JP2006283014A - Linear tetrapyrrole dye - Google Patents

Linear tetrapyrrole dye Download PDF

Info

Publication number
JP2006283014A
JP2006283014A JP2006063190A JP2006063190A JP2006283014A JP 2006283014 A JP2006283014 A JP 2006283014A JP 2006063190 A JP2006063190 A JP 2006063190A JP 2006063190 A JP2006063190 A JP 2006063190A JP 2006283014 A JP2006283014 A JP 2006283014A
Authority
JP
Japan
Prior art keywords
compound
formula
solvent
dye
synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006063190A
Other languages
Japanese (ja)
Other versions
JP5128780B2 (en
Inventor
Tadashi Mizutani
義 水谷
Yuukai Nakasuji
悠介 中筋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha Co Ltd
Original Assignee
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha Co Ltd filed Critical Doshisha Co Ltd
Priority to JP2006063190A priority Critical patent/JP5128780B2/en
Publication of JP2006283014A publication Critical patent/JP2006283014A/en
Application granted granted Critical
Publication of JP5128780B2 publication Critical patent/JP5128780B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pyrrole Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a linear tetrapyrrole dye which has high compatibility with an organic substance and high solubility in an organic solvent, and exhibits good orientation in the case of the adsorption to an interface. <P>SOLUTION: The linear tetrapyrrole dye is synthesized by the oxidation and cleavage of a tetraphenyl porphyrin compound having an alkyl group and an alkoxy group on its phenyl group. Specifically, the compound is represented by formula (1), wherein R<SB>1</SB>, R<SB>2</SB>and R<SB>3</SB>each represents H, C<SB>n</SB>H<SB>2n+1</SB>or OC<SB>n</SB>H<SB>2n+1</SB>(excludes the case that all the R<SB>1</SB>, R<SB>2</SB>and R<SB>3</SB>are H), and n represents an integer of 3 to 30. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、リニアテトラピロール系色素に関し、特に機能性色素等として利用可能なリニアテトラピロール系色素に関するものである。   The present invention relates to a linear tetrapyrrole dye, and particularly to a linear tetrapyrrole dye that can be used as a functional dye or the like.

周りの環境に応じて構造を変化させる機能性色素は、新しいセンサー、分析試薬などへの幅広い応用が考えられており、なかでも、金属イオンや有機溶媒に感受性が高く光の吸収波長を変化させる機能性色素の開発がのぞまれている。   Functional dyes that change their structure according to the surrounding environment are considered to be widely applied to new sensors, analytical reagents, etc. Among them, they are highly sensitive to metal ions and organic solvents, and change the light absorption wavelength. Development of functional pigments is expected.

このような機能性色素の一つとして、テトラフェニルポルフィリン環を酸化・開裂して合成するリニアテトラピロール系色素、例えば、ビリンジオン、ビラジエノン系化合物が以前から研究されている。また、このようなリニアテトラピロール系色素は、π電子共役の構造をもち、かつ、柔軟なコンフォーメーションをとるため、外部刺激に対する応答性に優れていることが知られている(非特許文献1を参照。)。   As one of such functional dyes, linear tetrapyrrole dyes synthesized by oxidizing and cleaving a tetraphenylporphyrin ring, for example, villindione and biradienone compounds have been studied. Further, such a linear tetrapyrrole dye has a π-electron conjugated structure and has a flexible conformation, and is therefore known to have excellent responsiveness to external stimuli (Non-Patent Document 1). See).

しかし、上記リニアテトラピロール系色素は、有機物との相溶性があまりよくなく、有機溶媒に対する溶解度もあまりよくなかった。また、界面に吸着させたときの配向性もあまりよくなかった。そのため、上記テトラピロール系色素は、機能性色素、糖など生理活性分子の吸着剤、及びこれら生理活性分子のセンサーとして使用するには向いてなかった。
山内ら,「テトラアリルポルフィリンを原料とするビリンジオン、ビラジエンンの簡便で一般性のある合成法(A facile and versatile preparation of bilindiones and biladienones from tetraarylporphyrin)」,(イギリス),化学通信(Chem. Commun.),王立化学会(The Royal Society of Chemistry),2005年3月発行,第10号,p.1309−1311
However, the linear tetrapyrrole dye has not very good compatibility with organic substances, and has poor solubility in organic solvents. Also, the orientation when adsorbed on the interface was not very good. For this reason, the tetrapyrrole dyes are not suitable for use as functional dyes, adsorbents of physiologically active molecules such as sugars, and sensors for these physiologically active molecules.
Yamauchi et al., “A facile and versatile preparation of bilindiones and biladienones from tetraarylporphyrin”, (UK), Chemical Communications (Chem. Commun.) The Royal Society of Chemistry, March 2005, No. 10, pp. 1309-1311

そこで、この発明は、有機物との相溶性及び有機溶媒への溶解度が高く、界面に吸着させたときに配向性がよいリニアテトラピロール系色素を提供することを課題とする。   Accordingly, an object of the present invention is to provide a linear tetrapyrrole dye having high compatibility with an organic substance and high solubility in an organic solvent and good orientation when adsorbed on an interface.

この発明にかかるリニアテトラピロール系色素は、フェニル基にアルキル基・アルコキシ基を有するテトラフェニルポルフィリン化合物を酸化・開裂して合成するものであることを主要な特徴とする。   The main feature of the linear tetrapyrrole dye according to the present invention is that it is synthesized by oxidizing and cleaving a tetraphenylporphyrin compound having an alkyl group / alkoxy group in the phenyl group.

この発明のリニアテトラピロール系色素は、有機物との相溶性及び有機溶媒への溶解度が高い。そのため、界面に吸着させたときに配向性がよく、機能性色素、糖などの生理活性分子の吸着剤やセンサーとして使用することができる。   The linear tetrapyrrole pigment of the present invention has high compatibility with organic substances and high solubility in organic solvents. Therefore, it has good orientation when adsorbed on the interface, and can be used as an adsorbent or sensor for physiologically active molecules such as functional dyes and sugars.

この発明にかかる化合物は、以下の一般式(1)、式(3)、式(5)、式(7)、式(9)、(11)及び(14)の一般式で示される化合物であり、具体的に例示するならば、それぞれ式(2)、式(4)、式(6)、式(8)、式(10)、(12)、(13)、(15)の化学式で示される化合物である。   The compound according to the present invention is a compound represented by the following general formulas (1), (3), (5), (7), (9), (11) and (14). Yes, specifically exemplified by the chemical formulas of Formula (2), Formula (4), Formula (6), Formula (8), Formula (10), (12), (13), and (15), respectively. It is the compound shown.

式(1)

Figure 2006283014
(式中、R1,R2,R3はH,Cn2n+1又はOCn2n+1の何れか(ただし、R1,R2,R3のすべてがHの場合を除く。)を表し、nは3から30の何れかの数字を表す。) Formula (1)
Figure 2006283014
(In the formula, R 1 , R 2 and R 3 are either H, C n H 2n + 1 or OC n H 2n + 1 (except when all of R 1 , R 2 and R 3 are H). And n represents any number from 3 to 30.)

式(2)

Figure 2006283014
Formula (2)
Figure 2006283014

式(3)

Figure 2006283014
(式中、R1,R2,R3はH,Cn2n+1又はOCn2n+1の何れか(ただし、R1,R2,R3のすべてがHの場合を除く。)を表し、nは3から30の何れかの数字を表し、MはZn,Mn,Fe,Co,Ni,Cu,Cdの何れかを表す。) Formula (3)
Figure 2006283014
(In the formula, R 1 , R 2 and R 3 are either H, C n H 2n + 1 or OC n H 2n + 1 (except when all of R 1 , R 2 and R 3 are H). ), N represents any number from 3 to 30, and M represents any one of Zn, Mn, Fe, Co, Ni, Cu, and Cd.)

式(4)

Figure 2006283014
Formula (4)
Figure 2006283014

式(5)

Figure 2006283014
(式中、R1,R2,R3はH,Cn2n+1又はOCn2n+1の何れか(ただし、R1,R2,R3のすべてがHの場合を除く。)を表し、nは3から30の何れかの数字を表し、MはZn,Mn,Fe,Co,Ni,Cu,Cdの何れかを表す。) Formula (5)
Figure 2006283014
(In the formula, R 1 , R 2 and R 3 are either H, C n H 2n + 1 or OC n H 2n + 1 (except when all of R 1 , R 2 and R 3 are H). ), N represents any number from 3 to 30, and M represents any one of Zn, Mn, Fe, Co, Ni, Cu, and Cd.)

式(6)

Figure 2006283014
Formula (6)
Figure 2006283014

式(7)

Figure 2006283014
(式中、R1,R2,R3はH,Cn2n+1又はOCn2n+1の何れか(ただし、R1,R2,R3のすべてがHの場合を除く。)を表し、nは3から30の何れかの数字を表す。) Formula (7)
Figure 2006283014
(In the formula, R 1 , R 2 and R 3 are either H, C n H 2n + 1 or OC n H 2n + 1 (except when all of R 1 , R 2 and R 3 are H). And n represents any number from 3 to 30.)

