JP2006276394A - Multicolor image forming apparatus - Google Patents

Multicolor image forming apparatus Download PDF

Info

Publication number
JP2006276394A
JP2006276394A JP2005094535A JP2005094535A JP2006276394A JP 2006276394 A JP2006276394 A JP 2006276394A JP 2005094535 A JP2005094535 A JP 2005094535A JP 2005094535 A JP2005094535 A JP 2005094535A JP 2006276394 A JP2006276394 A JP 2006276394A
Authority
JP
Japan
Prior art keywords
image forming
forming apparatus
unit
recording medium
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005094535A
Other languages
Japanese (ja)
Inventor
Masaru Nishimura
賢 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005094535A priority Critical patent/JP2006276394A/en
Publication of JP2006276394A publication Critical patent/JP2006276394A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Color Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inline multicolor image forming apparatus of a low cost type that has no paper conveying belts, which is designed to achieve a reduction in time needed for color shift detection control and a reduction in the cost of a color shift detection sensor by exerting color shift correction control without printing a color shift detection pattern onto a recording material and by detecting a change in distance with time in a color shift causing area in the image forming apparatus, thereby providing an image with feedback. <P>SOLUTION: The multicolor image forming apparatus of an electrophotographic system includes: a plurality of photoreceptors; latent image forming means for forming electrostatic latent images on the photoreceptors; developing means for developing the electrostatic images into toner images; a conveying means for conveying a recording medium; a transfer means for transferring the toner images to the recording medium; and fixing means for fixing the toner images to the recording medium. The image forming apparatus is characterized by having a position detecting means for detecting the relative positions of the plurality of photoreceptors, an information processing means for converting an output from the distance measuring means into a physical quantity, and a means for correcting an image forming position according to the calculated physical quantity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、カラープリンタ・カラー複写機等の、特に、複数の画像形成部を有する電子写真方式の多色画像形成装置に関するものである。   The present invention relates to an electrophotographic multicolor image forming apparatus having a plurality of image forming units, such as a color printer and a color copying machine.

電子写真方式のカラー画像形成装置においては、高速化のために複数の画像形成部を有し、搬送ベルト上に保持された記録材上に順次異なる色の像を転写する方式が各種提案されている。   Various types of electrophotographic color image forming apparatuses have been proposed which have a plurality of image forming units for speeding up and sequentially transfer images of different colors onto a recording material held on a conveying belt. Yes.

ところで、上記のような複数の画像形成部を有する装置の問題点としては、機械精度等の原因により、複数の感光ドラムや搬送ベルトの移動むらや、各画像形成部の転写位置での感光ドラム外周面と搬送ベルトの移動量の関係等が各色毎にバラバラに発生し、画像を重ね合わせたときに一致せず、色ずれを生じることが挙げられる。特に、レーザスキャナと感光ドラムを有する複数の画像形成部を有する装置では、各画像形成部でレーザスキャナと感光ドラム間の距離に誤差があり、この誤差が各画像形成部間で異なると、感光ドラム上でのレーザの走査幅に違いが発生し、色ずれが発生する。   By the way, as a problem of the apparatus having the plurality of image forming units as described above, due to mechanical accuracy and the like, the movement of the plurality of photosensitive drums and the conveyor belt, and the photosensitive drum at the transfer position of each image forming unit are included. For example, the relationship between the movement amount of the outer peripheral surface and the conveyance belt is different for each color and does not match when the images are superimposed, resulting in color misregistration. In particular, in an apparatus having a plurality of image forming units having a laser scanner and a photosensitive drum, there is an error in the distance between the laser scanner and the photosensitive drum in each image forming unit. A difference occurs in the scanning width of the laser on the drum, and color misregistration occurs.

色ずれの例を図2に示す。22は本来の画像位置を、21は色ずれが発生している場合の画像位置を示す。又、(a)(b)(c)は主走査方向に色ずれがある場合であるが、説明の為、2つの線を搬送方向に離して描いてある。(a)は主走査線の傾きずれを示し、光学部と感光ドラム間に傾きがある場合等に発生する。例えば、光学部や感光ドラムの位置や、レンズの位置を調整することによって矢印方向に修正する。(b)は主走査線幅のバラツキによる色ずれを示し、光学部と感光ドラム間の距離の違い等によって発生する。光学部がレーザスキャナの場合に発生し易い。例えば、画像周波数を微調整(走査幅が長い場合は、周波数を速くする。)して、走査線の長さ変えることよって矢印方向に修正する。(c)は主走査方向の書出し位置誤差を示す。例えば、光学部がレーザススキャナであれば、ビーム検出位置からの書出しタイミングを調整することによって矢印方向に修正する。(d)は用紙搬送方向の書出し位置誤差を示す。例えば、用紙先端検出からの各色の書出しタイミングを調整することによって矢印方向に修正する。   An example of color misregistration is shown in FIG. 22 indicates the original image position, and 21 indicates the image position when color misregistration occurs. Also, (a), (b), and (c) are cases where there is a color shift in the main scanning direction, but for the sake of explanation, two lines are drawn apart in the transport direction. (A) shows an inclination shift of the main scanning line, and occurs when there is an inclination between the optical unit and the photosensitive drum. For example, the position is corrected in the direction of the arrow by adjusting the position of the optical unit or the photosensitive drum or the position of the lens. (B) shows color misregistration due to variations in the main scanning line width, which occurs due to a difference in the distance between the optical unit and the photosensitive drum. It tends to occur when the optical unit is a laser scanner. For example, the image frequency is finely adjusted (if the scanning width is long, the frequency is increased) and the length of the scanning line is changed to correct in the arrow direction. (C) shows a writing position error in the main scanning direction. For example, if the optical unit is a laser scanner, it is corrected in the direction of the arrow by adjusting the writing start timing from the beam detection position. (D) shows the writing position error in the paper transport direction. For example, the correction is made in the direction of the arrow by adjusting the writing start timing of each color from the detection of the leading edge of the paper.

