JP2006279882A - Optical frequency modulation method and apparatus - Google Patents

Optical frequency modulation method and apparatus Download PDF

Info

Publication number
JP2006279882A
JP2006279882A JP2005099958A JP2005099958A JP2006279882A JP 2006279882 A JP2006279882 A JP 2006279882A JP 2005099958 A JP2005099958 A JP 2005099958A JP 2005099958 A JP2005099958 A JP 2005099958A JP 2006279882 A JP2006279882 A JP 2006279882A
Authority
JP
Japan
Prior art keywords
optical
carrier frequency
optical pulse
frequency
pulse train
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005099958A
Other languages
Japanese (ja)
Inventor
Masao Kato
正夫 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005099958A priority Critical patent/JP2006279882A/en
Publication of JP2006279882A publication Critical patent/JP2006279882A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical frequency modulation apparatus which realizes optical frequency modulation in simple configuration and improves reliability by reducing the number of required components. <P>SOLUTION: The optical frequency modulation apparatus comprises means (8, 9, 10) for temporally modulating an iteration frequency of an optical pulse stream having the peculiar iteration frequency and a carrier frequency, and means (4, 1c, 5) for extracting the modulated iteration frequency component and modulates the intensity of an optical signal. The means for temporally modulating the iteration frequency of an optical pulse stream includes carrier frequency control means (8, 9) for changing the carrier frequency and an optical pulse interval control means (10) which gives a propagation delay time corresponding to the carrier frequency to the optical pulse stream of which the carrier frequency is changed by the carrier frequency control means. The carrier frequency control means comprises a light intensity control means (8) for continuously and periodically changing the light intensity of optical pulses in the optical pulse stream and an optical non-linear medium (9) of which a refractive index is changed in accordance with light intensity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光FM変調方法および光FM変調装置に関する。より詳細には、固有の繰返し周波数と搬送波周波数とを有する光パルス列を用い、該繰返し周波数を時間的に変調することで、光信号を強度変調する光FM変調方法および光FM変調装置に関する。   The present invention relates to an optical FM modulation method and an optical FM modulation apparatus. More specifically, the present invention relates to an optical FM modulation method and an optical FM modulation device that modulates the intensity of an optical signal by temporally modulating the repetition frequency using an optical pulse train having a specific repetition frequency and a carrier frequency.

従来、光ファイバを用いた映像伝送では、既存の光強度変調方式(IM−DD方式:Intensity Modulation-Direct Detection:強度変調−直接検出方式)にFM変調方式の低雑音特性を融合した光信号(FM/AM信号)の伝送が行われている。このFM/AM変調信号は、光強度変調器を駆動する変調周波数を時間的に変化させることによって発生する。   Conventionally, in video transmission using an optical fiber, an optical signal that combines the low-noise characteristics of an FM modulation method with an existing light intensity modulation method (IM-DD method: Intensity Modulation-Direct Detection) ( FM / AM signal) is being transmitted. This FM / AM modulation signal is generated by temporally changing the modulation frequency for driving the light intensity modulator.

図1に、既存の光FM変調装置の構成例を示す。光FM変調装置100は、互いに搬送波周波数が3GHzだけ異なる狭線幅(線幅:1MHz以下)の半導体レーザ(DFBレーザ:distributed feedback laser:分散帰還型レーザ)を1aおよび1bと、半導体レーザ1aおよび1bから出力される連続光の各々を、マイクロ波発信器6から供給された変調信号に応じて、互いに位相が180度ずれたタイミングで位相変調する位相変調器2aおよび2bと、位相変調器2aおよび2bの各々から出力された、位相変調された連続光を合波する光カプラ3と、光カプラ3で合波された連続光を受信し、合波された連続光の差周波数のビートを出力する光受信器4aと、光受信器4aから出力された差周波数のビートで、半導体レーザ1cから入力される光信号を強度変調する強度変調器5とを備える。   FIG. 1 shows a configuration example of an existing optical FM modulation device. The optical FM modulation apparatus 100 includes a semiconductor laser (DFB laser: distributed feedback laser) 1a and 1b, a semiconductor laser 1a, Phase modulators 2a and 2b that phase-modulate each of the continuous lights output from 1b at a timing that is 180 degrees out of phase with each other in accordance with the modulation signal supplied from the microwave transmitter 6, and the phase modulator 2a And 2b, the optical coupler 3 that combines the phase-modulated continuous light, and the continuous light that is combined by the optical coupler 3, and receives the beat of the difference frequency of the combined continuous light. An optical receiver 4a for output, and an intensity modulator 5 for intensity-modulating an optical signal input from the semiconductor laser 1c with a beat having a difference frequency output from the optical receiver 4a. .

光カプラ3によって合波された連続光は、互いに搬送波周波数が3GHzだけ異なる連続光が、互いに180度ずれた位相のタイミングで位相変調されている。このため、光受信器4で得られる差周波数のビートは時間的に変化する。   The continuous light combined by the optical coupler 3 is phase-modulated with continuous light whose carrier frequencies differ from each other by 3 GHz at a phase that is shifted by 180 degrees. For this reason, the beat of the difference frequency obtained by the optical receiver 4 changes with time.

