sample surface with an electron beam probe, discretely measure the sample shape (the height of the sample surface), and perform image analysis processing on a computer. The feature is that the accuracy of the height information is high.

この画像解析処理は、例えば特開2003−293264号公報に開示されているような公知の方法を用いて行うことができる。   This image analysis processing can be performed using a known method as disclosed in, for example, Japanese Patent Laid-Open No. 2003-293264.

本発明の耐炎化繊維は、例えば、以下の方法により製造することができる。   The flame resistant fiber of the present invention can be produced, for example, by the following method.

最も高品位の炭素繊維を得る中間原料として適した耐炎化繊維が得られることから、本発明の耐炎化繊維の原料であるプリカーサーは、PAN系プリカーサーが好ましい。PAN系プリカーサー以外には、ピッチ系、フェノール系、セルロース系、レーヨン系等のプリカーサーを用いることもできる。   Since a flame-resistant fiber suitable as an intermediate raw material for obtaining the highest quality carbon fiber can be obtained, the precursor that is a raw material of the flame-resistant fiber of the present invention is preferably a PAN-based precursor. In addition to the PAN-based precursor, a pitch-based, phenol-based, cellulose-based, rayon-based precursor or the like can also be used.

PAN系プリカーサーは、例えばアクリロニトリルを95質量%以上含有する単量体を重合した単独重合体又は共重合体を含む紡糸溶液を、湿式又は乾湿式紡糸法において紡糸・水洗・乾燥・延伸等の処理を行うことによって得ることができる。共重合する単量体としては、アクリル酸メチル、イタコン酸、メタクリル酸メチル、アクリル酸等が好ましい。   PAN-based precursors, for example, a spinning solution containing a homopolymer or copolymer obtained by polymerizing a monomer containing 95% by mass or more of acrylonitrile in a wet or dry-wet spinning method such as spinning, washing, drying, stretching, etc. Can be obtained by doing As the monomer to be copolymerized, methyl acrylate, itaconic acid, methyl methacrylate, acrylic acid and the like are preferable.

なお、プリカーサーの繊維直径は14〜19μmに調節する。   The fiber diameter of the precursor is adjusted to 14 to 19 μm.

このようにして得られるプリカーサーを、本発明の耐炎化繊維の製造方法に従って耐炎化して耐炎化繊維を得る。   The precursor thus obtained is flame-resistant according to the method for producing flame-resistant fibers of the present invention to obtain flame-resistant fibers.

本発明の耐炎化繊維の製造方法における耐炎化処理過程では、上記プリカーサーを耐炎化処理する際、次式
勾配係数A=耐炎化処理時間(分)/比重増加
(ここで、比重増加=耐炎化繊維比重−プリカーサー比重)
で求められる勾配係数Aを200未満、好ましくは150〜199にする。
In the flameproofing process in the method for producing a flameproofed fiber of the present invention, when the precursor is flameproofed, the following gradient coefficient A = flameproofing time (minutes) / specific gravity increase
(Here, specific gravity increase = flame-resistant fiber specific gravity−precursor specific gravity)
Is less than 200, preferably 150 to 199.

本発明の耐炎化繊維の製造方法においては、昇温時の比重増加に対する耐炎化処理時間を示す勾配係数Aを上記範囲に調節しつつプリカーサーを耐炎化処理することにより、SPM観察より得られる繊維断面の画像が、既耐炎化部分の厚み(e)と未耐炎化部分の厚み(f)との比(f/e)が0.6より大きい二重円になる耐炎化繊維を得ることができる。   In the method for producing flame-resistant fibers of the present invention, fibers obtained by SPM observation are obtained by flame-treating the precursor while adjusting the gradient coefficient A indicating the flame resistance treatment time with respect to the increase in specific gravity at the time of temperature rise to the above range. It is possible to obtain a flame-resistant fiber whose cross-sectional image is a double circle in which the ratio (f / e) of the thickness (e) of the flame-resistant part to the thickness (f) of the non-flame-resistant part is larger than 0.6. it can.

次に、この耐炎化繊維を、窒素雰囲気下などの不活性ガス雰囲気下で焼成し炭素化することにより炭素繊維を得ることができる。焼成条件は特に制限がなく、公知の条件に従う。更に、炭素繊維の後加工をしやすくし、取扱性を向上させる目的で、炭素繊維をサイジング処理することが好ましい。サイジング方法は、従来の公知の方法で行うことができ、サイジング剤は、用途に即して適宜組成を変更して使用し、炭素繊維に均一付着させた後に、乾燥することが好ましい。   Next, the flame-resistant fiber is baked and carbonized in an inert gas atmosphere such as a nitrogen atmosphere to obtain a carbon fiber. The firing conditions are not particularly limited, and follow known conditions. Furthermore, it is preferable that the carbon fiber is sized for the purpose of facilitating the post-processing of the carbon fiber and improving the handleability. The sizing method can be carried out by a conventionally known method, and the sizing agent is preferably used after changing its composition as appropriate according to the application, and after uniformly adhering to the carbon fiber.

