JP2006277807A - Magnetoresistance effect element and magnetic head equipped with this - Google Patents

Magnetoresistance effect element and magnetic head equipped with this Download PDF

Info

Publication number
JP2006277807A
JP2006277807A JP2005092999A JP2005092999A JP2006277807A JP 2006277807 A JP2006277807 A JP 2006277807A JP 2005092999 A JP2005092999 A JP 2005092999A JP 2005092999 A JP2005092999 A JP 2005092999A JP 2006277807 A JP2006277807 A JP 2006277807A
Authority
JP
Japan
Prior art keywords
layer
magnetic
nonmagnetic
interface
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005092999A
Other languages
Japanese (ja)
Inventor
Keiichi Nagasaka
恵一 長坂
Kokei Oshima
弘敬 大島
Yutaka Shimizu
豊 清水
Atsushi Tanaka
厚志 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2005092999A priority Critical patent/JP2006277807A/en
Publication of JP2006277807A publication Critical patent/JP2006277807A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetoresistance effect element which is increased in magnetic resistance change by satisfying both of increase in spin dependent interface scattering and increase in spin dependent bulk scattering. <P>SOLUTION: A magnetoresistance effect element (10) is equipped with a magnetoresistance effect film (13), and an upper electrode and a lower electrode impressing sense current in the direction perpendicular to the above magnetoresistance effect film. The magnetoresistance effect film includes; a 1st magnetic layer (20) from which the magnetization direction changes with external magnetic fields; a 2nd magnetic layer (16) to which the direction of magnetization is fixed to the above external magnetic field; and a non-magnetic intermediate layer (18) which separates magnetically the above 1st magnetic layer and a 2nd magnetic layer. At least one of the 1st and 2nd magnetic layers consists of ferromagnetic materials to which impurity elements are added, and the addition of the impurity elements are set so that it may become high bulk side in layer and may rather than the interface side to the non-magnetic intermediate layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、磁気抵抗効果素子に関し、特に、いわゆるスピンバルブ膜を用い、センス電流を膜厚方向に流すCPP(Current Perpendicular to Plane)構造の磁気抵抗効果素子と、このような磁気抵抗効果素子を備える磁気ヘッドに関する。   The present invention relates to a magnetoresistive effect element, and more particularly, to a magnetoresistive effect element having a CPP (Current Perpendicular to Plane) structure using a so-called spin valve film and causing a sense current to flow in the film thickness direction, and such a magnetoresistive effect element. The present invention relates to a magnetic head provided.

近年、2つの強磁性層の間にCuなどの非磁性金属層を挟んだ多層構造膜の巨大磁気抵抗(GMR)効果素子が開発されている。GMRは、強磁性層内や界面でのスピン依存散乱を利用したものである。すなわち、2つの磁性層の磁化の向きが揃っていると、ある方向のスピンを持った伝導電子は散乱されにくく抵抗が低いが、磁化の向きが反平行になると伝導電子は散乱されやすく、抵抗が高くなるという性質を利用している。   In recent years, a giant magnetoresistive (GMR) effect element having a multilayer structure film in which a nonmagnetic metal layer such as Cu is sandwiched between two ferromagnetic layers has been developed. GMR uses spin-dependent scattering in a ferromagnetic layer or at an interface. That is, when the magnetization directions of the two magnetic layers are aligned, conduction electrons having a spin in a certain direction are difficult to be scattered and the resistance is low, but when the magnetization directions are antiparallel, the conduction electrons are easily scattered and the resistance is reduced. It takes advantage of the property that becomes higher.

多層構造のスピンバルブ膜を用いた磁気抵抗効果素子では、2つの強磁性層のうち、一方の強磁性層について、反強磁性体を近接させてそのスピンの方向を固定し(ピンド層)、他方の磁性層については、外部磁界に対して容易に磁化方向が変化する(フリー層)ように構成されている。2つの磁性層間の磁化方向の相対角度によって素子抵抗が変化するという性質を利用して、素子抵抗の変化に基づいて、外部磁界の方向、大きさを検出することができる。   In a magnetoresistive effect element using a spin valve film having a multilayer structure, an antiferromagnetic material is brought close to one of the two ferromagnetic layers to fix the spin direction (pinned layer), The other magnetic layer is configured such that the magnetization direction easily changes with respect to an external magnetic field (free layer). The direction and magnitude of the external magnetic field can be detected based on the change in the element resistance by utilizing the property that the element resistance changes depending on the relative angle of the magnetization direction between the two magnetic layers.

このような磁気抵抗効果素子は、磁気センサやハードディスクドライブの再生ヘッドなどに適用され、実用化されている。   Such a magnetoresistive effect element is applied to a magnetic sensor, a reproducing head of a hard disk drive, and the like and put into practical use.

スピンバルブ膜を用いた従来の磁気抵抗効果素子では、スピンバルブ膜の膜面内方向にセンス電流を流して、膜面内方向の抵抗変化を検出するCIP(Current In Plane)構造の磁気抵抗効果素子が知られている。   In a conventional magnetoresistive effect element using a spin valve film, a magnetoresistive effect of a CIP (Current In Plane) structure that detects a change in resistance in the film surface direction by flowing a sense current in the film surface direction of the spin valve film. Devices are known.

一方、より高密度、高感度の磁気抵抗効果素子として、スピンバルブ膜の膜厚方向にセンス電流を流して、膜厚方向の抵抗変化を検出するCPP(Current Perpendicular to Plane)構造の磁気抵抗効果素子が注目を集めている。CPP構造の磁気抵抗効果素子は、寸法が小さくなるにつれて素子出力が増大する特徴を有し、高密度磁気記録装置における高感度な再生ヘッドとして有望である。   On the other hand, a magnetoresistive effect of a CPP (Current Perpendicular to Plane) structure that senses a change in resistance in the film thickness direction by passing a sense current in the film thickness direction of the spin valve film as a magnetoresistive effect element with higher density and higher sensitivity. The device is drawing attention. A magnetoresistive effect element having a CPP structure has a feature that the element output increases as the size decreases, and is promising as a highly sensitive reproducing head in a high-density magnetic recording apparatus.

