JP2006274910A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2006274910A
JP2006274910A JP2005094555A JP2005094555A JP2006274910A JP 2006274910 A JP2006274910 A JP 2006274910A JP 2005094555 A JP2005094555 A JP 2005094555A JP 2005094555 A JP2005094555 A JP 2005094555A JP 2006274910 A JP2006274910 A JP 2006274910A
Authority
JP
Japan
Prior art keywords
nox
exhaust
flow path
rich operation
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005094555A
Other languages
Japanese (ja)
Inventor
Nobuhiro Kondo
暢宏 近藤
Sei Kawatani
聖 川谷
Hitoshi Yokomura
仁志 横村
嘉則 ▲高▼橋
Yoshinori Takahashi
Shojiro Kotooka
正二郎 琴岡
Yoshihisa Takeda
好央 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2005094555A priority Critical patent/JP2006274910A/en
Publication of JP2006274910A publication Critical patent/JP2006274910A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an internal combustion engine capable of uniformizing the distribution of the stored amount of NOx in the termination of each of lean operation and rich operation. <P>SOLUTION: This exhaust emission control device comprises an NOx storage catalyst installed in the exhaust passage of the internal combustion engine, having a plurality of flow passages arranged parallel with each other therein, combining the exhaust flows in these flow passages with each other in a series direction, and storing NOx in exhaust gases in lean operation and releasing and reducing NOx stored in rich operation, selector valves disposed in the NOx storage catalyst and capable of reversing the flow direction of the exhaust gases in the flow passages combined with each other in the series direction, a rich operation discriminating means S303 discriminating the time of the termination of rich operation, and a selector valve control means S304 operating the selector valves so that these flow of the exhaust gases in the flow passages combined with each other in the series direction can be reversed a the time of the termination of rich operation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関の排気浄化装置に係り、詳しくは、NOx吸蔵触媒に吸蔵されたNOxをリッチスパイクによって放出還元させる内燃機関に好適な排気浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly to an exhaust gas purification apparatus suitable for an internal combustion engine that releases and reduces NOx stored in a NOx storage catalyst by a rich spike.

この種の排気浄化装置は、気筒内に対して行われる燃焼の改善のみでは対応困難な問題を解決する。この排気浄化装置としては、リーン運転時に排気中のNOxを吸蔵してリッチ運転時に吸蔵されたNOxを放出還元させるNOx吸蔵触媒が知られている。
そして、機関から排出された排気の流れ方向がこの触媒内で逆転可能な切換弁を備えた技術が開示されている(例えば、特許文献1参照)。
特開2004−28004号公報
This type of exhaust purification device solves a problem that is difficult to deal with only by improving the combustion performed in the cylinder. As this exhaust purification device, a NOx storage catalyst is known that stores NOx in exhaust during lean operation and releases and reduces NOx stored during rich operation.
And the technique provided with the switching valve which can reverse the flow direction of the exhaust_gas | exhaustion discharged | emitted from the engine within this catalyst is disclosed (for example, refer patent document 1).
Japanese Patent Laid-Open No. 2004-28004

ところで、上記特許文献1に記載の排気浄化装置では、リッチ運転の終了後から所定期間が経過するまでは排気の流れ方向を逆転させず、切換弁の作動を禁止している。燃料が触媒を介してそのまま外部に流出するのを防ぐためである。
しかしながら、リッチ運転の終了時点で排気の流れ方向を逆転させなければ、次のリーン運転時の下流側での吸蔵量はリッチ操作の度に増加し続ける。つまり、切り換えまでの期間が長くなると、リーン運転時に上流側で吸蔵され、続くリッチ運転で放出されたNOxは、下流側に再び吸蔵されてしまう。そして、この下流側には還元剤が供給され難いので、当該下流側の吸蔵量が増え続けるのである。その結果、リーン運転の終了時点におけるNOxの吸蔵量は当初には上流側だけに分布されていたのに対し、次回のリーン運転の終了時点からは上流側から下流側に亘って分布されることになり、均一化が困難になる。更に、リッチ運転の各終了時点における下流側のNOxの吸蔵量が大幅に増加し続けて早期に触媒の許容量を超えることになる。
By the way, in the exhaust emission control device described in Patent Document 1, the direction of the exhaust gas is not reversed and the operation of the switching valve is prohibited until a predetermined period elapses after the end of the rich operation. This is to prevent the fuel from flowing out as it is through the catalyst.
However, if the exhaust flow direction is not reversed at the end of the rich operation, the amount of occlusion on the downstream side during the next lean operation continues to increase each time the rich operation is performed. That is, if the period until switching becomes long, NOx that is occluded on the upstream side during the lean operation and released in the subsequent rich operation is occluded again on the downstream side. Since the reducing agent is difficult to be supplied to the downstream side, the amount of occlusion on the downstream side continues to increase. As a result, the NOx occlusion amount at the end of the lean operation was initially distributed only on the upstream side, whereas it is distributed from the upstream side to the downstream side from the end point of the next lean operation. It becomes difficult to make uniform. Furthermore, the NOx occlusion amount on the downstream side at each end point of the rich operation continues to increase greatly and exceeds the allowable amount of the catalyst at an early stage.

ここで、機関の要求負荷、回転速度や燃料の添加量から切り換えまでの期間を求めることも考えられるが、これでは、触媒内の状態が把握できず、切換弁の作動が却って上記吸蔵量分布の均一化を妨げるとの懸念がある。
本発明は、このような課題に鑑みてなされたもので、リーン運転及びリッチ運転の各終了時点におけるNOxの吸蔵量分布の均一化を図ることができる内燃機関の排気浄化装置を提供することを目的とする。
Here, it is conceivable to determine the period from the required load of the engine, the rotational speed and the amount of fuel added to the switching, but in this case, the state in the catalyst cannot be grasped, and the operation of the switching valve is rejected and the above distribution of stored amount There is a concern that it will prevent the homogenization.
The present invention has been made in view of such a problem, and provides an exhaust purification device for an internal combustion engine that can achieve uniform distribution of the stored amount of NOx at each end point of lean operation and rich operation. Objective.

