JP2006276573A - Method of manufacturing resin for rotary optical element - Google Patents

Method of manufacturing resin for rotary optical element Download PDF

Info

Publication number
JP2006276573A
JP2006276573A JP2005097090A JP2005097090A JP2006276573A JP 2006276573 A JP2006276573 A JP 2006276573A JP 2005097090 A JP2005097090 A JP 2005097090A JP 2005097090 A JP2005097090 A JP 2005097090A JP 2006276573 A JP2006276573 A JP 2006276573A
Authority
JP
Japan
Prior art keywords
optical
optically active
resin
active polymer
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005097090A
Other languages
Japanese (ja)
Inventor
Yasuhiro Shindo
康裕 進藤
Soichi Satake
宗一 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP2005097090A priority Critical patent/JP2006276573A/en
Publication of JP2006276573A publication Critical patent/JP2006276573A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a resin for a rotary optical element which does not require highly technical processing or operation such as crystallization adjustment and polishing processing for precision improvement, can form an optical rotation face of a large area, and has uniform optical rotation, to provide a resin for the element obtained by the method, and to provide an optics element made of the resin. <P>SOLUTION: The method of manufacturing the optical rotation optics element resin which orients an optically active polymer including a compression fluid (A) under a super critical pressure and super critical temperature of the fluid (A), the resin is obtained according to the manufacturing method, and the optical rotation optics element comprises the resin. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は圧縮性流体を含む光学活性ポリマーを配向させる旋光性光学素子用樹脂の製造方法、及びそれを用いた光学素子に関する。   The present invention relates to a method for producing a resin for an optical rotatory optical element in which an optically active polymer containing a compressive fluid is oriented, and an optical element using the same.

1/2波長板、旋光性結晶板や位相差板等の直線偏光や楕円偏光の方位を回転させるための旋光子としては、水晶等の旋光性結晶や方解石等の複屈折性結晶からなるもの(特許文献1)や、光学活性ポリマーからなるもの(特許文献2)等が知られている。
特開平9−90123号公報 特開2002−296416号公報
As an optical rotator for rotating the direction of linearly polarized light and elliptically polarized light such as a half-wave plate, an optical rotatory crystal plate and a phase difference plate, an optical rotator such as quartz or a birefringent crystal such as calcite (Patent Document 1), an optically active polymer (Patent Document 2), and the like are known.
JP-A-9-90123 JP 2002-296416 A

しかしながら、結晶を利用する方法は、精度向上のための結晶調節や研磨処理などに高度な技術と煩雑な操作が必要であり、大面積の形成が困難であるという問題点がある。また、光学活性ポリマーからなるものはポリマーの均一な配向が困難であり、十分な旋光性が得られないという欠点がある。すなわち本発明の課題は、結晶調節や研摩処理等の必要がなく、大面積の旋光面の形成が可能な旋光性光学素子用樹脂を提供することである。 However, the method using crystals requires high technology and complicated operations for crystal adjustment and polishing for improving accuracy, and has a problem that it is difficult to form a large area. Moreover, the thing which consists of an optically active polymer has the fault that uniform orientation of a polymer is difficult and sufficient optical rotation cannot be obtained. That is, an object of the present invention is to provide a resin for an optical rotatory optical element capable of forming a large-area optical rotatory surface without requiring crystal adjustment or polishing treatment.

本発明者らは上記課題を解決するため鋭意検討した結果、本発明に到達した。すなわち本発明は、圧縮性流体(A)を含む光学活性ポリマーを、該(A)の超臨界圧力及び超臨界温度下で配向させることを特徴とする旋光性光学素子用樹脂の製造方法;該製造法で製造した旋光性光学素子用樹脂;該樹脂からなる旋光性光学素子;である。   As a result of intensive studies to solve the above problems, the present inventors have reached the present invention. That is, the present invention provides a method for producing a resin for an optical rotatory optical element, comprising orienting an optically active polymer containing a compressive fluid (A) under the supercritical pressure and supercritical temperature of (A); An optical rotatory optical element resin produced by the production method; an optical rotatory optical element comprising the resin.

本発明の旋光性光学素子用樹脂の製造方法では、配向が困難な光学活性ポリマーを圧縮性流体中にて溶融後、圧縮性流体の超臨界温度及び超臨界圧力の範囲内の雰囲気下で成形することにより、配向を容易になるという効果を奏する。したがって、本発明の製造方法を用いることにより、旋光性光学素子用樹脂を容易に製造することができる。 In the method for producing a resin for optical rotatory optical elements of the present invention, an optically active polymer that is difficult to be oriented is melted in a compressive fluid and then molded in an atmosphere within the supercritical temperature and supercritical pressure range of the compressive fluid. By doing so, there is an effect that the orientation becomes easy. Therefore, the resin for optical rotatory optical elements can be easily manufactured by using the manufacturing method of the present invention.

本発明の製造方法は、圧縮性流体(A)の超臨界圧力・超臨界温度領域の環境下で光学活性ポリマー(B)を配向することを特徴とする旋光性光学素子用樹脂の製造方法である。   The production method of the present invention is a method for producing a resin for an optical rotatory optical element, wherein the optically active polymer (B) is oriented in an environment of a supercritical pressure / supercritical temperature region of the compressive fluid (A). is there.