以下、本発明を実施例及び比較例により更に具体的に説明する。また、各実施例及び比較例におけるプリカーサー、耐炎化繊維及び炭素繊維の諸物性についての評価方法は、前述の方法又は以下の方法により実施した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. Moreover, the evaluation method about the various physical properties of the precursor in each Example and a comparative example, a flame-resistant fiber, and carbon fiber was implemented by the above-mentioned method or the following methods.

<繊維比重>
アルキメデス法により測定した。プリカーサー又は耐炎化繊維の試料繊維はアセトン中にて脱気処理し測定した。
<Fiber specific gravity>
Measured by Archimedes method. Precursor or flameproof fiber sample fibers were degassed in acetone and measured.

<SPM観察>
試料作製方法:耐炎化繊維をエポキシ樹脂(エポマウント:リファインテック社製)に包埋し、ミクロトームにてダイヤモンドナイフを用いて断面サンプルを作製した。
<SPM observation>
Sample preparation method: Flame-resistant fibers were embedded in an epoxy resin (Epomount: manufactured by Refinetech), and a cross-sectional sample was prepared using a diamond knife with a microtome.

SPM装置:Digital Instrument社製 SPM Dimension3100を使用し、耐炎化繊維断面を観察した。   SPM device: SPM Dimension3100 manufactured by Digital Instrument was used to observe the cross section of the flameproof fiber.

<引張り強度>
JIS R 7601に規定された方法により測定した。
<Tensile strength>
It was measured by the method defined in JIS R7601.

実施例1〜5及び比較例1〜5
アクリロニトリル95質量%/アクリル酸メチル4質量%/イタコン酸1質量%よりなる共重合体紡糸原液を湿式又は乾湿式紡糸し、水洗・乾燥・延伸して繊維直径:実施例1〜4及び比較例1〜4で15.5μm、実施例5で18.5μm、比較例5で8.5μmのプリカーサーを得た。
Examples 1-5 and Comparative Examples 1-5
Copolymer spinning stock solution consisting of 95% by weight of acrylonitrile / 4% by weight of methyl acrylate / 1% by weight of itaconic acid is wet or dry-wet spun, washed with water, dried and stretched, and fiber diameter: Examples 1-4 and Comparative Examples Precursors of 15.5 μm for 1-4, 18.5 μm for Example 5, and 8.5 μm for Comparative Example 5 were obtained.

このプリカーサーを、240〜250℃に設定された熱風循環式耐炎化炉を用い、酸化性雰囲気下、表1に示す条件で耐炎化繊維とした。得られた耐炎化繊維の諸物性を表1に示す。これら耐炎化繊維を、350〜600℃に設定された第一炭素化炉で不活性ガス雰囲気下熱処理を行い、引き続き700〜1500℃に設定された第二炭素化炉で不活性ガス雰囲気下熱処理を行い、炭素繊維を得た。得られた炭素繊維の物性を表1に示す。   This precursor was made into a flame resistant fiber under the conditions shown in Table 1 in an oxidizing atmosphere using a hot air circulation type flame resistant furnace set at 240 to 250 ° C. Table 1 shows the physical properties of the obtained flame-resistant fiber. These flame-resistant fibers are heat-treated in an inert gas atmosphere in a first carbonization furnace set at 350 to 600 ° C, and subsequently heat-treated in an inert gas atmosphere in a second carbonization furnace set at 700 to 1500 ° C. The carbon fiber was obtained. Table 1 shows the physical properties of the obtained carbon fibers.

Figure 2006283226
実施例1〜5において得られた耐炎化繊維は、観察より得られる繊維断面の画像が二重円を示し、既耐炎化部分の厚み(e)と未耐炎化部分の厚み(f)との比(f/e)が0.6より大きく、この耐炎化繊維から得られた炭素繊維は、繊維軸を通る任意の切断面で切断した繊維断面の幅方向両端形状がそれぞれ曲折を繰返す波状形状(繊維表面がその軸方向に脈状の凹凸を有すること)を示すものであった。
Figure 2006283226
In the flame-resistant fibers obtained in Examples 1 to 5, the image of the fiber cross section obtained by observation shows a double circle, and the thickness (e) of the flame-resistant part and the thickness (f) of the non-flame-resistant part The ratio (f / e) is greater than 0.6, and the carbon fiber obtained from the flame-resistant fiber has a wavy shape in which both ends in the width direction of the fiber cross section cut at an arbitrary cut surface passing through the fiber axis are repeatedly bent. (The fiber surface has vein-like irregularities in its axial direction).