上記の目的を達成するべく、請求項1記載の内燃機関の排気浄化装置は、内燃機関の排気通路に介装されており、内部に複数の流路が並設され、且つ、各流路内の排気流れを直列方向に組み合わせるとともに、リーン運転時に排気中のNOxを吸蔵してリッチ運転時に吸蔵されたNOxを放出還元するNOx吸蔵触媒と、NOx吸蔵触媒に配設され、直列方向に組み合わされた各流路内の排気流れの方向を逆転可能に切り換える切換弁と、リッチ運転の終了時点を判別するリッチ運転判別手段と、リッチ運転の終了時点にて、直列方向に組み合わされた各流路内の排気流れの方向が逆転するように切換弁を作動させる切換弁制御手段とを具備したことを特徴としている。   In order to achieve the above object, the exhaust gas purification apparatus for an internal combustion engine according to claim 1 is interposed in an exhaust passage of the internal combustion engine, and has a plurality of flow paths arranged in parallel therein, and in each flow path. The NOx storage catalyst that stores NOx in the exhaust during lean operation and releases and reduces the NOx stored during rich operation and the NOx storage catalyst are combined in series. In addition, a switching valve that switches the direction of the exhaust flow in each flow path so that it can be reversed, rich operation determination means that determines when the rich operation ends, and each flow path combined in series at the end of rich operation And a switching valve control means for operating the switching valve so that the direction of the exhaust flow in the interior is reversed.

また、請求項2記載の発明では、直列方向に組み合わされた各流路内の排気流れの両端箇所に対するNOxの吸蔵量を推定するNOx吸蔵量推定手段を更に具備し、切換弁制御手段は、NOx吸蔵量推定手段及びリッチ運転判別手段からの信号に基づいて各流路内の排気流れの方向を逆転させることを特徴としている。   The invention according to claim 2 further comprises NOx occlusion amount estimating means for estimating the occlusion amount of NOx with respect to both ends of the exhaust flow in each flow passage combined in the series direction. Based on the signals from the NOx occlusion amount estimating means and the rich operation determining means, the direction of the exhaust flow in each flow path is reversed.

従って、請求項1記載の本発明の内燃機関の排気浄化装置によれば、リッチ運転判別手段がリッチ運転の終了時点を判別すると、切換弁制御手段が所定期間の経過を待たずに直ちに各流路内の排気流れの方向を逆転させるので、リーン運転及びリッチ運転の各終了時点においてNOxの吸蔵量分布の均一化が確実に図られる。
具体的には、リーン運転の終了時点、つまり、リッチ運転の開始時点では、常に、上流側でNOxの吸蔵量を可能な限り多くし、下流側の吸蔵量を少なくさせるとの分布が得られる。更に、リッチ運転の終了時点、つまり、リーン運転の開始時点では、常に、上流側でNOxの吸蔵量を可能な限り少なくし、下流側の吸蔵量をこの時点の上流側の吸蔵量よりは多くさせるとの分布が得られるのである。
Therefore, according to the exhaust gas purification apparatus for an internal combustion engine of the first aspect of the present invention, when the rich operation determining means determines the end point of the rich operation, the switching valve control means immediately passes each flow without waiting for the elapse of the predetermined period. Since the direction of the exhaust flow in the passage is reversed, the NOx occlusion amount distribution is surely made uniform at each end point of the lean operation and the rich operation.
Specifically, at the end of the lean operation, that is, at the start of the rich operation, a distribution that the NOx storage amount is always increased on the upstream side as much as possible and the storage amount on the downstream side is decreased is obtained. . Further, at the end of the rich operation, that is, at the start of the lean operation, the NOx storage amount is always reduced on the upstream side as much as possible, and the downstream storage amount is larger than the upstream storage amount at this time. A distribution is obtained.

換言すれば、当該リーン運転の開始直前に各流路内の排気流れの方向を逆転させれば、このリーン運転では、先のリッチ運転の終了時点の下流側が上流側に切り換わって大量のNOxが常に受け入れ可能となり、その後のリッチ運転では、この上流側に常に高濃度の還元剤を供給することができる。また、上記リーン運転では、先のリッチ運転の終了時点の上流側が下流側に切り換わって吸蔵量を減らせることができ、その後のリッチ運転で上流側から放出還元されたNOxを再び吸蔵しても影響が小さくて済む。   In other words, if the direction of the exhaust flow in each flow path is reversed immediately before the start of the lean operation, in this lean operation, the downstream side at the end of the previous rich operation switches to the upstream side, and a large amount of NOx Is always acceptable, and in the subsequent rich operation, a high concentration reducing agent can always be supplied to the upstream side. Further, in the lean operation, the upstream side at the end of the previous rich operation can be switched to the downstream side to reduce the storage amount, and NOx released and reduced from the upstream side in the subsequent rich operation can be stored again. Is less affected.

この結果、従来に比してNOxの効率の良い放出還元が可能となるし、しかも、NOxの浄化性能は長期間に亘って維持される。従って、リッチスパイクの頻度が少なくなり、燃費低減が図られる。
また、請求項2記載の発明によれば、リッチ運転の終了時点の他、排気流れの両端箇所に対するNOxの吸蔵量に基づいて各流路内の排気流れの方向を逆転させる。よって、NOx吸蔵触媒内の状態をも正確に把握した切り換えが可能となり、フェイルセーフとなる。
As a result, it is possible to release and reduce NOx more efficiently than before, and the NOx purification performance is maintained for a long period of time. Therefore, the frequency of rich spikes is reduced and fuel consumption can be reduced.
According to the second aspect of the invention, the direction of the exhaust flow in each flow path is reversed based on the NOx occlusion amount at both ends of the exhaust flow in addition to the end point of the rich operation. Therefore, the switching in which the state in the NOx storage catalyst is accurately grasped is possible, and the fail safe is achieved.

以下、図面により本発明の実施形態について説明する。
図1は本発明に係る排気浄化装置が適用されるディーゼル機関(以下、エンジンという)2を示す。同図に示されるように、エンジン2の各気筒4には燃料噴射装置を有した燃料供給系6が配設されている。この気筒4には、吸気弁8の開弁により燃焼室10に新気を導入させる吸気通路12と、排気弁14の開弁により燃焼室10からの排気を導出させる排気通路16とが接続されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a diesel engine (hereinafter referred to as an engine) 2 to which an exhaust emission control device according to the present invention is applied. As shown in the figure, each cylinder 4 of the engine 2 is provided with a fuel supply system 6 having a fuel injection device. An intake passage 12 for introducing fresh air into the combustion chamber 10 by opening the intake valve 8 and an exhaust passage 16 for deriving exhaust gas from the combustion chamber 10 by opening the exhaust valve 14 are connected to the cylinder 4. ing.