CPP構造のスピンバルブ素子は、CIP構造と異なり、センス電流が各膜面を通過するため、CIP構造素子の抵抗変化の主要因であった磁性・非磁性界面でのスピン依存界面散乱抵抗に加え、スピン依存バルク散乱抵抗が大きい磁性材料を選択し、かつ膜厚を増加することにより、抵抗変化量を増大させることが可能である。   Unlike a CIP structure, a spin valve element with a CPP structure passes a sense current through each film surface, so in addition to the spin-dependent interface scattering resistance at the magnetic / nonmagnetic interface, which was the main cause of the resistance change of the CIP structure element. By selecting a magnetic material having a large spin-dependent bulk scattering resistance and increasing the film thickness, it is possible to increase the resistance change amount.

バルク散乱抵抗を大きくして抵抗変化量の増大に適した磁性材料として、一般的なCoFe系磁性材料に、銅(Cu)に代表される非磁性元素を添加した、いわゆる不純物散乱効果を利用した材料が挙げられる。   As a magnetic material suitable for increasing the resistance change amount by increasing the bulk scattering resistance, a so-called impurity scattering effect in which a nonmagnetic element typified by copper (Cu) is added to a general CoFe-based magnetic material is used. Materials.

しかし、このような非磁性元素を含んだ強磁性材料では、非磁性中間層との界面でのスピン依存界面散乱抵抗が小さいといった欠点も有しており、スピン依存バルク散乱の増加と、スピン依存界面散乱の増加の双方を両立させて、素子性能を向上することは困難であった。   However, such a ferromagnetic material containing a nonmagnetic element also has a drawback in that the spin-dependent interface scattering resistance at the interface with the nonmagnetic intermediate layer is small. It has been difficult to improve both the interface scattering and the device performance.

このような問題を解決するために、スピン依存界面散乱の大きい材料で形成される薄膜挿入層を、Cu等の非磁性中間層とフリー層の間、あるいは非磁性中間層とピンド層の間に挿入することによって、抵抗変化量を増大させる構成が提案されている(たとえば、特許文献1参照。)。   In order to solve such problems, a thin film insertion layer formed of a material having a large spin-dependent interface scattering is interposed between a nonmagnetic intermediate layer such as Cu and a free layer, or between a nonmagnetic intermediate layer and a pinned layer. A configuration has been proposed in which the amount of change in resistance is increased by insertion (see, for example, Patent Document 1).

図1は、薄膜挿入層により抵抗変化量を増大させる磁気抵抗効果素子の構成例を示す図である。スピンバルブ型素子は、膜面に垂直な方向にセンス電流を流すための上部電極152と下部電極154が設けられ、下部電極154上に下地層112を介して、反強磁性層114、磁化固着層(ピンド層)116、非磁性中間層118、磁化自由層(フリー層)120が積層され、保護層122を介して上部電極152に接続されている。   FIG. 1 is a diagram illustrating a configuration example of a magnetoresistive effect element that increases a resistance change amount by a thin film insertion layer. The spin valve type element is provided with an upper electrode 152 and a lower electrode 154 for allowing a sense current to flow in a direction perpendicular to the film surface, and an antiferromagnetic layer 114 and a magnetization pinned on the lower electrode 154 through an underlayer 112. A layer (pinned layer) 116, a nonmagnetic intermediate layer 118, and a magnetization free layer (free layer) 120 are stacked, and are connected to the upper electrode 152 via a protective layer 122.

図1(a)に示すように、スピン依存界面散乱が大きい材料で形成される薄膜挿入層132、134が、非磁性中間層118とピンド層116との界面、および非磁性中間層118とフリー層120の界面に挿入されている。   As shown in FIG. 1A, the thin film insertion layers 132 and 134 formed of a material having a large spin-dependent interface scattering are free from the interface between the nonmagnetic intermediate layer 118 and the pinned layer 116 and the nonmagnetic intermediate layer 118. Inserted at the interface of layer 120.

図1(b)に示すように、薄膜挿入層132は、Co、Fe、Niの少なくとも2種の金属を母体元素とし、Cr、Ti、Mn、Cu、Au、Ag、B、C、N、O、F等の不純物を0.1原子%〜30原子%添加したものである。   As shown in FIG. 1B, the thin film insertion layer 132 has at least two kinds of metals of Co, Fe, and Ni as a base element, and Cr, Ti, Mn, Cu, Au, Ag, B, C, N, Impurities such as O and F are added at 0.1 atomic% to 30 atomic%.

この構成では、ピンド層116の層内バルク側よりも、非磁性中間層118との界面側で、添加不純物濃度が高く設定されている。
特開2003−60263号公報
In this configuration, the concentration of the added impurity is set higher on the interface side with the nonmagnetic intermediate layer 118 than on the bulk side in the pinned layer 116.
JP 2003-60263 A

本発明は、上述した背景技術に鑑み、スピンバルブ構造のCPP型磁気抵抗効果素子において、スピン依存界面散乱の増加と、スピン依存バルク散乱の増加を両立させ、抵抗変化量の大きな磁気抵抗効果素子を提供することを課題とする。   In view of the background art described above, the present invention is a CPP magnetoresistive element having a spin valve structure, in which both an increase in spin-dependent interface scattering and an increase in spin-dependent bulk scattering are achieved, and the magnetoresistive effect element has a large resistance change amount. It is an issue to provide.

上記課題を解決するために、本発明では、スピンバルブ素子のピンド層またはフリー層を構成する強磁性層を、非磁性元素などの不純物元素を含む強磁性材料で構成し、かつ、不純物元素の含有量(原子%)が、非磁性中間層との界面側よりも、層内バルク側で大きくなるように、膜厚方向に濃度分布を持たせる。   In order to solve the above problems, in the present invention, the ferromagnetic layer constituting the pinned layer or free layer of the spin valve element is made of a ferromagnetic material containing an impurity element such as a nonmagnetic element, and the impurity element The concentration distribution is given in the film thickness direction so that the content (atomic%) is larger on the bulk side in the layer than on the interface side with the nonmagnetic intermediate layer.