図2に位相変調周波数が1.5GHzのときの相互作用によるビート周波数の変化を模式的に示す。この構成例では、最大で6GHzまでのFM変調周波数の付与が可能となる。   FIG. 2 schematically shows changes in beat frequency due to interaction when the phase modulation frequency is 1.5 GHz. In this configuration example, it is possible to apply an FM modulation frequency up to 6 GHz.

J. P. Gordon, ”Theory of the soliton self-frequency shift,” Opt. Lett., 11, pp. 662-664, 1986.J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett., 11, pp. 662-664, 1986. F. M. Mitschke, and L. F. Mollenauer, ”Discovery of the soliton self-frequency shift,” Opt. Lett., 11, pp. 659-661, 1986.F. M. Mitschke, and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett., 11, pp. 659-661, 1986.

現時点において、変調周波数を高速に変化させることができるマイクロ波発信機を実現することは非常に困難である。よって、高速なFM変調を付与すべく従来技術では、図1に示すように2台の狭線幅のDFBレーザから出力される連続光の各々について位相変調し、相互作用による差周波数のビートを時間的に変化させることでFM変調を付与しなければならないという問題があった。さらに、ここで要求されるDFBレーザは、線幅が非常に狭いだけでなく、搬送波周波数が厳密に3GHzだけ異なることが必須とされることから、DFBレーザの歩留まりの観点から、問題となっていた。また、図1に示したように、光FM変調装置の部品点数が多く、実用の観点から、信頼性に問題があった。   At present, it is very difficult to realize a microwave transmitter that can change the modulation frequency at high speed. Therefore, in the prior art in order to apply high-speed FM modulation, as shown in FIG. 1, phase modulation is performed for each of the continuous lights output from the two narrow line width DFB lasers, and the beat of the difference frequency due to the interaction is obtained. There was a problem that FM modulation had to be applied by changing it with time. Furthermore, the DFB laser required here is not only a very narrow line width, but also requires that the carrier frequency be strictly different by 3 GHz, which is a problem from the viewpoint of the yield of the DFB laser. It was. Further, as shown in FIG. 1, the number of parts of the optical FM modulator is large, and there is a problem in reliability from a practical viewpoint.

本発明は、このような問題に鑑みてなされたもので、その目的は、シンプルな構成により光FM変調を実現し、必要とされる部品点数を減らすことで信頼性の高い光FM変調装置を提供することにある。   The present invention has been made in view of such a problem, and an object of the present invention is to realize an optical FM modulation with a simple configuration, and to reduce the number of required parts to provide a highly reliable optical FM modulation apparatus. It is to provide.

本発明は、このような目的を達成するために、本願発明は、任意かつ固有の繰返し周波数と搬送波周波数を有する光パルス列を用い、各々の光パルスにおけるパルス間隔を可変制御することで繰返し周波数の変調を実現する。これにより、光受信機で抽出される繰返し周波数は時間的に変化するのでシンプルな構成による簡便な光FM変調信号を提供する。   In order to achieve such an object, the present invention uses an optical pulse train having an arbitrary and unique repetition frequency and carrier frequency, and variably controls the pulse interval in each optical pulse to thereby control the repetition frequency. Realize modulation. Thereby, since the repetition frequency extracted by the optical receiver changes with time, a simple optical FM modulated signal with a simple configuration is provided.

また、本願発明は、光パルス間隔を可変制御する方法として、光強度依存性を有する波長変換技術(非特許文献1および2参照)を用い、搬送波周波数の各々異なる光パルスを生成する。さらに、搬送波周波数によって伝搬遅延時間が変化する分散媒質を用いることで光パルス間隔を制御し、光受信機で抽出される繰返し周波数が時間的に変化するシンプルな構成による簡便な光FM変調方法および光FM変調装置を提供する。   The present invention uses a wavelength conversion technique (see Non-Patent Documents 1 and 2) having light intensity dependency as a method for variably controlling the optical pulse interval, and generates optical pulses having different carrier frequencies. Furthermore, a simple optical FM modulation method with a simple configuration in which the optical pulse interval is controlled by using a dispersion medium whose propagation delay time varies depending on the carrier frequency, and the repetition frequency extracted by the optical receiver varies with time, and An optical FM modulator is provided.

上記のように、請求項1に記載の発明は、光信号をFM変調する光FM変調装置であって、固有の繰返し周波数と搬送波周波数とを有する光パルス列の前記繰返し周波数を時間的に変調する手段と、変調された前記繰り返し周波数成分を抽出して、前記光信号を強度変調する手段とを備えたことを特徴とする。   As described above, the invention described in claim 1 is an optical FM modulation apparatus that FM modulates an optical signal, and temporally modulates the repetition frequency of an optical pulse train having a specific repetition frequency and a carrier frequency. And means for extracting the modulated repetition frequency component and intensity-modulating the optical signal.