式(8)

Figure 2006283014
Formula (8)
Figure 2006283014

式(9)

Figure 2006283014
(式中、R1,R2,R3はH,Cn2n+1又はOCn2n+1の何れか(ただし、R1,R2,R3のすべてがHの場合を除く。)を表し、nは3から30の何れかの数字を表し、MはZn,Mn,Fe,Co,Ni,Cu,Cdの何れかを表す。) Formula (9)
Figure 2006283014
(In the formula, R 1 , R 2 and R 3 are either H, C n H 2n + 1 or OC n H 2n + 1 (except when all of R 1 , R 2 and R 3 are H). ), N represents any number from 3 to 30, and M represents any one of Zn, Mn, Fe, Co, Ni, Cu, and Cd.)

式(10)

Figure 2006283014
Formula (10)
Figure 2006283014

式(11)

Figure 2006283014
(式中、RはH,Cn2n+1又はOCn2n+1の何れか(ただし、Rは同一でも互いに異なっていてもよいが、すべてがHの場合は除く。)を表し、nは3から30の何れかの数字を表す。)で示されるリニアテトラピロール系色素。 Formula (11)
Figure 2006283014
(In the formula, R represents H, C n H 2n + 1, or OC n H 2n + 1 (however, R may be the same or different from each other, except when all are H)). , N represents any number from 3 to 30).

式(12)

Figure 2006283014
Formula (12)
Figure 2006283014

式(13)

Figure 2006283014
Formula (13)
Figure 2006283014

式(14)

Figure 2006283014
(式中、RはH,Cn2n+1又はOCn2n+1の何れか(ただし、Rは同一でも互いに異なっていてもよいが、すべてがHの場合は除く。)を表し、nは3から30の何れかの数字を表し、MはZn,Mn,Fe,Co,Ni,Cu,Cdの何れかを表す。)で示されるリニアテトラピロール系色素。 Formula (14)
Figure 2006283014
(In the formula, R represents H, C n H 2n + 1, or OC n H 2n + 1 (however, R may be the same or different from each other, except when all are H)). , N represents any number from 3 to 30, and M represents any one of Zn, Mn, Fe, Co, Ni, Cu, and Cd.).

式(15)

Figure 2006283014
Formula (15)
Figure 2006283014

また、これらの化合物は、例えば、(a)テトラフェニルポルフィリン又はオクタアルキルポルフィリンの錯体化、(b)この錯体の共役酸化による開裂、(c)化合物によっては、この開裂物の錯体化、により合成することができる。   These compounds can be synthesized by, for example, (a) complexing tetraphenylporphyrin or octaalkylporphyrin, (b) cleavage by conjugate oxidation of this complex, and (c) complexing of this cleavage product depending on the compound. can do.

ここで、(a)のテトラフェニルポルフィリン又はオクタアルキルポルフィリンの錯体化は、例えばフェニル基にアルキル基、アルコキシ基を有するテトラフェニルポルフィリン、又はアルキル基を有するポルフィリンをジメチルホルムアミドなどの有機溶媒中で塩化鉄(FeCl2)などの金属塩とともに還流加熱することにより行う。また、(b)の錯体の開裂は、例えば(b1)還元剤存在下での酸素ガスバブリングによる酸化、(b2)テトラフルオロホウ酸ナトウム水溶液による結晶化、(b3)塩酸などの酸による中和によって行う。なお、(b1)における反応条件、具体的には、反応温度などを変えることにより、同じ錯体化合物から構造の異なる開裂化合物を製造することが可能である。さらに、(c)の錯体化は、例えば、酢酸鉛、酢酸銅などの金属酢酸塩と開裂物質を有機溶媒中で混合することにより行う。 Here, the complexation of tetraphenylporphyrin or octaalkylporphyrin in (a) is performed by, for example, chlorinating a phenyl group having a tetraphenylporphyrin having an alkyl group or an alkoxy group or a porphyrin having an alkyl group in an organic solvent such as dimethylformamide. It is carried out by reflux heating with a metal salt such as iron (FeCl 2 ). The cleavage of the complex of (b) can be performed by, for example, (b1) oxidation by bubbling oxygen gas in the presence of a reducing agent, (b2) crystallization by aqueous sodium tetrafluoroborate, (b3) neutralization by an acid such as hydrochloric acid. To do. In addition, it is possible to produce a cleavage compound having a different structure from the same complex compound by changing the reaction conditions in (b1), specifically, the reaction temperature and the like. Furthermore, the complexation of (c) is performed, for example, by mixing a metal acetate such as lead acetate and copper acetate and a cleavage substance in an organic solvent.

なお、この合成方法はあくまでも一つの例示であって、この合成方法の例示はいかなる意味でも、この発明の特許請求の範囲に含まれる化合物を限定するものではない。すなわち、化学的構造が同一でありさえすれば、特許請求の範囲に記載した化合物を上記合成方法以外の合成方法によって合成してもよい。   Note that this synthesis method is merely an example, and the illustration of this synthesis method is not intended to limit the compounds included in the claims of this invention in any way. That is, as long as the chemical structures are the same, the compounds described in the claims may be synthesized by a synthesis method other than the above synthesis method.

このようにして得られたリニアテトラピロール系色素は、フェニル基にアルキル基、アルコキシ基を有する。そして、これらアルキル基・アルコキシ基が有機物や有機溶媒などと相互作用するため、有機物との相溶性、有機溶媒に対する溶解度が向上するとともに、無機−有機界面での配向性が向上する。   The linear tetrapyrrole dye thus obtained has an alkyl group and an alkoxy group in the phenyl group. And since these alkyl groups and alkoxy groups interact with organic substances and organic solvents, compatibility with organic substances and solubility in organic solvents are improved, and orientation at the inorganic-organic interface is improved.

つぎに、この発明の特徴をさらに具体的に明らかにするため、複数の化合物を製造して、その特性を調べた。なお、下記の実施例はこの発明をよりよく理解するためのものであり、いかなる意味でもこの発明の特許請求の範囲を限定するものではない。   Next, in order to clarify the characteristics of the present invention more specifically, a plurality of compounds were produced and their characteristics were examined. The following examples are for better understanding of the present invention, and are not intended to limit the scope of the claims of the present invention in any way.

図1に示す合成スキームに沿って、C12 H25O-biladienone Zn complex(化合物3及び化合物4)を合成した。以下にその詳細について以下に説明する。なお、図1と以下の説明との関係を明確にするため、同一の化合物には同一の番号を付与した。 According to the synthesis scheme shown in FIG. 1, C 12 H 25 O-biladienone Zn complex (Compound 3 and Compound 4) was synthesized. Details thereof will be described below. In addition, in order to clarify the relationship between FIG. 1 and the following description, the same number was assigned to the same compound.

(1)[5,10,15,20-tetrakis(4-dodecyloxyphenyl)porphyrinato]iron(III) chloride(化合物1)の合成
100 mlの反応容器に蒸留したジメチルホルムアミド 50 ml、5,10,15,20-tetrakis(4-dodecyloxyphenyl)porphyrin 500 mg (3.70×10-3 mol)、塩化鉄(II)n水和物1.04 g をそれぞれ加え、かき混ぜながら160 ℃で3時間加熱還流した。反応終了後反応溶液を室温まで冷まし、そこに200 mlのクロロホルムを加えて分液漏斗に移し、有機層を蒸留水および0.05 mol/l塩酸で数回洗浄した。有機層を硫酸ナトリウムで脱水後、クロロホルムを減圧留去し黒紫色の結晶を得た。なお、収量は497 mg (95.6 %)であり、高速原子衝撃イオン化法(FAB)により質量分析したところ、m/z(質量/電価)が1405 ([M-Cl]+)にピークが確認できた。
(1) Synthesis of [5,10,15,20-tetrakis (4-dodecyloxyphenyl) porphyrinato] iron (III) chloride (Compound 1)
Distilled dimethylformamide in a 100 ml reaction vessel 50 ml, 5,10,15,20-tetrakis (4-dodecyloxyphenyl) porphyrin 500 mg (3.70 × 10 -3 mol), iron (II) chloride n hydrate 1.04 g Each was added and heated to reflux at 160 ° C. for 3 hours with stirring. After completion of the reaction, the reaction solution was cooled to room temperature, 200 ml of chloroform was added thereto and transferred to a separatory funnel, and the organic layer was washed several times with distilled water and 0.05 mol / l hydrochloric acid. The organic layer was dehydrated with sodium sulfate, and then chloroform was distilled off under reduced pressure to obtain black purple crystals. The yield was 497 mg (95.6%), and mass analysis by fast atom bombardment ionization (FAB) confirmed a peak at m / z (mass / valence) of 1405 ([M-Cl] + ). did it.