これら色ずれを修正する為に、搬送ベルト上に、各色毎に色ずれ検出用のパターンを形成し、搬送ベルト下流部の両サイドに設けられた1対の光センサで検出し、検出したずれ量に応じて、前記の様な各種調整を実施している。   In order to correct these color misregistrations, a color misregistration detection pattern is formed for each color on the conveyance belt, and detected by a pair of photosensors provided on both sides of the conveyance belt downstream portion. Various adjustments as described above are performed according to the amount.

図3に色ずれ検出パターン例を示す。33と34は用紙搬送方向の色ずれ量を検出する為のパターン、35と36は用紙搬送方向と直交する主走査方向の色ずれ量を検出する為のパターンでこの例では45度の傾きで、a〜dは各々ブラック(以下Bk)、イエロー(以下Y)、マゼンタ(以下M)、シアン(以下C)を示す。tsf1〜4、tmf1〜4、tsr1〜4、tmr1〜4、は各パターンの検出タイミングを、矢印は搬送ベルト31の移動方向を示す。搬送ベルト31の移動速度をvmm/s、Bkを基準色とし、用紙搬送方向用パターンの各色とBkパターン間の理論距離をdsYmm、dsMmm、dsCmm、各色の用紙搬送方向用パターンと主走査方向用パタ―ン間の実測距離を、左右各々、dmfBkmm、dmfYmm、dmfMmm、dmfCmm、dmrBkmm、dmrYmm、dmrMmm、dmrCmmとする。Bkを基準色とし、搬送方向に関して、各色の位置ずれ量δesは、
δesY=v*{(tsf2−tsf1)+(tsr2−tsr1)}/2−dsY [式1]
δesM=v*{(tsf3−tsf1)+(tsr3−tsr1)}/2−dsM [式2]
δesC=v*{(tsf4−tsf1)+(tsr4−tsr1)}/2−dsC [式3]
となる。主走査方向に関して、左右各々の各色の位置ずれ量δemf、δemrは、
dmfBk=v*(tmf1−tsf1) [式4]
dmfY =v*(tmf2−tsf2) [式5]
dmfM =v*(tmf3−tsf3) [式6]
dmfC =v*(tmf4−tsf4) [式7]

dmrBk=v*(tmr1−tsr1) [式8]
dmrY =v*(tmr2−tsr2) [式9]
dmrM =v*(tmr3−tsr3) [式10]
dmrC =v*(tmr4−tsr4) [式11]
から、
δemfY=dmfY−dmfBk [式11]
δemfM=dmfM−dmfBk [式12]
δemfC=dmfC−dmfBk [式13]