請求項2に記載の発明は、請求項1記載の光FM変調装置であって、光パルス列の前記繰返し周波数を時間的に変調する前記手段は、前記光パルス列の前記搬送波周波数を変化させる搬送波周波数制御手段と、搬送波周波数制御手段によって搬送波周波数が変化した前記光パルス列に、搬送波周波数に応じた伝播遅延時間を与える光パルス間隔制御手段とを備えたことを特徴とする。   A second aspect of the present invention is the optical FM modulation apparatus according to the first aspect, wherein the means for temporally modulating the repetition frequency of the optical pulse train changes the carrier frequency of the optical pulse train. It is characterized by comprising control means and optical pulse interval control means for giving a propagation delay time according to the carrier frequency to the optical pulse train whose carrier frequency has been changed by the carrier frequency control means.

請求項3に記載の発明は、請求項2に記載の光FM変調装置であって、前記搬送波周波数制御手段は、前記光パルス列における各光パルスの光強度を連続的かつ周期的に変化させる光強度制御手段と、光強度に応じて屈折率が変化する光非線形媒質(9)とを備えることを特徴とする。   The invention according to claim 3 is the optical FM modulation device according to claim 2, wherein the carrier frequency control means is a light that continuously and periodically changes the light intensity of each light pulse in the light pulse train. It is characterized by comprising intensity control means and an optical nonlinear medium (9) whose refractive index changes according to the light intensity.

請求項4に記載の発明は、光信号をFM変調する光FM変調方法であって、固有の繰返し周波数と搬送波周波数とを有する光パルス列の前記繰返し周波数を時間的に変調するステップと、時間的に変調された前記繰返し周波数成分を抽出して、前記光信号を強度変調するステップとを含むことを特徴とする。   According to a fourth aspect of the present invention, there is provided an optical FM modulation method for FM-modulating an optical signal, the step of temporally modulating the repetition frequency of an optical pulse train having a specific repetition frequency and a carrier frequency; Extracting the repetitive frequency component modulated to 1 to intensity-modulate the optical signal.

請求項5に記載の発明は、請求項4に記載の光FM変調方法であって、光パルス列の前記繰返し周波数を時間的に変調する前記ステップは、前記光パルス列における光パルスの時間間隔の各々を変化させるステップであることを特徴とする。   The invention according to claim 5 is the optical FM modulation method according to claim 4, wherein the step of temporally modulating the repetition frequency of the optical pulse train includes each time interval of the optical pulse in the optical pulse train. It is a step which changes.

請求項6に記載の発明は、請求項5に記載の光FM変調方法であって、前記光パルス列における光パルスの時間間隔の各々を変化させる前記ステップは、前記光パルス列の前記搬送波周波数を連続的かつ周期的に変化させるステップを含むことを特徴とする。   The invention according to claim 6 is the optical FM modulation method according to claim 5, wherein the step of changing each time interval of the optical pulse in the optical pulse train continuously sets the carrier frequency of the optical pulse train. And a step of changing periodically and periodically.

請求項7に記載の発明は、請求項6に記載の光FM変調方法であって、前記搬送波周波数を連続的かつ周期的に変化させるス前記テップは、前記光パルス列における光パルスの光強度の各々を連続的かつ周期的に変化させるステップと、光パルスの光強度の各々を連続的かつ周期的に変化させた前記光パルス列を、光強度に応じて屈折率が変化する光非線形媒質を伝播させるステップとを含むことを特徴とする。   A seventh aspect of the present invention is the optical FM modulation method according to the sixth aspect, wherein the step of changing the carrier frequency continuously and periodically is performed by measuring the light intensity of the optical pulse in the optical pulse train. Propagating through the optical nonlinear medium whose refractive index changes according to the light intensity, the step of changing each continuously and periodically, and the optical pulse train in which the light intensity of each light pulse is changed continuously and periodically And a step of causing

請求項8に記載の発明は、請求項6または7に記載の光FM変調方法であって、前記光パルス列における光パルスの時間間隔の各々を変化させるステップは、搬送波周波数が連続的かつ周期的に変化された前記光パルス列を、伝播時間が搬送波周波数によって異なる分散媒質を伝播させるステップをさらに含むことを特徴とする。   The invention according to claim 8 is the optical FM modulation method according to claim 6 or 7, wherein the step of changing each of the time intervals of the optical pulses in the optical pulse train is such that the carrier frequency is continuous and periodic. The optical pulse train that has been changed to a step further includes a step of propagating a dispersion medium whose propagation time varies depending on a carrier frequency.