吸気通路12の上流側には過給機18が介装され、この吸気通路12の先端部には図示しないエアクリーナが接続されている。また、吸気通路12の適宜位置にはインタークーラ20が介装され、更に、この吸気通路12の流路面積を調節する給気スロットル22が配設されている。
一方、排気通路16の下流側の適宜位置には後述するNOx吸蔵触媒50が介装されている。このNOx吸蔵触媒50は、排気空燃比がストイキオよりも希薄(リーン)状態のときに排気中のNOxを吸蔵するのに対し、排気空燃比が過濃(リッチ)状態にて排気中に還元剤としての未燃燃料(HC)や一酸化炭素(CO)が存在するときに、吸蔵したNOxの放出還元を行う。なお、NOx吸蔵触媒50の機能については公知である。
A supercharger 18 is interposed on the upstream side of the intake passage 12, and an air cleaner (not shown) is connected to the tip of the intake passage 12. Further, an intercooler 20 is interposed at an appropriate position of the intake passage 12, and an air supply throttle 22 that adjusts the flow passage area of the intake passage 12 is disposed.
On the other hand, a later-described NOx storage catalyst 50 is interposed at an appropriate position on the downstream side of the exhaust passage 16. The NOx storage catalyst 50 stores NOx in the exhaust when the exhaust air-fuel ratio is leaner than the stoichiometric state, whereas the NOx storage catalyst 50 has a reducing agent in the exhaust when the exhaust air-fuel ratio is rich. When unburned fuel (HC) or carbon monoxide (CO) is present, the stored NOx is released and reduced. The function of the NOx storage catalyst 50 is known.

また、排気通路16からはEGR通路24が分岐して延び、EGR通路24の先端は吸気通路12に接続され、このEGR通路24には、EGRクーラ26や電子コントロールユニット(ECU)60に電気的に接続されたEGRバルブ28が設けられている。
エアクリーナからの新気は、過給機18を介して吸気通路12に入ってインタークーラ20に達し、給気スロットル22で調整された後、各気筒4の燃焼室10内に導かれる。そして、燃料供給系6から供給される燃料の燃焼により、クランク軸30及びフライホイール32を作動させる。燃焼が終了すると、排気は排気通路16に排出され、NOx吸蔵触媒50に導入される。
Further, an EGR passage 24 branches and extends from the exhaust passage 16, and the tip of the EGR passage 24 is connected to the intake passage 12. The EGR passage 24 is electrically connected to an EGR cooler 26 and an electronic control unit (ECU) 60. An EGR valve 28 connected to is provided.
Fresh air from the air cleaner enters the intake passage 12 via the supercharger 18, reaches the intercooler 20, is adjusted by the air supply throttle 22, and is then introduced into the combustion chamber 10 of each cylinder 4. Then, the crankshaft 30 and the flywheel 32 are operated by combustion of fuel supplied from the fuel supply system 6. When combustion ends, the exhaust is discharged into the exhaust passage 16 and introduced into the NOx storage catalyst 50.

本実施形態のNOx吸蔵触媒50は、排気通路16から導入された排気の流れの方向を逆転可能に構成されている。
具体的には、図2に示されるように、NOx吸蔵触媒50は円筒状の触媒本体500を備え、この触媒本体500の内部は3つの流路501,502,503が区画されている。より詳しくは、第1の流路501及び第3の流路503は触媒本体500の長手軸方向に沿って筒状に延び(同図(a))、これら流路501及び流路503は触媒本体500の外周縁に沿ってこの縁の内側に形成されており、触媒本体500の直径部分を境にして上側には流路501が(同図(b))、下側には流路503が(同図(c))それぞれ配設されている。
The NOx storage catalyst 50 of the present embodiment is configured to be able to reverse the direction of the flow of exhaust gas introduced from the exhaust passage 16.
Specifically, as shown in FIG. 2, the NOx storage catalyst 50 includes a cylindrical catalyst body 500, and three flow paths 501, 502, and 503 are partitioned inside the catalyst body 500. More specifically, the first flow path 501 and the third flow path 503 extend in a cylindrical shape along the longitudinal axis direction of the catalyst body 500 (FIG. 5A), and the flow paths 501 and 503 are the catalyst. It is formed inside the edge along the outer peripheral edge of the main body 500. A flow path 501 is formed on the upper side of the catalyst main body 500 with a diameter portion (FIG. 5B), and a flow path 503 is formed on the lower side. (FIG. 3C) are arranged.

第2の流路502は流路501及び流路503の内側に配設され、触媒本体500の長手軸方向に沿って筒状に延びており、これら流路501、流路502及び流路503は並設されている(同図(a))。また、これら流路501、流路502及び流路503は同じ断面積を有し、触媒も均等に有している。
触媒本体500の中心軸部分、つまり、流路502の中央部分には、上記長手軸方向に沿って筒状のロッド支持部504が配設されており、ロッド支持部504内にはロッド506が貫挿されている。このロッド506の両端部分は触媒本体500の両端面からそれぞれ突出し、ロッド506の一端側には係止部514を介して流入方向切換弁(切換弁)508が固定され、ロッド506の他端側にも係止部516を介して流入方向切換弁(切換弁)518が固定されている。更に、このロッド506の他端側は継手524を介して駆動軸526に連結され、駆動軸526はECU60からの指示信号に応じて回転される。つまり、ECU60からオン信号が出力されると、この駆動軸526の回転がロッド506に伝達され、各流入方向切換弁508,518もロッド506と同方向に回転される。
The second flow path 502 is disposed inside the flow path 501 and the flow path 503 and extends in a cylindrical shape along the longitudinal axis direction of the catalyst main body 500. The flow path 501, the flow path 502, and the flow path 503 are provided. Are arranged side by side ((a) in the figure). Further, the flow path 501, the flow path 502, and the flow path 503 have the same cross-sectional area, and have a catalyst equally.
A cylindrical rod support portion 504 is disposed along the longitudinal axis direction in the central axis portion of the catalyst body 500, that is, in the central portion of the flow path 502, and the rod 506 is provided in the rod support portion 504. It is inserted. Both end portions of the rod 506 protrude from both end surfaces of the catalyst body 500, and an inflow direction switching valve (switching valve) 508 is fixed to one end side of the rod 506 via a locking portion 514, and the other end side of the rod 506. In addition, an inflow direction switching valve (switching valve) 518 is fixed via a locking portion 516. Further, the other end of the rod 506 is connected to a drive shaft 526 via a joint 524, and the drive shaft 526 is rotated in response to an instruction signal from the ECU 60. That is, when an ON signal is output from the ECU 60, the rotation of the drive shaft 526 is transmitted to the rod 506, and the inflow direction switching valves 508 and 518 are also rotated in the same direction as the rod 506.