δemrY=dmrY−dmrBk [式14]
δemrM=dmrM−dmrBk [式15]
δemrC=dmrC−dmrBk [式16]
となり、計算結果の正負からずれ方向が判断出来、δemfから書出し位置を、δemr−δemfから主走査幅を補正する。なお、主走査幅に誤差がある場合は、書出し位置はδemfのみでなく、主走査幅補正に伴い変化した画像周波数の変化量を加味して算出する。
FIG. 3 shows an example of a color misregistration detection pattern. Reference numerals 33 and 34 are patterns for detecting a color misregistration amount in the paper conveyance direction, and 35 and 36 are patterns for detecting a color misregistration amount in the main scanning direction orthogonal to the paper conveyance direction. In this example, the inclination is 45 degrees. , A to d represent black (hereinafter Bk), yellow (hereinafter Y), magenta (M) and cyan (C). Reference numerals tsf1 to 4, tmf1 to 4, tsr1 to 4, and tmr1 to 4 indicate detection timings of the respective patterns, and arrows indicate the moving direction of the conveyor belt 31. The moving speed of the conveyance belt 31 is vmm / s, Bk is a reference color, the theoretical distance between each color of the paper conveyance direction pattern and the Bk pattern is dsYmm, dsMmm, dsCmm, the pattern for the conveyance direction of each color and the main scanning direction. The measured distances between the patterns are dmfBkmm, dmfYmm, dmfMmm, dmfCmm, dmrBkmm, dmrYmm, dmrMmm, and dmrCmm, respectively. With Bk as a reference color, the positional deviation amount δes of each color in the transport direction is
δesY = v * {(tsf2−tsf1) + (tsr2−tsr1)} / 2−dsY [Formula 1]
δesM = v * {(tsf3−tsf1) + (tsr3−tsr1)} / 2−dsM [Formula 2]
δesC = v * {(tsf4-tsf1) + (tsr4-tsr1)} / 2-dsC [Formula 3]
It becomes. With respect to the main scanning direction, the positional deviation amounts δemf and δemr for each of the left and right colors are
dmfBk = v * (tmf1-tsf1) [Formula 4]
dmfY = v * (tmf2-tsf2) [Formula 5]
dmfM = v * (tmf3-tsf3) [Formula 6]
dmfC = v * (tmf4-tsf4) [Formula 7]
And dmrBk = v * (tmr1-tsr1) [Formula 8]
dmrY = v * (tmr2-tsr2) [Formula 9]
dmrM = v * (tmr3-tsr3) [Formula 10]
dmrC = v * (tmr4-tsr4) [Formula 11]
From
δemfY = dmfY−dmfBk [Formula 11]
δemfM = dmfM−dmfBk [Formula 12]
δemfC = dmfC−dmfBk [Formula 13]
And δemrY = dmrY−dmrBk [Formula 14]
δemrM = dmrM−dmrBk [Formula 15]
δemrC = dmrC−dmrBk [Formula 16]
Thus, the direction of deviation can be determined from the sign of the calculation result, the writing position is corrected from δemf, and the main scanning width is corrected from δemr-δemf. If there is an error in the main scanning width, the writing position is calculated not only by δemf but also by taking into account the amount of change in the image frequency that has changed with the main scanning width correction.

図4は、色ずれ検出手段を説明する図である。41は発光素子で、例えばLEDである。52は受光素子で、例えば、フォトセンサである。31は搬送ベルトで、33、34、35、36は色ずれ検出用のパターンである。43は発光素子41からの発光光で、44は搬送ベルト31又は、色ずれ検出パターン、33、34、35、36からの反射光の内、受光素子42にて受光される受光光である。発光部と受光部は搬送ベルト31を反射面として、正反射光学系で構成されていて、搬送ベルト31と色ずれ検出パターンの正反射光反射率の差、即ち、グロスの差によって、色ずれ検出パターンの位置を検出する。   FIG. 4 is a diagram for explaining the color misregistration detection means. 41 is a light emitting element, for example, LED. A light receiving element 52 is, for example, a photosensor. Reference numeral 31 denotes a conveyor belt, and 33, 34, 35, and 36 are patterns for color misregistration detection. 43 is light emitted from the light emitting element 41, and 44 is light received by the light receiving element 42 out of reflected light from the conveyor belt 31 or the color misregistration detection pattern 33, 34, 35, 36. The light emitting unit and the light receiving unit are configured by a regular reflection optical system with the conveyance belt 31 as a reflection surface, and color misregistration is caused by a difference in specular reflection reflectance between the conveyance belt 31 and the color misregistration detection pattern, that is, a difference in gloss The position of the detection pattern is detected.

図5は、図4における検出手段の受光部の回路構成を示す。受光素子42で検出した色ずれ検出パターンは電流から電圧に変換(I/V変換)され、比較部で基準電圧と比較され、信号レベルが基準電圧より低い期間、正のパルスが出力される。CPUで、各々のパルスの中心位置を求め、さらに、各中心位置の時間差を求める。求めた時間差と予め設定してある時間差の値の差から、色ずれ量を算出する。
特開2001−312116号公報
FIG. 5 shows a circuit configuration of the light receiving portion of the detecting means in FIG. The color misregistration detection pattern detected by the light receiving element 42 is converted from current to voltage (I / V conversion), compared with the reference voltage by the comparison unit, and a positive pulse is output during a period when the signal level is lower than the reference voltage. The CPU obtains the center position of each pulse, and further obtains the time difference between the center positions. The amount of color misregistration is calculated from the difference between the obtained time difference and a preset time difference value.
JP 2001-312116 A

しかしながら、電子写真方式のカラー画像形成装置においては、コストダウンの為に搬送ベルトを省略したモデルが登場してきている。このようなモデルにおいて、従来通りの色ずれ検出を行うには、搬送ベルトの代替として記録材上に色ずれ検知パターンを作成することになる。その場合には、いくつかの問題点が発生する。   However, in an electrophotographic color image forming apparatus, a model in which a conveyance belt is omitted has been introduced for cost reduction. In such a model, in order to perform conventional color misregistration detection, a color misregistration detection pattern is created on the recording material as an alternative to the conveyor belt. In that case, several problems occur.

