JP2006278851A - Manufacturing method of solid electrolytic capacitor element - Google Patents

Manufacturing method of solid electrolytic capacitor element Download PDF

Info

Publication number
JP2006278851A
JP2006278851A JP2005097545A JP2005097545A JP2006278851A JP 2006278851 A JP2006278851 A JP 2006278851A JP 2005097545 A JP2005097545 A JP 2005097545A JP 2005097545 A JP2005097545 A JP 2005097545A JP 2006278851 A JP2006278851 A JP 2006278851A
Authority
JP
Japan
Prior art keywords
valve action
electrolytic capacitor
solid electrolytic
action metal
capacitor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005097545A
Other languages
Japanese (ja)
Inventor
Kiyobumi Aoki
清文 青木
Masayuki Wakatsuki
政幸 若月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2005097545A priority Critical patent/JP2006278851A/en
Publication of JP2006278851A publication Critical patent/JP2006278851A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a solid electrolytic capacitor element in which the flow nature of valve action metal powder is improved and a property variation is little and the wear of a forming metallic mold is little at the time of forming. <P>SOLUTION: The method of manufacturing the solid electrolytic capacitor element comprises steps of mixing the valve action metal powder and an additive, carrying out forming and sintering to form a sintered body, and forming an oxide film and a cathode layer on the sintered body. In the manufacturing method, a straight chain version saturated fatty acid is dissolved into an organic solvent, used as the additive, mixed with the valve action metal powder, and dried. The straight chain version saturated fatty acid is a stearic acid and a palmitic acid, and moreover an addition amount is 0.05 to 15.0 wt.% in a valve action metal weight ratio. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、タンタル、ニオブ等弁作用金属を使用した固体電解コンデンサ素子の製造方法に関するものである。   The present invention relates to a method for manufacturing a solid electrolytic capacitor element using a valve action metal such as tantalum or niobium.

従来、固体電解コンデンサに用いる素子は、弁作用金属粉末と液状バインダーとを混合することにより、弁作用金属粉末の造粒を行い、これを圧縮成形により成形し、さらにこの成形体に陽極リードを植立したものを高温・高真空焼結して作製する。   Conventionally, an element used in a solid electrolytic capacitor has a valve action metal powder mixed with a liquid binder to granulate the valve action metal powder, which is molded by compression molding, and further, an anode lead is formed on the molded body. The planted material is made by sintering at high temperature and high vacuum.

この従来の固体電解コンデンサ素子の製造方法は、弁作用金属粉末を造粒し、弁作用金属粉末中の微粒子量を低減することで、粉末の流れ性を高め、成形金型へ供給し、圧縮成形を行っている。例えば、流動式造粒機を用いるタンタル粉末の造粒においては、液状バインダーとして水またはリン酸のような液状の無機バインダーをスプレーして一次造粒を行い、続いてPVA等の液状の有機バインダーをスプレーして最終造粒する方法等が用いられている(例えば、特許文献1参照)。
また、添加剤混合後の弁作用金属造粒粉の流れ性をさらに良好にするため、20〜400μmの範囲に整粒する技術も使用されている(例えば、特許文献2参照)。
特開平5−65502号公報 特開平4−136102号公報
This conventional method for producing a solid electrolytic capacitor element is to granulate valve action metal powder and reduce the amount of fine particles in the valve action metal powder, thereby improving the flowability of the powder, supplying it to the molding die, and compressing it. Molding is in progress. For example, in granulation of tantalum powder using a fluid granulator, primary granulation is performed by spraying a liquid inorganic binder such as water or phosphoric acid as a liquid binder, followed by a liquid organic binder such as PVA. The method of spraying and final granulation is used (for example, refer patent document 1).
Moreover, in order to further improve the flowability of the valve-action metal granulated powder after mixing the additive, a technique for regulating the particle size in the range of 20 to 400 μm is also used (for example, see Patent Document 2).
JP-A-5-65502 JP-A-4-136102

上記のように、添加剤として造粒用液状バインダーを使用した場合、添加剤混合後の弁作用金属粉末の粒度分布は、大きい粒径側にシフトし、この平均粒径の増大により成形金型サイズが超小形の成形機で成形した場合、成形密度がばらつく問題があった。   As described above, when a liquid binder for granulation is used as an additive, the particle size distribution of the valve action metal powder after mixing the additive is shifted to a larger particle size side, and the molding die is increased by increasing the average particle size. In the case of molding with an ultra-small molding machine, there is a problem that the molding density varies.