具体的には、例えば、CoFe系の強磁性層に、Cuなどの非磁性元素を添加した系を用いる場合、CoFe系強磁性層と非磁性中間層との界面付近には、Cu添加元素が存在せず、界面から一定距離離れた位置から、Cu添加元素が存在する膜構成とする。あるいは、界面付近にCu添加元素が存在しても、その濃度は、バルク側でのCu添加元素の含有量よりも低くなるように構成する。   Specifically, for example, when using a system in which a non-magnetic element such as Cu is added to a CoFe-based ferromagnetic layer, a Cu-added element is present near the interface between the CoFe-based ferromagnetic layer and the non-magnetic intermediate layer. A film configuration in which the Cu additive element is present from a position away from the interface by a certain distance does not exist. Alternatively, even if the Cu additive element is present near the interface, the concentration is configured to be lower than the content of the Cu additive element on the bulk side.

本発明の第1の側面として、磁気抵抗変化の大きな磁気抵抗効果素子を提供する。磁気抵抗効果素子は、
外部磁界により磁化方向が変化する第1の磁性層、前記外部磁界に対して磁化の方向が固定された第2の磁性層、および前記第1の磁性層と第2の磁性層を磁気的に分離する非磁性中間層を含む磁気抵抗効果膜と、
前記磁気抵抗効果膜に対して面直方向にセンス電流を印加する上部電極および下部電極と、
を備え、前記第1および第2の磁性層の少なくとも一方は、不純物元素が添加された強磁性材料で構成され、前記不純物元素の添加量が、非磁性中間層との界面側よりも層内バルク側で高くなるように設定される。
As a first aspect of the present invention, a magnetoresistance effect element having a large magnetoresistance change is provided. Magnetoresistive element is
A first magnetic layer whose magnetization direction is changed by an external magnetic field, a second magnetic layer whose magnetization direction is fixed with respect to the external magnetic field, and the first magnetic layer and the second magnetic layer are magnetically coupled. A magnetoresistive film including a nonmagnetic intermediate layer to be separated;
An upper electrode and a lower electrode for applying a sense current in a direction perpendicular to the magnetoresistive film;
And at least one of the first and second magnetic layers is made of a ferromagnetic material to which an impurity element is added, and the amount of the impurity element added is greater in the layer than on the interface side with the nonmagnetic intermediate layer. It is set to be higher on the bulk side.

このような構成で、CPP構造のスピンバルブ素子の磁気抵抗変化を増大させることができる。   With such a configuration, it is possible to increase the magnetoresistance change of the spin valve element having the CPP structure.

良好な構成例では、不純物元素は、非磁性元素であり、界面側での非磁性元素の添加量は、5原子%以下である。   In a favorable configuration example, the impurity element is a nonmagnetic element, and the addition amount of the nonmagnetic element on the interface side is 5 atomic% or less.

不純物元素の添加量をバルク側よりも低く設定した領域は、非磁性中間層との界面から2nm以内の範囲であるのが望ましい。   The region where the amount of impurity element added is set lower than the bulk side is preferably within 2 nm from the interface with the nonmagnetic intermediate layer.

一方、層内バルク側での不純物元素の添加量は、たとえば5〜20原子%である。   On the other hand, the amount of the impurity element added on the bulk side in the layer is, for example, 5 to 20 atomic%.

本発明の第2の側面として、上述した磁気抵抗効果素子と、前記センス電流により検出される磁気抵抗効果素子の磁気抵抗の変化を、誘導電圧に変換する誘導変換素子と、を備える磁気ヘッドを提供する。   According to a second aspect of the present invention, there is provided a magnetic head comprising the magnetoresistive effect element described above and an inductive conversion element that converts a change in magnetoresistance of the magnetoresistive effect element detected by the sense current into an induced voltage. provide.

本発明の第3の側面として、磁気ディスク装置を提供する。磁気ディスク装置は、磁気記録媒体と、第2の側面で提供される磁気ヘッドと、当該磁気ヘッドを、磁気記録媒体上の所望の位置へ駆動するアクチュエータアームと、を備える。   As a third aspect of the present invention, a magnetic disk device is provided. The magnetic disk device includes a magnetic recording medium, a magnetic head provided on the second side, and an actuator arm that drives the magnetic head to a desired position on the magnetic recording medium.

強磁性層内部でのスピン依存バルク散乱抵抗と、非磁性中間層との界面でのスピン依存界面散乱抵抗の双方を高く維持することができる。   Both the spin-dependent bulk scattering resistance inside the ferromagnetic layer and the spin-dependent interface scattering resistance at the interface with the nonmagnetic intermediate layer can be kept high.

スピン依存伝導をする部分での抵抗変化量を大きくすることで、CPP型磁気抵抗効果素子の出力を増大できる。   By increasing the amount of resistance change in the portion that performs spin-dependent conduction, the output of the CPP type magnetoresistive element can be increased.

さらに、CPP型磁気抵抗効果素子を用いた磁気ヘッドの高感度化、高出力化を実現できる。   Furthermore, high sensitivity and high output of the magnetic head using the CPP type magnetoresistive effect element can be realized.

以下、添付図面を参照して、本発明の良好な実施形態を説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings.

図2は、本発明の一実施形態に係るCPP(Current
Perpendicular to Plane)構造の磁気抵抗効果素子10の概略構成図である。この磁気抵抗効果素子10は、たとえば磁気ヘッドの磁気センサ(または再生ヘッド素子)の一部として用いられる。
FIG. 2 illustrates a CPP (Current Current) according to an embodiment of the present invention.
1 is a schematic configuration diagram of a magnetoresistive element 10 having a (Perpendicular to Plane) structure. This magnetoresistive element 10 is used as a part of a magnetic sensor (or reproducing head element) of a magnetic head, for example.