まず第1に、色ずれ制御処理を行う毎に記録材を消費してしまうことが挙げられる。ユーザにとっては無意味な色ずれ検出パターンが印字された記録材が色ずれ検出処理を行う毎に生成される。これは記録材のランニングコスト悪化を招くとともに、ユーザの心証にも悪影響を及ぼしてしまうであろうことは容易に想像出来る。   First, the recording material is consumed every time the color misregistration control process is performed. A recording material on which a color misregistration detection pattern that is meaningless to the user is printed is generated each time color misregistration detection processing is performed. It can be easily imagined that this will deteriorate the running cost of the recording material and will also have an adverse effect on the user's mind.

そして第2に、記録材上に転写されたトナー画像(色ずれ検出パターン)を読みとるには、従来よりも高精度な色ずれ検出センサが必要となることである。従来の色ずれ検出センサは、表面グロスを管理された搬送ベルトとトナー画像のグロス差を検知するものであり、必要とされる検知性能が明確にされていた。よって要求される検知性能に対して、最低限のコストで色ずれ検知センサを構成することが容易であった。しかし、ユーザが使用する記録材は様々な種類があり、その表面色や表面グロスも千差万別である。記録材が特定出来ない以上は、最悪のケースを考慮する必要がある。ユーザの使用する記録材とトナーの光学特性が似通った状態でも色ずれパターンを検知可能とするには、必然的に色ずれ検知センサの検知能力に高い精度が要求されることになり、高コスト化を招くことになる。   Second, in order to read the toner image (color misregistration detection pattern) transferred onto the recording material, a color misregistration detection sensor with higher accuracy than before is required. A conventional color misregistration detection sensor detects a gloss difference between a conveyance belt whose surface gloss is controlled and a toner image, and a required detection performance has been clarified. Therefore, it is easy to configure a color misregistration detection sensor at a minimum cost for the required detection performance. However, there are various types of recording materials used by the user, and the surface color and surface gloss are various. As long as the recording material cannot be specified, it is necessary to consider the worst case. In order to be able to detect a color misregistration pattern even when the recording material used by the user and the toner have similar optical characteristics, the detection capability of the color misregistration detection sensor is inevitably required, resulting in a high cost. Will lead to a change.

本発明は上述の点に鑑みてなされたもので、その目的は、従来とは異なる色ずれ検出手法を提供することにより、上記問題点の解消、及び、画像形成装置のコストを抑えることをその課題としている。   The present invention has been made in view of the above-described points, and its object is to provide a color misregistration detection method that is different from the conventional one, thereby eliminating the above-mentioned problems and suppressing the cost of the image forming apparatus. It is an issue.

以上の課題を解決する為に、本発明は、エンジン内部の色ずれ発生要因となる箇所に測距センサを配置して、リアルタイムに距離変動を察知して画像にフィードバックする。即ち、印字した画像の色ずれ状態を検知するのではなく、色ずれを発生させる要因の変動を検知することを特徴とする。   In order to solve the above problems, the present invention arranges a distance measuring sensor at a location that causes a color misregistration inside the engine, detects a change in distance in real time, and feeds it back to an image. That is, the present invention is characterized in that, instead of detecting the color misregistration state of the printed image, the variation of the factor causing the color misregistration is detected.

なお、さらに説明すれば、本発明は下記の構成によって前記課題を解決できた。   Furthermore, if further explained, the present invention has solved the above-mentioned problems with the following configuration.

(1)複数の感光体と、前記感光体上に静電潜像を形成する潜像形成手段と、静電画像を現像してトナー像とする現像手段と、記録媒体を搬送する搬送手段と、記録媒体にトナー像を転写する転写手段と、記録媒体にトナー像を固定する定着手段を有する電子写真方式の多色画像形成装置において、
複数の感光体の相対位置を検知する位置検知手段を有し、
前記位置検知手段からの出力を物理量に変換する情報処理手段を有し、
算出した前記物理量に応じて画像形成位置を補正する手段を有する事を特徴とする多色画像形成装置。
(1) A plurality of photosensitive members, a latent image forming unit that forms an electrostatic latent image on the photosensitive member, a developing unit that develops the electrostatic image into a toner image, and a conveying unit that conveys a recording medium In an electrophotographic multicolor image forming apparatus having transfer means for transferring a toner image to a recording medium and fixing means for fixing the toner image to the recording medium,
Having position detecting means for detecting the relative positions of a plurality of photoconductors;
Information processing means for converting the output from the position detection means into a physical quantity;
A multi-color image forming apparatus comprising means for correcting an image forming position in accordance with the calculated physical quantity.

