JP2006275710A - Concentration measuring device - Google Patents

Concentration measuring device Download PDF

Info

Publication number
JP2006275710A
JP2006275710A JP2005094088A JP2005094088A JP2006275710A JP 2006275710 A JP2006275710 A JP 2006275710A JP 2005094088 A JP2005094088 A JP 2005094088A JP 2005094088 A JP2005094088 A JP 2005094088A JP 2006275710 A JP2006275710 A JP 2006275710A
Authority
JP
Japan
Prior art keywords
concentration
measurement
chemical sensor
measuring
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005094088A
Other languages
Japanese (ja)
Inventor
Takakazu Yano
矢野  敬和
Masahiro Fukuda
福田  匡広
Yoshiharu Sugiura
美晴 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2005094088A priority Critical patent/JP2006275710A/en
Publication of JP2006275710A publication Critical patent/JP2006275710A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems wherein a measuring range of a chemical sensor which is one of concentration measuring means is insufficient, and extreme shortage of a contact time or dilution causes decline of measurement accuracy, and a measuring error is large, compared with the chemical sensor, in measurement by optical rotation. <P>SOLUTION: A measuring system is selected corresponding to a concentration range. A casing 17 holds the chemical sensor 15, and collected urine is circulated by a conductor 16 and brought into contact with the chemical sensor 15, and the result is transmitted to an overall control means 76 through a signal wire group 77. An optical system 72 determines an optical rotation component density inside a measuring container, and the result is transmitted to the overall control means 76 through a signal wire group 89. The overall control means 76 receives the result from a chemical sensor control means 11 through the signal wire group 77, receives the result from an optical control means 72 through the signal wire group 89, and adopts either of them. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は尿中に含まれる成分の測定、特にグルコース濃度を高精度に測定する技術に関するものである。   The present invention relates to a technique for measuring components contained in urine, particularly for measuring glucose concentration with high accuracy.

尿中の成分を測定することは健康を管理する上で有用なことはよく知られている。特に尿中グルコース濃度の測定は年々増え続ける糖尿病の指標となるので重要である。尿中のグルコース濃度、すなわち尿糖を判別する方法としては試験紙を用いた方法が一般的である。試験紙には通常、酵素を用いてはいるが、使い捨てのものであるため、特にメンテナンス等は必要でない。しかし、この方式は第一に尿に触れる可能性が大きいため不衛生的であり、また、一度紙コップなどで尿を採取してから試験紙を浸すなど、作業も面倒である。また、試験紙法自体が定性的に判断するものであるため、定量的な測定はできないという問題点も挙げられる。   It is well known that measuring components in urine is useful in managing health. In particular, measurement of urinary glucose concentration is important because it is an indicator of diabetes that is increasing year by year. As a method for discriminating the glucose concentration in urine, that is, urine sugar, a method using a test paper is generally used. Usually, an enzyme is used for the test paper, but since it is disposable, no maintenance or the like is required. However, this method is unsanitary because it has a high possibility of touching urine, and the work is troublesome, such as collecting urine once with a paper cup and then immersing the test paper. Moreover, since the test paper method itself is qualitatively judged, there is a problem that quantitative measurement cannot be performed.

代表的な定量的方法としてGOD(グルコースオキシダーゼ)法などの酵素を用いたケミカルセンサーが知られている。上記の方法は選択透過膜を塗布した電極上にGODを固着させた酵素膜を設ける構成となっている。尿に接触させると以下の反応が起こる。
C6H12O6→C6H10O6+H2O2・・・(1)
H2O2→H2O+1/2O2+e-・・・(2)
C6H12O6はグルコース、C6H10O6はグルコン酸
しかしながら、尿中酸素量が限られるので(1)の反応は所定の濃度で飽和する。このため、尿の希釈やセンサーの接触時間を制限する必要がある。
As a typical quantitative method, a chemical sensor using an enzyme such as GOD (glucose oxidase) method is known. In the above method, an enzyme membrane having GOD fixed thereon is provided on an electrode coated with a selectively permeable membrane. The following reactions occur when in contact with urine:
C6H12O6 → C6H10O6 + H2O2 (1)
H2O2 → H2O + 1 / 2O2 + e -... (2)
C6H12O6 is glucose and C6H10O6 is gluconic acid. However, since the amount of oxygen in urine is limited, the reaction (1) is saturated at a predetermined concentration. For this reason, it is necessary to limit urine dilution and sensor contact time.