磁気抵抗効果素子10は、磁気抵抗効果膜13と、この磁気抵抗効果膜13に垂直方向にセンス電流を供給する上部電極24および下部電極11を含む。磁気抵抗効果膜13は、下部電極11上に下地層12を介して積層され、外部磁界の印加により磁化方向が変化するフリー層(第1の磁性層)20と、外部磁界に対して磁化の方向が固定されたピンド層(第2の磁性層)16と、これら2つの磁性層(フリー層20およびピンド層16)の間に位置する非磁性中間層18と、ピンド層16の磁化の方向を固定するための反強磁性層14を含む。   The magnetoresistive effect element 10 includes a magnetoresistive effect film 13, and an upper electrode 24 and a lower electrode 11 that supply a sense current in a direction perpendicular to the magnetoresistive effect film 13. The magnetoresistive effect film 13 is laminated on the lower electrode 11 via the base layer 12 and has a free layer (first magnetic layer) 20 whose magnetization direction changes when an external magnetic field is applied, and a magnetization layer that is magnetized against the external magnetic field. The pinned layer (second magnetic layer) 16 whose direction is fixed, the nonmagnetic intermediate layer 18 positioned between these two magnetic layers (the free layer 20 and the pinned layer 16), and the magnetization direction of the pinned layer 16 The antiferromagnetic layer 14 for pinning is included.

なお、図2では簡略化のため、単一のピンド層16と非磁性中間層18を積層しているが、フリー層20の上部に、さらに第2の非磁性中間層と強磁性層を積層してもよい。   In FIG. 2, for simplicity, a single pinned layer 16 and a nonmagnetic intermediate layer 18 are stacked, but a second nonmagnetic intermediate layer and a ferromagnetic layer are further stacked above the free layer 20. May be.

フリー層20は、磁気的に軟磁性を示す強磁性体であり、Fe,Co,Niをベースとし、非磁性元素(たとえばCu)などの不純物を添加した材料で構成される。   The free layer 20 is a ferromagnetic material that exhibits magnetic soft magnetism, and is made of a material that is based on Fe, Co, and Ni and to which an impurity such as a nonmagnetic element (for example, Cu) is added.

ピンド層16も、フリー層20と同様に、不純物を添加した強磁性材料で構成されるが、磁気的に硬磁性を示すように、反強磁性層14により、磁化の方向が固定されている。   Similarly to the free layer 20, the pinned layer 16 is also composed of a ferromagnetic material to which impurities are added. However, the magnetization direction is fixed by the antiferromagnetic layer 14 so as to be magnetically hard. .

フリー層20とピンド層16は、非磁性中間層18との界面から所定の膜厚で、磁性層内の磁気抵抗変化に寄与する低不純物添加量層19、17をそれぞれ有する。低不純物添加量層19、17では、不純物添加元素の量が層内バルク部分よりも低く設定されており、この意味で、磁性層における添加元素低減領域と呼べる。図2の例では、フリー層20とピンド層16の双方が、添加元素低減領域を有するが、いずれか一方だけに添加元素低減領域を設定してもよい。   The free layer 20 and the pinned layer 16 have low impurity addition layers 19 and 17 that contribute to a change in magnetoresistance in the magnetic layer with a predetermined thickness from the interface with the nonmagnetic intermediate layer 18, respectively. In the low impurity addition layers 19 and 17, the amount of the impurity addition element is set lower than the bulk portion in the layer, and in this sense, it can be called an additive element reduction region in the magnetic layer. In the example of FIG. 2, both the free layer 20 and the pinned layer 16 have the additive element reduction region, but the additive element reduction region may be set in only one of them.

磁性層であるフリー層20とピンド層16を、非磁性元素などの不純物を添加した強磁性材料で形成し、非磁性中間層18との界面側に、層内バルク側よりも添加元素を低減させた領域を設けることで、磁気抵抗変化を高めることができる。   The free layer 20 and the pinned layer 16 which are magnetic layers are formed of a ferromagnetic material to which impurities such as nonmagnetic elements are added, and the added elements are reduced on the interface side with the nonmagnetic intermediate layer 18 as compared with the bulk side in the layer. By providing the region, the change in magnetoresistance can be increased.

具体的な実施例として、DCマグネトロンスパッタ法を用いて、以下の構成のスピンバルブ構造膜を作製し、抵抗変化量を測定した。   As a specific example, a spin valve structure film having the following configuration was produced using a DC magnetron sputtering method, and a resistance change amount was measured.

下地バッファ層12上に、IrMnの反強磁性層14を形成し、上層の保護キャップ膜22に到る積層構造として、Buffer/IrMn/CoFe/Ru/CoFeCu/CoFe(低不純物添加量層)/Cu(非磁性中間層)/CoFe/CoFeCu/CoFe(フリー層)/Cu(非磁性中間層)/CoFe/CoFeCu/Ru/CoFe/IrMn/Capというスピンバルブ構造を形成する。   An anti-ferromagnetic layer 14 of IrMn is formed on the underlying buffer layer 12, and a laminated structure reaching the upper protective cap film 22 is Buffer / IrMn / CoFe / Ru / CoFeCu / CoFe (low impurity addition layer) / A spin valve structure of Cu (nonmagnetic intermediate layer) / CoFe / CoFeCu / CoFe (free layer) / Cu (nonmagnetic intermediate layer) / CoFe / CoFeCu / Ru / CoFe / IrMn / Cap is formed.

ピンド層またはフリー層のうち、Cu非磁性中間に接する界面側のCoFeの膜厚と、バルク側のCoFeCuの膜厚を変化させる。このとき、ピンド層とフリー層の層膜厚自体は一定である。これにより、膜厚方向で、非磁性Cu添加元素を含む領域と含まない領域を設定する。   Of the pinned layer or the free layer, the thickness of CoFe on the interface side in contact with the Cu nonmagnetic intermediate and the thickness of CoFeCu on the bulk side are changed. At this time, the layer thicknesses of the pinned layer and the free layer are constant. Thereby, a region including the nonmagnetic Cu additive element and a region not including the nonmagnetic Cu additive element are set in the film thickness direction.

スピンバルブ膜は、磁場中で真空熱処理を行い、IrMn反強磁性層によるピンド層の磁化固定力を増強する。   The spin valve film is subjected to vacuum heat treatment in a magnetic field to enhance the pinned layer magnetization pinning force by the IrMn antiferromagnetic layer.