以上説明したように、本発明の構成を採用することで、記録材を無駄にすることなく省資源に貢献出来る。さらには、テストパターンを印字して色ずれ量を確認するといった従来の色ずれ補正制御を行う必要が無くなり、電源投入からファーストプリントまでの待ち時間が短縮される。   As described above, by adopting the configuration of the present invention, it is possible to contribute to resource saving without wasting the recording material. Furthermore, it is not necessary to perform conventional color misregistration correction control such as printing a test pattern and confirming the color misregistration amount, and the waiting time from power-on to first printing is shortened.

以下、本発明の実施例を添付図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明の実施例に係る画像形成装置の全体を説明する図である。この例では、感光体1a〜1d、レーザスキャナユニット2a〜2d、現像器3a〜3d、転写部4a〜4d、定着器5、記録紙カセット6を備えている。   FIG. 1 is a diagram illustrating the entire image forming apparatus according to an embodiment of the present invention. In this example, photoconductors 1a to 1d, laser scanner units 2a to 2d, developing devices 3a to 3d, transfer units 4a to 4d, a fixing device 5 and a recording paper cassette 6 are provided.

感光体1a〜1d、レーザスキャナユニット2a〜2d、現像器3a〜3dはそれぞれ順にイエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(Bk)に対応しており、コントローラからの画像データに従い、スキャナユニット2a〜2dが感光ドラム1a〜1d上に走査を行い静電画像を形成し、現像機3a〜3dに収容されたトナーにより可視化・現像される。各感光ドラム上に形成された画像を、搬送されてきた記録紙に各転写部4a〜4dにて重畳転写する。その後記録紙は定着器5に搬送され、定着器は熱でトナーを融解したのちに加圧ローラで融解したトナーを記録紙に完全に定着させる。   The photoreceptors 1a to 1d, the laser scanner units 2a to 2d, and the developing units 3a to 3d correspond to yellow (Y), magenta (M), cyan (C), and black (Bk), respectively, and images from the controller. In accordance with the data, the scanner units 2a to 2d scan the photosensitive drums 1a to 1d to form electrostatic images, which are visualized and developed with toner stored in the developing machines 3a to 3d. The images formed on the respective photosensitive drums are superimposed and transferred onto the conveyed recording paper by the respective transfer units 4a to 4d. Thereafter, the recording paper is conveyed to the fixing device 5, and after the toner is melted by heat, the toner melted by the pressure roller is completely fixed on the recording paper.

図6は本実施例における測距センサ7a〜7cの本体内での配置図である。現像機3a〜3cに測距センサを設置して、隣り合う現像機との距離を測定する。隣り合う現像機との距離は副走査方向の書き出し位置に影響を与える。即ち、この構成により副走査方向の色ずれ補正が可能となる。   FIG. 6 is a layout view of the distance measuring sensors 7a to 7c in the present embodiment. A distance measuring sensor is installed in each of the developing machines 3a to 3c to measure a distance from an adjacent developing machine. The distance between adjacent developing machines affects the writing position in the sub-scanning direction. In other words, this configuration enables color misregistration correction in the sub-scanning direction.

図7は本実施例における測距センサの構成を示す図である。71は発光素子で、例えばLEDである。72は受光素子で、例えばPSDである。レンズ73によって測定物からの反射光はPSD72上に集光されるが、その集光された反射光の重心位置は測定対象物までの距離に対応して変化する。従ってPSD72からの出力信号を処理することで、測定対象物との距離を検知することが可能となる。   FIG. 7 is a diagram showing the configuration of the distance measuring sensor in the present embodiment. Reference numeral 71 denotes a light emitting element, for example, an LED. A light receiving element 72 is, for example, a PSD. The reflected light from the object to be measured is collected on the PSD 72 by the lens 73, and the position of the center of gravity of the collected reflected light changes corresponding to the distance to the object to be measured. Therefore, by processing the output signal from the PSD 72, it is possible to detect the distance to the measurement object.

図8にPSD72からの出力信号とその位置情報の関係図を示す。PSD72からの出力をI1、I2として、PSD72の全長をL、PSD72中央から反射光重心までの距離をxとすると以下の式が成り立つ。
(I1−I2)/(I1+I2)=2x/L
上述の式を電子回路のブロック図で表現すると図9になる。CPU96は除算回路95の出力電圧をA/D変換することで測距情報を得ることが出来る。CPU96のA/D変換ポートに余裕があるならばI/V変換回路91/92の出力をA/D変換して、CPU96内で演算しても構わない。
FIG. 8 shows the relationship between the output signal from the PSD 72 and its position information. When the output from the PSD 72 is I1 and I2, the total length of the PSD 72 is L, and the distance from the center of the PSD 72 to the center of reflected light is x, the following equation is established.
(I1-I2) / (I1 + I2) = 2x / L
The above formula is expressed by a block diagram of an electronic circuit as shown in FIG. The CPU 96 can obtain distance measurement information by A / D converting the output voltage of the division circuit 95. If there is a margin in the A / D conversion port of the CPU 96, the output of the I / V conversion circuit 91/92 may be A / D converted and calculated in the CPU 96.