(2)C12H25O-biladienone(化合物2)の合成
500 mlの反応容器に酸素を飽和させたクロロホルム250 ml、化合物1 (500 mg, 3.47×10-4 mol)を溶解させたピリジン30 ml、L-(+)-アスコルビン酸2.5 gを加えた。酸素バブリングしながら室温で1.5時間かき混ぜた後、溶液をろ過した。ろ液を分液漏斗に移して蒸留水で洗浄し、硫酸ナトリウムで乾燥させた。その後エバポレーターで減圧留去したものを再びピリジン12.5 mlに溶かし、テトラフルオロホウ酸ナトリウム水溶液(125 ml, 1.2 mol/l)を加え、氷浴で冷やしながら1時間かき混ぜた。これをろ過したものを再びアセトン200 mlとクロロホルム35 mlの混合溶媒に溶かし、塩酸(30 ml, 1.5mol/l)を加え室温で1時間かき混ぜた。この溶液を600 mlの氷水中に注ぎ込み、ジクロロメタンで抽出した。抽出液はエバポレーターを用いて約100 mlまで減圧留去し、分液漏斗に移して蒸留水により洗浄し、硫酸ナトリウムで乾燥させた。溶媒を減圧留去したのち、シリカゲルカラムクロマトグラフィーにより、2回精製(1回目の展開溶媒はジクロロメタン、2回目の展開溶媒はジクロロメタン:アセトン=99:1)して、C12 H25O-biladienone(化合物2)を得た。
(2) Synthesis of C 12 H 25 O-biladienone (compound 2)
250 ml of chloroform saturated with oxygen, 30 ml of pyridine in which Compound 1 (500 mg, 3.47 × 10 −4 mol) was dissolved, and 2.5 g of L-(+)-ascorbic acid were added to a 500 ml reaction vessel. After stirring for 1.5 hours at room temperature with oxygen bubbling, the solution was filtered. The filtrate was transferred to a separatory funnel, washed with distilled water and dried over sodium sulfate. Thereafter, what was distilled off under reduced pressure with an evaporator was dissolved again in 12.5 ml of pyridine, an aqueous solution of sodium tetrafluoroborate (125 ml, 1.2 mol / l) was added, and the mixture was stirred for 1 hour while cooling in an ice bath. The filtered product was dissolved again in a mixed solvent of 200 ml of acetone and 35 ml of chloroform, hydrochloric acid (30 ml, 1.5 mol / l) was added, and the mixture was stirred at room temperature for 1 hour. The solution was poured into 600 ml ice water and extracted with dichloromethane. The extract was distilled off under reduced pressure to about 100 ml using an evaporator, transferred to a separatory funnel, washed with distilled water, and dried over sodium sulfate. After distilling off the solvent under reduced pressure, it was purified twice by silica gel column chromatography (first developing solvent was dichloromethane, second developing solvent was dichloromethane: acetone = 99: 1), and C 12 H 25 O-biladienone (Compound 2) was obtained.

なお、合成の収量は96.3 mg (収率 19.6 %) であった。また、1H NMR (CDCl3)スペクトルを測定すると、 0.97 (t, 12H), 1.28-1.50 (m, 72H), 1.75-1.83 (m, 8H), 3.93-4.04 (m, 8H), 6.18 (m, 3H), 6.32 (s, 1H), 6.39 (d, 1H, J = 4.8 Hz), 6.53 (d, 1H, J = 4 Hz ), 6.84-6.99 (m, 11H), 7.30 (m, 2H), 7.38 (d, 2H, J = 4.8 Hz), 7.49 (d, 2H, J = 8.4 Hz), 7.90 (d, 2H J = 8.8 Hz), 9.90 (br s, 1H), 11.0 (br s, 1H),12.3 (br s, 1H)にシグナルが確認できた。また、高速原子衝撃イオン化法(FAB)により質量分析したところ、m/z(質量/電価)は1384 ([M-OH]+) にピークが確認できた。さらに、クロロホルム中での紫外−可視光の吸収スペクトルUV-visible (CHCl3maxを測定したところ、323, 379, 572 nmにピークが確認できた。 The synthesis yield was 96.3 mg (yield 19.6%). In addition, when 1 H NMR (CDCl 3 ) spectrum was measured, 0.97 (t, 12H), 1.28-1.50 (m, 72H), 1.75-1.83 (m, 8H), 3.93-4.04 (m, 8H), 6.18 ( m, 3H), 6.32 (s, 1H), 6.39 (d, 1H, J = 4.8 Hz), 6.53 (d, 1H, J = 4 Hz), 6.84-6.99 (m, 11H), 7.30 (m, 2H ), 7.38 (d, 2H, J = 4.8 Hz), 7.49 (d, 2H, J = 8.4 Hz), 7.90 (d, 2H J = 8.8 Hz), 9.90 (br s, 1H), 11.0 (br s, 1H) and 12.3 (br s, 1H) were confirmed. Further, when mass analysis was performed by a fast atom bombardment ionization method (FAB), a peak of m / z (mass / valence) was confirmed at 1384 ([M-OH] + ). Furthermore, when the absorption spectrum UV-visible (CHCl 3 ) λ max of ultraviolet-visible light in chloroform was measured, peaks were confirmed at 323, 379 and 572 nm.

(3)溶媒の違いが吸収スペクトルに与える影響
また、クロロホルムを含む有機溶媒、具体的にはジクロロメタン、クロロホルム、アセトン、エチルエステル、2−プロパノール、メタノール、DMF(N,N-ジメチルホルムアミド)、ヘキサン中での可視光吸収スペクトルを比較した。その結果を図2に示す。この図から分かるように、化合物2は溶解している溶媒の種類によってその色が変化した。
(3) Effect of solvent difference on absorption spectrum In addition, organic solvents containing chloroform, specifically dichloromethane, chloroform, acetone, ethyl ester, 2-propanol, methanol, DMF (N, N-dimethylformamide), hexane The visible light absorption spectra in were compared. The result is shown in FIG. As can be seen from this figure, the color of Compound 2 changed depending on the type of solvent dissolved.

(4)C12 H25O-biladienone Zn complex(化合物3)の合成
50 ml反応容器に脱水したクロロホルム20 mlを加え、そこに化合物2(20.4 mg, 1.46×10-5 mol)を溶解させ、その後、飽和酢酸亜鉛メタノール溶液(4ml)を加えた。室温で30分かき混ぜたのち、反応溶液を重曹水および蒸留水で洗浄した。有機層を硫酸ナトリウムで脱水したのち、溶媒を減圧した。なお、合成の収量は20.0 mg (収率 93.9 %)であり、高速原子衝撃イオン化法(FAB)により質量分析したところ、m/z(質量/電価) は1446(C92H125O6N4Znに対する計算値は1445.9である。) にピークが確認できた。また、クロロホルム中での紫外−可視光の吸収スペクトルUV-visible (CHCl3maxを測定したところ、479, 812 nmにピークが確認できた。なお、化合物3 は空気中に放置するとその一部が化合物4に変化した。
(4) Synthesis of C 12 H 25 O-biladienone Zn complex (compound 3)
20 ml of dehydrated chloroform was added to a 50 ml reaction vessel, and compound 2 (20.4 mg, 1.46 × 10 −5 mol) was dissolved therein, and then a saturated zinc acetate methanol solution (4 ml) was added. After stirring at room temperature for 30 minutes, the reaction solution was washed with sodium bicarbonate water and distilled water. After dehydrating the organic layer with sodium sulfate, the solvent was reduced in pressure. The yield of synthesis was 20.0 mg (yield 93.9%), and mass analysis by fast atom bombardment ionization (FAB) showed that m / z (mass / valence) was 1446 (C 92 H 125 O 6 N 4 The calculated value for Zn is 1445.9.) Further, when the absorption spectrum UV-visible (CHCl 3 ) λ max of ultraviolet-visible light in chloroform was measured, a peak was confirmed at 479 and 812 nm. Compound 3 changed to compound 4 when left in the air.

(5)金属イオンの違いが吸収スペクトルに与える影響
また、飽和酢酸亜鉛メタノール溶液の代わりに飽和酢酸銅メタノール溶液を使用して銅錯体を合成し、その可視光吸収スペクトルをクロロホルム中で測定した。その結果を亜鉛錯体(化合物3)の可視光吸収スペクトルとともに図3に示す。この図から分かるように、化合物2は配位する金属イオンによって、スペクトル、すなわち、その色が変化した。
(5) Effect of metal ion difference on absorption spectrum In addition, a copper complex was synthesized using a saturated copper acetate methanol solution instead of a saturated zinc acetate methanol solution, and its visible light absorption spectrum was measured in chloroform. The results are shown in FIG. 3 together with the visible light absorption spectrum of the zinc complex (Compound 3). As can be seen from this figure, the spectrum of Compound 2, that is, its color, was changed by the coordinated metal ion.

図4に示す合成スキームに沿って、C12 H25O-bilindinone Mn complex(化合物6)を合成した。以下にその詳細について以下に説明する。なお、図4と以下の説明との関係を明確にするため、同一の化合物には同一の番号を付与した。 A C 12 H 25 O-bilindinone Mn complex (Compound 6) was synthesized according to the synthesis scheme shown in FIG. Details thereof will be described below. In addition, in order to clarify the relationship between FIG. 4 and the following description, the same number was assigned to the same compound.