また、上記添加剤のような造粒用バインダーとして、樟脳、安息香酸、ポリビニルアルコール、ポリビニルアセタール、ポリメタクリル酸メチル、アクリル系樹脂、ポリエステル樹脂、塩化ビニル樹脂、ホルマール樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリサルホン樹脂、スチレン系樹脂、ポリカーボネート樹脂、エーテル系樹脂、シリコン樹脂、ホルムアルデヒド樹脂、尿素樹脂、エポキシ樹脂、メラミン樹脂、アルキド樹脂、セルロース樹脂、ニトロセルロース樹脂、天然樹脂、フェノール樹脂等を用いた場合、成形金型と圧縮成形体との離型性が悪いため、成形金型の摩耗が激しく、頻繁に金型が破損するという問題があった。   Further, as granulating binders such as the above additives, camphor, benzoic acid, polyvinyl alcohol, polyvinyl acetal, polymethyl methacrylate, acrylic resin, polyester resin, vinyl chloride resin, formal resin, polyamide resin, polyurethane resin, When using polysulfone resin, styrene resin, polycarbonate resin, ether resin, silicon resin, formaldehyde resin, urea resin, epoxy resin, melamine resin, alkyd resin, cellulose resin, nitrocellulose resin, natural resin, phenol resin, etc. Since the mold releasability between the molding die and the compression molded body is poor, there is a problem that the molding die is heavily worn and the die is frequently damaged.

上記のような問題があったため、成形密度のバラツキが少なく、かつ成形時の成形金型の磨耗・破損を低減することができる固体電解コンデンサ用素子の製造方法が求められていた。   Because of the above problems, there has been a demand for a method for producing a solid electrolytic capacitor element that has little variation in molding density and can reduce wear and breakage of a molding die during molding.

本発明は、上記課題を解決するもので、弁作用金属粉末と添加剤とを混合後、成形、焼結して焼結体を形成し、該焼結体に酸化皮膜および陰極層を形成する固体電解コンデンサ素子の製造方法において、
添加剤が、有機溶媒に溶解した直鎖型飽和脂肪酸であることを特徴とする固体電解コンデンサ素子の製造方法である。
The present invention solves the above-mentioned problem. After mixing the valve action metal powder and the additive, it is molded and sintered to form a sintered body, and an oxide film and a cathode layer are formed on the sintered body. In the method for producing a solid electrolytic capacitor element,
A method for producing a solid electrolytic capacitor element, wherein the additive is a linear saturated fatty acid dissolved in an organic solvent.

また、上記記載の直鎖型飽和脂肪酸がステアリン酸、パルミチン酸であることを特徴とする固体電解コンデンサ素子の製造方法である。   Further, the present invention provides a method for producing a solid electrolytic capacitor element, wherein the linear saturated fatty acid is stearic acid or palmitic acid.

さらに、上記記載の直鎖型飽和脂肪酸の添加量が弁作用金属重量比で0.05〜15.0wt%であることを特徴とする固体電解コンデンサ素子の製造方法である。   Furthermore, it is a manufacturing method of the solid electrolytic capacitor element characterized by the addition amount of the said linear saturated fatty acid being 0.05-15.0 wt% by valve action metal weight ratio.

弁作用金属粉末に添加剤として、有機溶媒中に溶解した直鎖型飽和脂肪酸を使用し、乾燥後成形することで、弁作用金属粉末が直鎖型飽和脂肪酸で薄膜コーティングされた状態になり、粉末粒子同士が絡み合わず、滑りやすいため、流れ性が向上し、かつ、上記添加剤には造粒作用がなく、混合後の弁作用金属粉末の粒度分布は混合前の粒度分布とほとんど変化しないため、成形金型サイズが超小形の場合でも成形時の密度バラツキを低減することができる。   By using linear saturated fatty acid dissolved in an organic solvent as an additive to the valve action metal powder, and molding after drying, the valve action metal powder is in a state of thin film coating with the linear action saturated fatty acid, Since the powder particles are not entangled and slippery, the flowability is improved, and the additive has no granulating action, and the particle size distribution of the valve metal powder after mixing is almost the same as the particle size distribution before mixing. Therefore, density variation during molding can be reduced even when the molding die size is very small.