図10に本実施例におけるシーケンス図を示す。処理が始めると、まず測距センサを用いて現像機間の距離の測定を行う(S101)。このときの測定値が正常か否かの確認を行う(S102)。正常であれば補正値の演算に進む。異常値であれば、測定エラーをユーザに報告して処理を終了する(S103)。補正値の演算は以下の式を用いる。現像機間の理論距離をdYM、dMC、dCBk、実測値をdmYM、dmMC、dmCBk、Bkを基準色とし、各色の補正値をδesY、δesM、δesC、とすると、補正式は、
δesY=(dYM+dMC+dCBk)−(dmYM+dmMC+dmCBk) [式17]
δesM=(dMC+dCBk)−(dmMC+dmCBk) [式18]
δesC=(dCBk)−(dmCBk) 式[19]
となる(S104)。このとき、演算した値が適切な範囲にあるか判定する(S105)。異常な値であれば、ユーザに演算エラー報告を行い処理を終了する(S106)。正常な値であれば、補正値を用いて副走査方向書き出し位置を変更する(S107)。
FIG. 10 shows a sequence diagram in the present embodiment. When processing is started, first, the distance between the developing machines is measured using a distance measuring sensor (S101). It is confirmed whether or not the measurement value at this time is normal (S102). If normal, the process proceeds to the calculation of the correction value. If it is an abnormal value, a measurement error is reported to the user and the process is terminated (S103). The calculation of the correction value uses the following formula. When the theoretical distance between the developing machines is dYM, dMC, dCBk, the actually measured values are dmYM, dmMC, dmCBk, Bk as reference colors, and the correction values for each color are δesY, δesM, δesC, the correction formula is
δesY = (dYM + dMC + dCBk) − (dmYM + dmCMC + dmCBk) [Equation 17]
δesM = (dMC + dCBk) − (dmCMC + dmCBk) [Formula 18]
δesC = (dCBk) − (dmCBk) Equation [19]
(S104). At this time, it is determined whether the calculated value is in an appropriate range (S105). If the value is abnormal, a calculation error report is sent to the user and the process is terminated (S106). If the value is normal, the correction value is used to change the writing position in the sub-scanning direction (S107).

第1の実施例と重複する箇所の説明は、同一記号を付し説明を省略する。   The description of the same part as in the first embodiment is given the same symbol and the description is omitted.

図11は本実施例における測距センサの本体内での配置図である。本体フレームに測距センサ7a〜7dを設置して、隣り合う現像機3a〜3dとの距離を測定する。これにより、本体内での現像機3a〜3dの取付位置が判明する。あとは、各現像機間の相対距離を算出することで、実施例1と同様のシーケンスにて補正制御が可能となる。   FIG. 11 is a layout view of the distance measuring sensor in the main body in the present embodiment. Distance sensors 7a to 7d are installed on the main body frame, and the distances between the adjacent developing machines 3a to 3d are measured. Thereby, the mounting positions of the developing machines 3a to 3d in the main body are determined. After that, by calculating the relative distance between the developing machines, correction control can be performed in the same sequence as in the first embodiment.

本実施例の構成のメリットは、現像機に測距センサを搭載する必要が無いため、交換部品である現像機のコストダウンを図れることにある。   The merit of the configuration of the present embodiment is that it is not necessary to mount a distance measuring sensor on the developing machine, so that the cost of the developing machine as a replacement part can be reduced.

その他、測距センサの構成や距離の測定方法等は第1の実施例と同様である。   In addition, the configuration of the distance measurement sensor, the distance measurement method, and the like are the same as in the first embodiment.

第1及び第2の実施例と重複する箇所の説明は、同一記号を付し説明を省略する。   The description of the same parts as those in the first and second embodiments will be given the same symbols, and the description thereof will be omitted.

図12は本発明の実施例に係る画像形成装置の全体を説明する図である。この例では、感光体1a〜1d、レーザスキャナユニット2a〜2d、現像器3a〜3d、転写部4a〜4d、定着器5、記録紙カセット6、測距センサ7a〜7d、レーザ光折り返しミラー8a〜8dを備えている。   FIG. 12 is a diagram illustrating the entire image forming apparatus according to the embodiment of the present invention. In this example, the photosensitive members 1a to 1d, laser scanner units 2a to 2d, developing units 3a to 3d, transfer units 4a to 4d, fixing unit 5, recording paper cassette 6, distance measuring sensors 7a to 7d, laser beam folding mirror 8a. To 8d.

感光体1a〜1dとレーザスキャナユニット2a〜2d間にレーザ光折り返しミラー8a〜8dを配置することで、レーザスキャナユニット2a〜2dの配置場所に柔軟性を持たせることが可能である。しかしながら、この場合はレーザ光折り返しミラー8a〜8dの設置精度が問題となってくる。また、本体内の昇温によるレーザ光折り返しミラー8a〜8dの位置変動も画像に悪影響を与える要因となる。   By arranging the laser beam folding mirrors 8a to 8d between the photoconductors 1a to 1d and the laser scanner units 2a to 2d, it is possible to give flexibility to the arrangement locations of the laser scanner units 2a to 2d. However, in this case, the installation accuracy of the laser beam folding mirrors 8a to 8d becomes a problem. In addition, the position fluctuations of the laser beam folding mirrors 8a to 8d due to the temperature rise in the main body also cause a bad influence on the image.