以上説明したように、本発明によれば、従来技術では実現することができなかったシンプルな構成で簡便な光FM変調装置を実現する。なお、光非線形現象の中でも特に安定に動作するソリトン波を用いて動作するため、本発明の光FM変調装置は非常に安定である。これにより、極めて実用性が高く、広範囲に渡り応用範囲が広がっている。   As described above, according to the present invention, a simple optical FM modulation device with a simple configuration that could not be realized with the prior art is realized. Note that the optical FM modulator of the present invention is very stable because it operates using a soliton wave that operates particularly stably in the optical nonlinear phenomenon. As a result, it is extremely practical and has a wide range of applications.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。図3に、本発明に係る実施形態の光FM変調装置の構成を示す。光FM変調装置200は、固有の搬送波周波数と繰返し周波数とを有する光パルス列を発生する光パルス発生部7と、光パルス発生部7から出力された光パルス列の各光パルスの光強度を調整する光強度制御部8と、光強度制御部8で光強度を調整された光パルス(列)の搬送波周波数を変換する搬送波周波数制御部9と、搬送波周波数制御部9で変換された搬送波周波数を有する光パルス(列)の伝搬遅延時間差を制御する光パルス間隔制御部10と、光パルス間隔制御部10から出力された光パルス(列)を受信して、時間的に変化した繰り返し周波数を出力する光受信器4bと、光受信器4bから出力された時間的に変化した繰り返し周波数で、半導体レーザ1cから入力される光信号を強度変調する強度変調器5とを備える。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 3 shows the configuration of the optical FM modulation apparatus according to the embodiment of the present invention. The optical FM modulation apparatus 200 adjusts the optical intensity of each optical pulse of the optical pulse train output from the optical pulse generator 7 that generates an optical pulse train having a specific carrier frequency and repetition frequency, and the optical pulse generator 7. A light intensity control unit 8, a carrier frequency control unit 9 that converts a carrier frequency of an optical pulse (sequence) whose light intensity has been adjusted by the light intensity control unit 8, and a carrier frequency converted by the carrier frequency control unit 9. The optical pulse interval control unit 10 that controls the propagation delay time difference of the optical pulse (sequence) and the optical pulse (sequence) output from the optical pulse interval control unit 10 are received and the temporally changing repetition frequency is output. An optical receiver 4b and an intensity modulator 5 that modulates the intensity of an optical signal input from the semiconductor laser 1c with a temporally changing repetition frequency output from the optical receiver 4b are provided.

なお、図3において光パルス発生部7は、例えば半導体レーザで構成することができるが、本発明はこれに限定するものではなく、固有の搬送波周波数と繰返し周波数を有する光パルス列が発生できれば、ファイバレーザや光コム発生器などを用いて構成しても良い。   In FIG. 3, the optical pulse generator 7 can be constituted by, for example, a semiconductor laser. However, the present invention is not limited to this, and if an optical pulse train having a specific carrier frequency and repetition frequency can be generated, a fiber is used. You may comprise using a laser, an optical comb generator, etc.

光パルス発生部7から出力された任意かつ固有の搬送波周波数と繰返し周波数を有する光パルス列は、光強度制御部8に入射されて光パルス各々の光強度が調整される。光強度制御部8は、LiNbOのような強誘電体結晶や電界吸収型のEA変調器(Electro-absorption 変調器:電界吸収型変調器)などの素子で構成することができるが、時間的に透過率を制御することができればこれに限定されない。なお、光強度制御部8では、例えば図4に示すような、連続的、かつ周期的な光強度の変調を付与する。このとき、光強度制御部8としてLiNbOのような強誘電体結晶で構成された光強度変調器を用いた場合には、光強度変調器の駆動電圧は図5に示す電圧波形となる。また、光強度制御部8で付与する光パルス強度の制御は、連続的、かつ、周期的であればよいので、特に図4に示す波形に限定するものではない。 The optical pulse train having an arbitrary and specific carrier frequency and repetition frequency output from the optical pulse generator 7 is incident on the optical intensity controller 8 to adjust the optical intensity of each optical pulse. The light intensity control unit 8 can be composed of an element such as a ferroelectric crystal such as LiNbO 3 or an electroabsorption EA modulator (electro-absorption modulator). However, the present invention is not limited to this as long as the transmittance can be controlled. The light intensity control unit 8 applies continuous and periodic light intensity modulation as shown in FIG. At this time, when a light intensity modulator composed of a ferroelectric crystal such as LiNbO 3 is used as the light intensity controller 8, the drive voltage of the light intensity modulator has the voltage waveform shown in FIG. Further, the control of the light pulse intensity applied by the light intensity control unit 8 may be continuous and periodic, and is not particularly limited to the waveform shown in FIG.