この流入方向切換弁508は、同図(b)に示されるように、触媒本体500の直径を基準とした半円状の蓋部510と、流路502の直径を基準とした半円状の蓋部511とから構成され、蓋部510と蓋部511とは一体に形成されている。そして、流入方向切換弁508はロッド506の回転に応じて、流路502及び流路503(同図(b))、或いは流路501及び流路502のいずれかを覆う。また、蓋部510及び蓋部511と触媒本体500の一端面側との間には通路512が形成されている(同図(a))。   The inflow direction switching valve 508 has a semicircular lid portion 510 based on the diameter of the catalyst body 500 and a semicircular shape based on the diameter of the flow path 502, as shown in FIG. It is comprised from the cover part 511, and the cover part 510 and the cover part 511 are integrally formed. The inflow direction switching valve 508 covers either the flow path 502 and the flow path 503 (FIG. 5B) or the flow path 501 and the flow path 502 according to the rotation of the rod 506. Further, a passage 512 is formed between the lid portion 510 and the lid portion 511 and one end face side of the catalyst body 500 (FIG. 5A).

これに対し、流入方向切換弁518もまた、同図(c)に示されるように、触媒本体500の直径を基準とした半円状の蓋部520と、流路502の直径を基準とした半円状の蓋部521とから構成され、蓋部520と蓋部521とが一体に形成されている。そして、流入方向切換弁518はロッド506の回転に応じて、流路501及び流路502(同図(c))、或いは流路502及び流路503のいずれかを覆う。また、蓋部520及び蓋部521と触媒本体500の他端面側との間にも通路522が形成されている(同図(a))。   On the other hand, the inflow direction switching valve 518 is also based on the diameter of the semicircular lid portion 520 based on the diameter of the catalyst body 500 and the flow path 502, as shown in FIG. The lid portion 521 is formed in a semicircular shape, and the lid portion 520 and the lid portion 521 are integrally formed. The inflow direction switching valve 518 covers either the flow path 501 and the flow path 502 (FIG. 5C) or the flow path 502 and the flow path 503 according to the rotation of the rod 506. Further, a passage 522 is also formed between the lid portion 520 and the lid portion 521 and the other end surface side of the catalyst main body 500 (FIG. 5A).

ところで、これら流入方向切換弁508と流入方向切換弁518とは逆位相の向きに配置されている。詳しくは、同図(a)に示されるように、流入方向切換弁508が流路502及び流路503(同図(b))を覆う位置では、流入方向切換弁518は流路501及び流路502(同図(c))を覆う位置に設けられている。この結果、流入方向切換弁508が流路502及び流路503の上流側を覆う場合には、流入方向切換弁518は流路501の下流側及び流路502を覆い、流路501が流路502よりも上流側に位置するとともに、この流路502が流路503よりも上流側に位置する。   By the way, the inflow direction switching valve 508 and the inflow direction switching valve 518 are arranged in opposite phases. Specifically, as shown in FIG. 6A, the inflow direction switching valve 518 is in a position where the inflow direction switching valve 508 covers the flow path 502 and the flow path 503 (FIG. 5B). It is provided at a position covering the path 502 ((c) in the figure). As a result, when the inflow direction switching valve 508 covers the upstream side of the flow path 502 and the flow path 503, the inflow direction switching valve 518 covers the downstream side of the flow path 501 and the flow path 502, and the flow path 501 is the flow path. The channel 502 is positioned upstream of the channel 503 and is positioned upstream of the channel 502.

一方、流入方向切換弁508が流路501の上流側及び流路502を覆う場合には、流入方向切換弁518は流路502及び流路503の下流側を覆い、流路503が流路502よりも上流側に位置するとともに、この流路502が流路501よりも上流側に位置する。
再び図1に戻ると、本実施形態においては、NOx吸蔵触媒50の上流側の適宜位置に、HCをNOx吸蔵触媒50に直接供給する添加インジェクタ44が配設され、この添加インジェクタ44は燃料添加ライン46を介してポンプ48に接続されている。
On the other hand, when the inflow direction switching valve 508 covers the upstream side of the flow path 501 and the flow path 502, the inflow direction switching valve 518 covers the downstream side of the flow path 502 and the flow path 503, and the flow path 503 becomes the flow path 502. The flow path 502 is located upstream of the flow path 501.
Returning to FIG. 1 again, in the present embodiment, an addition injector 44 that directly supplies HC to the NOx storage catalyst 50 is disposed at an appropriate position upstream of the NOx storage catalyst 50, and the addition injector 44 is configured to add fuel. It is connected to pump 48 via line 46.

また、排気通路16においてNOx吸蔵触媒50の上流側の適宜位置には、出力電圧に基づきNOx濃度、すなわちNOx量を検出するNOxセンサ36や、排気通路16内の温度を検出する排気温度センサ38がそれぞれ配設されている。更に、NOx吸蔵触媒50の下流側の適宜位置には、NOx量を検出するNOxセンサ40や、NOx吸蔵触媒50の温度を検出する触媒温度センサ42がそれぞれ配設され、これら各センサ36、38、40、42はECU60に電気的に接続されている。   Further, at an appropriate position upstream of the NOx storage catalyst 50 in the exhaust passage 16, a NOx sensor 36 that detects the NOx concentration, that is, the NOx amount based on the output voltage, and an exhaust temperature sensor 38 that detects the temperature in the exhaust passage 16. Are arranged respectively. Furthermore, a NOx sensor 40 that detects the amount of NOx and a catalyst temperature sensor 42 that detects the temperature of the NOx storage catalyst 50 are disposed at appropriate positions downstream of the NOx storage catalyst 50, respectively. , 40 and 42 are electrically connected to the ECU 60.

そして、ECU60の入力側には、上述のNOxセンサ36、排気温度センサ38、NOxセンサ40、触媒温度センサ42の他、クランク角センサ34等のエンジン2の運転状態を検出する各種センサも電気的に接続されている。これに対してECU60の出力側には、上述の燃料供給系6、給気スロットル22、添加インジェクタ44及び駆動軸526を回転させるアクチュエータやポンプ48等が電気的に接続されている。   On the input side of the ECU 60, various sensors for detecting the operating state of the engine 2, such as the crank angle sensor 34, in addition to the NOx sensor 36, the exhaust temperature sensor 38, the NOx sensor 40, and the catalyst temperature sensor 42 described above are also electrically connected. It is connected to the. On the other hand, on the output side of the ECU 60, the above-described fuel supply system 6, the air supply throttle 22, the addition injector 44, the actuator for rotating the drive shaft 526, the pump 48, and the like are electrically connected.