そこで、レーザ光折り返しミラー8a〜8dの位置変動を把握する為に、本体フレームに測距センサ7a〜7dを設置して、レーザ光折り返しミラー8a〜8dとの距離を測定する。レーザ光折り返しミラー8a〜8dの位置変動が把握出来れば感光体1a〜1dへのレーザ照射位置が推測出来るので、実施例1と同様のシーケンスにて補正制御が可能となる。   Therefore, in order to grasp the positional fluctuation of the laser beam folding mirrors 8a to 8d, distance measuring sensors 7a to 7d are installed on the main body frame, and the distances from the laser beam folding mirrors 8a to 8d are measured. If the position fluctuations of the laser beam folding mirrors 8a to 8d can be grasped, the laser irradiation positions on the photoconductors 1a to 1d can be estimated. Therefore, correction control can be performed in the same sequence as in the first embodiment.

その他センサの構成や距離の測定方法等は第1の実施例と同様である。   Other sensor configurations and distance measurement methods are the same as in the first embodiment.

第1実施例の多色画像形成装置の構成図。1 is a configuration diagram of a multicolor image forming apparatus according to a first embodiment. FIG. 多色画像形成装置で発生する色ずれの説明図。FIG. 3 is an explanatory diagram of color misregistration that occurs in a multicolor image forming apparatus. 従来例の色ずれ検出パターンの説明図。Explanatory drawing of the color shift detection pattern of a prior art example. 従来例の色ずれ検出手段の構成図。The block diagram of the color shift detection means of a prior art example. 従来例の色ずれ検出手段の受光部回路のブロック図。The block diagram of the light-receiving part circuit of the color shift detection means of a prior art example. 第1実施例の画像形成装置内における測距センサの配置図。FIG. 3 is a layout diagram of distance measuring sensors in the image forming apparatus according to the first embodiment. 第1〜3実施例の測距センサの構成図。The block diagram of the ranging sensor of the 1st-3rd Example. 第1〜3実施例の測距センサの受光部の説明図。Explanatory drawing of the light-receiving part of the ranging sensor of the 1st-3rd Example. 第1〜3実施例の測距センサの受光部回路のブロック図。The block diagram of the light-receiving part circuit of the ranging sensor of 1st-3rd Example. 第1実施例の色ずれ補正制御のフローチャート図。FIG. 3 is a flowchart of color misregistration correction control according to the first embodiment. 第2実施例の画像形成装置内における測距センサの配置図。FIG. 6 is a layout diagram of distance measuring sensors in the image forming apparatus according to the second embodiment. 第3実施例の画像形成装置内における測距センサの配置図。FIG. 10 is a layout diagram of distance measuring sensors in the image forming apparatus according to the third embodiment.

符号の説明Explanation of symbols

1 感光ドラム
2 スキャナユニット
3 現像器
4 転写部
5 定着器
6 記録紙カセット
7 測距センサ
8 折り返しミラー
71 測距センサLED
72 測距センサPSD
73 測距センサレンズ
91 I/V変換回路
93 減算回路
94 加算回路
95 除算回路
96 CPU
DESCRIPTION OF SYMBOLS 1 Photosensitive drum 2 Scanner unit 3 Developing device 4 Transfer part 5 Fixing device 6 Recording paper cassette 7 Distance sensor 8 Folding mirror 71 Distance sensor LED
72 Ranging sensor PSD
73 Distance sensor lens 91 I / V conversion circuit 93 Subtraction circuit 94 Addition circuit 95 Division circuit 96 CPU

Claims (7)