本発明の製造法では、光学活性ポリマー(B)を圧縮性流体(A)中で溶融する。次に(A)により可塑化された(B)を、圧縮性流体の臨界圧力・臨界温度下で、フィルム等の支持体上に押し出し、圧力と温度を徐々に下げることにより、配向した(B)がシート状またはフィルム状で支持体上に成形され、旋光性光学素子用の樹脂シートまたはフィルムを製造することができる。   In the production method of the present invention, the optically active polymer (B) is melted in the compressive fluid (A). Next, (B) plasticized by (A) is extruded onto a support such as a film under the critical pressure / critical temperature of a compressive fluid, and oriented by gradually lowering the pressure and temperature (B ) Is formed on a support in the form of a sheet or film, and a resin sheet or film for an optical rotatory optical element can be produced.

本発明の製造方法では、容易にフィルム状またはシート状の旋光性光学素子用樹脂が製造でき、その面積や厚さは必要に応じて適宜調整することが可能である。例えば、光学活性ポリマー(B)の分子量、Tgにより配向時の温度を調整することにより可塑化された(B)の流動性を調整し、フィルム成形時のフィルム厚を調整できる。   In the production method of the present invention, a film- or sheet-form optical rotatory optical element resin can be easily produced, and the area and thickness thereof can be appropriately adjusted as necessary. For example, the fluidity of the plasticized (B) can be adjusted by adjusting the temperature during orientation by adjusting the molecular weight and Tg of the optically active polymer (B), and the film thickness at the time of film formation can be adjusted.

本発明の製造方法において圧縮性流体(A)としては、例えば、二酸化炭素(31.0,7.4)、メタン(−82.5,4.6)、エタン(31.1,4.9)、プロパン(96.7,4.2)、ヘキサン(234.2,3.0)、メタノール(239.4,8.2)、エタノール(240.7,6.1)、水(374.2,22.1)等で、臨界点以上の温度及び圧力における流体が挙げられる。尚、カッコ内は順に臨界温度(℃)及び臨界圧力(MPa)である。超臨界流体は物質に固有の気液臨界温度、圧力を超えた非凝縮性流体と定義される。臨界温度を超えているために分子の熱運動が激しく、かつ密度を理想気体に近い希薄な状態から液体に対応するような高密度な状態まで圧力を変えることによって連続的に変化させることができる。   In the production method of the present invention, examples of the compressible fluid (A) include carbon dioxide (31.0, 7.4), methane (-82.5, 4.6), and ethane (31.1, 4.9). ), Propane (96.7, 4.2), hexane (234.2, 3.0), methanol (239.4, 8.2), ethanol (240.7, 6.1), water (374. 2, 22.1), etc., and fluids at temperatures and pressures above the critical point. In addition, the inside of a parenthesis is a critical temperature (degreeC) and a critical pressure (MPa) in order. A supercritical fluid is defined as a non-condensable fluid that exceeds the gas-liquid critical temperature and pressure inherent to the substance. The thermal motion of the molecule is intense because it exceeds the critical temperature, and the density can be continuously changed by changing the pressure from a dilute state close to the ideal gas to a high-density state corresponding to the liquid. .

本発明における圧縮性流体(A)は超臨界流体で使用するのが好ましい。
これらのうち取扱い易さの観点等から、二酸化炭素、メタン、エタンが好ましく、さらに好ましくは二酸化炭素である。
The compressible fluid (A) in the present invention is preferably used as a supercritical fluid.
Of these, carbon dioxide, methane, and ethane are preferable from the viewpoint of ease of handling, and carbon dioxide is more preferable.

本発明の製造方法においては、光学活性ポリマー(B)としては、予め別に重合して得られてものを使用しても良いし、(A)中で、比旋光度を有する光学活性モノマー(m)を重合して得られた(B)を、そのまま使用することもできる。   In the production method of the present invention, the optically active polymer (B) may be obtained by separately polymerizing in advance, or the optically active monomer (m) having specific rotation in (A). (B) obtained by polymerizing) can be used as it is.

圧縮性流体(A)中で、比旋光度を有する光学活性モノマー(m)を重合する場合、(A)の使用量は、光学活性ポリマー(B)の重量100重量部に対して10〜1000重量部が好ましく、さらに好ましくは30〜800重量部,特に好ましくは50〜500重量部である。   When the optically active monomer (m) having specific rotation is polymerized in the compressive fluid (A), the amount of (A) used is 10 to 1000 with respect to 100 parts by weight of the optically active polymer (B). Part by weight is preferable, more preferably 30 to 800 parts by weight, and particularly preferably 50 to 500 parts by weight.

光学活性モノマー(m)としては、α−アルキル(アルキル基の炭素数1〜4)−α−ヒドロキシカルボン酸、α−ハイドロカルビル(ハイドロカルビル基の炭素数1〜12)−α−アミノ酸、α−ハイドロカルビル(ハイドロカルビル基の炭素数1〜8)メタクリレート、不斉炭素を有する環状エステル(総炭素数3〜6)、α−アルキルエチレンオキサイド(総炭素数6〜9)、α−アルキルエチレンスルフィド(総炭素数6〜9)等が挙げられる。
光学活性ポリマー(B)は、例えば、比旋光度を示す光学活性モノマー(m)を単独重合することで製造できる。
As the optically active monomer (m), α-alkyl (alkyl group having 1 to 4 carbon atoms) -α-hydroxycarboxylic acid, α-hydrocarbyl (hydrocarbyl group having 1 to 12 carbon atoms) -α-amino acid , Α-hydrocarbyl (hydrocarbyl group having 1 to 8 carbon atoms) methacrylate, cyclic ester having asymmetric carbon (total carbon number of 3 to 6), α-alkylethylene oxide (total carbon number of 6 to 9), α-alkylethylene sulfide (total carbon number 6 to 9) and the like can be mentioned.
The optically active polymer (B) can be produced, for example, by homopolymerizing the optically active monomer (m) exhibiting specific rotation.