このスピンバルブ膜の上下に、銅(Cu)を基本とする低抵抗端子を積層し、フォトリソグラフィ技術を用いて、スピンバルブ膜の接合面積を0.1μm2 〜1μm2 に変化させた4端子構造素子に形成した。4端子法を用いて、室温でのCPP素子の抵抗変化特性を±1000Oeの外部磁場を印加して測定した。 Above and below the spin-valve film, copper (Cu) laminated low resistance terminal to the base, by photolithography, 4 terminals with varying junction area of the spin valve film to 0.1μm 2 ~1μm 2 Formed in structural elements. Using a four-terminal method, resistance change characteristics of the CPP element at room temperature were measured by applying an external magnetic field of ± 1000 Oe.

図3は、CoFe系強磁性層内におけるCu中間層界面からの非磁性Cu添加元素の存在開始位置と、CPP素子の磁気抵抗変化量ΔRA(すなわち、磁気抵抗変化量ΔRと接合面積Aとの積)との関係を示すグラフである。図3(b)は、図3(a)の最初の三点を拡大したものである。   FIG. 3 shows the position where the nonmagnetic Cu-added element starts to exist from the interface of the Cu intermediate layer in the CoFe-based ferromagnetic layer, and the magnetoresistance change ΔRA of the CPP element (that is, the magnetoresistance change ΔR and the junction area A). It is a graph which shows the relationship with (product). FIG. 3B is an enlarged view of the first three points in FIG.

図3(b)のa点は、強磁性層全体がCoFeCu材料で構成される場合を示す。図3(b)のb点は、Cu中間層界面から0.5nmの位置から、Cu添加元素を含むCoFeCuバルク膜が開始する構成、c点は、Cu中間層界面から1nmの位置から、CoFeCuバルク膜が開始する構成である。   The point a in FIG. 3B shows the case where the entire ferromagnetic layer is made of a CoFeCu material. The point b in FIG. 3B is a configuration in which a CoFeCu bulk film containing a Cu additive element starts from a position of 0.5 nm from the Cu intermediate layer interface, and the point c is a position of 1 nm from the Cu intermediate layer interface. In this configuration, the bulk film starts.

図4は、これらの3点における膜構成を示す模式図である。図4(a)では、Cu添加元素低減領域としての低不純物添加量層17を含まず、Cu中間層18と、ピンド層16のバルクを構成するCoFeCuが接している。図4(b)では、Cu中間層18との界面側に、Cu添加元素を含まないCoFe低不純物添加量層17が0.5nmの膜厚で挿入されている。図4(c)では、同じくCu添加元素を含まないCoFe低不純物添加量層17が、1nmの膜厚で挿入されている。   FIG. 4 is a schematic diagram showing the film configuration at these three points. In FIG. 4A, the Cu intermediate layer 18 and the CoFeCu constituting the bulk of the pinned layer 16 are in contact with each other without including the low impurity addition amount layer 17 as the Cu additive element reduction region. In FIG. 4B, a CoFe low impurity addition layer 17 containing no Cu additive element is inserted at a thickness of 0.5 nm on the interface side with the Cu intermediate layer 18. In FIG. 4C, a CoFe low impurity addition amount layer 17 that does not contain a Cu addition element is inserted with a thickness of 1 nm.

また、バルク側のCu添加元素の含有量は、CoFeが90原子%に対して、10原子%である。   Further, the content of the Cu-added element on the bulk side is 10 atomic% with respect to 90 atomic% of CoFe.

図3(a)のグラフから明らかなように、非磁性Cu添加元素が存在しない範囲が、Cu中間層界面から0.1nm〜2.0nmの範囲で、ΔRAが増加している。非磁性Cu添加元素の開始位置が、さらに強磁性層のバルク側に入り込むと、逆にΔRAが減少し、界面にCu添加元素低減領域(低不純物添加量層)を設ける意味がなくなる。   As is apparent from the graph of FIG. 3A, ΔRA increases in the range where the nonmagnetic Cu additive element is not present in the range of 0.1 nm to 2.0 nm from the Cu intermediate layer interface. If the starting position of the nonmagnetic Cu additive element further enters the bulk side of the ferromagnetic layer, ΔRA decreases conversely, making it meaningless to provide a Cu additive element reduction region (low impurity addition amount layer) at the interface.

すなわち、Cu中間層の界面近傍2nm以下の範囲で、Cu添加元素を含まないか、含んでもバルク側よりも低い濃度(5原子%以下)で含む添加元素低減領域を設定することにより、磁気抵抗変化を向上することができる。   That is, by setting an additive element reduction region that does not contain a Cu additive element or contains a Cu additive element at a lower concentration (5 atomic% or less) than the bulk side within a range of 2 nm or less in the vicinity of the interface of the Cu intermediate layer. Change can be improved.

図3および図4に示す例では、低不純物添加量層(添加元素低減領域)17でのCu添加元素の量をゼロとしているが、バルク側の非磁性元素の添加量よりも少ない範囲であれば、たとえば5原子%以下の範囲で、低不純物添加量層17に、Cu添加元素を添加してもよい。   In the example shown in FIG. 3 and FIG. 4, the amount of Cu additive element in the low impurity addition layer (addition element reduction region) 17 is zero, but it may be in a range smaller than the addition amount of the non-magnetic element on the bulk side. For example, a Cu additive element may be added to the low impurity addition layer 17 in a range of 5 atomic% or less, for example.

Cu中間層18との界面では、CoFe系強磁性層内での非磁性添加元素の濃度が低いほうが、スピン依存界面散乱抵抗が増大する。一方、CoFe系強磁性層内部(バルク側)では、Cu添加元素濃度が高く、これによるスピン依存バルク散乱抵抗が増大する効果が得られる。   At the interface with the Cu intermediate layer 18, the spin-dependent interface scattering resistance increases as the concentration of the nonmagnetic additive element in the CoFe ferromagnetic layer is lower. On the other hand, inside the CoFe-based ferromagnetic layer (bulk side), the Cu-added element concentration is high, and the effect of increasing the spin-dependent bulk scattering resistance can be obtained.