(1)C12 H25O-bilindinone(化合物5)の合成
500 ml反応容器に酸素を飽和させたクロロホルム250 ml、化合物1 (500 mg, 3.47×10-4 mol)を溶解させたピリジン30 ml、L-(+)-アスコルビン酸2.5 gを加えた。酸素バブリングしながら60℃で1.5時間還流し、室温に放冷後、溶液をろ過した。ろ液を分液漏斗に移して蒸留水によって洗浄し、硫酸ナトリウムで乾燥させた。その後エバポレーターで減圧留去したものを再びピリジン12.5 mlに溶かし、テトラフルオロホウ酸ナトリウム水溶液(125 ml, 1.2 mol/l)を加え、氷浴で冷やしながら1時間かき混ぜた。これをろ過したものを再びアセトン200 mlとクロロホルム35 mlの混合溶媒に溶かし、塩酸(30 ml, 1.5mol/l)を加え室温で1時間かき混ぜた。この溶液を600 mlの氷水中に注ぎ込み、ジクロロメタンで抽出した。抽出液はエバポレーターを用いて約100 mlまで減圧留去し、分液漏斗に移して蒸留水によって洗浄し、硫酸ナトリウムで乾燥させた。溶媒を減圧留去したのち、シリカゲルカラムクロマトグラフィーにより、2回精製(1回目の展開溶媒はジクロロメタン、2回目の展開溶媒はジクロロメタン:アセトン=99:1)して、化合物5を得た。
(1) Synthesis of C 12 H 25 O-bilindinone (compound 5)
To a 500 ml reaction vessel, 250 ml of chloroform saturated with oxygen, 30 ml of pyridine in which compound 1 (500 mg, 3.47 × 10 −4 mol) was dissolved, and 2.5 g of L-(+)-ascorbic acid were added. The mixture was refluxed at 60 ° C. for 1.5 hours with oxygen bubbling, allowed to cool to room temperature, and then filtered. The filtrate was transferred to a separatory funnel and washed with distilled water and dried over sodium sulfate. Thereafter, what was distilled off under reduced pressure with an evaporator was dissolved again in 12.5 ml of pyridine, an aqueous solution of sodium tetrafluoroborate (125 ml, 1.2 mol / l) was added, and the mixture was stirred for 1 hour while cooling in an ice bath. The filtered product was dissolved again in a mixed solvent of 200 ml of acetone and 35 ml of chloroform, hydrochloric acid (30 ml, 1.5 mol / l) was added, and the mixture was stirred at room temperature for 1 hour. The solution was poured into 600 ml ice water and extracted with dichloromethane. The extract was distilled off under reduced pressure to about 100 ml using an evaporator, transferred to a separatory funnel, washed with distilled water, and dried over sodium sulfate. After the solvent was distilled off under reduced pressure, purification was performed twice by silica gel column chromatography (the first developing solvent was dichloromethane, the second developing solvent was dichloromethane: acetone = 99: 1), and compound 5 was obtained.

なお、合成の収量は19.3 mg (収率5%)であった。また、1H NMR (CDCl3)スペクトルを測定すると、12.052(br s, 1H),8.280 (br s, 2H),7.486(d s, 2H),7.283(m s, 1H),6.997(m , 4H),6.857(d, 4H),6.857(d, 2H),6.815(d, 2H),6.212(d, 2H),3.867〜4.046(m , 6H),1.690〜1.857(m , 6H),1.247〜1.523(m , 54H),0.884(t , 9H)にシグナルが確認できた。このように、化合物1を開裂して開裂物質を合成する際の反応温度を変えることによって、化合物2とは異なる化合物5を合成することができた。 The synthesis yield was 19.3 mg (5% yield). In addition, when 1 H NMR (CDCl 3 ) spectrum was measured, 12.052 (br s, 1H), 8.280 (br s, 2H), 7.486 (ds, 2H), 7.283 (ms, 1H), 6.997 (m, 4H) , 6.857 (d, 4H), 6.857 (d, 2H), 6.815 (d, 2H), 6.212 (d, 2H), 3.867 to 4.046 (m, 6H), 1.690 to 1.857 (m, 6H), 1.247 to 1.523 A signal was confirmed at (m, 54H) and 0.884 (t, 9H). Thus, compound 5 different from compound 2 could be synthesized by changing the reaction temperature when cleaving compound 1 to synthesize the cleavage substance.

(2)C12 H25O-bilindinone Mn complex (化合物6)の合成
50 ml反応容器に脱水したクロロホルム20 mlを加え、そこに化合物5 (20.4 mg, 1.8×10-5 mol)を溶解させたのち、飽和酢酸亜鉛メタノール溶液(4 ml)を加えた。室温で30分かき混ぜた後、反応溶液を重曹水および蒸留水で洗浄した。有機層を硫酸ナトリウムで脱水後、溶媒を減圧した。なお、合成の収量は19.0 mg (収率91%)であった。
(2) Synthesis of C 12 H 25 O-bilindinone Mn complex (Compound 6)
20 ml of dehydrated chloroform was added to a 50 ml reaction vessel, and after dissolving compound 5 (20.4 mg, 1.8 × 10 −5 mol), a saturated zinc acetate / methanol solution (4 ml) was added. After stirring at room temperature for 30 minutes, the reaction solution was washed with sodium bicarbonate water and distilled water. The organic layer was dehydrated with sodium sulfate, and the solvent was reduced in pressure. The synthesis yield was 19.0 mg (91% yield).

図5に示す合成スキームに沿って、2,3,7,8,12,13,17,18-オクタペンチル-1,19,21,24-テトラヒドロ-1,19-ビリンジオン(化合物8a)、2,3,7,8,12,13,17,18-オクタオクチル-1,19,21,24-テトラヒドロ-1,19-ビリンジオン(化合物8b)、2,3,7,8,12,13,17,18-オクタオクチル-1,19,21,24-テトラヒドロ-1,19-ビリンジオナト亜鉛(II)(化合物9)を合成し、その特性を調べた。以下にその詳細について以下に説明する。なお、図5と以下の説明との関係を明確にするため、同一の化合物には同一の番号を付与した。   According to the synthetic scheme shown in FIG. 5, 2,3,7,8,12,13,17,18-octapentyl-1,19,21,24-tetrahydro-1,19-bilinedione (compound 8a), 2 , 3,7,8,12,13,17,18-octaoctyl-1,19,21,24-tetrahydro-1,19-bilinedione (compound 8b), 2,3,7,8,12,13, 17,18-octaoctyl-1,19,21,24-tetrahydro-1,19-bilinedionato zinc (II) (compound 9) was synthesized and its properties were investigated. Details thereof will be described below. In addition, in order to clarify the relationship between FIG. 5 and the following description, the same number was assigned to the same compound.

(1)化合物7aの合成
化合物7aの合成は次のようにして行った。100 mlの反応容器に蒸留したジメチルホルムアミド 60 ml、2,3,7,8,12,13,17,18-オクタペンチルポルフィリン80 mg (9.3 ×10-2 mol)、塩化鉄(II)n水和物0.074 g をそれぞれ加え、かき混ぜながら160 ℃で3時間加熱還流した。反応終了後反応溶液を室温まで冷まし、そこに200 mlのクロロホルムを加えて分液漏斗に移し、有機層を蒸留水および0.05 mol/l塩酸で数回洗浄した。有機層を硫酸ナトリウムで脱水後、クロロホルムを減圧留去し濃紫色の結晶を得た。なお、収量は63 mg (73 %)であり、高速原子衝撃イオン化法(FAB)により質量分析したところ、m/z(質量/電価)は925 ([M-Cl]+)にピークが確認できた。
(1) Synthesis of Compound 7a Compound 7a was synthesized as follows. Distilled dimethylformamide in a 100 ml reaction vessel 60 ml, 2,3,7,8,12,13,17,18-octapentylporphyrin 80 mg (9.3 × 10 -2 mol) and 0.074 g of iron (II) chloride n-hydrate were added, and the mixture was heated to reflux at 160 ° C. for 3 hours with stirring. After completion of the reaction, the reaction solution was cooled to room temperature, 200 ml of chloroform was added thereto and transferred to a separatory funnel, and the organic layer was washed several times with distilled water and 0.05 mol / l hydrochloric acid. The organic layer was dehydrated with sodium sulfate, and then chloroform was distilled off under reduced pressure to obtain dark purple crystals. The yield was 63 mg (73%), and mass analysis by fast atom bombardment ionization (FAB) confirmed a peak at 925 ([M-Cl] + ) for m / z (mass / valence). did it.

(2)化合物8aの合成
500 mlの反応容器に酸素を飽和させたクロロホルム50 ml、化合物7a(30 mg, 3.1 ×10-5 mol)を溶解させたピリジン6 ml、L-(+)-アスコルビン酸0.3 gを加えた。酸素バブリングしながら室温で30分間かき混ぜたのち、溶液をろ過した。ろ液を分液漏斗に移して蒸留水により洗浄し、硫酸ナトリウムで乾燥させた。その後、エバポレーターで減圧留去したものを再びピリジン2.5 mlに溶かし、テトラフルオロホウ酸ナトリウム水溶液(25 ml, 1.2 mol/l)を加え、氷浴で冷やしながら1時間かき混ぜた。これをろ過したものを再びアセトン50 mlに溶かし、塩酸(10 ml, 1.5mol/l)を加え室温で1時間かき混ぜた。この溶液を100 mlの氷水中に注ぎ込み、ジクロロメタンで抽出した。抽出液はエバポレーターを用いて約30 mlまで減圧留去し、分液漏斗に移して蒸留水で洗浄し、硫酸ナトリウムで乾燥させた。溶媒を減圧留去したのち、シリカゲルカラムクロマトグラフィーにより、2回精製(1回目の展開溶媒はジクロロメタン、2回目の展開溶媒はジクロロメタン:アセトン=98:2)して化合物7aを得た。
(2) Synthesis of compound 8a
50 ml of chloroform saturated with oxygen, 6 ml of pyridine in which compound 7a (30 mg, 3.1 × 10 −5 mol) was dissolved, and 0.3 g of L-(+)-ascorbic acid were added to a 500 ml reaction vessel. After stirring for 30 minutes at room temperature with oxygen bubbling, the solution was filtered. The filtrate was transferred to a separatory funnel, washed with distilled water and dried over sodium sulfate. Thereafter, the solvent distilled off under reduced pressure by an evaporator was dissolved again in 2.5 ml of pyridine, an aqueous sodium tetrafluoroborate solution (25 ml, 1.2 mol / l) was added, and the mixture was stirred for 1 hour while being cooled in an ice bath. The filtrated product was dissolved again in 50 ml of acetone, hydrochloric acid (10 ml, 1.5 mol / l) was added, and the mixture was stirred at room temperature for 1 hour. The solution was poured into 100 ml ice water and extracted with dichloromethane. The extract was distilled off under reduced pressure to about 30 ml using an evaporator, transferred to a separatory funnel, washed with distilled water, and dried over sodium sulfate. After the solvent was distilled off under reduced pressure, purification was performed twice by silica gel column chromatography (the first developing solvent was dichloromethane, the second developing solvent was dichloromethane: acetone = 98: 2) to obtain compound 7a.