α−アルキル−α−ヒドロキシカルボン酸における炭素数1〜4のアルキル基としては 、メチル基、エチル基、イソプロピル基等が挙げられ、具体例としては、L−乳酸、D−乳酸が挙げられる。
光学活性ポリマー(B)は、例えば、比旋光度を示す光学活性モノマー(m)を単独重合することで製造できる。
Examples of the alkyl group having 1 to 4 carbon atoms in the α-alkyl-α-hydroxycarboxylic acid include a methyl group, an ethyl group, and an isopropyl group, and specific examples thereof include L-lactic acid and D-lactic acid.
The optically active polymer (B) can be produced, for example, by homopolymerizing the optically active monomer (m) exhibiting specific rotation.

α−ハイドロカルビル−α−アミノ酸における炭素数1〜12のハイドロカルビル基としては、アルキル基、アルケニル基、シクロアルキル基、アリール基、アラルキル基のいずれでもよく、メチル基、エチル基、フェニル基、ベンジル基、α−メチルベンジル等が挙げられ、具体例としては、γ−ベンジルグルタミン酸、およびγ−メチルグルタミン酸が挙げられる。
光学活性ポリマー(B)は、例えば、比旋光度を示す光学活性モノマー(m)を単独重合することで製造できる。
The hydrocarbyl group having 1 to 12 carbon atoms in the α-hydrocarbyl-α-amino acid may be any of an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, and an aralkyl group, such as a methyl group, an ethyl group, and a phenyl group. Group, benzyl group, α-methylbenzyl and the like, and specific examples include γ-benzylglutamic acid and γ-methylglutamic acid.
The optically active polymer (B) can be produced, for example, by homopolymerizing the optically active monomer (m) exhibiting specific rotation.

α−ハイドロカルビルメタクリレートにおけるハイドロカルビル基としては前記のもの等が挙げられ、具体例としては、α−メチルベンジルメタクリレート、およびメチルメタクリレートが挙げられる。
光学活性ポリマー(B)は、例えば、比旋光度を示す光学活性モノマー(m)を単独重合することで製造できる。
Examples of the hydrocarbyl group in α-hydrocarbyl methacrylate include those described above, and specific examples include α-methylbenzyl methacrylate and methyl methacrylate.
The optically active polymer (B) can be produced, for example, by homopolymerizing the optically active monomer (m) exhibiting specific rotation.

不斉炭素を有する環状エステルの具体例としては、L−ラクチド、D−ラクチド、α−メチル−α−エチル−β−プロピオラクトン、およびβ−(1,1−ジクロロプロピル)−β−プロピオラクトンが挙げられる。
光学活性ポリマー(B)は、例えば、比旋光度を示す光学活性モノマー(m)を単独重合することで製造できる。
Specific examples of the cyclic ester having an asymmetric carbon include L-lactide, D-lactide, α-methyl-α-ethyl-β-propiolactone, and β- (1,1-dichloropropyl) -β-pro. Piolactone is mentioned.
The optically active polymer (B) can be produced, for example, by homopolymerizing the optically active monomer (m) exhibiting specific rotation.

α−アルキルエチレンオキサイドにおけるアルキル基としては前記のもの等が挙げられ、具体例としては、t−ブチルエチレンオキサイドが挙げられる。
光学活性ポリマー(B)は、例えば、比旋光度を示す光学活性モノマー(m)を単独重合することで製造できる。
Examples of the alkyl group in α-alkylethylene oxide include those described above, and specific examples thereof include t-butylethylene oxide.
The optically active polymer (B) can be produced, for example, by homopolymerizing the optically active monomer (m) exhibiting specific rotation.

α−アルキルエチレンスルフィドにおけるアルキル基としては前記のもの等が挙げられ、具体例としては、t−ブチルエチレンスルフィドが挙げられる。 Examples of the alkyl group in the α-alkylethylene sulfide include those described above, and specific examples thereof include t-butylethylene sulfide.

光学活性ポリマー(B)は、光学活性モノマー(m)の1種以上の重合体であっても、光学活性モノマーと非光学活性モノマー(n)との共重合体であってもよい。
非光学活性モノマー(n)との共重合体の場合は、光学活性ユニットを容易に形成できることから、1種類の(m)の単独重合体部分を含有するブロック共重合体であることが好ましい。単独重合体、およびブロック共重合体における(m)の単独重合部分の重合度は、配向させやすさの観点から、10〜100000が好ましく、さらに好ましくは20〜50000であり、特に好ましくは50〜10000である。
一般に、光学純度100%の光学活性モノマーを単独重合することでらせん高分子を形成することが知られており、らせん高分子ユニットの構造確認は、X線結晶構造解析装置〔(株)リガク製、AFC7Rなど〕を用いて行い、左巻きと右巻きを区別できる。
The optically active polymer (B) may be one or more polymers of the optically active monomer (m), or may be a copolymer of the optically active monomer and the non-optically active monomer (n).
In the case of a copolymer with the non-optically active monomer (n), an optically active unit can be easily formed, so that it is preferably a block copolymer containing one type of (m) homopolymer moiety. The degree of polymerization of the homopolymer part (m) in the homopolymer and the block copolymer is preferably from 10 to 100,000, more preferably from 20 to 50,000, particularly preferably from 50 to 50,000, from the viewpoint of easy orientation. 10,000.
Generally, it is known that a helical polymer is formed by homopolymerizing an optically active monomer having an optical purity of 100%. The structure of the helical polymer unit is confirmed by an X-ray crystal structure analyzer [manufactured by Rigaku Corporation]. , AFC7R, etc.] can be used to distinguish left-handed and right-handed.