これらの結果から、Cu中間層18との界面から2nm以内、好ましくは、0.5nm〜1nmの範囲では、非磁性Cu添加元素の濃度を低く(5原子%以下に)設定し、これよりもバルク側に入った領域では、非磁性Cu添加元素の濃度をより高く、たとえば5〜20原子%に設定することが、高いΔRAを得るために望ましいことがわかる。   From these results, the concentration of the nonmagnetic Cu additive element is set low (5 atomic% or less) within 2 nm from the interface with the Cu intermediate layer 18, preferably within the range of 0.5 nm to 1 nm. In the region entering the bulk side, it can be seen that it is desirable to obtain a higher ΔRA by setting the concentration of the nonmagnetic Cu additive element to a higher value, for example, 5 to 20 atomic%.

また、CoFe強磁性材料において、CoとFeの原子数比率として、40〜60%であることも、高ΔRAを得るために望ましい。   Further, in the CoFe ferromagnetic material, the atomic ratio of Co and Fe is preferably 40 to 60% in order to obtain a high ΔRA.

上述した例では、CoFe系強磁性層内の膜厚方向に、Cu添加元素の濃度変化をもたせた例を示したが、この例に限定されず、強磁性層は、Co、Fe、Ni、これらの合金をベースとする任意の強磁性材料、または磁性半導体と呼ばれる非磁性元素の組み合わせを用いてもよい。また、添加する不純物元素についても、Cr、Ti、Ta、Pt、Au、Ag、Taなど、任意の非磁性元素を用いても、同様の効果が得られる。   In the above-described example, the example in which the concentration change of the Cu-added element is changed in the film thickness direction in the CoFe-based ferromagnetic layer is not limited to this example, but the ferromagnetic layer includes Co, Fe, Ni, Any ferromagnetic material based on these alloys or a combination of non-magnetic elements called magnetic semiconductors may be used. Further, the same effect can be obtained by using an arbitrary nonmagnetic element such as Cr, Ti, Ta, Pt, Au, Ag, or Ta as the impurity element to be added.

図5は、上述した磁気抵抗効果素子を用いた磁気ディスク装置50の概略構成図である。磁気ディスク装置50は、記録媒体である磁気ディスク51と、磁気ディスク51を装着して駆動機構(不図示)により回転するスピンドル52と、磁気ディスク51の読み取り、書き込みを行なう磁気ヘッドアセンブリ53を含む。磁気ヘッドアセンブリ53は、磁気ディスク51上に発生する磁界を読み取り、あるいは磁気ディスク51に情報を磁気的に書き込む磁気ヘッド60と、磁気ヘッド60を磁気ディスク51の所望の位置へ駆動するアクチュエータアーム57と、先端に磁気ヘッド60を保持するサスペンション55を有する。   FIG. 5 is a schematic configuration diagram of a magnetic disk device 50 using the above-described magnetoresistance effect element. The magnetic disk device 50 includes a magnetic disk 51 that is a recording medium, a spindle 52 that is mounted with the magnetic disk 51 and is rotated by a drive mechanism (not shown), and a magnetic head assembly 53 that reads and writes the magnetic disk 51. . The magnetic head assembly 53 reads a magnetic field generated on the magnetic disk 51 or magnetically writes information on the magnetic disk 51, and an actuator arm 57 that drives the magnetic head 60 to a desired position on the magnetic disk 51. And a suspension 55 for holding the magnetic head 60 at the tip.

図6は、図5に示す磁気ヘッド60の概略構成図である。磁気ヘッド60は、磁気ディスク51上を、ディスク表面に非常に近接して浮上した状態で走るヘッドスライダ(基体)61と、ディスク表面に対してエアベアリグ面を構成するレール62、63と、コイル64と、磁気ディスク51への情報の書き込みを行なう記録ヘッド素子66と、磁気ディスク51に記録された情報を読み取る再生ヘッド素子(磁気センサ)65とを有する。再生ヘッド素子65の主要部は、図2および3に示す構造となっている。   FIG. 6 is a schematic configuration diagram of the magnetic head 60 shown in FIG. The magnetic head 60 includes a head slider (base) 61 that runs over the magnetic disk 51 in a state of being very close to the disk surface, rails 62 and 63 that form an air bearing surface with respect to the disk surface, and a coil 64. And a recording head element 66 for writing information to the magnetic disk 51 and a reproducing head element (magnetic sensor) 65 for reading information recorded on the magnetic disk 51. The main part of the reproducing head element 65 has a structure shown in FIGS.

再生ヘッド素子65は、磁気ヘッド60に対して相対的に移動する磁気ディスク51から漏れ出る磁界の時間変化を磁気抵抗効果素子10(図2)により検出し、抵抗変化を電圧に誘導変換して出力を得る。   The reproducing head element 65 detects the time change of the magnetic field leaking from the magnetic disk 51 moving relative to the magnetic head 60 by the magnetoresistive effect element 10 (FIG. 2), and inductively converts the resistance change into a voltage. Get the output.

記録ヘッド素子66は、書き込みコイル64に電流を印加して、信号に対応する向きと強さを持つ磁束を発生させ、磁気ディスク51のトラック(不図示)上に信号に対応する磁区を形成することによって書き込みを行なう。   The recording head element 66 applies a current to the write coil 64 to generate a magnetic flux having a direction and strength corresponding to the signal, and forms a magnetic domain corresponding to the signal on a track (not shown) of the magnetic disk 51. To write.

本実施形態に係る磁気ヘッド60は、磁気抵抗変化の大きな磁気抵抗効果素子を用いているので、ヘッドの出力を高めることができる。   Since the magnetic head 60 according to the present embodiment uses a magnetoresistive effect element having a large magnetoresistance change, the output of the head can be increased.