搬送波周波数制御部9は、光強度依存性を有する波長変換を高非線形性の光ファイバ中で誘起することによって、光強度制御部8で光強度を調整された光パルス列の波長を調整する。この現象は、光パルスが異常分散領域の光ファイバ中を伝搬することで、その搬送波周波数が長波長側(低周波数側)へと変換されることが知られている。従って、搬送波周波数制御部9で用いられる高非線形性ファイバの零分散波長は、光パルス発生部7で出力される光パルスの搬送波周波数よりも短波長側(高周波数側)でなくてはならない。   The carrier frequency control unit 9 adjusts the wavelength of the optical pulse train whose light intensity is adjusted by the light intensity control unit 8 by inducing wavelength conversion having light intensity dependency in a highly nonlinear optical fiber. This phenomenon is known to be that the carrier frequency is converted to the long wavelength side (low frequency side) by propagating the optical pulse through the optical fiber in the anomalous dispersion region. Therefore, the zero dispersion wavelength of the highly nonlinear fiber used in the carrier frequency controller 9 must be shorter than the carrier frequency of the optical pulse output from the optical pulse generator 7 (high frequency side).

光パルス発生部7からの出力パルスは異なる搬送波周波数の光パルスを誘起した後も光パルス波形を維持している。よって、図7に示すように、繰返し周波数(光FM変調周波数)の変調は、光パルス発生部7からの出力パルスと、新たに生成した搬送波周波数を有する光パルスとのパルス間隔の変調によって実現する。   The output pulse from the optical pulse generator 7 maintains the optical pulse waveform even after inducing optical pulses with different carrier frequencies. Therefore, as shown in FIG. 7, the modulation of the repetition frequency (optical FM modulation frequency) is realized by modulating the pulse interval between the output pulse from the optical pulse generator 7 and the newly generated optical pulse having the carrier frequency. To do.

図8に、光強度依存性を有する波長変換を行った一実施例を示す。図8より明らかに、高非線形性ファイバに入射した光パルスの光強度に比例して生成される光パルスの搬送波周波数が変化することが見て取れる。なお、この実施例では波長可変範囲は40nm程度であった。また、搬送波周波数制御部9で用いる高非線形ファイバが有する波長分散によって、搬送波周波数による伝搬遅延時間差が生じるので光パルス間隔がある程度変調される。   FIG. 8 shows an embodiment in which wavelength conversion having light intensity dependency is performed. As apparent from FIG. 8, it can be seen that the carrier frequency of the light pulse generated in proportion to the light intensity of the light pulse incident on the highly nonlinear fiber changes. In this example, the wavelength variable range was about 40 nm. Further, since the propagation delay time difference due to the carrier frequency occurs due to the chromatic dispersion of the highly nonlinear fiber used in the carrier frequency control unit 9, the optical pulse interval is modulated to some extent.

なお、光強度制御部8からの光出力が、後段の搬送波周波数制御部9で誘起される光強度依存性を有する波長変換のしきい値を超えない場合には、搬送波周波数制御部9の前段に光増幅機能を有する素子を挿入し、図6に模式的に示すように、光パルス全体の光強度を上げる必要がある。このとき、光強度制御部8で付加した光強度差を保持することが必須である。   If the light output from the light intensity control unit 8 does not exceed the threshold value for wavelength conversion having the light intensity dependency induced in the subsequent carrier frequency control unit 9, the preceding stage of the carrier frequency control unit 9 It is necessary to insert an element having an optical amplifying function and to increase the light intensity of the entire light pulse as schematically shown in FIG. At this time, it is essential to maintain the light intensity difference added by the light intensity controller 8.

光パルス間隔制御部10は、搬送波周波数制御部9で新たに生成された(変換された)搬送波周波数を有する光パルスの伝搬遅延時間差を制御する。これにより、所望の繰返し周波数(光FM変調周波数)を実現することができる。例えば、光パルス間隔制御部10には、通信用の分散シフトファイバ(DSF:dispersion-shifted fiber)を伝搬遅延時間制御ファイバとして用いることができる。図10に、伝搬遅延時間制御ファイバに対する入力パルスと出力パルスを示す。波長λ1…λnの光パルスがそれぞれほぼ等しい間隔Tn(光パルス発生部7が発生する光パルス列のパルス間隔に等しい時間間隔)で伝搬遅延時間制御ファイバへ入力される。伝搬遅延時間制御ファイバによって、それぞれの波長に応じた伝搬遅延時間が与えられる。図10は、伝搬遅延時間制御ファイバから出力される波長λnの光パルスと波長λ1の光パルスとの時間間隔(伝搬遅延時間差)をT1、波長λnの光パルスと波長λ2の光パルスとの時間間隔をT2として表している。   The optical pulse interval control unit 10 controls the propagation delay time difference of the optical pulse having the carrier frequency newly generated (converted) by the carrier frequency control unit 9. Thereby, a desired repetition frequency (optical FM modulation frequency) can be realized. For example, the optical pulse interval control unit 10 can use a dispersion-shifted fiber (DSF) for communication as a propagation delay time control fiber. FIG. 10 shows input pulses and output pulses for the propagation delay time control fiber. Optical pulses of wavelengths λ1... Λn are input to the propagation delay time control fiber at substantially equal intervals Tn (time intervals equal to the pulse intervals of the optical pulse train generated by the optical pulse generator 7). The propagation delay time control fiber provides a propagation delay time corresponding to each wavelength. FIG. 10 shows the time interval (propagation delay time difference) between the optical pulse with wavelength λn and the optical pulse with wavelength λ1 output from the propagation delay time control fiber as T1, and the time between the optical pulse with wavelength λn and the optical pulse with wavelength λ2. The interval is represented as T2.