図6は従来の発明による尿糖測定装置の模式図を示す。図中、筐体47はケミカルセンサー45を保持し、導管46に接続されている。導管46は採取した尿を通液させてケミカルセンサー45に接触させる。制御手段41は参照導線42、作用導線43および対極配線44の電気信号より尿糖の濃度を測定する。ケミカルセンサー45は上述のGOD法によるものである。測定時には導管46から所定時間尿が通液されて、ケミカルセンサー45に接触し、制御手段43により演算されて尿と尿糖濃度を測定した後、導管46から通液されて排出される。   FIG. 6 shows a schematic diagram of a urine sugar measuring apparatus according to the conventional invention. In the figure, a housing 47 holds a chemical sensor 45 and is connected to a conduit 46. The conduit 46 allows the collected urine to pass through and contact the chemical sensor 45. The control means 41 measures the concentration of urine sugar from the electrical signals of the reference conductor 42, the action conductor 43 and the counter electrode wiring 44. The chemical sensor 45 is based on the GOD method described above. At the time of measurement, urine is passed through the conduit 46 for a predetermined time, comes into contact with the chemical sensor 45, is calculated by the control means 43 and measures the urine and urine sugar concentration, and then passed through the conduit 46 and discharged.

図7は特許文献1に基づくケミカルセンサー45の接触時間を2秒とすることにより測定範囲を広める効果を表す。図中、横軸はグルコース濃度を示し縦軸はセンサーの出力(電流)を示す。相関曲線7は従来通りに尿に充分接触させた場合のグルコース濃度とセンサー出力の相関を示し、相関曲線8は2秒間のみ尿に接触させた場合のグルコース濃度とセンサー出力の相関を示す。相関曲線52はおよそ150mg/dl付近で平衡状態となり、それ以上の濃度での測定は困難となる。これに対して、相関曲線53は約800mg/dl付近まで良好な濃度依存性を示す。すなわち、接触時間を制限することによって測定範囲を広げることが出来る。   FIG. 7 shows the effect of widening the measurement range by setting the contact time of the chemical sensor 45 based on Patent Document 1 to 2 seconds. In the figure, the horizontal axis indicates the glucose concentration, and the vertical axis indicates the output (current) of the sensor. The correlation curve 7 shows the correlation between the glucose concentration and the sensor output when the urine is sufficiently contacted as usual, and the correlation curve 8 shows the correlation between the glucose concentration and the sensor output when the urine is contacted for only 2 seconds. The correlation curve 52 is in an equilibrium state in the vicinity of about 150 mg / dl, and measurement at a concentration higher than that becomes difficult. On the other hand, the correlation curve 53 shows a good concentration dependency up to about 800 mg / dl. That is, the measurement range can be expanded by limiting the contact time.

一方、光学的に尿糖の濃度を測定することもできる。旋光度を用いた光学的方式においては、直接試料に触れることなく測定することが可能であり、センサー部に汚れが付着することもないため、特に部品の交換や消耗品等を必要とせず、長い期間において測定が可能である。   On the other hand, the concentration of urine sugar can also be measured optically. In the optical method using optical rotation, it is possible to measure without touching the sample directly, and dirt does not adhere to the sensor part, so there is no need for parts replacement or consumables, Measurement is possible over a long period.

旋光度より試料内の旋光性物質の濃度を求める方法の原理は式1に基づく。
θ=1/100×[α]λ ×c×L (式1)
ここで、θは旋光度であり、一般に右旋光方向を+、左旋光方向を−とする。[α]λ は光線の波長がλ、温度がTの場合の旋光性物質の比旋光度であり、物質固有の係数である。また、cは試料中の旋光性物質の濃度、Lは試料の光路長である。式1において、前述のように比旋光度[α]λ は濃度測定前に既知の係数であり、試料の光路長Lも同様に既知の値であるため、試料に光線を通したときの旋光度θを測定することにより、試料中の旋光性物質の濃度cを求めることが出来る。
The principle of the method for obtaining the concentration of the optically rotatory substance in the sample from the optical rotation is based on Equation 1.
θ = 1/100 × [α] λ T × c × L (Formula 1)
Here, θ is the optical rotation, and generally the right optical rotation direction is + and the left optical rotation direction is −. [α] λ T is the specific rotation of the optical rotatory material when the wavelength of the light beam is λ and the temperature is T, and is a coefficient specific to the material. C is the concentration of the optical rotatory substance in the sample, and L is the optical path length of the sample. In Equation 1, as described above, the specific rotation [α] λ T is a known coefficient before the concentration measurement, and the optical path length L of the sample is also a known value. By measuring the optical rotation angle θ, the concentration c of the optical rotatory substance in the sample can be obtained.