最後に、以上の説明に関して、以下の付記を開示する。
(付記1) 外部磁界により磁化方向が変化する第1の磁性層、前記外部磁界に対して磁化の方向が固定された第2の磁性層、および前記第1の磁性層と第2の磁性層を磁気的に分離する非磁性中間層を含む磁気抵抗効果膜と、
前記磁気抵抗効果膜に対して面直方向にセンス電流を印加する上部電極および下部電極と、
を備え、前記第1および第2の磁性層の少なくとも一方は、不純物元素が添加された強磁性材料で構成され、
前記不純物元素の添加量が、非磁性中間層との界面側よりも層内バルク側で高くなるように設定されていることを特徴とする磁気抵抗効果素子。
(付記2) 前記不純物元素は、非磁性元素であり、前記界面側での当該非磁性元素の添加量は、5原子%以下であることを特徴とする付記1に記載の磁気抵抗効果素子。
(付記3) 前記不純物元素の添加量をバルク側よりも低く設定した領域は、前記非磁性中間層との界面から2nm以内の範囲であることを特徴とする付記1に記載の磁気抵抗効果素子。
(付記4) 前記層内バルク側での不純物元素の添加量は、5〜20原子%であることを特徴とする付記1に記載の磁気抵抗効果素子。
(付記5) 前記第1および第2の磁性層は、Co,Fe,Niおよびこれらの合金をベースとする材料に、非磁性添加元素を添加した材料で構成されることを特徴とする付記1に記載の磁気抵抗効果素子。
(付記6) 付記1〜5のいずれかに記載の磁気抵抗効果素子と、
前記センス電流により検出される前記磁気抵抗効果素子の磁気抵抗の変化を、誘導電圧に変換する誘導変換素子と
を備える磁気ヘッド。
(付記7) 入力信号に応じた強さと方向の磁束を発生する記録ヘッド素子をさらに備えることを特徴とする付記6に記載の磁気ヘッド。
(付記8) 磁気記録媒体と、
付記6または7に記載の磁気ヘッドと、
前記磁気ヘッドを、前記磁気記録媒体上の所望の位置へ駆動するアクチュエータアームと、を備える磁気ディスク装置。
Finally, the following notes are disclosed regarding the above description.
(Additional remark 1) The 1st magnetic layer from which a magnetization direction changes with an external magnetic field, the 2nd magnetic layer with which the magnetization direction was fixed with respect to the said external magnetic field, and the said 1st magnetic layer and a 2nd magnetic layer A magnetoresistive film including a nonmagnetic intermediate layer for magnetically separating
An upper electrode and a lower electrode for applying a sense current in a direction perpendicular to the magnetoresistive film;
And at least one of the first and second magnetic layers is made of a ferromagnetic material to which an impurity element is added,
The magnetoresistive effect element is characterized in that the additive amount of the impurity element is set to be higher on the bulk side in the layer than on the interface side with the nonmagnetic intermediate layer.
(Additional remark 2) The said impurity element is a nonmagnetic element, The addition amount of the said nonmagnetic element in the said interface side is 5 atomic% or less, The magnetoresistive effect element of Additional remark 1 characterized by the above-mentioned.
(Supplementary note 3) The magnetoresistive effect element according to supplementary note 1, wherein the region where the amount of the impurity element added is set lower than the bulk side is within a range of 2 nm from the interface with the nonmagnetic intermediate layer. .
(Supplementary note 4) The magnetoresistive effect element according to supplementary note 1, wherein an addition amount of the impurity element on the bulk side in the layer is 5 to 20 atomic%.
(Additional remark 5) The said 1st and 2nd magnetic layer is comprised with the material which added the nonmagnetic addition element to the material based on Co, Fe, Ni, and these alloys. Additional remark 1 characterized by the above-mentioned. 2. The magnetoresistive effect element described in 1.
(Appendix 6) The magnetoresistive effect element according to any one of Appendixes 1 to 5,
A magnetic head comprising: an inductive conversion element that converts a change in magnetoresistance of the magnetoresistive effect element detected by the sense current into an induced voltage.
(Additional remark 7) The magnetic head of Additional remark 6 further provided with the recording head element which generate | occur | produces the intensity | strength and the magnetic flux of a direction according to an input signal.
(Appendix 8) Magnetic recording medium;
The magnetic head according to appendix 6 or 7,
And an actuator arm that drives the magnetic head to a desired position on the magnetic recording medium.

抵抗変化量を増大させる公知の磁気抵抗効果素子の構成例を示す図である。It is a figure which shows the structural example of the well-known magnetoresistive effect element which increases resistance variation. 本発明の一実施形態に係るCPP構造の磁気抵抗効果素子の概略構成図である。It is a schematic block diagram of the magnetoresistive effect element of the CPP structure which concerns on one Embodiment of this invention. 抵抗変化量と、強磁性層内において非磁性添加元素が存在し始めるCu中間層界面からの位置との関係を示すグラフである。It is a graph which shows the relationship between resistance variation | change_quantity and the position from the Cu intermediate | middle layer interface where a nonmagnetic addition element begins to exist in a ferromagnetic layer. 図3(b)の3点における膜構成例を示す図である。It is a figure which shows the film | membrane structural example in 3 points | pieces of FIG.3 (b). 図2に示す磁気抵抗効果素子を用いた磁気ヘッドを備える磁気ディスク装置の概略構成図である。FIG. 3 is a schematic configuration diagram of a magnetic disk device including a magnetic head using the magnetoresistive effect element shown in FIG. 2. 図5の磁気ヘッドの概略図である。FIG. 6 is a schematic diagram of the magnetic head of FIG. 5.

符号の説明Explanation of symbols

10 磁気抵抗効果素子
11 下部電極
12 下地層
13 磁気抵抗効果膜(スピンバルブ膜)
14 反強磁性層
16 ピンド層(第2の磁性層)
17、19 低不純物添加量層
18 非磁性中間層
20 フリー層(第1の磁性層)
22 保護層
24 上部電極
50 磁気ディスク装置
60 磁気ヘッド
65 再生ヘッド素子(磁気センサ)
66 記録ヘッド素子
DESCRIPTION OF SYMBOLS 10 Magnetoresistive element 11 Lower electrode 12 Underlayer 13 Magnetoresistive film (spin valve film)
14 Antiferromagnetic layer 16 Pinned layer (second magnetic layer)
17, 19 Low impurity addition layer 18 Nonmagnetic intermediate layer 20 Free layer (first magnetic layer)
22 Protective layer 24 Upper electrode 50 Magnetic disk device 60 Magnetic head 65 Reproducing head element (magnetic sensor)
66 Recording head element

Claims (5)