光学活性ポリマー(B)が光学異性体の共重合体であってもよく、その場合、光学異性体含量(wt%)としては、光学特性の観点から、光学活性ポリマーの重量に基づいて、0.1〜10が好ましく、さらに好ましくは0.2〜5であり、特に好ましくは0.3〜3である。 The optically active polymer (B) may be a copolymer of optical isomers. In this case, the optical isomer content (wt%) is 0 based on the weight of the optically active polymer from the viewpoint of optical properties. 0.1 to 10 is preferable, 0.2 to 5 is more preferable, and 0.3 to 3 is particularly preferable.

光学活性ポリマー(B)としては、光学特性の観点からポリ乳酸が好ましく、さらに好ましくはポリ乳酸L体である。   As the optically active polymer (B), polylactic acid is preferable from the viewpoint of optical properties, and polylactic acid L is more preferable.

共重合体を形成する他のモノマー(n)としては、とくに限定されないが、例えば特開2002−296416号公報に記載の共重合可能なモノマー[例えば、ヒドロキシカルボン酸(グリコール酸、ジメチルグリコール酸等)、多価アルコール(エチレングリコール、1,2−プロパンジオールなど)など]等が挙げられる。 The other monomer (n) forming the copolymer is not particularly limited. For example, a copolymerizable monomer described in JP-A-2002-296416 [for example, hydroxycarboxylic acid (glycolic acid, dimethyl glycolic acid, etc.) ), Polyhydric alcohols (ethylene glycol, 1,2-propanediol, etc.) and the like.

光学活性ポリマー(B)を製造する重合反応様式としては、付加重合、開環重合、重付加、付加縮合、縮合重合等いずれの重合反応様式であってもよいが、立体規則的な重合が容易という観点から、不斉炭素を有する環状エステル、α−アルキルエチレンオキサイド、α−アルキルエチレンスルフィド等の環状モノマーの開環重合、およびヒドロキシカルボン酸の脱水縮合が好ましい。   The polymerization reaction mode for producing the optically active polymer (B) may be any polymerization reaction mode such as addition polymerization, ring-opening polymerization, polyaddition, addition condensation, condensation polymerization, etc., but stereoregular polymerization is easy. In view of the above, ring-opening polymerization of cyclic monomers having asymmetric carbon, α-alkylethylene oxide, α-alkylethylene sulfide and the like, and dehydration condensation of hydroxycarboxylic acid are preferable.

開環重合および脱水縮合に用いる触媒としては、公知のものが使用され、反応性や選択率を考慮して適宜選択できる。例えば、塩基触媒としては、アルカリ金属(Li、Na、K等)の水酸化物、アルカリ金属(Li、Na、K等)のアルコラート、およびアルキルアミン(モノアルキルアミン、ジアルキルアミン、トリアルキルアミン)等が挙げられ、酸触媒としては、ルイス酸触媒である金属(Al、Sb、B、Be、P、Fe、Zn、Ti、Zr等)のハロゲン化物およびアルコキシド、無機酸(HCl、HBr、H2SO4、HClO4など)、並びに有機酸(酢酸、シュウ酸等)等が挙げられ、2種以上を併用することもできる。重合触媒の使用量は、反応させる全モノマーの重量に基づいて、0.001〜5重量%が好ましい。   As a catalyst used for ring-opening polymerization and dehydration condensation, a known catalyst is used, and can be appropriately selected in consideration of reactivity and selectivity. For example, base catalysts include hydroxides of alkali metals (Li, Na, K, etc.), alcoholates of alkali metals (Li, Na, K, etc.), and alkylamines (monoalkylamines, dialkylamines, trialkylamines). Examples of acid catalysts include Lewis acid catalysts such as halides and alkoxides of metals (Al, Sb, B, Be, P, Fe, Zn, Ti, Zr, etc.), inorganic acids (HCl, HBr, H 2 SO 4). , HClO4, etc.) and organic acids (acetic acid, oxalic acid, etc.), and two or more of them can be used in combination. The amount of the polymerization catalyst used is preferably 0.001 to 5% by weight based on the weight of all monomers to be reacted.

本発明において、光学活性ポリマー(B)の重量平均分子量は、配向しやすさの観点から、5、000〜10、000、000が好ましく、さらに好ましくは10、000〜1、000、000、特に好ましくは20、000〜500、000である。   In the present invention, the weight average molecular weight of the optically active polymer (B) is preferably 5,000 to 10,000,000, more preferably 10,000 to 1,000,000, particularly from the viewpoint of easy orientation. Preferably it is 20,000-500,000.