詳細システム構造について特許文献2に基づいて図7を用いて説明する。尿は測定容器55に溜まり、光学系51にて旋光度測定が以下のごとく行われる。測定容器55は光を透過させるように窓部をガラスで構成した容器である。レーザダイオード21から出射した光束は、レンズ22でコリメートされ、平行光となり、偏光子23Aにより、垂直方向から45°傾斜した方向に振動する直線偏光になる。次に、液晶素子31により水平方向もしくは垂直方向の偏光成分が位相変調される。液晶素子31は、水平方向もしくは垂直方向に液晶分子長軸が揃ったホモジニアス配向の液晶素子であり、電圧印加により液晶分子が立ち、分子長軸方向の屈折率が変化し、位相変調を行う事ができる。
ここで、液晶素子31により一方の偏光成分のみに位相変調を加えると、直交する偏光成分同士で干渉させる事になる。
A detailed system structure will be described with reference to FIG. Urine is collected in the measurement container 55, and the optical rotation is measured by the optical system 51 as follows. The measurement container 55 is a container having a window portion made of glass so as to transmit light. The light beam emitted from the laser diode 21 is collimated by the lens 22, becomes parallel light, and becomes linearly polarized light that vibrates in a direction inclined by 45 ° from the vertical direction by the polarizer 23A. Next, the polarization component in the horizontal direction or the vertical direction is phase-modulated by the liquid crystal element 31. The liquid crystal element 31 is a homogeneously aligned liquid crystal element in which the liquid crystal molecular long axes are aligned in the horizontal direction or the vertical direction, and the liquid crystal molecules stand by voltage application, the refractive index in the molecular long axis direction changes, and phase modulation is performed. Can do.
Here, if phase modulation is applied to only one polarization component by the liquid crystal element 31, the orthogonal polarization components interfere with each other.

次に、透過光はハーフミラー24により反射光と直進光に分岐され、直進光は、水平軸と垂直軸が45°傾斜した4分の1波長板26Aに入射し、水平・垂直方向の振動成分をそれぞれ反対方向に回転する円偏光成分に変換する事ができる。さらに、直進光は尿の測定容器55に入射し、尿の旋光度に伴った右回り円偏光と左回り円偏光間で±θの位相差が与えられる。さらに、4分の1波長板26Aと光軸が一致もしくは直交する4分の1波長板26Bを透過し、左右回りの円偏光が、それぞれ水平もしくは垂直方向に直交する偏光成分に変換される。   Next, the transmitted light is branched into reflected light and straight light by the half mirror 24, and the straight light enters the quarter-wave plate 26A whose horizontal axis and vertical axis are inclined by 45 °, and vibrates in the horizontal and vertical directions. The components can be converted into circularly polarized components that rotate in opposite directions. Further, the straight light enters the urine measurement container 55, and a phase difference of ± θ is given between the clockwise circularly polarized light and the counterclockwise circularly polarized light according to the optical rotation of the urine. Further, the light passes through the quarter-wave plate 26B whose optical axis coincides with or is orthogonal to the quarter-wave plate 26A, and the left and right circularly polarized light is converted into polarized light components that are orthogonal to the horizontal or vertical direction, respectively.

水平もしくは垂直方向から45°傾斜した偏光子23Bを透過する事により、上述の直交する偏光成分間の干渉信号が得られ、一方の光速が位相変調されているためビート信号が得られ、フォトダイオード29Aにより電気信号に変換される。フォトダイオード29Bより得られるビート信号は、試料の旋光度の影響は受けておらず、フォトダイオード29A、29Bの信号間の位相差により、尿の旋光度が検出されることによって濃度を求める事ができる。   By transmitting the polarizer 23B inclined at 45 ° from the horizontal or vertical direction, an interference signal between the above-mentioned orthogonal polarization components is obtained, and a beat signal is obtained because one of the light speeds is phase-modulated. It is converted into an electric signal by 29A. The beat signal obtained from the photodiode 29B is not affected by the optical rotation of the sample, and the concentration can be obtained by detecting the optical rotation of the urine based on the phase difference between the signals of the photodiodes 29A and 29B. it can.

制御信号回路52は信号線53を介して液晶駆動信号により液晶素子31を制御する。また、制御信号回路52はフォトダイオード29Aからの信号を信号線56を介して受けるとともに、フォトダイオード29Bからの信号を信号線54を介して受けて、それらの信号を基に演算されて糖濃度が算出される。   The control signal circuit 52 controls the liquid crystal element 31 by a liquid crystal drive signal via the signal line 53. The control signal circuit 52 receives a signal from the photodiode 29A through the signal line 56 and also receives a signal from the photodiode 29B through the signal line 54, and is calculated based on these signals to obtain a sugar concentration. Is calculated.

特開2003−177112号公報(図1,10)JP 2003-177112 A (FIGS. 1 and 10) 特開2004−28889号公報(図8)JP 2004-28889 A (FIG. 8)

上述した濃度測定手段の1つであるケミカルセンサーにおいては測定範囲は充分とは言えず、極端な接触時間の短縮や希釈は測定精度の低下を招く。また、旋光度による測定においてはケミカルセンサーに比べて測定誤差が大きい。
そこで、本発明では上述した問題点を解決し、誤差のない尿中の成分濃度を広範囲に測定する濃度測定装置の構造を提供することを目的とする。
In the chemical sensor which is one of the concentration measuring means described above, the measurement range is not sufficient, and extreme shortening of the contact time or dilution causes a decrease in measurement accuracy. In addition, the measurement error in the measurement based on the optical rotation is larger than that of the chemical sensor.
Accordingly, an object of the present invention is to solve the above-described problems and to provide a structure of a concentration measuring apparatus that measures a wide range of component concentrations in urine without error.