また、ECU60には種々のマップが設けられており、例えば、NOx放出量マップ等のNOx吸蔵量推定に関する各種マップも設けられている。
ここで、上述したNOx吸蔵触媒50は酸化雰囲気にて排気中のNOxを吸蔵する一方、NOx吸蔵量の増加に伴う触媒の性能低下を抑制すべく、NOx吸蔵量が飽和に至る前にリッチ運転へ間欠的に切り換えるリッチスパイクを行ってNOx吸蔵触媒50の再生を図る。これにより排気の浄化が良好に行われる。
Further, the ECU 60 is provided with various maps, for example, various maps relating to NOx occlusion amount estimation such as a NOx release amount map.
Here, the above-described NOx storage catalyst 50 stores NOx in the exhaust in an oxidizing atmosphere, while the rich operation is performed before the NOx storage amount reaches saturation in order to suppress a decrease in the performance of the catalyst accompanying an increase in the NOx storage amount. The NOx storage catalyst 50 is regenerated by performing a rich spike that is intermittently switched to. As a result, the exhaust gas is well purified.

具体的には、本実施形態のリッチスパイクは筒外リッチにて行われている。すなわち、各種センサ36、38、40、42等の信号に応じてリッチスパイクの指示がなされると、排気通路16に設けられた添加インジェクタ44を用い、ポンプ48から圧送されたHCを排気中に直接投入してリッチ運転の条件を作り、この条件が成立すればNOxの放出還元を行う。そして、このNOxの放出還元の終了後には流入方向切換弁508,518を作動させる。   Specifically, the rich spike of the present embodiment is performed in the out-cylinder rich. That is, when a rich spike is instructed in accordance with signals from various sensors 36, 38, 40, 42, etc., the HC pumped from the pump 48 is exhausted into the exhaust gas using the addition injector 44 provided in the exhaust passage 16. Direct injection is performed to create a condition for rich operation. If this condition is satisfied, NOx is released and reduced. The inflow direction switching valves 508 and 518 are operated after the NOx release reduction is completed.

より詳しくは、ECU60はリッチ運転判別部(リッチ運転判別手段)62と、NOx吸蔵量推定部(NOx吸蔵量推定手段)64と、切換弁制御部(切換弁制御手段)66とを備えている。
このリッチ運転判別部62では、上述の各種センサ36、38、40、42等の信号に応じてリッチスパイクの指示の有無を判別するとともに、リッチ運転の終了時点を判別し、その結果はNOx吸蔵量推定部64に出力される。
More specifically, the ECU 60 includes a rich operation determination unit (rich operation determination unit) 62, a NOx storage amount estimation unit (NOx storage amount estimation unit) 64, and a switching valve control unit (switching valve control unit) 66. .
The rich operation determination unit 62 determines the presence or absence of a rich spike instruction according to the signals from the various sensors 36, 38, 40, 42, etc., and also determines the end point of the rich operation, and the result is the NOx storage. It is output to the quantity estimation unit 64.

このNOx吸蔵量推定部64では、流路501及び流路503に対するNOxの吸蔵量を推定している。より具体的には、リーン運転時には、吸入空気量から求められた排気通路16の排気流量、NOxセンサ36,40からのNOx濃度に基づいてNOxの吸蔵量を演算する。これに対し、筒外リッチ中には、上記排気流量、排気温度センサ38からの排気温度及び触媒温度センサ42からの触媒温度に基づいてNOx放出量を上記マップで演算する。そして、上記演算されたNOx吸蔵量から上記演算されたNOx放出量を減算し、各流路501及び流路503の現在のNOx吸蔵量をそれぞれ推定している。その結果は切換弁制御部66に出力される。   The NOx occlusion amount estimation unit 64 estimates the NOx occlusion amount for the flow path 501 and the flow path 503. More specifically, during lean operation, the NOx occlusion amount is calculated based on the exhaust flow rate of the exhaust passage 16 obtained from the intake air amount and the NOx concentration from the NOx sensors 36 and 40. On the other hand, during rich outside the cylinder, the NOx release amount is calculated by the map based on the exhaust flow rate, the exhaust temperature from the exhaust temperature sensor 38, and the catalyst temperature from the catalyst temperature sensor 42. Then, the calculated NOx release amount is subtracted from the calculated NOx occlusion amount to estimate the current NOx occlusion amounts of the respective channels 501 and 503. The result is output to the switching valve control unit 66.

この切換弁制御部66では、リッチ運転の終了時点において、流路501或いは流路503のうち、推定されたNOx吸蔵量の多い方が最上流側となるように、駆動軸526を回転させて流入方向切換弁508,518を作動させる。
図3には、上記リッチ運転判別部62、NOx吸蔵量推定部64及び切換弁制御部66による排気流入方向の切り換え制御のフローチャートが示されており、以下、上記のように構成された排気浄化装置の本発明に係る作用について説明する。
The switching valve controller 66 rotates the drive shaft 526 so that the estimated NOx occlusion amount of the flow path 501 or the flow path 503 is the most upstream side at the end of the rich operation. The inflow direction switching valves 508 and 518 are operated.
FIG. 3 shows a flowchart of the exhaust inflow direction switching control by the rich operation determination unit 62, the NOx occlusion amount estimation unit 64, and the switching valve control unit 66. Hereinafter, the exhaust gas purification configured as described above will be described. The operation of the apparatus according to the present invention will be described.

同図のステップS301ではリーン運転が実施され、NOx吸蔵量推定部64にてNOxの吸蔵量を演算してステップS302に進む。
このステップS302ではリーン運転が終了してリッチ運転が開始される。このリッチ運転はリッチ運転判別部62にて監視されている。また、NOx吸蔵量推定部64ではNOx放出量を演算し、各流路501及び流路503の現在のNOx吸蔵量をそれぞれ推定する。
In step S301 in the figure, the lean operation is performed, the NOx occlusion amount estimation unit 64 calculates the NOx occlusion amount, and the process proceeds to step S302.
In step S302, the lean operation is finished and the rich operation is started. This rich operation is monitored by the rich operation determination unit 62. Further, the NOx occlusion amount estimation unit 64 calculates the NOx release amount, and estimates the current NOx occlusion amounts of the flow paths 501 and 503, respectively.

次いで、ステップS303では、リッチ運転判別部62にてリッチ運転が終了したか否かが判別される。そして、このリッチ運転が終了してリーン運転が開始されると判定された場合、すなわち、YESのときにはステップS304に進み、切換弁制御部66にて、流路501或いは流路503のうち推定されたNOx吸蔵量の多い方を上流側にする位置に切り換えられる。   Next, in step S303, the rich operation determination unit 62 determines whether the rich operation has ended. If it is determined that the rich operation is finished and the lean operation is started, that is, if YES, the process proceeds to step S304, and the switching valve control unit 66 estimates the flow path 501 or the flow path 503. Further, the position where the amount of stored NOx is larger is switched to the upstream side.