なお、合成の収量は5.0 mg (収率 17 %、対ポルフィリン換算) であった。また、1H NMR (CDCl3)スペクトルを測定すると、6.58(s, 1H),5.84(s, 2H),2.19-2.58 (t, 16H),1.21-1.60 (m, 48H), 0.9 (t, 24H) にシグナルが確認できた。また、高速原子衝撃イオン化法(FAB)により質量分析したところ、m/z(質量/電価)は892 (MH+) にピークが確認できた。 The synthesis yield was 5.0 mg (17% yield, converted to porphyrin). Further, when 1 H NMR (CDCl 3 ) spectrum was measured, 6.58 (s, 1H), 5.84 (s, 2H), 2.19-2.58 (t, 16H), 1.21-1.60 (m, 48H), 0.9 (t, A signal was confirmed at 24H). Further, when mass analysis was performed by a fast atom bombardment ionization method (FAB), a peak of m / z (mass / charge) was confirmed at 892 (MH + ).

(3)化合物7bの合成
化合物7bの合成は次のようにして行った。
300 mlの反応容器に蒸留したジメチルホルムアミド 60 ml、2,3,7,8,12,13,17,18-オクタオクチルポルフィリン173 mg (1.43 ×10-4 mol)、塩化鉄(II)n水和物0.4 g をそれぞれ加え、かき混ぜながら160 ℃で3時間加熱還流した。反応終了後反応溶液を室温まで冷まし、そこに200 mlのクロロホルムを加えて分液漏斗に移し、有機層を蒸留水で数回洗浄した。有機層を硫酸ナトリウムで脱水後、クロロホルムを減圧留去し赤褐色の結晶を得た。なお、収量は180 mg (97 %)であり、高速原子衝撃イオン化法(FAB)により質量分析したところ、m/z(質量/電価)は1262 ([M-Cl]+)にピークが確認できた。
(3) Synthesis of Compound 7b Compound 7b was synthesized as follows.
Distilled dimethylformamide 60 ml, 2,3,7,8,12,13,17,18-octaoctylporphyrin 173 mg (1.43 × 10 -4 mol) and 0.4 g of iron (II) chloride n-hydrate were added, and the mixture was heated to reflux at 160 ° C for 3 hours with stirring. After completion of the reaction, the reaction solution was cooled to room temperature, 200 ml of chloroform was added thereto, transferred to a separatory funnel, and the organic layer was washed several times with distilled water. The organic layer was dehydrated with sodium sulfate, and chloroform was distilled off under reduced pressure to obtain reddish brown crystals. The yield was 180 mg (97%), and mass analysis by fast atom bombardment ionization (FAB) confirmed a peak at 1262 ([M-Cl] + ) for m / z (mass / valence). did it.

(4)化合物8bの合成
300 mlの反応容器に酸素を飽和させたクロロホルム50 ml、化合物7b(173 mg,1.4 ×10-4 mol)を溶解させたピリジン6 ml、L-(+)-アスコルビン酸0.5 gを加えた。酸素バブリングしながら室温で30分かき混ぜたのち、溶液をろ過した。ろ液を分液漏斗に移して蒸留水で洗浄し、硫酸ナトリウムで乾燥させた。その後、エバポレーターで減圧留去したものを再びピリジン2.5 mlに溶かし、テトラフルオロホウ酸ナトリウム水溶液(25 ml, 1.2 mol/l)を加え、氷浴で冷やしながら1時間かき混ぜた。これをろ過したものを再びアセトン50 mlに溶かし、塩酸(10ml, 1.5mol/l)を加え室温で1時間かき混ぜた。この溶液を100 mlの氷水中に注ぎ込み、ジクロロメタンで抽出した。抽出液はエバポレーターを用いて約10 mlまで減圧留去し、分液漏斗に移して蒸留水で洗浄し、硫酸ナトリウムで乾燥させた。溶媒を減圧留去したのち、シリカゲルカラムクロマトグラフィーにより、2回精製(1回目の展開溶媒はジクロロメタン、2回目の展開溶媒はジクロロメタン:アセトン=98:2)して化合物7aを得た。
(4) Synthesis of compound 8b
50 ml of chloroform saturated with oxygen, 6 ml of pyridine in which compound 7b (173 mg, 1.4 × 10 −4 mol) was dissolved, and 0.5 g of L-(+)-ascorbic acid were added to a 300 ml reaction vessel. After stirring for 30 minutes at room temperature with oxygen bubbling, the solution was filtered. The filtrate was transferred to a separatory funnel, washed with distilled water and dried over sodium sulfate. Thereafter, the solvent distilled off under reduced pressure by an evaporator was dissolved again in 2.5 ml of pyridine, an aqueous sodium tetrafluoroborate solution (25 ml, 1.2 mol / l) was added, and the mixture was stirred for 1 hour while being cooled in an ice bath. The filtrated product was dissolved again in 50 ml of acetone, hydrochloric acid (10 ml, 1.5 mol / l) was added, and the mixture was stirred at room temperature for 1 hour. The solution was poured into 100 ml ice water and extracted with dichloromethane. The extract was distilled off under reduced pressure to about 10 ml using an evaporator, transferred to a separatory funnel, washed with distilled water, and dried over sodium sulfate. After the solvent was distilled off under reduced pressure, purification was performed twice by silica gel column chromatography (the first developing solvent was dichloromethane, the second developing solvent was dichloromethane: acetone = 98: 2) to obtain compound 7a.

なお、合成の収量は28 mg (収率 20 %、対ポルフィリン換算) であった。また、1H NMR (CDCl3)スペクトルを測定すると、 図6に示すように、6.57(s, 1H),5.83(s, 2H),2.52-2.19 (t, 24H),1.29-1.59(m. 96H),0.88(t, 24H)にシグナルが確認できた。なお、NHプロトンは確認できなかった。さらに、高速原子衝撃イオン化法(FAB)により質量分析したところ、図7に示すように、m/z(質量/電価)は1228 (MH+)にピークが確認できた。 The synthesis yield was 28 mg (yield 20%, converted to porphyrin). Further, when 1 H NMR (CDCl 3 ) spectrum was measured, as shown in FIG. 6, 6.57 (s, 1H), 5.83 (s, 2H), 2.52-2.19 (t, 24H), 1.29-1.59 (m. 96H) and 0.88 (t, 24H). NH protons could not be confirmed. Furthermore, when mass analysis was performed by a fast atom bombardment ionization method (FAB), as shown in FIG. 7, a peak of m / z (mass / valence) could be confirmed at 1228 (MH + ).

(3)溶媒の違いが吸収スペクトルに与える影響
化合物8bについて、クロロホルムを含む有機溶媒、具体的にはアセトン、クロロホルム、ヘキサン、ジクロロメタン、酢酸エチル中での可視光吸収スペクトルを比較した。その結果を図8に示す。この図から分かるように、化合物8bは溶解している溶媒の種類によってその色が変化した。
(3) Effect of difference in solvent on absorption spectrum Compound 8b was compared with visible light absorption spectra in organic solvents containing chloroform, specifically acetone, chloroform, hexane, dichloromethane, and ethyl acetate. The result is shown in FIG. As can be seen from this figure, the color of Compound 8b changed depending on the type of solvent dissolved.

(4)2,3,7,8,12,13,17,18-オクタオクチル-1,19,21,24-テトラヒドロ-1,19-ビリンジオナト亜鉛(II)(化合物9)の合成
300 ml反応容器にクロロホルム10mlを加え、そこに化合物 8b (20 mg, 0.016 mmol)を溶解させたのち、飽和酢酸亜鉛メタノール溶液(10ml)を加えた。室温で10分かき混ぜたのち、反応溶液を重曹水および蒸留水で洗浄した。有機層を硫酸ナトリウムで脱水したのち、溶媒を減圧して乾燥した。
(4) Synthesis of 2,3,7,8,12,13,17,18-octaoctyl-1,19,21,24-tetrahydro-1,19-bilingionatozinc (II) (compound 9)
Chloroform 10 ml was added to a 300 ml reaction vessel, and compound 8b (20 mg, 0.016 mmol) was dissolved therein, and then saturated zinc acetate methanol solution (10 ml) was added. After stirring at room temperature for 10 minutes, the reaction solution was washed with sodium bicarbonate water and distilled water. After dehydrating the organic layer with sodium sulfate, the solvent was dried under reduced pressure.