本実施形態では、光パルス間隔制御部10として、搬送波周波数1550nmにおいて−2ps/nm/kmの分散と+0.1ps/nm/kmの分散スロープを有している通信用の分散シフトファイバ(DSF:dispersion-shifted fiber)を用いた。光パルス発生部7に搬送波周波数1550nm、繰返し周波数100MHz(0.1GHz)の半導体レーザを用いた。よって、光パルス発生部7から発生する光パルスの間隔は10000psである。図9に、光パルス間隔と繰返し周波数の関係を示す。 In the present embodiment, the optical pulse interval control unit 10 uses a dispersion shift fiber (DSF) for communication having a dispersion of −2 ps / nm / km and a dispersion slope of +0.1 ps / nm 2 / km at a carrier frequency of 1550 nm. : Dispersion-shifted fiber). A semiconductor laser having a carrier frequency of 1550 nm and a repetition frequency of 100 MHz (0.1 GHz) was used for the optical pulse generator 7. Therefore, the interval between the light pulses generated from the light pulse generator 7 is 10,000 ps. FIG. 9 shows the relationship between the optical pulse interval and the repetition frequency.

搬送波周波数制御部9において生成できる波長差は、図8より40nm程度であった。したがって、40nmの波長差で光FM変調周波数として10GHzを得るには、パルス間隔を最大で100ps/40nm程度にすることが要求される。そこで、DSFの長さを25km程度とし、光パルス間隔が100psとなるようにした。これにより、0.1GHzから10GHzの光FM変調周波数を実現した。   The wavelength difference that can be generated in the carrier frequency control unit 9 is about 40 nm from FIG. Therefore, in order to obtain 10 GHz as the optical FM modulation frequency with a wavelength difference of 40 nm, it is required to set the pulse interval to about 100 ps / 40 nm at the maximum. Therefore, the length of the DSF was set to about 25 km and the optical pulse interval was set to 100 ps. Thereby, an optical FM modulation frequency of 0.1 GHz to 10 GHz was realized.

このとき、光パルス間隔が100ps未満(10GHz以上の繰り返し周波数)となる成分が同時に発生する(光パルス発生部7から出力された隣り合う光パルスでは、新たに発生させた搬送波周波数の異なる光パルスとの間隔が100ps未満となる)ため、電気のフィルタを用いて高周波数成分を除去することが有効である。なお、光パルス間隔制御部10で用いる光ファイバ中で発生する光非線形光学効果を抑制するため、光パルス間隔制御部10の前段に光減衰器を挿入することも有効である。また、所望の光FM変調周波数を実現するには、光パルス発生部に用いるパルス発生器の繰返し周波数、搬送波周波数発生部で生成できる波長差、および光パルス間隔制御部での伝搬遅延時間差をパラメータとした最適化が必要である。   At this time, components having an optical pulse interval of less than 100 ps (repetition frequency of 10 GHz or more) are generated at the same time (in the adjacent optical pulses output from the optical pulse generator 7, newly generated optical pulses having different carrier frequencies are generated. Therefore, it is effective to remove high frequency components using an electrical filter. In order to suppress the optical nonlinear optical effect generated in the optical fiber used in the optical pulse interval control unit 10, it is also effective to insert an optical attenuator before the optical pulse interval control unit 10. In order to realize a desired optical FM modulation frequency, the repetition frequency of the pulse generator used in the optical pulse generator, the wavelength difference that can be generated by the carrier frequency generator, and the propagation delay time difference in the optical pulse interval controller are parameters. Optimization is required.