つまり、流入方向切換弁508,518が前回のリーン及びリッチ運転時に流路501を上流側にする位置であったときには、このリッチ運転の終了時点では流路501のNOxは殆ど放出還元されるが、下流側の流路503で再度吸蔵され得ることから、流路503のNOx吸蔵量が流路501のそれよりも多くなっている。よって、この場合には、切換弁制御部66にて流路503を上流側にする位置に反転させるのである。   That is, when the inflow direction switching valves 508 and 518 are at positions where the flow path 501 is located upstream during the previous lean and rich operations, the NOx in the flow path 501 is almost released and reduced at the end of the rich operation. Since it can be occluded again in the downstream channel 503, the NOx occlusion amount in the channel 503 is larger than that in the channel 501. Therefore, in this case, the switching valve control unit 66 reverses the flow path 503 to a position on the upstream side.

これにより、流入方向切換弁508が流路501の上流側及び流路502を覆うとともに、流入方向切換弁518が流路502及び流路503の下流側を覆う位置に作動されて一連のルーチンを抜ける。この場合には、流路503、流路502及び流路501内の排気流れはこの順序で直列方向に組み合わせられ、排気通路16からの排気は、最上流側として流路503に導入され、次いで、通路522を経て流路502に導入され、通路512を経て流路501に導入された後、外部に向かうことになる。   Thus, the inflow direction switching valve 508 covers the upstream side of the flow path 501 and the flow path 502, and the inflow direction switching valve 518 is operated to a position that covers the downstream side of the flow path 502 and the flow path 503. Exit. In this case, the exhaust flow in the flow path 503, the flow path 502, and the flow path 501 are combined in this order in series, and the exhaust from the exhaust passage 16 is introduced into the flow path 503 as the most upstream side, and then Then, after being introduced into the flow path 502 through the passage 522 and introduced into the flow path 501 through the passage 512, it goes to the outside.

これに対し、流入方向切換弁508,518が前回のリーン及びリッチ運転時に流路503を上流側にする位置であったときには、排気の流れの方向が上述とは逆転される。換言すれば、流入方向切換弁508が流路502及び流路503の上流側を覆うとともに、流入方向切換弁518が流路501の下流側及び流路502を覆う位置にそれぞれ作動されて一連のルーチンを抜ける。この場合には、流路501、流路502及び流路503内の排気流れはこの順序で直列方向に組み合わせられ、最上流側として流路501に導入され、通路522を経て流路502に導入される。次いで、通路512を経て流路503に導入された後、外部に向かうことになる。   On the other hand, when the inflow direction switching valves 508 and 518 are at positions where the flow path 503 is located upstream during the previous lean and rich operations, the direction of the exhaust flow is reversed from the above. In other words, the inflow direction switching valve 508 covers the upstream side of the flow path 502 and the flow path 503, and the inflow direction switching valve 518 is operated to a position covering the downstream side of the flow path 501 and the flow path 502, respectively. Exit the routine. In this case, the exhaust flows in the flow path 501, the flow path 502, and the flow path 503 are combined in this order in the series direction, introduced into the flow path 501 as the most upstream side, and introduced into the flow path 502 through the passage 522. Is done. Next, after being introduced into the flow path 503 through the passage 512, it goes to the outside.

以上のように、本発明によれば、切換弁制御部66が一対のリーン・リッチ運転の終了毎に、所定期間の経過を待たずに直ちに流路501,502,503内の排気流れの方向を逆転させる。従って、リーン運転及びリッチ運転の各終了時点においてNOxの吸蔵量分布の均一化が確実に図られる。
より詳しくは、NOx吸蔵触媒の特性は、図4(a)に示されるように、リーン運転の終了時点、つまり、リッチ運転の開始時点におけるNOx吸蔵量をみると、入口側が多く、出口側では少なくなるとの右下がりの分布になる(図中、斜線で示す)。これは、NOxは入口側で吸蔵され易く、出口側に位置するに連れて吸蔵され難くなるからである。一方、図4(b)に示されるように、リッチ運転の終了時点、つまり、リーン運転の開始時点におけるNOx吸蔵量をみると、入口側では殆ど認められず、出口側が多くなるとの右上がりの分布になる(図中、斜線で示す)。これは、入口側には高濃度の還元剤が供給され易く、この入口側に吸蔵されたNOx(図中、点線で示す)は殆ど放出還元されるが、還元剤は出口側に位置するに連れて供給され難くなるので、この入口側から放出還元されたNOxの一部は出口側にて再び吸蔵されるからである。
As described above, according to the present invention, the direction of the exhaust flow in the flow paths 501, 502, and 503 immediately after the switching valve control unit 66 finishes a predetermined period of time each time a pair of lean / rich operations ends. Reverse. Therefore, the NOx occlusion distribution can be made uniform evenly at the end of each of the lean operation and the rich operation.
More specifically, as shown in FIG. 4 (a), the characteristics of the NOx occlusion catalyst are as follows. When the NOx occlusion amount at the end of lean operation, that is, at the start of rich operation, the inlet side is large and the outlet side is When it decreases, the distribution decreases to the right (indicated by hatching in the figure). This is because NOx is easily occluded on the inlet side and becomes difficult to occlude as it is located on the outlet side. On the other hand, as shown in FIG. 4 (b), when the NOx occlusion amount at the end of the rich operation, that is, the start of the lean operation is seen, the NOx occlusion amount is hardly recognized on the inlet side, and rises to the right when the outlet side increases. It becomes a distribution (indicated by diagonal lines in the figure). This is because a high concentration reducing agent is easily supplied to the inlet side, and NOx occluded on this inlet side (indicated by a dotted line in the figure) is almost released and reduced, but the reducing agent is located on the outlet side. This is because part of the NOx released and reduced from the inlet side is occluded again on the outlet side because it becomes difficult to be supplied.

ここで、従来の如く切り換えまでの期間が長くなってリッチ運転の終了時点で排気の流れ方向が全く逆転されない場合には、次のリーン運転の終了時点では、入口側の他、出口側にも吸蔵されていることになり、上記右下がりの分布が得られ難くなる。更に、続くリッチ運転の終了時点では、入口側のNOxが放出還元されて上記右上がりの分布は得られるものの、出口側には非常に多く吸蔵され、触媒の許容量に達し易くなるのである。   If the exhaust flow direction is not reversed at the end of the rich operation as in the conventional case, and the exhaust flow direction is not reversed at the end of the rich operation, at the end of the next lean operation, not only at the inlet side but also at the outlet side. It will be occluded and it will become difficult to obtain the distribution of the said right downward. Further, at the end of the subsequent rich operation, the NOx on the inlet side is released and reduced, and the above-mentioned upward distribution is obtained, but a large amount is occluded on the outlet side and the allowable amount of the catalyst is easily reached.