これらの課題を解決するために本発明による濃度測定装置は、下記に記載の手段を採用する。   In order to solve these problems, the concentration measuring apparatus according to the present invention employs the following means.

本発明の濃度測定装置は、定量的に所定の成分を測定する手段を備える濃度測定装置であって、定量的に所定の成分を測定する手段としてケミカルセンサーと光学式センサーを備え、所定の濃度を境に2つの濃度領域に分け、第1の濃度領域においてはケミカルセンサーを使用した測定手段による測定結果を濃度測定結果とし、第2の濃度領域においては光学式センサーを使用した測定手段による測定結果を濃度測定結果とすることを特徴とする。   The concentration measuring device of the present invention is a concentration measuring device comprising a means for quantitatively measuring a predetermined component, comprising a chemical sensor and an optical sensor as means for quantitatively measuring the predetermined component, and having a predetermined concentration In the first concentration region, the measurement result by the measuring means using the chemical sensor is used as the concentration measurement result, and in the second concentration region, the measurement is performed by the measuring means using the optical sensor. The result is a density measurement result.

さらには、所定の成分を測定手段が尿成分測定手段であり、第1の濃度領域は所定の濃度より低い濃度領域であることは有効である。また、ケミカルセンサーおよび光学式センサーを使用した測定手段による測定値が第1の濃度領域であった場合はケミカルセンサーを使用した測定手段による測定結果を濃度測定結果とし、第2の濃度領域であった場合は光学式センサーを使用した測定手段による測定結果を濃度測定結果とすることが好ましい。さらには、ケミカルセンサーは、光学式センサー内に備えられた測定容器内部に有し、光路を妨げない位置に備えられることも好ましい。   Further, it is effective that the measurement means for measuring the predetermined component is the urine component measurement means, and the first concentration region is a concentration region lower than the predetermined concentration. In addition, when the measurement value obtained by the measurement means using the chemical sensor and the optical sensor is in the first concentration region, the measurement result obtained by the measurement means using the chemical sensor is set as the concentration measurement result, and the second concentration region is obtained. In this case, it is preferable that the measurement result by the measuring means using an optical sensor is used as the concentration measurement result. Furthermore, it is also preferable that the chemical sensor is provided in a measurement container provided in the optical sensor and provided at a position that does not obstruct the optical path.

(作用)
従来の尿糖計は酵素を用いた手段によって濃度測定を行うのが通常である。この手段の課題は尿中酸素量の限界によって反応が所定以上の量は起こらずに出力が頭打ちとなる(飽和する)ことである。すなわち、測定範囲が制限される。このため、尿の希釈やセンサーの接触時間の短縮によって測定範囲を広げようとしている。しかしながら、試験紙は2000mg/dl程度までは定性的に測定可能になっており、上記の工夫だけでは困難な測定範囲である。また、無理な尿の希釈や測定時間の短縮は精度に低下につながり、希釈するための機構は複雑になる。
(Function)
A conventional urine sugar meter usually measures the concentration by means using an enzyme. The problem with this means is that the output reaches a peak (saturates) without a reaction exceeding a predetermined amount due to the limit of the amount of oxygen in urine. That is, the measurement range is limited. For this reason, the measurement range is being expanded by diluting urine or shortening the contact time of the sensor. However, the test paper can be qualitatively measured up to about 2000 mg / dl, which is a difficult measurement range only by the above-mentioned device. Moreover, excessive dilution of urine and shortening of measurement time lead to a decrease in accuracy, and the mechanism for dilution becomes complicated.

図5は本発明の考え方を示すための尿糖測定濃度と実際の濃度との相関を示す。図中、曲線3はケミカルセンサー(酵素式)による測定の相関を示す。曲線1は光学測定による上限誤差の測定相関を示し、曲線2は光学測定による下限誤差の測定相関を示す。すなわ
ち、光学測定による測定は曲線1と曲線2の誤差範囲で行う。なお、酵素法による誤差範囲は小さいので図示しない。ここで、曲線2は800mg/dlで飽和して相関が悪くなる。本発明は濃度領域4(0mg/dlから600mg/dl未満)では酵素式測定によって測定(曲線3)し、濃度領域5(600mg/dl以上から2000mg/dl以下)では光学式測定によって測定(曲線1、曲線2)する。
FIG. 5 shows the correlation between the measured urine sugar concentration and the actual concentration for illustrating the concept of the present invention. In the figure, curve 3 shows the correlation of measurement with a chemical sensor (enzymatic formula). Curve 1 shows the measurement correlation of the upper limit error by optical measurement, and curve 2 shows the measurement correlation of the lower limit error by optical measurement. That is, the measurement by optical measurement is performed within the error range of curve 1 and curve 2. In addition, since the error range by an enzyme method is small, it is not illustrated. Here, the curve 2 is saturated at 800 mg / dl and the correlation becomes worse. In the concentration region 4 (0 mg / dl to less than 600 mg / dl), measurement is performed by enzymatic measurement (curve 3), and in the concentration region 5 (from 600 mg / dl to 2000 mg / dl or less), measurement is performed by optical measurement (curve). 1. Curve 2).