従来形の光FM変調装置を模式的に示す図である。It is a figure which shows the conventional optical FM modulation apparatus typically. 光FM信号の一実施例を模式的に示す図である。It is a figure which shows typically one Example of an optical FM signal. 本発明に係る実施形態光のFM変調装置の構成を示す図である。It is a figure which shows the structure of FM modulation apparatus of embodiment light concerning this invention. 本発明に係る実施形態の光FM変調装置における光強度制御部の出力波形の一例を模式的に示す図である。It is a figure which shows typically an example of the output waveform of the light intensity control part in the optical FM modulation apparatus of embodiment which concerns on this invention. 本発明に係る実施形態の光FM変調装置における光強度制御部で用いる光強度変調を駆動する電圧波形の一例を模式的に示す図である。It is a figure which shows typically an example of the voltage waveform which drives the optical intensity modulation used by the optical intensity control part in the optical FM modulation apparatus of embodiment which concerns on this invention. 本発明に係る実施形態の光FM変調装置における光強度制御部の後段で光強度差を保持して光信号全体の光強度を増幅する一例を模式的に示す図である。It is a figure which shows typically an example which amplifies the optical intensity of the whole optical signal by hold | maintaining an optical intensity difference in the back | latter stage of the optical intensity control part in the optical FM modulation apparatus of embodiment which concerns on this invention. 本発明に係る実施形態の光FM変調装置における搬送波周波数制御部の出力波形の一例を模式的に示す図である。It is a figure which shows typically an example of the output waveform of the carrier frequency control part in the optical FM modulation apparatus of embodiment which concerns on this invention. 本発明に係る実施形態の光FM変調装置における搬送波周波数制御部での光強度依存性を有する波長変換の一例を模式的に示す図である。It is a figure which shows typically an example of the wavelength conversion which has the light intensity dependence in the carrier frequency control part in the optical FM modulation apparatus of embodiment which concerns on this invention. 本発明に係る実施形態の光FM変調装置における光パルス間隔と繰返し周波数の関係を示す図である。It is a figure which shows the relationship between the optical pulse interval and repetition frequency in the optical FM modulation apparatus of embodiment which concerns on this invention. 本発明に係る実施形態の光FM変調装置における光パルス間隔制御部への入力パルス列と出力パルス列を示す図である。It is a figure which shows the input pulse train and output pulse train to the optical pulse space | interval control part in the optical FM modulation apparatus of embodiment which concerns on this invention.

符号の説明Explanation of symbols

1a、1b、1c 半導体レーザ(DFBレーザ)
2 位相変調器
3 光カプラ
4a、4b 光受信機
5 光強度変調器
6 位相変調器駆動用マイクロ波発振器
7 光パルス発生部
8 光強度制御部
9 搬送波周波数制御部
10 光パルス間隔制御部
11 光増幅素子
1a, 1b, 1c Semiconductor laser (DFB laser)
2 Phase modulator 3 Optical coupler 4a, 4b Optical receiver 5 Optical intensity modulator 6 Microwave oscillator for driving phase modulator 7 Optical pulse generator 8 Optical intensity controller 9 Carrier frequency controller 10 Optical pulse interval controller 11 Light Amplifying element

Claims (8)

光信号をFM変調する光FM変調装置であって、
固有の繰返し周波数と搬送波周波数とを有する光パルス列の前記繰返し周波数を時間的に変調する手段と、
変調された前記繰り返し周波数成分を抽出して、前記光信号を強度変調する手段と
を備えたことを特徴とする光FM変調装置。
An optical FM modulation device that FM modulates an optical signal,
Means for temporally modulating the repetition frequency of an optical pulse train having a unique repetition frequency and a carrier frequency;
Means for extracting the modulated repetitive frequency component and intensity-modulating the optical signal.
請求項1記載の光FM変調装置であって、光パルス列の前記繰返し周波数を時間的に変調する前記手段は、
前記光パルス列の前記搬送波周波数を変化させる搬送波周波数制御手段と、
搬送波周波数制御手段によって搬送波周波数が変化した前記光パルス列に、搬送波周波数に応じた伝播遅延時間を与える光パルス間隔制御手段と
を備えたことを特徴とする光FM変調装置。
2. The optical FM modulation apparatus according to claim 1, wherein the means for temporally modulating the repetition frequency of the optical pulse train comprises:
Carrier frequency control means for changing the carrier frequency of the optical pulse train;
An optical FM modulation device comprising: an optical pulse interval control unit that gives a propagation delay time corresponding to a carrier frequency to the optical pulse train whose carrier frequency has been changed by a carrier frequency control unit.
請求項2に記載の光FM変調装置であって、前記搬送波周波数制御手段は、
前記光パルス列における各光パルスの光強度を連続的かつ周期的に変化させる光強度制御手段と、
光強度に応じて屈折率が変化する光非線形媒質と
を備えることを特徴とする光FM変調装置。
3. The optical FM modulation apparatus according to claim 2, wherein the carrier frequency control means is
A light intensity control means for continuously and periodically changing the light intensity of each light pulse in the light pulse train;
An optical FM modulation device comprising: an optical nonlinear medium whose refractive index changes according to light intensity.
光信号をFM変調する光FM変調方法であって、
固有の繰返し周波数と搬送波周波数とを有する光パルス列の前記繰返し周波数を時間的に変調するステップと、
時間的に変調された前記繰返し周波数成分を抽出して、前記光信号を強度変調するステップと
を含むことを特徴とする光FM変調方法。
An optical FM modulation method for FM-modulating an optical signal,
Temporally modulating the repetition frequency of an optical pulse train having a unique repetition frequency and a carrier frequency;
Extracting the time-modulated repetition frequency component and intensity-modulating the optical signal.
請求項4に記載の光FM変調方法であって、光パルス列の前記繰返し周波数を時間的に変調する前記ステップは、
前記光パルス列における光パルスの時間間隔の各々を変化させるステップであることを特徴とする光FM変調方法。
5. The optical FM modulation method according to claim 4, wherein the step of temporally modulating the repetition frequency of the optical pulse train comprises:
An optical FM modulation method comprising changing each time interval of an optical pulse in the optical pulse train.
請求項5に記載の光FM変調方法であって、前記光パルス列における光パルスの時間間隔の各々を変化させる前記ステップは、前記光パルス列の前記搬送波周波数を連続的かつ周期的に変化させるステップを含むことを特徴とする光FM変調方法。   6. The optical FM modulation method according to claim 5, wherein the step of changing each time interval of the optical pulse in the optical pulse train includes a step of changing the carrier frequency of the optical pulse train continuously and periodically. An optical FM modulation method comprising: 請求項6に記載の光FM変調方法であって、前記搬送波周波数を連続的かつ周期的に変化させるス前記テップは、
前記光パルス列における光パルスの光強度の各々を連続的かつ周期的に変化させるステップと、
光パルスの光強度の各々を連続的かつ周期的に変化させた前記光パルス列を、光強度に応じて屈折率が変化する光非線形媒質を伝播させるステップと
を含むことを特徴とする光FM変調方法。
7. The optical FM modulation method according to claim 6, wherein the step of changing the carrier frequency continuously and periodically includes:
Continuously and periodically changing each of the light intensities of the light pulses in the light pulse train;
Propagating the optical pulse train in which each of the optical intensities of the optical pulses is changed continuously and periodically through an optical nonlinear medium whose refractive index changes in accordance with the optical intensity. Method.
請求項6または7に記載の光FM変調方法であって、前記光パルス列における光パルスの時間間隔の各々を変化させるステップは、
搬送波周波数が連続的かつ周期的に変化された前記光パルス列を、伝播時間が搬送波周波数によって異なる分散媒質を伝播させるステップ
をさらに含むことを特徴とする光FM変調方法。
The optical FM modulation method according to claim 6 or 7, wherein each of the time intervals of the optical pulses in the optical pulse train is changed.
An optical FM modulation method, further comprising: propagating the optical pulse train whose carrier frequency is continuously and periodically changed through a dispersion medium whose propagation time varies depending on the carrier frequency.
JP2005099958A 2005-03-30 2005-03-30 Optical frequency modulation method and apparatus Pending JP2006279882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005099958A JP2006279882A (en) 2005-03-30 2005-03-30 Optical frequency modulation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005099958A JP2006279882A (en) 2005-03-30 2005-03-30 Optical frequency modulation method and apparatus