しかしながら、本発明によれば、リッチ運転の終了時点で流路501,502,503内の排気流れの方向を逆転させているので、リーン運転では、前回のリッチ運転の終了時点(同図(b))の出口側が上流側に設定され、この上流側で大量のNOxが受け入れ可能となる。しかも、前回のリッチ運転の終了時点(同図(b))の入口側が下流側に設定され、常に、下流側での吸蔵量を減らせることができる。つまり、上記右下がりの分布が必ず得られ、均一化が図られる。そして、続くリッチ運転では、常に、高濃度の還元剤をこの上流側で大量に吸蔵されたNOxに供給して放出還元することができ、上記右上がりの分布が得られて均一化が図られるとともに、この放出還元されたNOxの一部は前回のリッチ運転の終了時点(同図(b))の入口側に吸蔵されるので、その吸蔵量も触媒の許容量に達し難くなる。   However, according to the present invention, the exhaust flow direction in the flow paths 501, 502, and 503 is reversed at the end of the rich operation. Therefore, in the lean operation, the end of the previous rich operation (see FIG. )) Is set on the upstream side, and a large amount of NOx can be received on the upstream side. In addition, the inlet side at the end of the previous rich operation ((b) in the figure) is set to the downstream side, and the amount of occlusion on the downstream side can always be reduced. That is, the above-mentioned right-down distribution is always obtained and uniformization is achieved. In the subsequent rich operation, it is always possible to supply a high concentration reducing agent to the NOx occluded in a large amount on the upstream side for release reduction, and the above-mentioned upward distribution is obtained to achieve uniformization. At the same time, a part of the released and reduced NOx is occluded on the inlet side at the end of the previous rich operation ((b) in the same figure), so that the occlusion amount is difficult to reach the allowable amount of the catalyst.

この結果、従来に比してNOxの効率の良い放出還元が可能となるし、更に、NOxの浄化性能は長期間に亘って維持される。従って、リッチスパイクの頻度が少なくなり、燃費低減が図られる。
また、切換弁制御部66が、リッチ運転の終了時点の他、流路501,503に対するNOxの吸蔵量に基づいて流路501,502,503内の排気流れの方向を逆転させると、NOx吸蔵触媒50内の状態をも正確に把握した切り換えが可能となり、フェイルセーフとなるし、リーン運転及びリッチ運転の各終了時点においてNOxの吸蔵量分布の均一化がより一層確実に図られる。
As a result, it is possible to release and reduce NOx more efficiently than before, and the NOx purification performance is maintained for a long period of time. Therefore, the frequency of rich spikes is reduced and fuel consumption can be reduced.
Further, when the switching valve control unit 66 reverses the direction of the exhaust flow in the flow paths 501, 502, and 503 based on the NOx occlusion amount in the flow paths 501 and 503 in addition to the end of the rich operation, the NOx occlusion is performed. Switching which accurately grasps the state in the catalyst 50 is possible, which is fail-safe, and the NOx occlusion distribution is more evenly distributed at each end of the lean operation and the rich operation.

更に、切換弁制御部66が流路501,502,503内の排気流れの方向を逆転させると、NOx吸蔵触媒内の温度分布の均一化も図られる。
具体的には、図5に示されるように、NOx吸蔵触媒内におけるリッチ運転中の温度分布は、このリッチ運転の開始直後では、入口側の温度(図中、実線で示す)が中央の温度(図中、一点鎖線で示す)や出口側の温度(図中、二点鎖線で示す)に比して常に高温になるとの特性があるが、本発明よれば、上述の排気流れ方向の切り換えによって、同一の流路がSパージ等で熱劣化し難くなる。これにより、NOx吸蔵触媒の耐久性の向上及び劣化後の性能維持にも寄与する。なお、この場合の切り換えのタイミングはリッチ操作の度に必ず行われなくても良い。
Furthermore, when the switching valve control unit 66 reverses the direction of the exhaust flow in the flow paths 501, 502, 503, the temperature distribution in the NOx storage catalyst is made uniform.
Specifically, as shown in FIG. 5, in the temperature distribution during the rich operation in the NOx storage catalyst, immediately after the start of the rich operation, the temperature on the inlet side (indicated by the solid line in the figure) is the center temperature. (It is indicated by a one-dot chain line in the figure) and the outlet side temperature (indicated by a two-dot chain line in the figure) is always high, but according to the present invention, the switching of the exhaust flow direction described above is possible. Therefore, the same flow path is unlikely to be thermally deteriorated by S purge or the like. This contributes to improvement in durability of the NOx storage catalyst and maintenance of performance after deterioration. Note that the switching timing in this case is not necessarily performed every time a rich operation is performed.

以上で本発明の一実施形態についての説明を終えるが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
例えば、上記実施形態では、切換弁制御部66は、現在のNOx吸蔵量の推定値を考慮することなく、リッチ運転判別部62からのリッチ運転の終了時点の信号に基づき、直ちに駆動軸526を回転させて流入方向切換弁508,518を作動させても良い。この場合にも上記と同様に、リーン運転及びリッチ運転の各終了時点におけるNOxの吸蔵量分布の均一化が図られるという効果を奏する。
The description of one embodiment of the present invention is finished above, but the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above embodiment, the switching valve control unit 66 immediately turns the drive shaft 526 on the basis of the signal at the end of the rich operation from the rich operation determination unit 62 without considering the current estimated NOx storage amount. The inflow direction switching valves 508 and 518 may be operated by rotating. Also in this case, similarly to the above, the NOx occlusion amount distribution at the end points of the lean operation and the rich operation can be made uniform.

また、上記実施形態では、NOx吸蔵触媒50が3つの流路501,502,503に区画されているが、必ずしもこの形態に限定されるものではない。つまり、任意の複数の流路に区画することができる。   In the above embodiment, the NOx storage catalyst 50 is partitioned into the three flow paths 501, 502, and 503, but the present invention is not necessarily limited to this form. That is, it can be partitioned into a plurality of arbitrary flow paths.

本発明の一実施形態に係る内燃機関の排気浄化装置が適用されるエンジンシステム構成図である。1 is an engine system configuration diagram to which an exhaust gas purification apparatus for an internal combustion engine according to an embodiment of the present invention is applied. NOx吸蔵触媒の断面図である。It is sectional drawing of a NOx storage catalyst. ECUが実行する排気流入方向の切り換え制御ルーチンを示すフローチャートである。3 is a flowchart showing an exhaust inflow direction switching control routine executed by an ECU. 触媒内のNOx吸蔵量分布を説明する図である。It is a figure explaining NOx occlusion amount distribution in a catalyst. 触媒内の温度分布を説明する図である。It is a figure explaining the temperature distribution in a catalyst.

符号の説明Explanation of symbols

2 内燃機関
16 排気通路
50 NOx吸蔵触媒
60 ECU(電子コントロールユニット)
62 リッチ運転判別部(リッチ運転判別手段)
64 NOx吸蔵量推定部(NOx吸蔵量推定手段)
66 切換弁制御部(切換弁制御手段)
501 第1の流路(流路)
502 第2の流路(流路)
503 第3の流路(流路)
508 流入方向切換弁(切換弁)
518 流入方向切換弁(切換弁)
2 Internal combustion engine 16 Exhaust passage 50 NOx storage catalyst 60 ECU (electronic control unit)
62 Rich operation determination unit (rich operation determination means)
64 NOx occlusion amount estimation unit (NOx occlusion amount estimation means)
66 Switching valve control section (switching valve control means)
501 First channel (channel)
502 Second channel (channel)
503 Third channel (channel)
508 Inflow direction switching valve (switching valve)
518 Inflow direction switching valve (switching valve)

Claims (2)

内燃機関の排気通路に介装されており、内部に複数の流路が並設され、且つ、該各流路内の排気流れを直列方向に組み合わせるとともに、リーン運転時に排気中のNOxを吸蔵してリッチ運転時に該吸蔵されたNOxを放出還元するNOx吸蔵触媒と、
該NOx吸蔵触媒に配設され、前記直列方向に組み合わされた各流路内の排気流れの方向を逆転可能に切り換える切換弁と、
前記リッチ運転の終了時点を判別するリッチ運転判別手段と、
該リッチ運転の終了時点にて、前記直列方向に組み合わされた各流路内の排気流れの方向が逆転するように前記切換弁を作動させる切換弁制御手段と
を具備したことを特徴とする内燃機関の排気浄化装置。
It is interposed in the exhaust passage of the internal combustion engine, and has a plurality of flow paths arranged in parallel, and combines the exhaust flow in each flow path in series, and stores NOx in the exhaust during lean operation. A NOx storage catalyst for releasing and reducing the stored NOx during rich operation;
A switching valve that is disposed in the NOx storage catalyst and switches the direction of the exhaust flow in each flow path combined in the series direction so as to be able to reversely rotate;
Rich operation determining means for determining the end point of the rich operation;
An internal combustion engine characterized by comprising switching valve control means for operating the switching valve so that the direction of the exhaust flow in each flow path combined in the series direction is reversed at the end of the rich operation. Engine exhaust purification system.
前記直列方向に組み合わされた各流路内の排気流れの両端箇所に対するNOxの吸蔵量を推定するNOx吸蔵量推定手段を更に具備し、
前記切換弁制御手段は、該NOx吸蔵量推定手段及び前記リッチ運転判別手段からの信号に基づいて前記各流路内の排気流れの方向を逆転させることを特徴とする請求項1に記載の内燃機関の排気浄化装置。
Further comprising NOx occlusion amount estimation means for estimating the occlusion amount of NOx with respect to both ends of the exhaust flow in each flow path combined in the series direction;
The internal combustion engine according to claim 1, wherein the switching valve control means reverses the direction of the exhaust flow in each flow path based on signals from the NOx occlusion amount estimation means and the rich operation determination means. Engine exhaust purification system.
JP2005094555A 2005-03-29 2005-03-29 Exhaust emission control device of internal combustion engine Pending JP2006274910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005094555A JP2006274910A (en) 2005-03-29 2005-03-29 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005094555A JP2006274910A (en) 2005-03-29 2005-03-29 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006274910A true JP2006274910A (en) 2006-10-12

Family

ID=37209909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005094555A Pending JP2006274910A (en) 2005-03-29 2005-03-29 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006274910A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8146353B2 (en) 2007-05-22 2012-04-03 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine, and exhaust control device and exhaust control method for internal combustion engine
JP2014206134A (en) * 2013-04-15 2014-10-30 ボッシュ株式会社 Exhaust emission control device and method of controlling exhaust emission control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097261A (en) * 2001-09-25 2003-04-03 Aisin Takaoka Ltd Exhaust emission control device
JP2003247416A (en) * 2002-02-22 2003-09-05 Toyota Motor Corp Exhaust gas purifying device and method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097261A (en) * 2001-09-25 2003-04-03 Aisin Takaoka Ltd Exhaust emission control device
JP2003247416A (en) * 2002-02-22 2003-09-05 Toyota Motor Corp Exhaust gas purifying device and method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8146353B2 (en) 2007-05-22 2012-04-03 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine, and exhaust control device and exhaust control method for internal combustion engine
JP2014206134A (en) * 2013-04-15 2014-10-30 ボッシュ株式会社 Exhaust emission control device and method of controlling exhaust emission control device

Similar Documents

Publication Publication Date Title
KR100375846B1 (en) Apparatus for purifing exhaust gas of internal combustion engine
JP4341689B2 (en) Secondary air supply device for internal combustion engine
JP4120523B2 (en) Exhaust gas recirculation control device for internal combustion engine
JP5187458B2 (en) Control device for internal combustion engine
JP2005048715A (en) Exhaust emission control device for internal combustion engine
JP2007239700A (en) Fuel injection control device for internal combustion engine
JP2006274910A (en) Exhaust emission control device of internal combustion engine
JP2009121330A (en) Catalyst poisoning determining method and device, and exhaust emission control method and device
JP2007327394A (en) Exhaust emission control device of internal combustion engine
JP2009209898A (en) Exhaust emission control device and method for internal combustion engine
JP2009041435A (en) Secondary air supply device in internal combustion engine
JP2005330886A (en) Engine idle stop control unit
JP2008144656A (en) Exhaust emission control device for internal combustion engine
JP2006283611A (en) Exhaust emission control device for internal combustion engine
JP6489070B2 (en) Exhaust gas purification device for internal combustion engine
JP2004360484A (en) Nox purge controller
JP2004124824A (en) Secondary air supply device
JP2007071090A (en) Control device of internal combustion engine
JP2004360488A (en) Exhaust emission control device of internal combustion engine
JP2010059879A (en) Exhaust gas recirculation device for internal combustion engine
JP4924444B2 (en) Control device and control method for internal combustion engine
JP4063743B2 (en) Fuel injection timing control device for internal combustion engine
JP2005264751A (en) Air fuel ratio controller of internal combustion engine
JP2008038788A (en) Control method of vehicular internal combustion engine and vehicular internal combustion engine
GB2380425A (en) A method and system for controlling an internal combustion engine.

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100915