また、直鎖型飽和脂肪酸は滑り性が良いため、成形金型と圧縮成形体との離型性が向上し、成形金型の摩耗が小さく、成形金型の磨耗を低減することができる。   In addition, since the linear saturated fatty acid has good slipperiness, the releasability between the molding die and the compression molding is improved, the molding die wear is small, and the molding die wear can be reduced.

[実施例1]
以下に、本発明による固体電解コンデンサ素子の製造方法を説明する。まず、1〜400μm程度の粒度分布を有するタンタル粉末500gと、添加剤として弁作用金属重量比で0.01wt%のステアリン酸を20±5℃のエタノール中に溶解した溶液100mlとを混合後、40±5℃の恒温槽中で乾燥した。
[Example 1]
Below, the manufacturing method of the solid electrolytic capacitor element by this invention is demonstrated. First, after mixing 500 g of tantalum powder having a particle size distribution of about 1 to 400 μm and 100 ml of a solution in which 0.01 wt% of stearic acid as an additive in a weight ratio of valve action metal in ethanol of 20 ± 5 ° C. was mixed, It dried in a 40 ± 5 degreeC thermostat.

次に、上記粉末を用い、陽極リードを植立させ、圧縮成形して成形体素子を形成した。   Next, using the powder, an anode lead was planted and compression molded to form a molded body element.

[実施例2〜7]
ステアリン酸の添加量を弁作用金属重量比で0.05wt%、0.10wt%、1.0wt%、10.0wt%、15.0wt%、20.0wt%とした以外は実施例1と同様の方法で成形体素子を形成した。
[Examples 2 to 7]
Example 1 except that the amount of stearic acid added was 0.05 wt%, 0.10 wt%, 1.0 wt%, 10.0 wt%, 15.0 wt%, 20.0 wt% in terms of the weight ratio of the valve action metal A molded body element was formed by the method described above.

(従来例)
実施例1と同様の1〜400μm程度の粒度分布を有するタンタル粉末と、液状バインダーとして弁作用金属重量比で1.0wt%のポリビニルブチラールを20±5℃のエタノール中に溶解した溶液中で混合後、40±5℃の恒温槽中で乾燥させた。
(Conventional example)
A tantalum powder having a particle size distribution of about 1 to 400 μm similar to that in Example 1 and a polyvinyl butyral having a valve action metal weight ratio of 1.0 wt% as a liquid binder mixed in ethanol at 20 ± 5 ° C. Then, it was dried in a constant temperature bath of 40 ± 5 ° C.

次に、上記粉末を用いて、実施例1と同様の方法で成形体素子を形成した。
実施例1〜7、従来例の弁作用金属粉末についてそれぞれ、粒度分布、流れ性、成形時に成形金型から成形体を押し出す摩擦力、成形体の重量のばらつきを測定した。測定結果を図1〜4に示す。
Next, a molded body element was formed by the same method as in Example 1 using the powder.
The valve action metal powders of Examples 1 to 7 and the conventional example were each measured for particle size distribution, flowability, friction force for extruding the molded body from the molding die during molding, and variation in the weight of the molded body. The measurement results are shown in FIGS.

さらに、上記成形体素子を高温・高真空雰囲気中で焼結し、該焼結体をリン酸溶液中で化成し、酸化タンタル皮膜を形成した後、固体電解質層としての二酸化マンガン層、陰極引き出し層としてのカーボン層および銀ペースト層を順次形成して、タンタル固体電解コンデンサ素子を得た。
そして、このコンデンサ素子の陽極リードを溶接により陽極端子に接続するとともに、陰極層を導電性塗料により陰極端子に接続した後、外装樹脂を施すことにより定格10V
−10μFのチップ状固体電解コンデンサを作製した。
各条件のコンデンサ素子について、120Hzにおける容量値、tanδ値と定格電圧を印加したときの1分後の漏れ電流値を図5〜7に示す。
Further, the molded body element is sintered in a high-temperature and high-vacuum atmosphere, the sintered body is formed in a phosphoric acid solution, a tantalum oxide film is formed, a manganese dioxide layer as a solid electrolyte layer, and a cathode lead A carbon layer and a silver paste layer were sequentially formed as layers to obtain a tantalum solid electrolytic capacitor element.
Then, the anode lead of the capacitor element is connected to the anode terminal by welding, and the cathode layer is connected to the cathode terminal by a conductive paint, and then an exterior resin is applied to give a rating of 10 V
A −10 μF chip-shaped solid electrolytic capacitor was produced.
About the capacitor element of each condition, the leakage current value after 1 minute when a capacitance value at 120 Hz, a tan δ value, and a rated voltage are applied is shown in FIGS.