Publications (1)

Publication Number Publication Date
JP2006279882A true JP2006279882A (en) 2006-10-12

Family

ID=37214090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005099958A Pending JP2006279882A (en) 2005-03-30 2005-03-30 Optical frequency modulation method and apparatus

Country Status (1)

Country Link
JP (1) JP2006279882A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7697804B2 (en) 2007-07-20 2010-04-13 Sony Corporation Method for generating a high-frequency signal and apparatus for generating a high-frequency signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7697804B2 (en) 2007-07-20 2010-04-13 Sony Corporation Method for generating a high-frequency signal and apparatus for generating a high-frequency signal

Similar Documents

Publication Publication Date Title
US6252693B1 (en) Apparatus and method for reducing impairments from nonlinear fiber effects in 1550 nanometer external modulation links
US6643046B2 (en) Apparatus and method for optical modulation
JP4733745B2 (en) Optical signal processor
US7099359B2 (en) Optical pulse train generator
US20110188800A1 (en) Optical modulation device and optical modulation method
CN110967892A (en) MZM-EAM cascade and pulse signal-based optical frequency comb generation device and method
JP2010206289A (en) Optical signal processing device and method thereof
US7024056B2 (en) Electro-optic gating arrangement with improved duty cycle
KR20050096145A (en) Optical transmission method and optical transmission device
US8693893B2 (en) Picosecond optical switching using RF non-linear transmission lines
US6515793B2 (en) Optical waveform shaper
US11588557B2 (en) Apparatus and method for shifting a frequency of an optical signal
JP5312821B2 (en) Optical pulse speed control device and optical pulse speed control method
JP3524005B2 (en) Optical pulse generator
JP2006279882A (en) Optical frequency modulation method and apparatus
CN110989210A (en) Tunable optical frequency comb generation device and method based on EAM and pulse signal
JP2006060794A (en) Optical clock signal extracting apparatus
Nazneen et al. Cascading of dual drive mach zehnder modulator and electro absorption modulator for producing an optical comb
Ma et al. Photonic generation of microwave waveforms based on a dual-loop optoelectronic oscillator
WO2021079710A1 (en) Arbitrary waveform generation device and arbitrary waveform generation method
Naito et al. Set/reset operation of a monolithically-integrated InP SOA-MZI-type all-optical flip-flop circuit with a feedback loop
JPH07170232A (en) Optical filter control circuit
Wang et al. Review on photonic method for generating optical triangular pulses
Fukuchi et al. Tunable wavelength conversion of 40-gbps signals using cascade of sum frequency mixing and difference frequency mixing in a periodically poled lithium niobate
JPH06118460A (en) Optical phase modulation circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020