比較例1において得られた耐炎化繊維は、比重が1.30と1.32〜1.41であることが本発明の構成から逸脱しており、この耐炎化繊維は炭素化工程を通過する事ができなかった。   The flame resistant fiber obtained in Comparative Example 1 deviates from the configuration of the present invention in that the specific gravity is 1.30 and 1.32 to 1.41, and this flame resistant fiber passes through the carbonization step. I could n’t.

比較例2〜4において得られた耐炎化繊維は、観察より得られる繊維断面の画像が二重円を示すこと、既耐炎化部分の厚み(e)と未耐炎化部分の厚み(f)との比(f/e)が0.6より大きいこと、及び、比重が1.32〜1.41であることの少なくとも何れかが本発明の構成から逸脱しており、この耐炎化繊維から得られた炭素繊維は、繊維軸を通る任意の切断面で切断した繊維断面の幅方向両端形状がそれぞれ曲折を繰返す波状形状に形成されてなること(繊維表面がその軸方向に脈状の凹凸を有すること)を示さず、本発明の構成から逸脱しているものであった。   The flame-resistant fibers obtained in Comparative Examples 2 to 4 show that the image of the fiber cross section obtained by observation shows a double circle, the thickness (e) of the flame-resistant part and the thickness (f) of the non-flame-resistant part. The ratio (f / e) of at least one of 0.6 and the specific gravity of 1.32 to 1.41 deviate from the structure of the present invention, and are obtained from the flameproof fiber. The obtained carbon fiber is formed in a wavy shape in which both ends in the width direction of the cross section of the fiber cut at an arbitrary cut surface passing through the fiber axis are repeatedly bent (the fiber surface has pulse-like irregularities in the axial direction). It was a deviation from the structure of the present invention.

比較例5より得られた耐炎化繊維は、観察より得られる繊維断面の画像が二重円を示さず、既耐炎化部分の厚み(e)と未耐炎化部分の厚み(f)との比(f/e)が0であり、本発明の構成から逸脱しており、この耐炎化繊維から得られた炭素繊維は、繊維軸を通る任意の切断面で切断した繊維断面の幅方向両端形状がそれぞれ曲折を繰返す波状形状(繊維表面がその軸方向に脈状の凹凸を有すること)を示さず、本発明の構成から逸脱しているものであった。   In the flame-resistant fiber obtained from Comparative Example 5, the image of the fiber cross section obtained by observation does not show a double circle, and the ratio between the thickness (e) of the flame-resistant part and the thickness (f) of the non-flame-resistant part (f / e) is 0, which deviates from the configuration of the present invention, and the carbon fiber obtained from the flameproof fiber has a shape in both ends in the width direction of the fiber cross section cut at an arbitrary cut surface passing through the fiber axis. However, each did not show a wave-like shape that repeatedly bends (the fiber surface has vein-like irregularities in its axial direction), and deviated from the configuration of the present invention.

本発明の炭素繊維の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the carbon fiber of this invention. 本発明の耐炎化繊維の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the flameproof fiber of this invention. 耐炎化処理途中のプリカーサーの一例を示す図面代用のSPM写真である。It is a drawing SPM photograph which shows an example of the precursor in the middle of a flameproofing process. 従来の耐炎化繊維の一例を示す図面代用のSPM写真である。It is a SPM photograph instead of drawing which shows an example of the conventional flameproof fiber.

符号の説明Explanation of symbols

2 炭素繊維
4 波状形状の山
6 波状形状の谷
8 中空部
12 耐炎化繊維
14 耐炎化繊維断面外周部を示す外円
16 繊維の外表面から繊維軸方向にかけて形成される既耐炎化部分
18 繊維軸(円の中心)
20 繊維軸を含む未耐炎化部分
22 既耐炎化部分と未耐炎化部分との境界を示す内円
a 大径部における繊維直径(繊維大径)
b 小径部における繊維直径(繊維小径)
e 既耐炎化部分の厚み
f 未耐炎化部分の厚み
2 Carbon fiber 4 Wave-shaped peak 6 Wave-shaped valley 8 Hollow part 12 Flame-resistant fiber 14 Outer circle showing the outer peripheral part of the flame-resistant fiber 16 Flame-resistant part formed from the outer surface of the fiber to the fiber axis direction 18 Fiber Axis (center of circle)
20 Non-flame-resistant part including fiber axis 22 Inner circle showing boundary between flame-proof part and non-flame-resistant part a Fiber diameter at large diameter part (fiber large diameter)
b Fiber diameter in small diameter part (fiber small diameter)
e Thickness of flameproofed part f Thickness of nonflamed part

Claims (3)