外部磁界により磁化方向が変化する第1の磁性層、前記外部磁界に対して磁化の方向が固定された第2の磁性層、および前記第1の磁性層と第2の磁性層を磁気的に分離する非磁性中間層を含む磁気抵抗効果膜と、
前記磁気抵抗効果膜に対して面直方向にセンス電流を印加する上部電極および下部電極と、
を備え、前記第1および第2の磁性層の少なくとも一方は、不純物元素が添加された強磁性材料で構成され、
前記不純物元素の添加量が、非磁性中間層との界面側よりも層内バルク側で高くなるように設定されていることを特徴とする磁気抵抗効果素子。
A first magnetic layer whose magnetization direction is changed by an external magnetic field, a second magnetic layer whose magnetization direction is fixed with respect to the external magnetic field, and the first magnetic layer and the second magnetic layer are magnetically coupled. A magnetoresistive film including a nonmagnetic intermediate layer to be separated;
An upper electrode and a lower electrode for applying a sense current in a direction perpendicular to the magnetoresistive film;
And at least one of the first and second magnetic layers is made of a ferromagnetic material to which an impurity element is added,
The magnetoresistive effect element is characterized in that the additive amount of the impurity element is set to be higher on the bulk side in the layer than on the interface side with the nonmagnetic intermediate layer.
前記不純物元素は、非磁性元素であり、前記界面側での当該非磁性元素の添加量は、5原子%以下であることを特徴とする請求項1に記載の磁気抵抗効果素子。   2. The magnetoresistive element according to claim 1, wherein the impurity element is a nonmagnetic element, and the amount of the nonmagnetic element added on the interface side is 5 atomic% or less. 前記不純物元素の添加量をバルク側よりも低く設定した領域は、前記非磁性中間層との界面から2nm以内の範囲であることを特徴とする請求項1に記載の磁気抵抗効果素子。   2. The magnetoresistive element according to claim 1, wherein the region in which the amount of the impurity element added is set lower than the bulk side is within a range of 2 nm from the interface with the nonmagnetic intermediate layer. 前記層内バルク側での不純物元素の添加量は、5〜20原子%であることを特徴とする請求項1に記載の磁気抵抗効果素子。   The magnetoresistive effect element according to claim 1, wherein the addition amount of the impurity element on the bulk side in the layer is 5 to 20 atomic%. 請求項1〜4のいずれかに記載の磁気抵抗効果素子と、
前記センス電流により検出される前記磁気抵抗効果素子の磁気抵抗の変化を、誘導電圧に変換する誘導変換素子と
を備える磁気ヘッド。
The magnetoresistive effect element according to any one of claims 1 to 4,
A magnetic head comprising: an inductive conversion element that converts a change in magnetoresistance of the magnetoresistive effect element detected by the sense current into an induced voltage.
JP2005092999A 2005-03-28 2005-03-28 Magnetoresistance effect element and magnetic head equipped with this Withdrawn JP2006277807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005092999A JP2006277807A (en) 2005-03-28 2005-03-28 Magnetoresistance effect element and magnetic head equipped with this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005092999A JP2006277807A (en) 2005-03-28 2005-03-28 Magnetoresistance effect element and magnetic head equipped with this

Publications (1)

Publication Number Publication Date
JP2006277807A true JP2006277807A (en) 2006-10-12

Family

ID=37212423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005092999A Withdrawn JP2006277807A (en) 2005-03-28 2005-03-28 Magnetoresistance effect element and magnetic head equipped with this

Country Status (1)

Country Link
JP (1) JP2006277807A (en)

Similar Documents

Publication Publication Date Title
JP3618654B2 (en) Magnetoresistive element, magnetic head, and magnetic recording / reproducing apparatus
JP3766565B2 (en) Magnetoresistive film and magnetoresistive head
JP2002359412A (en) Magnetoresistive effect element, magnetoresistive effect type magnetic sensor, magnetoresistive effect type magnetic head, and magnetic memory
JP4008456B2 (en) Magnetic field detection sensor, thin film magnetic head, thin film magnetic head wafer, head gimbal assembly, and hard disk drive
JPH11316918A (en) Magnetoresistive sensor, magnetic disk system and reading out/writing head assembly
JPH10112562A (en) Magneto resistance effect type sensor, and its manufacture, and magnetic head equipped with the sensor
JP2003152239A (en) Magnetoresistive effect element and read head and drive having the same
JP2008028090A (en) Magnetoresistance effect element, thin film magnetic head, head gimbal assembly, and hard disc device
US20080144228A1 (en) Magnetic head and magnetic disk apparatus
JP4818720B2 (en) CPP-GMR device and manufacturing method thereof
JP4939050B2 (en) Method for forming magnetic free layer of magnetic tunnel junction element, tunnel junction read head and method for manufacturing the same
JP4469570B2 (en) Magnetoresistive element, magnetic head, and magnetic recording / reproducing apparatus
JP2004186701A (en) Bottom spin valve sensor, symmetry dual spin valve sensor, and forming methods thereof
JP2001222803A (en) Magnetic conversion element and thin film magnetic head
JP2005328064A (en) Magnetoresistance effect element and forming method therefor, and thin film magnetic head and manufacturing method therefor
JP2001177163A (en) Magnetic conversion element and thin film magnetic head
JP2006080144A (en) Magnetoresistance effect element, thin film magnetic head, head gimbals assembly and hard disk drive unit
JP4614869B2 (en) CIP-GMR element, CIP-GMR reproducing head, method for manufacturing CIP-GMR reproducing head, and method for forming a free layer in CIP-GMR element
KR100363462B1 (en) Spin valve type magnetoresistive effect element and manufacturing method thereof
JP3575672B2 (en) Magnetoresistance effect film and magnetoresistance effect element
JP2008243327A (en) Current-perpendicular-to-plane gmr reproduction element, and magnetic head and magnetic recording/reproducing device equipped with gmr reproduction elements
JP2005012111A (en) Magnetoresistance effect element and thin film magnetic head
JP2006277807A (en) Magnetoresistance effect element and magnetic head equipped with this
JP3561026B2 (en) Magnetoresistive head
JP4181095B2 (en) Magnetoresistive element, magnetic head, and magnetic recording / reproducing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090610