圧縮性流体中で光学活性ポリマーを配向させる温度(℃)は圧縮性流体(A)の超臨界領域温度の範囲であり、操作性の観点から二酸化炭素の場合31〜250が好ましく、さらに好ましくは50〜230、特に好ましくは70〜220℃である。
配向時の圧力(MPa)は(A)の超臨界領域圧力の範囲であり、操作性の観点から二酸化炭素の場合7〜70が好ましく、さらに好ましくは8〜50,特に好ましくは9〜30である。
処理時間(時間)は必要に応じて調整すればよいが、生産性の観点から0.1〜10が好ましく、さらに好ましくは0.3〜8、特に好ましくは0.5〜5である。
The temperature (° C.) for orienting the optically active polymer in the compressive fluid is in the supercritical region temperature range of the compressive fluid (A), and is preferably 31 to 250 in the case of carbon dioxide from the viewpoint of operability, more preferably 50 to 230, particularly preferably 70 to 220 ° C.
The pressure (MPa) at the time of orientation is in the range of the supercritical region pressure of (A). From the viewpoint of operability, it is preferably 7 to 70, more preferably 8 to 50, particularly preferably 9 to 30 in the case of carbon dioxide. is there.
The treatment time (time) may be adjusted as necessary, but is preferably 0.1 to 10, more preferably 0.3 to 8, and particularly preferably 0.5 to 5 from the viewpoint of productivity.

本発明の製造法においては、必要により圧縮性流体中の光学活性ポリマーを磁場中で配向させてもよい。磁場を使用する場合、磁場は永久磁石、電磁石、超電導磁石等から得ることができる。
磁束密度(テスラ)は必要に応じて調整すればよいが、0.01〜30が好ましく、さらに好ましくは0.1〜20であり、特に好ましくは1〜15である。
In the production method of the present invention, if necessary, the optically active polymer in the compressive fluid may be oriented in a magnetic field. When a magnetic field is used, the magnetic field can be obtained from a permanent magnet, an electromagnet, a superconducting magnet, or the like.
The magnetic flux density (Tesla) may be adjusted as necessary, but is preferably 0.01 to 30, more preferably 0.1 to 20, and particularly preferably 1 to 15.

光学活性ポリマーの配向性を向上させる目的で、添加剤を添加することができる。添加剤の具体例としては、例えば特開2002−296416号公報に記載の強磁性体(例えば金属(α−Fe、γ−Co等)、スピネル型フェライト(Fe3O4、γ−Fe2O3等)等)あるいは液晶性化合物(コレステリルブロミド、コレステリル−n−ヘキシルエーテル等)を挙げることができる。
添加する添加剤の組成比(重量%)は、特に制限されないが、光学活性ポリマーの重量に基づいて、0.001〜100が好ましく、さらに好ましくは0.01〜50、特に好ましくは0.1〜10である。
Additives can be added for the purpose of improving the orientation of the optically active polymer. Specific examples of the additive include, for example, ferromagnetic materials (for example, metals (α-Fe, γ-Co, etc.), spinel type ferrites (Fe3O4, γ-Fe2O3, etc.)) described in JP-A No. 2002-296416, or the like. Examples thereof include liquid crystal compounds (cholesteryl bromide, cholesteryl-n-hexyl ether, etc.).
The composition ratio (% by weight) of the additive to be added is not particularly limited, but is preferably 0.001 to 100, more preferably 0.01 to 50, and particularly preferably 0.1 based on the weight of the optically active polymer. -10.

本発明の旋光性光学素子は、圧縮性流体(A)を含む光学活性ポリマー(B)を、(A)の臨界圧力及び臨界温度下で配向させることにより製造される。 The optical rotatory optical element of the present invention is produced by orienting an optically active polymer (B) containing a compressible fluid (A) under the critical pressure and critical temperature of (A).

配向させた光学活性ポリマー(B)を加工することにより光学素子として用いることができる。光学素子の形状は特に制限されないが、通常、ロッド等の成形物、フィルム、シート、ファイバー、フィラメント、ストランド等の形状である。   By processing the oriented optically active polymer (B), it can be used as an optical element. The shape of the optical element is not particularly limited, but is usually a molded product such as a rod, a film, a sheet, a fiber, a filament, a strand, or the like.

例えば、フィルム状にを加工する場合、圧縮性流体を含む光学活性ポリマーを射出成形法により、押出成形した後、圧縮性流体を除去する方法等が適用できる。
成形した光学活性樹脂は、目的とする光学素子の形状・大きさに合わせて裁断し、旋光性光学素子に使用される。
For example, when processing into a film shape, a method of removing a compressive fluid after extrusion molding of an optically active polymer containing a compressive fluid by an injection molding method can be applied.
The molded optically active resin is cut according to the shape and size of the target optical element and used for an optical rotatory optical element.