[粒度分布の比較]
図1から明らかなように、弁作用金属粉末にステアリン酸を0.05〜15.0wt%(実施例2〜6)添加した混合後の弁作用金属粉末の粒度分布は、混合前と比較し、ほぼ同等であるが、20.0wt%(実施例7)では、粒度分布が若干大きい粒径側にシフトした。また従来例は、実施例7と比較し、粒度分布が大きい粒径側にシフトした。
[Comparison of particle size distribution]
As is clear from FIG. 1, the particle size distribution of the valve metal powder after mixing in which stearic acid was added to the valve metal powder in an amount of 0.05 to 15.0 wt% (Examples 2 to 6) was compared with that before the mixing. In the case of 20.0 wt% (Example 7), the particle size distribution shifted to a slightly larger particle size side. Further, the conventional example was shifted to the particle size side where the particle size distribution was large as compared with Example 7.

[弁作用金属粉末の流れ性の比較]
また、図2から明らかなように、ステアリン酸の添加量が増加するほど、弁作用金属粉末の流れ性が改善した(実施例1〜7)。これは、ステアリン酸により、弁作用金属粉末の粒子同士が絡みつき難く、滑りやすくなったためである。ただし、添加量が0.01wt%(実施例1)と少ない場合は、従来例と比較し、流れ性の改善が見られない。
[Comparison of flowability of valve action metal powder]
Further, as apparent from FIG. 2, the flowability of the valve action metal powder improved as the amount of stearic acid added increased (Examples 1 to 7). This is because the particles of the valve action metal powder are not easily entangled with each other and become easy to slip. However, when the addition amount is as small as 0.01 wt% (Example 1), improvement in flowability is not observed as compared with the conventional example.

[成形金型と圧縮成形体との摩擦力の比較]
また、図3から明らかなように、実施例2〜7は、従来例と比較し、ステアリン酸の添加量が増加するほど、成形金型と圧縮成形体との摩擦力が小さくなった。これは、ステアリン酸により、成形金型と弁作用金属粉末との滑り性が良く、離型性が改善したためである。ただし、添加量が0.01wt%(実施例1)では、粉末の流れ性が悪く、金型内に十分に供給できないため、成形不可能であった。
[Comparison of frictional force between molding die and compression molded body]
In addition, as is clear from FIG. 3, in Examples 2 to 7, the frictional force between the molding die and the compression molded body decreased as the amount of stearic acid added increased as compared with the conventional example. This is because stearic acid has good slipperiness between the molding die and the valve action metal powder, and has improved mold releasability. However, when the addition amount was 0.01 wt% (Example 1), the flowability of the powder was poor, and it was not possible to sufficiently supply it into the mold, so that molding was impossible.

[成形体の重量バラツキの比較]
また、図4から明らかなように、実施例2〜6は、従来例と比較して成形体の重量バラツキが小さいが、添加量が20.0wt%(実施例7)では、成形体の重量バラツキが大きくなった。
[Comparison of weight variation of compacts]
As is clear from FIG. 4, Examples 2 to 6 have a smaller weight variation of the molded body than the conventional example, but when the addition amount is 20.0 wt% (Example 7), the weight of the molded body. The variation became large.

[製品の電気特性の比較]
さらに、図5〜7から明らかなように、実施例2〜6は、従来例と比較して製品の容量値、tanδ値、漏れ電流値のバラツキが小さくなった。これは、前述したように成形体の重量バラツキが低減したためである。
ただし、添加量が20.0wt%(実施例7)では、バラツキが大きくなった。
以上より、ステアリン酸の添加範囲は0.05〜15.0wt%が望ましい。0.05wt%未満では、粉末の流れ性が悪くなることで成形が不可能になり、また20.0wt%を超えると、成形体の重量バラツキが大きくなる。
[Comparison of electrical characteristics of products]
Further, as is apparent from FIGS. 5 to 7, in Examples 2 to 6, variations in product capacitance value, tan δ value, and leakage current value were smaller than those in the conventional example. This is because the weight variation of the molded body is reduced as described above.
However, when the addition amount was 20.0 wt% (Example 7), the variation was large.
From the above, the addition range of stearic acid is desirably 0.05 to 15.0 wt%. If it is less than 0.05 wt%, the flowability of the powder becomes poor, so that molding becomes impossible, and if it exceeds 20.0 wt%, the weight variation of the molded product increases.