炭素繊維製造用耐炎化繊維の走査型プローブ顕微鏡観察により得られる繊維断面の白黒画像において、繊維断面の画像の白黒濃度分布は、繊維断面外周部の画像で形成される外円と、繊維の外表面から繊維軸方向に形成される既耐炎化部分と繊維軸を含む未耐炎化部分との境界で形成される内円との二重円構造を有し、既耐炎化部分の径方向厚み(e)と前記内円半径で示される未耐炎化部分の厚み(f)との比(f/e)が0.6より大きく、且つ比重が1.32〜1.41である耐炎化繊維。 In the black and white image of the fiber cross section obtained by scanning probe microscope observation of the flame resistant fiber for carbon fiber production, the black and white density distribution of the fiber cross section image is the outer circle formed by the image of the outer periphery of the fiber cross section, and the outside of the fiber. It has a double circular structure with an inner circle formed at the boundary between the flame-resistant part formed in the fiber axis direction from the surface and the non-flame-resistant part including the fiber axis, and the radial thickness of the flame-resistant part ( A flame-resistant fiber having a ratio (f / e) of e) and a thickness (f) of the non-flame-resistant portion indicated by the inner circle radius of greater than 0.6 and a specific gravity of 1.32 to 1.41. 炭素繊維用プリカーサーを耐炎化処理する際、次式
勾配係数A=耐炎化処理時間(分)/比重増加
(ここで、比重増加=耐炎化繊維比重−プリカーサー比重)
で求められる勾配係数Aを200未満にすることを特徴とする耐炎化繊維の製造方法。
When a carbon fiber precursor is flameproofed, the following gradient coefficient A = flameproofing time (min) / specific gravity increase
(Here, specific gravity increase = flame-resistant fiber specific gravity−precursor specific gravity)
A method for producing flame-resistant fibers, characterized in that the slope coefficient A determined in step 1 is less than 200.
請求項1に記載の耐炎化繊維を不活性ガス雰囲気で熱処理することを特徴とする炭素繊維の製造方法。 A method for producing carbon fiber, comprising heat-treating the flame-resistant fiber according to claim 1 in an inert gas atmosphere.
JP2005104231A 2005-03-31 2005-03-31 Flame-proofed fiber, carbon fiber and method for producing them Pending JP2006283226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104231A JP2006283226A (en) 2005-03-31 2005-03-31 Flame-proofed fiber, carbon fiber and method for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104231A JP2006283226A (en) 2005-03-31 2005-03-31 Flame-proofed fiber, carbon fiber and method for producing them

Publications (1)

Publication Number Publication Date
JP2006283226A true JP2006283226A (en) 2006-10-19

Family

ID=37405430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104231A Pending JP2006283226A (en) 2005-03-31 2005-03-31 Flame-proofed fiber, carbon fiber and method for producing them

Country Status (1)

Country Link
JP (1) JP2006283226A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160117620A (en) 2014-03-06 2016-10-10 도레이 카부시키가이샤 Carbon fibres, and production method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160117620A (en) 2014-03-06 2016-10-10 도레이 카부시키가이샤 Carbon fibres, and production method therefor
US10260172B2 (en) 2014-03-06 2019-04-16 Toray Industries, Inc. Carbon fibers, and production method therefor

Similar Documents

Publication Publication Date Title
WO2016068034A1 (en) Carbon fiber bundle and method for manufacturing same
US7638110B1 (en) Carbon fiber
JP2005133274A (en) Carbon fiber and composite material containing the same
JP4662450B2 (en) Carbon fiber manufacturing method
KR102603178B1 (en) Carbon fiber bundle and its manufacturing method
CN111801450A (en) Carbon fiber and method for producing same
JP2006283225A (en) Method for producing flame-proofed fiber and carbon fiber
JP2006283226A (en) Flame-proofed fiber, carbon fiber and method for producing them
JP4754855B2 (en) Method for producing flame-resistant fiber, method for producing carbon fiber
JP2009046770A (en) Acrylonitrile-based precursor fiber for carbon fiber
JP4271019B2 (en) Carbon fiber manufacturing method
JP4088500B2 (en) Carbon fiber manufacturing method
JP3890770B2 (en) Carbon fiber bundle and manufacturing method thereof
JP2017137614A (en) Carbon fiber bundle and manufacturing method thereof
JP5383158B2 (en) Carbon fiber and method for producing the same
JP2004197278A (en) Method for producing carbon fiber
JP2006283228A (en) Carbon fiber, and method for producing precursor and carbon fiber
JPS6241320A (en) Carbon yarn having section with wavy structure
JP6304046B2 (en) Carbon fiber bundle and method for producing the same
JPH02264011A (en) Acrylic fiber for graphite fibers
JP4454364B2 (en) Carbon fiber manufacturing method
JP4088543B2 (en) High-strength carbon fiber and method for producing the same
JP2010133049A (en) Carbon fiber and method for producing the same
JP6432396B2 (en) Carbon fiber
JP2004197279A (en) Method for producing carbon fiber