本発明の光学素子は、主鎖の不斉炭素が配向されているため、高い旋光性 を有している。旋光性光学素子として用いる場合、旋光性(°/1mm)は光学特性の観点から、10〜10000が好ましく、さらに好ましくは50〜8000,特に好ましくは100〜6000である。旋光性はフィルム作成し、通常の旋光計(SEPAー200、堀場製作所(株)製)や、参考文献(機能材料Vol.20、No.7,5〜11頁)等に記載の屈折率楕円体測定装置等を用いて測定することができる。   The optical element of the present invention has high optical rotation because the asymmetric carbon of the main chain is oriented. When used as an optical rotatory optical element, the optical rotatory power (° / 1 mm) is preferably from 10 to 10,000, more preferably from 50 to 8000, and particularly preferably from 100 to 6000, from the viewpoint of optical properties. Optical rotatory power is a film created, and a refractive index ellipse described in an ordinary polarimeter (SEPA-200, manufactured by HORIBA, Ltd.) or a reference (Functional Materials Vol. 20, No. 7, pages 5 to 11). It can be measured using a body measuring device or the like.

次に本発明を実施例によって具体的に説明するが、本発明の主旨を逸脱しない限り本発明は実施例に限定されるものではない。なお、特記しない限り部は重量部、%は重量%を意味する。
[実施例1]
撹拌装置、循環槽、及び測温装置を有し、槽内圧力70MPa、槽内温度290℃まで設定可能な反応槽にL−ラクチド100部、オクチル酸第一錫0.01部を仕込み、5mmHg、30℃で2時間乾燥させ、圧力10MPa、200℃で二酸化炭素を30部仕込み、3時間反応を行い、光学活性ポリマーを得た。
反応終了後、圧力10MPa、80℃にて、超臨界二酸化炭素を50部/分の流量で連続供給し、1時間、光学活性ポリマーに含まれる未反応物や不純物の抽出を行い、圧力10MPa、温度80℃で光学活性ポリマーを直径15mmのFused Silica (CVI Laser Corporation(株)製)上に押出し成形した後、超臨界二酸化炭素を1時間かけて圧力を常圧に戻して除去することにより、厚さ50μmの旋光性フィルム(1)を得た。
EXAMPLES Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to the examples without departing from the gist of the present invention. Unless otherwise specified, “part” means “part by weight” and “%” means “% by weight”.
[Example 1]
A reactor equipped with a stirrer, a circulation tank, and a temperature measuring apparatus, and charged with 100 parts of L-lactide and 0.01 part of stannous octylate in a reaction tank that can be set up to a pressure of 70 MPa and a temperature of 290 ° C., 5 mmHg , Dried at 30 ° C. for 2 hours, charged with 30 parts of carbon dioxide at a pressure of 10 MPa and 200 ° C., and reacted for 3 hours to obtain an optically active polymer.
After completion of the reaction, supercritical carbon dioxide was continuously supplied at a pressure of 10 MPa and 80 ° C. at a flow rate of 50 parts / minute, and unreacted substances and impurities contained in the optically active polymer were extracted for 1 hour. By extruding the optically active polymer at a temperature of 80 ° C. onto a 15 mm diameter fused silica (manufactured by CVI Laser Corporation), the supercritical carbon dioxide was removed by returning the pressure to normal pressure over 1 hour, An optical rotatory film (1) having a thickness of 50 μm was obtained.

[実施例2]
フィルム成形時の温度を80℃から50℃に代える以外は実施例1と同様にして、厚さ50μmの旋光性フィルム(2)を得た。
[Example 2]
An optical rotatory film (2) having a thickness of 50 μm was obtained in the same manner as in Example 1 except that the temperature during film formation was changed from 80 ° C. to 50 ° C.

[実施例3]
フィルム成形時の温度を80℃から150℃に代える以外は実施例1と同様にして、厚さ50μmの旋光性フィルム(3)を得た。
[Example 3]
An optical rotatory film (3) having a thickness of 50 μm was obtained in the same manner as in Example 1 except that the temperature during film formation was changed from 80 ° C. to 150 ° C.

[実施例4]
フィルム成形時の圧力を10MPaから20MPaに代える以外は実施例1と同様にして、厚さ50μmの旋光性フィルム(4)を得た。
[Example 4]
An optical rotatory film (4) having a thickness of 50 μm was obtained in the same manner as in Example 1 except that the pressure during film formation was changed from 10 MPa to 20 MPa.

[実施例5]
フィルム成形時の圧力を10MPaから30MPaに代える以外は実施例1と同様にして、厚さ50μmの旋光性フィルム(5)を得た。
[Example 5]
An optical rotatory film (5) having a thickness of 50 μm was obtained in the same manner as in Example 1 except that the pressure during film formation was changed from 10 MPa to 30 MPa.

[実施例6]
L−ラクチド100部をD−ラクチド100部に代える以外は実施例1と同様にして、厚さ50μmの旋光性フィルム(6)を得た。
[Example 6]
An optical rotation film (6) having a thickness of 50 μm was obtained in the same manner as in Example 1 except that 100 parts of L-lactide was replaced with 100 parts of D-lactide.

[実施例7]
Fused Silica上に押出し成形する際、成形された光学活性ポリマーとFused Silicaを挟む上下の位置に1テスラの永久磁石2枚(間隔10mm)を置き配向を行うこと以外は実施例1と同様にして、厚さ50μmの旋光性フィルム(7)を得た。
[Example 7]
When extruding onto a fused silica, the same procedure as in Example 1 was conducted except that two 1 Tesla permanent magnets (interval of 10 mm) were placed at the upper and lower positions sandwiching the molded optically active polymer and the fused silica. An optical rotation film (7) having a thickness of 50 μm was obtained.