なお、合成の収量は20 mg (収率 97 %、対ビリンジオン換算)であった。また、1H NMR (CDCl3)スペクトルを測定すると、 6.43 (s, 1H), 5.70 (s, 1H), 5.28 (s, 1H), 3.68 (s, 1H), 2.03-2.49 (m, 16H), 1.16-1.45 (m, 96H), 0.92 (t, 24H)にシグナルが確認できた。また、高速原子衝撃イオン化法(FAB)により質量分析したところ、m/z(質量/電価)が1290 (MH+)の位置にピークが確認できた。 The synthesis yield was 20 mg (97% yield, converted to vilindione). In addition, when measuring 1 H NMR (CDCl 3 ) spectrum, 6.43 (s, 1H), 5.70 (s, 1H), 5.28 (s, 1H), 3.68 (s, 1H), 2.03-2.49 (m, 16H) , 1.16-1.45 (m, 96H), 0.92 (t, 24H). Further, when mass analysis was performed by a fast atom bombardment ionization method (FAB), a peak was confirmed at a position where m / z (mass / valence) was 1290 (MH + ).

(5)化合物8a、8b及び化合物9の特性
化合物8a、8b及び化合物9が液晶として利用可能であるかを調べるため、これらの化合物について下記の特性を調べた。
(5) Characteristics of Compounds 8a, 8b and Compound 9 In order to examine whether the compounds 8a, 8b and Compound 9 can be used as liquid crystals, the following characteristics were examined for these compounds.

(5a)熱的特性
化合物8aは融点が90℃の結晶性物質であることは分かった。この化合物の偏光顕微鏡観察の結果、メゾ相の発現は認められなかった。
(5a) Thermal characteristics It was found that Compound 8a is a crystalline substance having a melting point of 90 ° C. As a result of observing this compound with a polarizing microscope, no mesophase was observed.

加熱しながら顕微鏡観察することにより、化合物8bが50℃から不透明な液体となり、81℃からは透明な液体になることが分かった。また、この化合物8bを示差走査熱量計(DSC)により熱分析した。その結果を図9(a)に示す。この図からも分かるように、化合物8bは51℃ 及び71℃に2つの小さな吸熱ピークを示し、81℃に大きな吸熱ピークを示した。   By observation with a microscope while heating, it was found that the compound 8b became an opaque liquid from 50 ° C. and a transparent liquid from 81 ° C. The compound 8b was subjected to thermal analysis using a differential scanning calorimeter (DSC). The result is shown in FIG. As can be seen from this figure, Compound 8b showed two small endothermic peaks at 51 ° C. and 71 ° C., and a large endothermic peak at 81 ° C.

また、化合物8bを粉末X線回折法により分析した。その結果を図10に示す。この結果から、化合物8bがカラム間の距離が29.3Å、ディスク間の距離が4.6Åの正方晶カラムナー構造を有していることが分かった。また、温度を上昇させながら測定することにより、低回折角度(角度2θ=4.2°)における回折ピークが、51℃でブロードになり、73℃では2つのピークに分裂することも分かった。   Compound 8b was analyzed by powder X-ray diffraction. The result is shown in FIG. From this result, it was found that the compound 8b had a tetragonal columnar structure in which the distance between the columns was 29.3 mm and the distance between the disks was 4.6 mm. It was also found that the diffraction peak at a low diffraction angle (angle 2θ = 4.2 °) broadens at 51 ° C. and splits into two peaks at 73 ° C. by measuring while increasing the temperature.

さらに、偏光顕微鏡による観察結果から、化合物8bが51〜71℃の間でShrieren組織を示すことが分かった。その結果を図11に示す。なお、図11(a)は25℃における結晶相の顕微鏡写真であり、図11(b)は75℃における液晶相の顕微鏡写真である。   Furthermore, from the observation result with a polarizing microscope, it was found that Compound 8b exhibited a Shrieren structure between 51 and 71 ° C. The result is shown in FIG. 11A is a micrograph of the crystal phase at 25 ° C., and FIG. 11B is a micrograph of the liquid crystal phase at 75 ° C.

化合物9を示差走査熱量計(DSC)により熱分析した。その結果を図9(b)に示す。この図からも分かるように、化合物9は92℃及び113℃に大きな吸熱ピークを示した。また、光学顕微鏡による観察から、化合物9が92℃で液体化することがわかった。これらのことから、化合物9は92〜113℃間ではキラルディスコティックネマティック相を示し、130℃以上では等方性液体相を示していることが分かった。   Compound 9 was subjected to thermal analysis using a differential scanning calorimeter (DSC). The result is shown in FIG. As can be seen from this figure, Compound 9 showed large endothermic peaks at 92 ° C and 113 ° C. Further, observation with an optical microscope revealed that Compound 9 liquefied at 92 ° C. From these results, it was found that Compound 9 exhibited a chiral discotic nematic phase between 92 and 113 ° C. and an isotropic liquid phase above 130 ° C.

さらに、化合物9を粉末X線回折法により分析した。その結果、25℃、2θ=4.1°で広く散乱したピークを示した。このことから、この温度では非常に結晶性が乏しいことが分かった。なお、52〜113℃においては、十分な分解能の解像度のX線回折ピークが得られていないため、どのような相を示すのかは不明であった。   Further, Compound 9 was analyzed by powder X-ray diffraction method. As a result, a widely scattered peak was observed at 25 ° C. and 2θ = 4.1 °. This indicates that the crystallinity is very poor at this temperature. In addition, in 52-113 degreeC, since the X-ray-diffraction peak of sufficient resolution was not obtained, it was unknown what kind of phase was shown.

最後に、化合物8a、8b及び9の熱量分析のまとめた結果を下記の表1に示す。   Finally, the summarized results of calorimetric analysis of compounds 8a, 8b and 9 are shown in Table 1 below.

Figure 2006283014
Figure 2006283014

(5b)化合物9の構造及び熱特性
化合物9(As prepared)とこれをアニーリングしたもの(Annealed)との赤外線スペクトルを測定した。その結果を図12に示す。なお、アニーリングは、120℃まで加熱し、5分間保持した後、10℃/分の速度で冷却するという条件で行った。
(5b) Structure and thermal properties of compound 9 Infrared spectra of compound 9 (As prepared) and an annealed product (Annealed) were measured. The result is shown in FIG. The annealing was performed under the condition of heating to 120 ° C., holding for 5 minutes, and then cooling at a rate of 10 ° C./min.

この図から分かるように、CH2の非対称性伸縮とCH2の対称性伸縮との割合、すなわちI2930/I2853は、化合物9では1.18であるのに対して、アニーリングしたものでは1.35であった。一般的に、2930 cm-1 から2850 cm-1における吸光度の割合の増加はゴーシュ型の数の増加を意味することから、アニーリングによって、ゴーシュ型の数が多くなることが分かった。 As can be seen from this figure, the ratio of the asymmetric stretching and CH 2 symmetry stretching of CH 2, i.e. I 2930 / I 2853 is that the of 1.18 in compound 9, is obtained by annealing 1.35 met It was. In general, an increase in the ratio of absorbance from 2930 cm -1 to 2850 cm -1 means an increase in the number of Gauche types, and thus it was found that annealing increases the number of Gauche types.

また、前記赤外線スペクトル測定の結果から、ラクチム型とラクタム型の間に平衡が存在することが分かった。また、化合物9はOH伸縮バンド(図13のA又はBを参照)を示すのに対して、化合物9をアニーリングしたもの、及び化合物9を溶融して素早く冷却して得られたものは、N+H伸縮バンド (図13のCを参照)を示すことが分かった。興味深いことに、素早く冷却したサンプルは1692 cm-1にC=O伸縮バンドがあること、これはα位がN+H---Zn となったC=O伸縮振動に起因する、を示した。 Further, from the result of the infrared spectrum measurement, it was found that an equilibrium exists between the lactim type and the lactam type. Compound 9 shows an OH stretch band (see A or B in FIG. 13), whereas compound 9 was annealed and compound 9 was obtained by melting and quickly cooling N. It was found to show a + H stretch band (see C in FIG. 13). Interestingly, the rapidly cooled sample showed a C = O stretch band at 1692 cm -1 , which is due to C = O stretch vibrations with the α position being N + H --- Zn. .

これらの観測結果は、加熱処理が、化合物9の再構成してテトラピロール構造物を安定化すること、ラクチム型からラクタム型への異性化を引き起こすこと、アルキル鎖の配座をアンチ配座からゴーシュ配座に変化させること、を示した。   These observations indicate that heat treatment reconstitutes compound 9 to stabilize the tetrapyrrole structure, causes isomerization from lactim to lactam, and the conformation of the alkyl chain from the anti-conformation. It was shown to change to the Gauche conformation.