すなわち、本発明においては、高濃度領域でも測定可能な旋光計の特長を生かし、測定部に酵素センサーと旋光計を備えておき、酵素センサーが測定困難な高濃度領域では旋光計での測定結果を有効とする。このことにより、低濃度領域においては精度の良い(精度±1mg/dl)酵素センサーを用い、高濃度領域では旋光計(±10mg/dl)を使うので、広範囲な測定を精度良く行える。例えば、100mg/dlの低濃度範囲では±1mg/dl(誤差範囲±1%)の精度となるのに対して、1000mg/dlの高濃度では±10mg/dl(誤差範囲±1%)の精度となり、同程度の誤差範囲となる。   That is, in the present invention, taking advantage of the polarimeter capable of measuring even in a high concentration region, the measurement unit is equipped with an enzyme sensor and a polarimeter, and in the high concentration region where the enzyme sensor is difficult to measure, the measurement result with the polarimeter Is valid. As a result, a high-precision (accuracy ± 1 mg / dl) enzyme sensor is used in the low concentration region and a polarimeter (± 10 mg / dl) is used in the high-concentration region. For example, the accuracy is ± 1 mg / dl (error range ± 1%) in the low concentration range of 100 mg / dl, whereas the accuracy is ± 10 mg / dl (error range ± 1%) in the high concentration of 1000 mg / dl. Thus, the error range is comparable.

以上の説明のように、本発明の濃度測定装置においては、下記に記載する効果を有する。尿を希釈したり測定時間を制限することなく広い測定範囲をカバーできる。また、緩衝
液が不要なことより、ユーザーの煩わしさが軽減されると共に経費がかからない。また、緩衝液を貯蔵するためのスペースは不要となり、濃度測定装置全体の小型化が可能となるので、例えば便座中に備えることも可能となる。
As described above, the concentration measuring device of the present invention has the effects described below. A wide measurement range can be covered without diluting urine or limiting the measurement time. Further, since the buffer solution is unnecessary, the user's troublesomeness is reduced and the cost is not increased. In addition, a space for storing the buffer solution is not necessary, and the entire concentration measuring device can be downsized. For example, it can be provided in the toilet seat.

以下、図面を用いて本発明を利用した濃度測定装置の最適な実施形態を説明する。
(第一の実施形態)
図1は本発明の第一の実施形態の例である。
Hereinafter, an optimum embodiment of a concentration measuring apparatus using the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is an example of the first embodiment of the present invention.

図1は本発明による濃度測定装置の模式図を示す。図中、導管20はバルブ18に接続される方向とバルブ75に接続される方向に二股に分かれる。バルブ18を開くことによって導管16を介して尿を筐体17へ導入し、バルブ75を開くことによって導管19を介して尿を測定容器71へ導入する。測定容器71は光路78を透過させるように窓部をガラスで構成した容器である。   FIG. 1 shows a schematic diagram of a concentration measuring apparatus according to the present invention. In the figure, the conduit 20 is bifurcated into a direction connected to the valve 18 and a direction connected to the valve 75. Urine is introduced into the housing 17 through the conduit 16 by opening the valve 18, and urine is introduced into the measurement container 71 through the conduit 19 by opening the valve 75. The measurement container 71 is a container having a window made of glass so as to transmit the optical path 78.

筐体17はケミカルセンサー15を保持し、導管16に接続されている。導管16は採取した尿を通液させケミカルセンサー15に接触させる。ケミカルセンサー制御手段11は参照導線12、作用導線13および対極配線14からの電気信号を処理して濃度を求め、結果を信号線群77を介して総合制御手段76に送る。   The housing 17 holds the chemical sensor 15 and is connected to the conduit 16. The conduit 16 allows the collected urine to flow and contact the chemical sensor 15. The chemical sensor control means 11 processes the electrical signals from the reference conducting wire 12, the working conducting wire 13 and the counter electrode wiring 14 to obtain the concentration, and sends the result to the comprehensive control means 76 via the signal line group 77.

光学系72は測定容器71内部の旋光成分濃度に伴う信号が接続線群74を介して光学制御手段75に送信される。光学制御手段75は光学系72からの信号を処理して濃度を求め、結果を信号線群89を介して総合制御手段76に送る。   In the optical system 72, a signal associated with the optical rotation component concentration inside the measurement container 71 is transmitted to the optical control means 75 via the connection line group 74. The optical control means 75 processes the signal from the optical system 72 to obtain the density, and sends the result to the general control means 76 via the signal line group 89.

総合制御手段76はケミカルセンサー制御手段11からの結果を信号線群77を介して受け、光学制御手段72からの結果を信号線群89を介してうけてどちらかの結果を決定する。また、総合制御手段76は測定全体のシステムの制御も行う。   The overall control means 76 receives the result from the chemical sensor control means 11 via the signal line group 77 and receives the result from the optical control means 72 via the signal line group 89 to determine either result. The overall control means 76 also controls the entire measurement system.

図2は総合制御手段76のシステムフローチャートを示す。測定を開始(実行ステップ91)すると、実行ステップ92によりバルブ18を開き、バルブ15を閉じて尿を導管16に通液させる。次に、実行ステップ93により酵素測定法による尿糖濃度を測定する。次に、判断ステップ94により上記結果が600mg/dl以上かどうかを判定する。上記結果が600mg/dl未満であれば、実行ステップ95により上記結果を尿糖値とし、測定を終了する。上記結果が600mg/dl以上であれば、実行ステップ96によりバルブ18を閉じてバルブ75を開き導管19に尿を通液する。次に、実行ステップ97により測定容器71に溜まった尿糖濃度を光学系72を使って光学制御手段75によって測定し、実行ステップ98により上記結果を尿糖値とし、測定を終了する。すなわち、測定結果として600mg/dl未満の濃度の場合は酵素式により測定した値とし、600mg/dl以上の場合は光学式により測定された値とする。   FIG. 2 shows a system flowchart of the comprehensive control means 76. When measurement is started (execution step 91), valve 18 is opened by execution step 92, valve 15 is closed, and urine is passed through conduit 16. Next, in the execution step 93, the urine sugar concentration by the enzyme measurement method is measured. Next, at decision step 94, it is determined whether or not the result is 600 mg / dl or more. If the result is less than 600 mg / dl, the execution result 95 sets the result as the urine sugar value and ends the measurement. If the result is 600 mg / dl or more, the valve 18 is closed and the valve 75 is opened in the execution step 96 to pass urine through the conduit 19. Next, the urine sugar concentration accumulated in the measurement container 71 in the execution step 97 is measured by the optical control means 75 using the optical system 72, and the above result is set as the urine sugar value in the execution step 98, and the measurement is terminated. That is, when the concentration is less than 600 mg / dl as a measurement result, the value is measured by an enzyme equation, and when the concentration is 600 mg / dl or more, the value is measured by an optical method.

(第二の実施形態)
図3は本発明の第二の実施形態の例である。
(Second embodiment)
FIG. 3 shows an example of the second embodiment of the present invention.

導管39は測定容器81に接続され、尿を測定容器81へ通液する。測定容器81は光路80を透過させるように窓部をガラスで構成した容器である。測定容器81の内部にはケミカルセンサー35を光路80を避ける位置に保持し、内部に溜められた旋光成分濃度を光学系83およびセンサー35によって測定する事が可能である。導管50は測定容器81に接続され、尿を測定容器81から排出する。   The conduit 39 is connected to the measurement container 81 and passes urine to the measurement container 81. The measurement container 81 is a container whose window is made of glass so as to transmit the optical path 80. It is possible to hold the chemical sensor 35 in a position avoiding the optical path 80 inside the measurement container 81 and measure the optical rotation component concentration stored inside by the optical system 83 and the sensor 35. The conduit 50 is connected to the measurement container 81 and discharges urine from the measurement container 81.

ケミカルセンサー制御手段38は参照導線32、作用導線33および対極配線34から
の電気信号を処理して濃度を求め、結果を信号線群87を介して総合制御手段86に送る。光学系82は測定容器81内部の旋光成分濃度に伴う信号が接続線群84を介して光学制御手段85に送信される。光学制御手段85は光学系82からの信号を処理して濃度を求め、結果を信号線群90を介して総合制御手段86に送る。
The chemical sensor control means 38 processes the electrical signals from the reference conducting wire 32, the working conducting wire 33 and the counter electrode wiring 34 to determine the concentration, and sends the result to the comprehensive control means 86 via the signal line group 87. In the optical system 82, a signal associated with the optical rotation component concentration inside the measurement container 81 is transmitted to the optical control means 85 via the connection line group 84. The optical control means 85 processes the signal from the optical system 82 to determine the density, and sends the result to the general control means 86 via the signal line group 90.

総合制御手段86はケミカルセンサー制御手段38からの結果を信号線群87を介して受け、光学制御手段85からの結果を信号線群90を介してうけてどちらかの結果を決定する。また、総合制御手段86は測定全体のシステムの制御も行う。   The comprehensive control means 86 receives the result from the chemical sensor control means 38 via the signal line group 87 and receives the result from the optical control means 85 via the signal line group 90 to determine one of the results. The comprehensive control means 86 also controls the entire measurement system.

図4は総合制御手段86のシステムフローチャートを示す。測定を開始(実行ステップ61)すると、実行ステップ62により尿を導管16に通液させる。次に、実行ステップ63により酵素測定法による尿糖濃度を測定するとともに、光学制御手段85によって測定する。次に、実行ステップ64により尿が排出された後、判断ステップ65により尿糖濃度が600mg/dl以上かどうかを判定する。ケミカルセンサー制御手段38による結果が600mg/dl未満であれば、実行ステップ66によりケミカルセンサー制御手段38による測定結果を尿糖値として測定を終了する。上記結果が600mg/dl以上であれば、実行ステップ67により光学制御手段85によって測定した結果を尿糖値として測定を終了する。すなわち、測定結果として600mg/dl未満の濃度の場合は酵素式により測定した値とし、600mg/dl以上の場合は光学式により測定された値とする。   FIG. 4 shows a system flowchart of the comprehensive control means 86. When the measurement is started (execution step 61), the urine is passed through the conduit 16 by the execution step 62. Next, in the execution step 63, the urine sugar concentration is measured by the enzyme measurement method and also measured by the optical control means 85. Next, after the urine is discharged in the execution step 64, it is determined in the determination step 65 whether the urine sugar concentration is 600 mg / dl or more. If the result of the chemical sensor control means 38 is less than 600 mg / dl, the execution step 66 ends the measurement with the measurement result of the chemical sensor control means 38 as the urine sugar value. If the result is 600 mg / dl or more, the result of measurement by the optical control means 85 in execution step 67 is taken as the urine sugar value, and the measurement is terminated. That is, when the concentration is less than 600 mg / dl as a measurement result, the value is measured by an enzyme equation, and when the concentration is 600 mg / dl or more, the value is measured by an optical method.

本実施の形態においては尿糖について述べたが、尿糖に限るものではなくアスコルビン酸や乳酸などの他成分についても同様であり、尿中成分に限らない。それに判ってケミカルセンサーの種類も異なる。光学測定の旋光測定に限らず、光吸収なども同様に使用可能である。また、所定の濃度をケミカルセンサーが濃度に比例する限界の800mg/dlよりやや小さい600mg/dlとしたが、これに限るものではない。さらには、所定濃度の測定手段としてケミカルセンサーとしたが、光学式センサーでも良い。   Although urine sugar has been described in the present embodiment, it is not limited to urine sugar, but is the same for other components such as ascorbic acid and lactic acid, and is not limited to urine components. The type of chemical sensor is also different. Not only optical rotation measurement but also optical absorption can be used in the same manner. Further, although the predetermined concentration is 600 mg / dl which is slightly smaller than the limit of 800 mg / dl which is proportional to the concentration of the chemical sensor, it is not limited to this. Furthermore, although a chemical sensor is used as the measuring means for the predetermined concentration, an optical sensor may be used.

本発明の第一の実施形態における濃度測定装置の構成を示す図である。It is a figure which shows the structure of the density | concentration measuring apparatus in 1st embodiment of this invention. 本発明の第一の実施形態における濃度測定装置を使用して濃度を測定する場合のフローチャートを示す図である。It is a figure which shows the flowchart in the case of measuring a density | concentration using the density | concentration measuring apparatus in 1st embodiment of this invention. 本発明の第二の実施形態における濃度測定装置の構成を示す図である。It is a figure which shows the structure of the density | concentration measuring apparatus in 2nd embodiment of this invention. 本発明の第二の実施形態における濃度測定装置を使用して濃度を測定する場合のフローチャートを示す図である。It is a figure which shows the flowchart in the case of measuring a density | concentration using the density | concentration measuring apparatus in 2nd embodiment of this invention. 本発明の濃度測定装置における測定範囲の特性を示す図である。It is a figure which shows the characteristic of the measurement range in the density | concentration measuring apparatus of this invention. 従来の酵素式尿糖計の構造を示す図である。It is a figure which shows the structure of the conventional enzyme type urine sugar meter. 従来の酵素式尿糖計の測定特性を示す図である。It is a figure which shows the measurement characteristic of the conventional enzyme type urine sugar meter. 従来の光学式尿糖計の構造を示す図である。It is a figure which shows the structure of the conventional optical urine sugar meter.

符号の説明Explanation of symbols

11 ケミカルセンサー制御回路
15 酵素センサー
18 バルブ
71 測定容器
72 光学系
76 総合制御回路
74 信号線群
92 実行ステップ
94 判断ステップ
11 Chemical Sensor Control Circuit 15 Enzyme Sensor 18 Valve 71 Measuring Container 72 Optical System 76 General Control Circuit 74 Signal Line Group 92 Execution Step 94 Determination Step

Claims (5)

ケミカルセンサーと光学式センサーとを備え、定量的に所定の成分を測定する手段を有し、所定の濃度を境に2つの濃度領域に分け、第1の濃度領域においては前記ケミカルセンサーを使用した測定手段による測定結果を濃度測定結果とし、第2の濃度領域においては前記光学式センサーを使用した測定手段による測定結果を濃度測定結果とする濃度測定装置。 It has a chemical sensor and an optical sensor, has a means for quantitatively measuring a predetermined component, is divided into two concentration regions with a predetermined concentration as a boundary, and the chemical sensor is used in the first concentration region A concentration measuring apparatus in which a measurement result obtained by the measuring means is a concentration measurement result, and a measurement result obtained by the measuring means using the optical sensor is a concentration measurement result in the second concentration region. 前記定量的に所定の成分を測定する手段が尿成分測定手段であることを特徴とする請求項1に記載の濃度測定装置。 2. The concentration measuring apparatus according to claim 1, wherein the means for quantitatively measuring a predetermined component is a urine component measuring means. 前記第1の濃度領域は前記所定の濃度より低い濃度領域であることを特徴とする請求項1または請求項2に記載の濃度測定装置。 The concentration measuring apparatus according to claim 1, wherein the first concentration region is a concentration region lower than the predetermined concentration. 前記ケミカルセンサーおよび前記光学式センサーを使用した測定手段による測定値が前記第1の濃度領域であった場合は前記ケミカルセンサーを使用した測定手段による測定結果を濃度測定結果とし、前記第2の濃度領域であった場合は前記光学式センサーを使用した測定手段による測定結果を濃度測定結果とすることを特徴とする請求項1から請求項3のいずれか一項に記載の濃度測定装置。 When the measurement value by the measurement means using the chemical sensor and the optical sensor is in the first concentration region, the measurement result by the measurement means using the chemical sensor is taken as the concentration measurement result, and the second concentration 4. The concentration measuring apparatus according to claim 1, wherein in the case of an area, a measurement result by a measuring unit using the optical sensor is used as a concentration measurement result. 5. 前記ケミカルセンサーは、前記光学式センサーに備えられた測定容器の内部に設けられ、光路を妨げない位置に備えられるとすることを特徴とする請求項1から請求項4のいずれか一項に記載の濃度測定装置。 The said chemical sensor is provided in the inside of the measurement container with which the said optical sensor was equipped, and shall be provided in the position which does not block an optical path, The Claim 1 characterized by the above-mentioned. Concentration measuring device.
JP2005094088A 2005-03-29 2005-03-29 Concentration measuring device Pending JP2006275710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005094088A JP2006275710A (en) 2005-03-29 2005-03-29 Concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005094088A JP2006275710A (en) 2005-03-29 2005-03-29 Concentration measuring device

Publications (1)

Publication Number Publication Date
JP2006275710A true JP2006275710A (en) 2006-10-12

Family

ID=37210635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005094088A Pending JP2006275710A (en) 2005-03-29 2005-03-29 Concentration measuring device

Country Status (1)

Country Link
JP (1) JP2006275710A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104949921A (en) * 2014-03-26 2015-09-30 安东帕有限公司 Optical measuring system for measuring optical polarization properties of sample
JP2019511705A (en) * 2016-02-18 2019-04-25 ユーアール24 テクノロジー,エルエルシー Automatic collection and analysis of body fluids

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104949921A (en) * 2014-03-26 2015-09-30 安东帕有限公司 Optical measuring system for measuring optical polarization properties of sample
CN104949921B (en) * 2014-03-26 2019-02-22 安东帕有限公司 For measuring the optical measuring system of the polarization optical property of sample
JP2019511705A (en) * 2016-02-18 2019-04-25 ユーアール24 テクノロジー,エルエルシー Automatic collection and analysis of body fluids

Similar Documents

Publication Publication Date Title
EP0805352B1 (en) Method and apparatus for urinalysis, method of measuring optical rotation and polarimeter
US6750962B2 (en) Optics alignment and calibration system
EP1065497B1 (en) Method of polarimetry and method of urinalysis using the same
US6750063B1 (en) Method for measuring concentration of solution and apparatus for measuring concentration of solution
JP2006275710A (en) Concentration measuring device
JPH11295220A (en) Liquid sample inspection method and device
WO1999030132A1 (en) Angle-of-rotation measuring instrument urine analysis method
EP0845673B1 (en) Method of measuring concentration of specific constituent
JP3826479B2 (en) Blood glucose meter
JP2007178325A (en) Chip for inspecting optical measuring instrument, inspection method of the optical measuring instrument, manufacturing method of the optical measuring instrument and usage method of the optical measuring instrument
JP4145892B2 (en) Thermal lens spectroscopic analysis system and thermal lens signal correction method
JP4507372B2 (en) Urinalysis device
JP3759061B2 (en) Surface plasmon resonance sensor
JP3236251B2 (en) How to measure specific component concentration
JP2004279250A (en) Concentration measuring instrument
JP2019002944A (en) Measurement device of optical rotation and refractive index
JP2005265652A (en) Toilet seat
JP2001074649A (en) Method for measuring angle of optical rotation, and method for inspecting urine
JP7372310B2 (en) Blood sugar level calculation program, blood sugar level calculation method, and blood sugar level measuring device
JP2002082047A (en) Urinalysis device
JP2011085599A (en) Automatic analyzer
JP2006090930A (en) Concentration measuring device
JP2006275709A (en) Concentration measuring device
JP2006275582A (en) Concentration measuring device
JP2006090931A (en) Device for measuring urine component