[比較例1]
撹拌装置、循環槽、及び測温装置を有し、槽内圧力70MPa、槽内温度290℃まで設定可能な反応槽に、L−ラクチド100部、オクチル酸第一錫0.01部を仕込み、5mmHg、30℃で2時間乾燥させ、撹拌下、3時間反応を行った。
反応終了後、5mmHg、200℃にて1時間、未反応物の除去を行った。
クロロホルム1000部に溶解させ、Fused Silica上でキャストすることにより、厚さ50μmの旋光性フィルム(8)を得た。
[Comparative Example 1]
A reactor equipped with a stirrer, a circulation tank, and a temperature measuring device, in which a pressure in the tank of 70 MPa and a temperature in the tank of 290 ° C. can be set, is charged with 100 parts of L-lactide and 0.01 part of stannous octylate, The mixture was dried at 5 mmHg and 30 ° C. for 2 hours, and reacted for 3 hours with stirring.
After completion of the reaction, unreacted substances were removed at 5 mmHg and 200 ° C. for 1 hour.
An optical rotation film (8) with a thickness of 50 μm was obtained by dissolving in 1000 parts of chloroform and casting on Fused Silica.

[比較例2]
Fused Silica上でキャストする際、塗布された光学活性ポリマー溶液とFused Silicaを挟む上下の位置に1テスラの永久磁石2枚(間隔10mm)を置き配向を行うこと以外は比較例1と同様にして、厚さ50μmの旋光性フィルム(9)を得た。
[Comparative Example 2]
When casting on Fused Silica, the same procedure as in Comparative Example 1 was performed except that two 1 Tesla permanent magnets (interval of 10 mm) were placed at the upper and lower positions sandwiching the coated optically active polymer solution and Fused Silica. An optical rotation film (9) having a thickness of 50 μm was obtained.

<旋光性評価>
得られた旋光性フィルム(1)〜(9)を屈折率楕円体測定装置を用いて10箇所測定し、結果の平均値を表1に示す。
<Optical rotation evaluation>
The obtained optical rotatory films (1) to (9) were measured at 10 points using a refractive index ellipsoid measuring apparatus, and the average value of the results is shown in Table 1.

Figure 2006276573
Figure 2006276573

以上の評価結果から、本発明の旋光性光学素子の製造方法により得られたフィルムは比較例と比較して、非常に旋光性が高いことがわかる。 From the above evaluation results, it can be seen that the film obtained by the method for producing an optical rotatory optical element of the present invention has very high optical rotatory power as compared with the comparative example.

本発明の光学素子は旋光性が高く、光学特性に優れているため、光変調素子として用いることが出来る。
また、光通信システム、光交換システム、光計測システムの分野において、旋光子、波長板、偏光板、光偏向機、位相差板、導波路、レンズ、光ファイバー、光ファイバーの被覆材料、発光素子、光変調素子、光増幅素子、光スイッチ、光シャッター、調光体、調光パネル、光磁気記憶素子、光メモリー、ホログラム等の記録媒体、光演算素子、バーコード、太陽電池、光検出器、半導体レーザー、固体レーザー、LED、EL、空間光変調器、波長変換素子、光アイソレーター、フォトリフラクティブ、PSHB、液晶パネル、ヘッドアップディスプレイ等の表示材料などに用いることができる。


Since the optical element of the present invention has high optical rotation and excellent optical characteristics, it can be used as a light modulation element.
Also, in the fields of optical communication systems, optical switching systems, and optical measurement systems, optical rotators, wave plates, polarizing plates, optical deflectors, retardation plates, waveguides, lenses, optical fibers, optical fiber coating materials, light emitting elements, light Modulation element, optical amplification element, optical switch, optical shutter, dimmer, dimming panel, magneto-optical storage element, optical memory, recording medium such as hologram, optical arithmetic element, barcode, solar cell, photodetector, semiconductor It can be used for display materials such as laser, solid-state laser, LED, EL, spatial light modulator, wavelength conversion element, optical isolator, photorefractive, PSHB, liquid crystal panel, and head-up display.


Claims (9)

圧縮性流体(A)を含む光学活性ポリマー(B)を、該(A)の超臨界圧力及び超臨界温度下で配向させることを特徴とする旋光性光学素子用樹脂の製造方法。   A method for producing a resin for an optical rotatory optical element, comprising orienting an optically active polymer (B) containing a compressive fluid (A) under the supercritical pressure and supercritical temperature of the (A). 光学活性ポリマー(B)が、圧縮性流体中で光学活性モノマー(m)を含むモノマーを重合させて得られる重合体である請求項1記載の製造方法。   The production method according to claim 1, wherein the optically active polymer (B) is a polymer obtained by polymerizing a monomer containing the optically active monomer (m) in a compressive fluid. 前記(A)が超臨界状態の二酸化炭素である請求項1又は2記載の製造方法。   The production method according to claim 1 or 2, wherein (A) is carbon dioxide in a supercritical state. 前記(B)がポリ乳酸L体、またはポリ乳酸D体である請求項2又は3記載の製造方法。   The production method according to claim 2 or 3, wherein (B) is a polylactic acid L-form or a polylactic acid D-form. 光学活性ポリマー(B)に磁束密度0.01〜30テスラの磁場を負荷して配向させる請求項1〜4のいずれか記載の製造方法。   The manufacturing method according to any one of claims 1 to 4, wherein the optically active polymer (B) is oriented by applying a magnetic field having a magnetic flux density of 0.01 to 30 Tesla. 配向時の圧力が7〜70MPa、かつ温度が31〜250℃である請求項1〜5のいずれか記載の製造方法。   The manufacturing method according to any one of claims 1 to 5, wherein the pressure during orientation is 7 to 70 MPa and the temperature is 31 to 250 ° C. 請求項1〜6のいずれか記載の製造法で製造した旋光性光学素子用樹脂。   A resin for optical rotatory optical elements produced by the production method according to claim 1. 請求項7記載の樹脂からなる旋光性光学素子。   An optical rotatory optical element comprising the resin according to claim 7. 旋光性が10〜10000°/mmである請求項8記載の光学素子。




The optical element according to claim 8, wherein the optical rotation is 10 to 10000 ° / mm.