さらに、ラクタム型とラクチム型の安定性を見積もるため、分子軌道計算をモデル分子である[octamethylbilindionato]zincに対して行った。なお、分子軌道計算プログラムにはGaussian 98(Gaussian, Inc、米国)、密度汎関数法には密度汎関数(DFT)の一種であるB3LYP、基底関数としては6-31G(D)をそれぞれ使用し、A、B、Cの各異性体の構造を最適化した。また、分子軌道計算に用いた初期構造(仮定した構造)は以下のとおりである。   In addition, molecular orbital calculations were performed on [octamethylbilindionato] zinc, which is a model molecule, to estimate the stability of lactam and lactim types. The molecular orbital calculation program uses Gaussian 98 (Gaussian, Inc., USA), the density functional method uses B3LYP, a kind of density functional (DFT), and 6-31G (D) as the basis function. , A, B and C isomer structures were optimized. The initial structure (assumed structure) used for the molecular orbital calculation is as follows.

すなわち、異性体A及びBはラクタム−ラクチム型であり、異性体AにおいてOH基の水素原子は水素結合に関与していないものとした。反対に、異性体BにおいてはOH基の水素原子がラクタム型窒素への水素結合に関与しているものとした。また、異性体Cはラクタム−ラクタム型であり、ラクタム窒素は水素原子を有しているものとした。   That is, isomers A and B are of the lactam-lactim type, and in isomer A, the hydrogen atom of the OH group is not involved in hydrogen bonding. On the contrary, in isomer B, the hydrogen atom of the OH group was assumed to be involved in hydrogen bonding to lactam nitrogen. In addition, isomer C is a lactam-lactam type, and lactam nitrogen has a hydrogen atom.

その結果、異性体A、B、及びCのエネルギーは、それぞれ-3194.4549, -3194.4622 及び-3194.4609 hartreeであった。このことから、異性体Aは異性体Bよも4.6 kcal/molだけ不安定であることが分かった。また、異性体Bと異性体Cの間のエネルギーの差は僅か0.8 kcal/molであり、これは、もし分子の凝集が追加の安定化エネルギーを供給するのであれば、両異性体、すなわち、ラクタム−ラクチム型及びラクタム−ラクタム型が固体又は液晶状態となることを示している。このことは、この液晶がわずかな外場の影響により容易に構造変化できる、新しい機能を持った液晶であることを示している。   As a result, the energies of isomers A, B, and C were −3194.4549, −3194.4622, and −3194.4609 hartree, respectively. This shows that isomer A is more unstable than isomer B by 4.6 kcal / mol. Also, the energy difference between isomer B and isomer C is only 0.8 kcal / mol, which means that both isomers, i.e., if the molecular aggregation provides additional stabilization energy, i.e. It shows that the lactam-lactim type and the lactam-lactam type are in a solid or liquid crystal state. This indicates that this liquid crystal is a liquid crystal having a new function that can easily change its structure under the influence of a slight external field.

(5c)化合物9のインピーダンス特性
化合物9のインピーダンススペクトルを、化合物9をITO電極にサンドイッチした状態(電極間の距離は50μm)で、LCRメータにより測定した。その結果を図14に示す。この図に示すナイキスト線図から、1 Hz と100 kHz の間では、緩和周波数が10-3 Hzであること、及び比誘電率が175であることが分かった。
(5c) Impedance characteristics of compound 9 The impedance spectrum of compound 9 was measured with an LCR meter in a state where compound 9 was sandwiched between ITO electrodes (distance between electrodes was 50 μm). The result is shown in FIG. From the Nyquist diagram shown in this figure, it was found that the relaxation frequency was 10 −3 Hz and the relative dielectric constant was 175 between 1 Hz and 100 kHz.

(6)まとめ
以上の結果から、化合物9は電場などの外場によってスイッチングされ易く、分子素子として利用できることが分かった。
(6) Summary From the above results, it was found that Compound 9 is easily switched by an external field such as an electric field and can be used as a molecular device.

化合物3、化合物4の合成スキームを模式的に示した図である。1 is a diagram schematically showing a synthesis scheme of Compound 3 and Compound 4. FIG. 化合物2が溶解している溶媒と、可視光吸収スペクトルの関係を示すグラフである。It is a graph which shows the relationship between the solvent in which Compound 2 is dissolved, and the visible light absorption spectrum. 化合物2に配位している金属イオンと可視光吸収スペクトルの関係を示すグラフである。3 is a graph showing the relationship between a metal ion coordinated with Compound 2 and a visible light absorption spectrum. 化合物6の合成スキームを模式的に示した図である。4 is a diagram schematically illustrating a synthesis scheme of Compound 6. FIG. 化合物8及び9の合成スキームを模式的に示した図である。It is the figure which showed the synthetic scheme of the compounds 8 and 9 typically. 化合物8bのNMRスペクトルを示す図である。It is a figure which shows the NMR spectrum of the compound 8b. 化合物8bを質量分析した結果(マススペクトル)を示す図である。It is a figure which shows the result (mass spectrum) which mass-analyzed compound 8b. 化合物8bが溶解している溶媒と、紫外光吸収スペクトルとの関係を示すグラフである。It is a graph which shows the relationship between the solvent in which Compound 8b is dissolved, and the ultraviolet light absorption spectrum. 化合物8b又は化合物9を示差走査熱量計(DSC)により熱分析した結果を示す図である。なお、(a)は化合物8b、(b)は化合物9の結果を示している。It is a figure which shows the result of having thermally analyzed the compound 8b or the compound 9 with the differential scanning calorimeter (DSC). In addition, (a) shows the result of Compound 8b and (b) shows the result of Compound 9. 化合物8bを粉末X線回折法により分析した結果を示す図である。It is a figure which shows the result of having analyzed the compound 8b by the powder X ray diffraction method. 化合物8bの偏光顕微鏡写真である。なお、(a)は25℃における結晶相の顕微鏡写真であり、(b)は75℃における液晶相の顕微鏡写真である。It is a polarization microscope photograph of compound 8b. (A) is a micrograph of the crystal phase at 25 ° C., and (b) is a micrograph of the liquid crystal phase at 75 ° C. 化合物9と、これをアニーリングしたものとの赤外線スペクトルを測定した結果である。It is the result of having measured the infrared spectrum of the compound 9 and what annealed this. 化合物9の構造を説明するための図である。4 is a diagram for explaining the structure of Compound 9. FIG. 化合物9のインピーダンススペクトルを測定した結果(ナイキスト線図)である。It is the result (Nyquist diagram) which measured the impedance spectrum of compound 9.

Claims (15)