実施例1〜7の添加剤として、ステアリン酸を使用したが、パルミチン酸を用いても同様の効果を得ることができる。   Although stearic acid was used as an additive in Examples 1 to 7, the same effect can be obtained by using palmitic acid.

また、実施例1〜7の弁作用金属粉末として、タンタルを使用したが、ニオブ、アルミニウム、チタン等を使用しても同様の効果が得られる。   Moreover, although tantalum was used as the valve action metal powder of Examples 1 to 7, the same effect can be obtained even when niobium, aluminum, titanium or the like is used.

さらに、実施例1〜7の固体電解質として、二酸化マンガンを使用したが、ポリチオフェン、ポリピロールまたはポリアニリン等の導電性高分子を使用しても同様の効果が得られる。   Furthermore, although manganese dioxide was used as the solid electrolyte of Examples 1 to 7, the same effect can be obtained even when a conductive polymer such as polythiophene, polypyrrole or polyaniline is used.

実施例1〜7、従来例における添加剤混合後の弁作用金属粉末の粒度分布を比較した図である。It is the figure which compared the particle size distribution of the valve action metal powder after Examples 1-7 and the additive mixing in a prior art example. 実施例1〜7、従来例における添加剤混合後の弁作用金属粉末の流れ性を比較した図である。It is the figure which compared the flowability of the valve action metal powder after Examples 1-7 and the additive mixing in a prior art example. 実施例1〜7、従来例における添加剤混合後の弁作用金属粉末を圧縮成形後、金型から押し出す時の摩擦力を比較した図である。It is the figure which compared the frictional force at the time of extruding from the metal mold | die after compression molding of the valve action metal powder after the additive mixing in Examples 1-7 and a prior art example. 実施例1〜7、従来例における添加剤混合後の弁作用金属粉末を圧縮成形した時の成形体の重量バラツキを比較した図である。It is the figure which compared the weight variation of the molded object when compression molding the valve action metal powder after the additive mixing in Examples 1-7 and a prior art example. 実施例1〜7、従来例における固体電解コンデンサの容量値を比較した図である。It is the figure which compared the capacitance value of the solid electrolytic capacitor in Examples 1-7 and a prior art example. 実施例1〜7、従来例における固体電解コンデンサのtanδ値を比較した図である。It is the figure which compared the tan-delta value of the solid electrolytic capacitor in Examples 1-7 and a prior art example. 実施例1〜7、従来例における固体電解コンデンサの漏れ電流値を比較した図である。It is the figure which compared the leakage current value of Examples 1-7 and the solid electrolytic capacitor in a prior art example.

Claims (3)

弁作用金属粉末と添加剤とを混合後、成形、焼結して焼結体を形成し、該焼結体に酸化皮膜および陰極層を形成する固体電解コンデンサ素子の製造方法において、
添加剤が、有機溶媒に溶解した直鎖型飽和脂肪酸であることを特徴とする固体電解コンデンサ素子の製造方法。
In the method for producing a solid electrolytic capacitor element in which a valve action metal powder and an additive are mixed, then molded and sintered to form a sintered body, and an oxide film and a cathode layer are formed on the sintered body.
A method for producing a solid electrolytic capacitor element, wherein the additive is a linear saturated fatty acid dissolved in an organic solvent.
請求項1記載の直鎖型飽和脂肪酸がステアリン酸、またはパルミチン酸であることを特徴とする固体電解コンデンサ素子の製造方法。   The method for producing a solid electrolytic capacitor element, wherein the linear saturated fatty acid according to claim 1 is stearic acid or palmitic acid. 請求項1記載の直鎖型飽和脂肪酸の添加量が弁作用金属重量比で0.05〜15.0wt%であることを特徴とする固体電解コンデンサ素子の製造方法。   The method for producing a solid electrolytic capacitor element, wherein the addition amount of the linear saturated fatty acid according to claim 1 is 0.05 to 15.0 wt% in terms of the weight ratio of the valve action metal.
JP2005097545A 2005-03-30 2005-03-30 Manufacturing method of solid electrolytic capacitor element Pending JP2006278851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005097545A JP2006278851A (en) 2005-03-30 2005-03-30 Manufacturing method of solid electrolytic capacitor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005097545A JP2006278851A (en) 2005-03-30 2005-03-30 Manufacturing method of solid electrolytic capacitor element

Publications (1)

Publication Number Publication Date
JP2006278851A true JP2006278851A (en) 2006-10-12

Family

ID=37213265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005097545A Pending JP2006278851A (en) 2005-03-30 2005-03-30 Manufacturing method of solid electrolytic capacitor element

Country Status (1)

Country Link
JP (1) JP2006278851A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109409A (en) * 1976-03-11 1977-09-13 Starck Hermann C Fa Process for production of porous metallic product for electronic industry
JPS59143316A (en) * 1983-01-28 1984-08-16 ユニオン・カ−バイド・コ−ポレ−シヨン Bonding of lead wire to tantalum anode
JPH04136102A (en) * 1989-09-28 1992-05-11 Bui Tec:Kk Tantalum powder having improved capacitor anode working characteristic
JP2003509592A (en) * 1999-09-23 2003-03-11 ケメット・エレクトロニクス・コーポレーション Binder system for powder metallurgy compacts
JP2004183092A (en) * 2002-11-22 2004-07-02 Dainippon Ink & Chem Inc Valve action metal-dispersed liquid, molding for valve action electrolytic capacitor anode element obtained by using the same, and electrolytic capacitor anode element
WO2004110684A2 (en) * 2003-06-10 2004-12-23 Cabot Corporation Tantalum powders and methods of producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109409A (en) * 1976-03-11 1977-09-13 Starck Hermann C Fa Process for production of porous metallic product for electronic industry
JPS59143316A (en) * 1983-01-28 1984-08-16 ユニオン・カ−バイド・コ−ポレ−シヨン Bonding of lead wire to tantalum anode
JPH04136102A (en) * 1989-09-28 1992-05-11 Bui Tec:Kk Tantalum powder having improved capacitor anode working characteristic
JP2003509592A (en) * 1999-09-23 2003-03-11 ケメット・エレクトロニクス・コーポレーション Binder system for powder metallurgy compacts
JP2004183092A (en) * 2002-11-22 2004-07-02 Dainippon Ink & Chem Inc Valve action metal-dispersed liquid, molding for valve action electrolytic capacitor anode element obtained by using the same, and electrolytic capacitor anode element
WO2004110684A2 (en) * 2003-06-10 2004-12-23 Cabot Corporation Tantalum powders and methods of producing same

Similar Documents

Publication Publication Date Title
JP4676546B2 (en) Sintered body for capacitor anode
JP2010034589A (en) Granulated powder, sintered body for solid electrolytic capacitor anode, and solid electrolytic capacitor
JP2010153625A (en) Chip-shaped solid electrolytic capacitor and production method thereof
EP1275125B1 (en) Niobium sintered body, production method therefor, and capacitor using the same
GB2454049A (en) Ceramic Powder for use in Forming an anode of an Electrolytic Capacitor
GB2501573A (en) Solid Electrolytic Capacitor comprising a sintered porous body with a notched anode lead
JP4809463B2 (en) Method for manufacturing sintered tantalum and method for manufacturing capacitor
JP6353912B2 (en) Ta-Nb alloy powder and anode element for solid electrolytic capacitor
JP3624898B2 (en) Niobium powder, sintered body using the same, and capacitor using the same
JP4307146B2 (en) Method for producing solid electrolytic capacitor anode body
JP2006278851A (en) Manufacturing method of solid electrolytic capacitor element
JP2009152263A (en) Solid electrolytic capacitor
JPH11224833A (en) Manufacture of porous anode of solid electrolytic capacitor
EP3496884B1 (en) Electrolytic capacitor and method for improved electrolytic capacitor anodes
JP4430440B2 (en) Manufacturing method of anode body for solid electrolytic capacitor
JP3077679B2 (en) Method for manufacturing anode body for solid electrolytic capacitor
JP5824190B1 (en) Method for manufacturing solid electrolytic capacitor element
JP4697832B2 (en) Niobium sintered body, manufacturing method thereof, and capacitor using the sintered body
JP2010265549A (en) Niobium powder for capacitor
JP4647744B2 (en) Niobium powder for capacitor, sintered body using the same, and capacitor using the same
WO2016009680A1 (en) Method for producing solid electrolytic capacitor element
KR102016481B1 (en) Solid Electrolyte Capacitor and fabrication method thereof
JP4260443B2 (en) Capacitor powder, sintered body using the same, and capacitor using the same
JP2011233739A (en) Solid electrolytic capacitor, and method of manufacturing the same
JP2022115591A (en) Electrolytic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100810