JP2005097090A 2005-03-30 2005-03-30 Method of manufacturing resin for rotary optical element Pending JP2006276573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005097090A JP2006276573A (en) 2005-03-30 2005-03-30 Method of manufacturing resin for rotary optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005097090A JP2006276573A (en) 2005-03-30 2005-03-30 Method of manufacturing resin for rotary optical element

Publications (1)

Publication Number Publication Date
JP2006276573A true JP2006276573A (en) 2006-10-12

Family

ID=37211386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005097090A Pending JP2006276573A (en) 2005-03-30 2005-03-30 Method of manufacturing resin for rotary optical element

Country Status (1)

Country Link
JP (1) JP2006276573A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2759561A1 (en) 2013-01-28 2014-07-30 Ricoh Company, Ltd. Method for producing polymer, and polymer product
US9029481B2 (en) 2011-07-29 2015-05-12 Ricoh Company, Ltd. Method for producing polymer, device for producing polymer, device for producing complex, and polymer product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293943A (en) * 2001-03-29 2002-10-09 Mitsui Chemicals Inc Method of orienting polylactic acid based resin and optical element
JP2002296416A (en) * 2001-03-29 2002-10-09 Mitsui Chemicals Inc Optical element and method for manufacturing the same
JP2003236944A (en) * 2002-02-15 2003-08-26 Fuji Photo Film Co Ltd Method for manufacturing resin molded product
WO2004013217A1 (en) * 2002-08-05 2004-02-12 Keio University Method of enzymatic depolymerization of polylactic acid and process for producing polylactic acid from depolymerization product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293943A (en) * 2001-03-29 2002-10-09 Mitsui Chemicals Inc Method of orienting polylactic acid based resin and optical element
JP2002296416A (en) * 2001-03-29 2002-10-09 Mitsui Chemicals Inc Optical element and method for manufacturing the same
JP2003236944A (en) * 2002-02-15 2003-08-26 Fuji Photo Film Co Ltd Method for manufacturing resin molded product
WO2004013217A1 (en) * 2002-08-05 2004-02-12 Keio University Method of enzymatic depolymerization of polylactic acid and process for producing polylactic acid from depolymerization product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9029481B2 (en) 2011-07-29 2015-05-12 Ricoh Company, Ltd. Method for producing polymer, device for producing polymer, device for producing complex, and polymer product
EP2759561A1 (en) 2013-01-28 2014-07-30 Ricoh Company, Ltd. Method for producing polymer, and polymer product

Similar Documents

Publication Publication Date Title
US7931825B2 (en) Polymerizable composition
US8436214B2 (en) Noncrystalline form of fluorene derivative and process for preparation thereof
KR102157012B1 (en) Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
Feng et al. Single crystal texture by directed molecular self-assembly along dual axes
Bamford et al. Studies in polymerization XIV. The solid-state polymerization of acrylic and methacrylic acids
JP2008276149A (en) Polymer film, method for fabricating molecular alignment element, and liquid crystal alignment layer
JP2004035347A (en) Method for preparing strontium carbonate, and non-birefringent optical resin material and optical element
Blumstein et al. Crystallinity and Order in Atactic Poly (acryloyloxybenzoic acid) and Poly (methacryloyloxybenzoic acid)
TW200415230A (en) Heat conducting polymer mold products
TW200840810A (en) Polymerizable compounds and polymerizable compositions
TW201249925A (en) Method for producing liquid crystal polyester
JP2006276573A (en) Method of manufacturing resin for rotary optical element
CN102030653B (en) Polymerizable compound
Hu et al. Preparation and Self‐Repairing of Highly Oriented Structures of Ultrathin Polymer Films
Fu et al. Phase transitions of the rapid‐compression‐induced mesomorphic isotactic polypropylene under high‐pressure annealing
KR101607730B1 (en) Composition for alignment layer
Wu et al. Application of electron diffraction in the structure characterization of polymer crystals
JP2015098458A (en) Amorphous form of fluorene derivative and method for producing the same
Shibata et al. Molecular composites composed of castor oil‐modified poly (ε‐caprolactone) and self‐assembled hydroxystearic acid fibers
JP2014199398A (en) Polarizing plate protection film, polarizing plate, and liquid crystal display device
Menghetti et al. All-optical pulsed writing in azobenzene copolymer films in the sub-millisecond regime
Ding et al. An unusual spherulite morphology induced by nano-fillers from a concentrated cellulose/ionic liquid solution
JP2002293943A (en) Method of orienting polylactic acid based resin and optical element
JP2000313816A (en) Low birefringence optical resin material, its preparation and use thereof
JPS62277412A (en) Novel polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005