複数の感光体と、前記感光体上に静電潜像を形成する潜像形成手段と、静電画像を現像してトナー像とする現像手段と、記録媒体を搬送する搬送手段と、記録媒体にトナー像を転写する転写手段と、記録媒体にトナー像を固定する定着手段を有する電子写真方式の多色画像形成装置において、
複数の感光体の相対位置を検知する位置検知手段を有し、
前記位置検知手段からの出力を物理量に変換する情報処理手段を有し、
算出した前記物理量に応じて画像形成位置を補正する手段を有する事を特徴とする多色画像形成装置。
A plurality of photosensitive members, a latent image forming unit that forms an electrostatic latent image on the photosensitive member, a developing unit that develops the electrostatic image into a toner image, a conveying unit that conveys a recording medium, and a recording medium In an electrophotographic multicolor image forming apparatus having a transfer means for transferring a toner image to a recording medium and a fixing means for fixing the toner image to a recording medium.
Having position detecting means for detecting the relative positions of a plurality of photoconductors;
Information processing means for converting the output from the position detection means into a physical quantity;
A multi-color image forming apparatus comprising means for correcting an image forming position in accordance with the calculated physical quantity.
前記位置検知手段は、発光素子と位置検出素子から構成されることを特徴とする請求項1に記載の多色画像形成装置。   The multicolor image forming apparatus according to claim 1, wherein the position detection unit includes a light emitting element and a position detection element. 前記発光素子はLEDであることを特徴とする請求項2に記載の多色画像形成装置。   The multicolor image forming apparatus according to claim 2, wherein the light emitting element is an LED. 前記位置検出素子はPSDであることを特徴とする請求項2に記載の多色画像形成装置。   The multicolor image forming apparatus according to claim 2, wherein the position detection element is a PSD. 各色それぞれの前記感光体と前記現像手段が一体となったカートリッジ方式であり、前記位置検知手段は前記カートリッジに内蔵されていて、隣接するカートリッジとの距離を測定することを特徴とする請求項1に記載の多色画像形成装置。   2. The cartridge system in which the photosensitive member and the developing unit for each color are integrated, and the position detecting unit is built in the cartridge and measures a distance from an adjacent cartridge. 2. A multicolor image forming apparatus according to 1. 前記位置検知手段は本体フレームに設置されており、前記カートリッジが本体に挿入される際に取付位置を特定可能であることを特徴とする請求項1に記載の多色画像形成装置。   The multicolor image forming apparatus according to claim 1, wherein the position detecting unit is installed in a main body frame, and an attachment position can be specified when the cartridge is inserted into the main body. 前記潜像形成手段はレーザスキャナユニットであり、潜像形成手段と感光体間のレーザ光路中に折り返しミラーが配置されている請求項1に記載の多色画像形成装置において、
前記位置検知手段は本体フレームに設置されており、
前記折り返しミラーの位置を測定して、前記測距手段からの出力を物理量に変換する情報処理手段を有し、
算出した前記物理量に応じて画像形成位置を補正する手段を有する事を特徴とする多色画像形成装置。
2. The multicolor image forming apparatus according to claim 1, wherein the latent image forming unit is a laser scanner unit, and a folding mirror is disposed in a laser light path between the latent image forming unit and the photosensitive member.
The position detection means is installed in the main body frame,
Information processing means for measuring the position of the folding mirror and converting the output from the distance measuring means into a physical quantity;
A multi-color image forming apparatus comprising means for correcting an image forming position in accordance with the calculated physical quantity.
JP2005094535A 2005-03-29 2005-03-29 Multicolor image forming apparatus Withdrawn JP2006276394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005094535A JP2006276394A (en) 2005-03-29 2005-03-29 Multicolor image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005094535A JP2006276394A (en) 2005-03-29 2005-03-29 Multicolor image forming apparatus

Publications (1)

Publication Number Publication Date
JP2006276394A true JP2006276394A (en) 2006-10-12

Family

ID=37211232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005094535A Withdrawn JP2006276394A (en) 2005-03-29 2005-03-29 Multicolor image forming apparatus

Country Status (1)

Country Link
JP (1) JP2006276394A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014071421A (en) * 2012-10-01 2014-04-21 Canon Inc Image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014071421A (en) * 2012-10-01 2014-04-21 Canon Inc Image forming apparatus

Similar Documents

Publication Publication Date Title
JP5332990B2 (en) Image forming apparatus
JP2006187993A (en) Light quantity adjusting device, color shift amount detecting device, and image forming device
JP2007102189A (en) Color shift correcting apparatus and method, image forming apparatus, color shift correcting program and recording medium
JP4737336B2 (en) Image forming apparatus
JP2006171352A (en) Color image forming apparatus
JP2007086439A (en) Color image forming apparatus
JP4877371B2 (en) Image forming apparatus
US7660542B2 (en) Image forming method and image forming apparatus for forming an image on a surface of a transfer member
US7773897B2 (en) Image forming apparatus and control method thereof
JP2004069801A (en) Color image forming apparatus
JP2006215451A (en) Color image forming apparatus
JP4835706B2 (en) Image forming apparatus
JP4770624B2 (en) Color image forming apparatus
JP2006201624A (en) Image forming apparatus
JP4622355B2 (en) Image forming apparatus and control method thereof
JP6705229B2 (en) Image forming apparatus, positional deviation correction method and program
JP2008209659A (en) Image forming device and control method
JP2003066677A (en) Color image forming device, image correction control method and storage medium
JP2006276394A (en) Multicolor image forming apparatus
US8150302B2 (en) Image forming apparatus and image forming method that detects an amount of color misalignment using reflected light
JP2016095390A (en) Image forming apparatus
JP2006227474A (en) Color image forming apparatus
JP4164059B2 (en) Image forming apparatus
JP2012027136A (en) Image forming device
JP2005309310A (en) Color image forming apparatus

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603