式(1)
Figure 2006283014
(式中、R1,R2,R3はH,Cn2n+1又はOCn2n+1の何れか(ただし、R1,R2,R3のすべてがHの場合を除く。)を表し、nは3から30の何れかの数字を表す。)で示されるリニアテトラピロール系色素。
Formula (1)
Figure 2006283014
(In the formula, R 1 , R 2 and R 3 are either H, C n H 2n + 1 or OC n H 2n + 1 (except when all of R 1 , R 2 and R 3 are H). ), And n represents any number from 3 to 30.)
式(2)
Figure 2006283014
で示される請求項1に記載のリニアテトラピロール系色素。
Formula (2)
Figure 2006283014
The linear tetrapyrrole pigment | dye of Claim 1 shown by these.
式(3)
Figure 2006283014
(式中、R1,R2,R3はH,Cn2n+1又はOCn2n+1の何れか(ただし、R1,R2,R3のすべてがHの場合を除く。)を表し、nは3から30の何れかの数字を表し、MはZn,Mn,Fe,Co,Ni,Cu,Cdの何れかを表す。)で示されるリニアテトラピロール系色素。
Formula (3)
Figure 2006283014
(In the formula, R 1 , R 2 and R 3 are either H, C n H 2n + 1 or OC n H 2n + 1 (except when all of R 1 , R 2 and R 3 are H). ), N represents any number from 3 to 30, and M represents any one of Zn, Mn, Fe, Co, Ni, Cu, and Cd.)).
式(4)
Figure 2006283014
で示される請求項3に記載のリニアテトラピロール系色素。
Formula (4)
Figure 2006283014
The linear tetrapyrrole pigment | dye of Claim 3 shown by these.
式(5)
Figure 2006283014
(式中、R1,R2,R3はH,Cn2n+1又はOCn2n+1の何れか(ただし、R1,R2,R3のすべてがHの場合を除く。)を表し、nは3から30の何れかの数字を表し、MはZn,Mn,Fe,Co,Ni,Cu,Cdの何れかを表す。)で示されるリニアテトラピロール系色素。
Formula (5)
Figure 2006283014
(In the formula, R 1 , R 2 and R 3 are either H, C n H 2n + 1 or OC n H 2n + 1 (except when all of R 1 , R 2 and R 3 are H). ), N represents any number from 3 to 30, and M represents any one of Zn, Mn, Fe, Co, Ni, Cu, and Cd.)).
式(6)
Figure 2006283014
で示される請求項5に記載のリニアテトラピロール系色素。
Formula (6)
Figure 2006283014
The linear tetrapyrrole pigment | dye of Claim 5 shown by these.
式(7)
Figure 2006283014
(式中、R1,R2,R3はH,Cn2n+1又はOCn2n+1の何れか(ただし、R1,R2,R3のすべてがHの場合を除く。)を表し、nは3から30の何れかの数字を表す。)で示されるリニアテトラピロール系色素。
Formula (7)
Figure 2006283014
(In the formula, R 1 , R 2 and R 3 are either H, C n H 2n + 1 or OC n H 2n + 1 (except when all of R 1 , R 2 and R 3 are H). ), And n represents any number from 3 to 30.)
式(8)
Figure 2006283014
で示される請求項7に記載のリニアテトラピロール系色素。
Formula (8)
Figure 2006283014
The linear tetrapyrrole pigment | dye of Claim 7 shown by these.
式(9)
Figure 2006283014
(式中、R1,R2,R3はH,Cn2n+1又はOCn2n+1の何れか(ただし、R1,R2,R3のすべてがHの場合を除く。)を表し、nは3から30の何れかの数字を表し、MはZn,Mn,Fe,Co,Ni,Cu,Cdの何れかを表す。)で示されるリニアテトラピロール系色素。
Formula (9)
Figure 2006283014
(In the formula, R 1 , R 2 and R 3 are either H, C n H 2n + 1 or OC n H 2n + 1 (except when all of R 1 , R 2 and R 3 are H). ), N represents any number from 3 to 30, and M represents any one of Zn, Mn, Fe, Co, Ni, Cu, and Cd.)).
式(10)
Figure 2006283014
で示される請求項9に記載のリニアテトラピロール系色素。
Formula (10)
Figure 2006283014
The linear tetrapyrrole pigment | dye of Claim 9 shown by these.
式(11)
Figure 2006283014
(式中、RはH,Cn2n+1又はOCn2n+1の何れか(ただし、Rは同一でも互いに異なっていてもよいが、すべてがHの場合は除く。)を表し、nは3から30の何れかの数字を表す。)で示されるリニアテトラピロール系色素。
Formula (11)
Figure 2006283014
(In the formula, R represents H, C n H 2n + 1, or OC n H 2n + 1 (however, R may be the same or different from each other, except when all are H)). , N represents any number from 3 to 30).
式(12)
Figure 2006283014
で示される請求項11に記載のリニアテトラピロール系色素。
Formula (12)
Figure 2006283014
The linear tetrapyrrole pigment | dye of Claim 11 shown by these.
式(13)
Figure 2006283014
で示される請求項11に記載のリニアテトラピロール系色素。
Formula (13)
Figure 2006283014
The linear tetrapyrrole pigment | dye of Claim 11 shown by these.
式(14)
Figure 2006283014
(式中、RはH,Cn2n+1又はOCn2n+1の何れか(ただし、Rは同一でも互いに異なっていてもよいが、すべてがHの場合は除く。)を表し、nは3から30の何れかの数字を表し、MはZn,Mn,Fe,Co,Ni,Cu,Cdの何れかを表す。)で示されるリニアテトラピロール系色素。
Formula (14)
Figure 2006283014
(In the formula, R represents H, C n H 2n + 1, or OC n H 2n + 1 (however, R may be the same or different from each other, except when all are H)). , N represents any number from 3 to 30, and M represents any one of Zn, Mn, Fe, Co, Ni, Cu, and Cd.).
式(15)
Figure 2006283014
で示される請求項14に記載のリニアテトラピロール系色素。
Formula (15)
Figure 2006283014
The linear tetrapyrrole pigment | dye of Claim 14 shown by these.
JP2006063190A 2005-03-09 2006-03-08 Linear tetrapyrrole dye Expired - Fee Related JP5128780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006063190A JP5128780B2 (en) 2005-03-09 2006-03-08 Linear tetrapyrrole dye

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005065652 2005-03-09
JP2005065652 2005-03-09
JP2006063190A JP5128780B2 (en) 2005-03-09 2006-03-08 Linear tetrapyrrole dye

Publications (2)

Publication Number Publication Date
JP2006283014A true JP2006283014A (en) 2006-10-19
JP5128780B2 JP5128780B2 (en) 2013-01-23

Family

ID=37405246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006063190A Expired - Fee Related JP5128780B2 (en) 2005-03-09 2006-03-08 Linear tetrapyrrole dye

Country Status (1)

Country Link
JP (1) JP5128780B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059797A1 (en) * 2006-11-15 2008-05-22 Sony Corporation Functional molecular element, process for producing the same and functional molecular device
WO2009154145A1 (en) 2008-06-19 2009-12-23 ソニー株式会社 Functionalized molecular element, manufacturing method thereof, and functionalized molecular device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414290A (en) * 1987-07-07 1989-01-18 Hiroyoshi Shirai Langmuir-blodgett film
JPH06183969A (en) * 1992-05-22 1994-07-05 Nippon Ham Kk Anticomplementary agent
US20030207933A1 (en) * 2002-04-04 2003-11-06 Yuqiang Wang Compositions and methods for increasing the sensitivity of apoptosis-resistant tumor cells to inducers of apoptosis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414290A (en) * 1987-07-07 1989-01-18 Hiroyoshi Shirai Langmuir-blodgett film
JPH06183969A (en) * 1992-05-22 1994-07-05 Nippon Ham Kk Anticomplementary agent
US20030207933A1 (en) * 2002-04-04 2003-11-06 Yuqiang Wang Compositions and methods for increasing the sensitivity of apoptosis-resistant tumor cells to inducers of apoptosis

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6011051617; T. Yamauchi, et al.: 'A facile and versatile preparation of bilindiones and biladienones from tetraarylporphyrins' Chemical Communications , 20050121, Pages 1309-1311, The Royal Society of Chemistry *
JPN6011069756; '長鎖を持つ非環状テトラピロール分子の合成および性質' 日本化学会第83春季大会 , 20030303, 第1098頁, 社団法人日本化学会 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059797A1 (en) * 2006-11-15 2008-05-22 Sony Corporation Functional molecular element, process for producing the same and functional molecular device
JP2008124360A (en) * 2006-11-15 2008-05-29 Sony Corp Functional molecular element, manufacturing method thereof and functional molecular device
WO2009154145A1 (en) 2008-06-19 2009-12-23 ソニー株式会社 Functionalized molecular element, manufacturing method thereof, and functionalized molecular device
US8698132B2 (en) 2008-06-19 2014-04-15 Sony Corporation Functional molecular element, manufacturing method thereof, and functional molecular device

Also Published As

Publication number Publication date
JP5128780B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
Yu et al. AIE-active difluoroboronated acylhydrozone dyes (BOAHY) emitting across the entire visible region and their photo-switching properties
Lakshmi et al. Brominated boron dipyrrins: synthesis, structure, spectral and electrochemical properties
Hu et al. Dithienylethene-based rotaxanes: synthesis, characterization and properties
Zhan et al. Multi-stimuli responsive fluorescent behaviors of a donor–π–acceptor phenothiazine modified benzothiazole derivative
Hao et al. Integration of nitrogen into coronene bisimides
Wang et al. Facile synthesis and controllable bromination of asymmetrical intermediates of perylene monoanhydride/monoimide diester
Kesavan et al. Carbazole substituted boron dipyrromethenes
Zhu et al. Synthesis, mesomorphic and photophysical properties of novel triads and pentads of perylene liquid crystals with cholesterol units at the bay-position
Zhu et al. Perylene bisimide with diphenylacrylonitrile on side-chain: strongly fluorescent liquid crystal with large pseudo Stokes shift based on AIE and FRET effect
Zhang et al. Synthesis and luminescence properties of 1, 3, 4-oxadiazole acetamide derivatives and their rare earth complexes
Cheng et al. CEE-active red/near-infrared fluorophores with triple-channel solid-state “ON/OFF” fluorescence switching
Zhang et al. Mechanofluorochromism of NIR-emitting dyes based on difluoroboron β-carbonyl cyclic ketonate complexes
Rapi et al. Synthesis and recognition properties of α-D-glucose-based fluorescent crown ethers incorporating an acridine unit
Bhat et al. Tris-heteroleptic ruthenium (II) polypyridyl complexes: synthesis, structural characterization, photophysical, electrochemistry and biological properties
Zhao et al. Synthesis, electrochemistry and liquid crystal properties of 1, 2, 3-(NH)-triazolylferrocene derivatives
JP5128780B2 (en) Linear tetrapyrrole dye
Sharma et al. Columnar self-assembly, electrochemical and luminescence properties of basket-shaped liquid crystalline derivatives of Schiff-base-moulded p-tert-butyl-calix [4] arene
CN107759504B (en) Dual-phase organic fluorescent material with strong fluorescence in solid and liquid states and preparation method thereof
Xiong et al. Novel liquid crystals with high fluorescence: Synthesis, mesomorphic and photophysical properties of cholesterol-triazine-BODIPY trimers
Lei et al. Luminescent mesogenic borondifluoride complexes with the Schiff bases containing salicylideneamines and β-enaminoketones core systems
Zhao et al. Electrochemistry and liquid crystal properties of mono-substituted 1, 2, 3-triazolylferrocene derivatives
Zhang et al. Cholesteryl naphthalimide-based gelators: Their applications in the multiply visual sensing of CO2 based on an anion-induced strategy
Heydari et al. Synthesis and photophysical properties of a new carbazole-based acidochromic molecular switch
CN105175310B (en) Asymmetric aza diisoindole methylene compound and its synthesis and use of boron fluoride compound
Sonina et al. Alkyl-substituted bis (4-((9 H-fluoren-9-ylidene) methyl) phenyl) thiophenes: weakening of intermolecular interactions and additive-assisted crystallization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees