JP2006274364A - Bottom-blown tuyere for use in refining vessel - Google Patents

Bottom-blown tuyere for use in refining vessel Download PDF

Info

Publication number
JP2006274364A
JP2006274364A JP2005096209A JP2005096209A JP2006274364A JP 2006274364 A JP2006274364 A JP 2006274364A JP 2005096209 A JP2005096209 A JP 2005096209A JP 2005096209 A JP2005096209 A JP 2005096209A JP 2006274364 A JP2006274364 A JP 2006274364A
Authority
JP
Japan
Prior art keywords
tuyere
refining
blown
gas
opening center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005096209A
Other languages
Japanese (ja)
Inventor
Seiji Hosohara
聖司 細原
Sadakimi Kiyota
禎公 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005096209A priority Critical patent/JP2006274364A/en
Publication of JP2006274364A publication Critical patent/JP2006274364A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bottom-blown tuyere which has excellent spalling resistance and stirring power and has variable blowing amount of refining gas over a wide range. <P>SOLUTION: The bottom-blown tuyere is disposed at the bottom part of a refining vessel for holding and refining molten metal and is used for blowing the refining gas into the refining vessel, wherein two or more flowing passage for refining gas formed of fine tubes are provided in the tuyere refractory formed in a columnar shape. The flowing passage is opened at the upper end surface of the tuyere refractory and the opening hole center points being the centers of the opening hole part of the flowing passage are evenly spaced on the circumference of a circle having the center axis of the tuyere refractory as the center, and the inclination angle α of the center axis of the flowing passage to the perpendicular line passing the opening hole center part is made to a fixed value at all opening hole center points. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、溶融金属を収容して精錬する容器の底部に配設され、精錬用ガスを容器内の溶融金属に吹き込む羽口(以下、底吹き羽口という)に関するものである。   The present invention relates to a tuyere (hereinafter referred to as a bottom-blown tuyere) that is disposed at the bottom of a container for containing and refining molten metal and blows a refining gas into the molten metal in the container.

溶融金属(たとえば溶鋼等)に精錬用ガスを供給して精錬するにあたって、
(a) 溶融金属の浴面の上方から精錬用ガスを高速で吹き付ける精錬方法、
(b) 溶融金属を収容する精錬用容器の底部から精錬用ガスを吹き込む精錬方法、
(c) 上記の (a)と(b) を併用する精錬方法
等が広く採用されている。精錬用ガスは、溶融金属を攪拌するための不活性ガス(たとえばArガス,N2 ガス等)のみならず、溶融金属が溶鋼である場合には脱炭反応を促進するためのO2 ガス等、種々のガスをその目的に応じて適宜選択して使用する。
When supplying refinement gas to molten metal (for example, molten steel),
(a) a refining method in which a refining gas is blown at a high speed from above the bath surface of the molten metal,
(b) a refining method in which a refining gas is blown from the bottom of a refining vessel containing molten metal,
(c) A refining method using both (a) and (b) above is widely adopted. The refining gas is not only an inert gas (eg, Ar gas, N 2 gas, etc.) for stirring the molten metal, but an O 2 gas, etc., for promoting the decarburization reaction when the molten metal is molten steel. Various gases are appropriately selected according to the purpose and used.

上記の (b)あるいは (c)の精錬方法にて使用する底吹き羽口は、溶融金属を収容する精錬用容器(たとえば底吹き転炉,上底吹き転炉等)の底部に配設されるので、精錬の操業中は常に溶融金属に接触し、化学的あるいは物理的な侵食が容易に進行する。また、精錬が終了して溶融金属を排出したときに底吹き羽口は冷却され、再び溶融金属を精錬用容器に収容すれば、底吹き羽口の温度は急激に上昇する。このような熱衝撃を繰り返し受けることによって、底吹き羽口の物理的な侵食も進行する。   The bottom blowing tuyere used in the above refining method (b) or (c) is disposed at the bottom of a refining vessel (for example, bottom blowing converter, top bottom blowing converter, etc.) containing molten metal. Therefore, during refining operations, it always comes into contact with the molten metal, and chemical or physical erosion easily proceeds. Further, when refining is completed and the molten metal is discharged, the bottom blowing tuyere is cooled, and if the molten metal is accommodated in the refining vessel again, the temperature of the bottom blowing tuyere rises rapidly. By repeatedly receiving such a thermal shock, physical erosion of the bottom blowing tuyere proceeds.

したがって底吹き羽口の耐用性を高めるためには、化学的な侵食の抑制(すなわち耐食性の改善),物理的な侵食の抑制(すなわち耐スポーリング性や耐摩耗性の改善)が要求される。そのため、底吹き羽口を構成する素材の成分のみならず底吹き羽口の構造についても種々の検討がなされている。
たとえば特許文献1には、管の内部が空洞の外管と、管の内部が中実の内管とを組み合わせた底吹き羽口が開示されている。この底吹き羽口は、中心軸を一致させて配置した外管と内管の間隙から精錬用ガスを吹き込むものである。しかしながら特許文献1では外管や内管の寸法については考慮されていない。そのため、外管と内管の間隙から吹き込まれた精錬用ガスが溶融金属中で気泡が過剰に大きくなった場合には、その気泡が底吹き羽口から離脱した後の空間に、周辺の溶融金属が充満することによって底吹き羽口に作用する衝撃が大きくなる。つまり特許文献1に開示された技術では耐スポリーング性の向上は期待できない。
Therefore, in order to increase the durability of bottom-blown tuyere, suppression of chemical erosion (that is, improvement of corrosion resistance) and suppression of physical erosion (that is, improvement of spalling resistance and wear resistance) are required. . For this reason, various studies have been made on the structure of the bottom blowing tuyere as well as the components of the material constituting the bottom blowing tuyere.
For example, Patent Literature 1 discloses a bottom-blown tuyere in which an outer tube whose inside is a hollow tube and a solid inner tube whose inside is a tube are combined. This bottom blowing tuyere is for blowing a refining gas from the gap between the outer tube and the inner tube arranged with the center axes aligned. However, Patent Document 1 does not consider the dimensions of the outer tube and the inner tube. Therefore, when the gas for refining blown from the gap between the outer tube and the inner tube becomes excessively large in the molten metal, the surrounding melted into the space after the bubbles are released from the bottom blowing tuyere When the metal is filled, the impact acting on the bottom blowing tuyere increases. In other words, the technique disclosed in Patent Document 1 cannot be expected to improve the anti-spooring property.

また非特許文献1には、細管を多数組み合わせた羽口(以下、細管集合型羽口という)が開示されている。細管集合型羽口は、細管の内径と本数を適宜選択することによって、精錬用ガスの吹き込み量を変更できる。溶融金属の精錬工程の生産性向上あるいは成分の均一化を図る観点から、細管集合型羽口を介して吹き込まれる精錬用ガスの攪拌力を高めるためには、
(A) 細管の内径を拡大する、
(B) 細管の本数を増加する、
(C) 精錬用ガスの元圧を上昇させる、
(D) 精錬用容器に細管集合型羽口を多数配設する
等によって精錬用ガスの流量を増大させる必要がある。
Non-Patent Document 1 discloses a tuyere in which a large number of thin tubes are combined (hereinafter, referred to as a thin tube collective tuyere). The capillary tube type tuyere can change the amount of refining gas blown by appropriately selecting the inner diameter and the number of narrow tubes. From the viewpoint of improving the productivity of the molten metal refining process or homogenizing the components, in order to increase the stirring power of the refining gas blown through the narrow tube aggregate tuyere,
(A) Enlarging the inner diameter of the narrow tube,
(B) increase the number of tubules,
(C) Increase the source pressure of the refining gas,
(D) It is necessary to increase the flow rate of the gas for refining, for example, by disposing a large number of narrow tube aggregate tuyere in the refining vessel.

一般に、精錬用容器(たとえば底吹き転炉,上底吹き転炉等)を用いて溶融金属(たとえば溶鋼等)の精錬を行なう場合には、精錬中は精錬用容器を正立させるので、底吹き羽口は溶鋼の浴面の下方に位置する。ところが溶鋼を装入または排出する際には、精錬用容器を傾動させるので、底吹き羽口は露出する。そのため精錬用ガスの吹き込み量は、小流量から大流量まで広範囲にわたって変更させる必要がある。   Generally, when refining molten metal (for example, molten steel) using a refining vessel (for example, bottom blowing converter, top bottom blowing converter, etc.), the refining vessel is erected during refining. The blowing tuyere is located below the bath surface of the molten steel. However, when charging or discharging molten steel, the refining vessel is tilted, so that the bottom blowing tuyere is exposed. Therefore, it is necessary to change the amount of refining gas blown over a wide range from a small flow rate to a large flow rate.

ところが上記の (A)では、細管の圧力損失が減少するので、精錬用ガスの流量を増大させることは可能であるが、漏鋼を防止するために精錬用ガス流量の下限値を上昇せざるを得ない。したがって、精錬用ガス流量の変更可能な範囲が狭くなる。
上記の (B)では、細管の内径が変更されないので、細管1本あたりの精錬用ガス流量の下限値は一定であるが、細管の本数が増加することによって、細管集合型羽口としての精錬用ガス流量の下限値は上昇する。したがって、精錬用ガス流量の変更可能な範囲が狭くなる。
However, in (A) above, the pressure loss in the narrow tube is reduced, so it is possible to increase the flow rate of the refining gas, but it is necessary to increase the lower limit value of the refining gas flow rate in order to prevent leakage of steel. I do not get. Therefore, the changeable range of the refining gas flow rate is narrowed.
In (B) above, since the inner diameter of the narrow tube is not changed, the lower limit of the refining gas flow rate per narrow tube is constant, but as the number of narrow tubes increases, refining as a narrow tube aggregate tuyere is performed. The lower limit of the working gas flow rate increases. Therefore, the changeable range of the refining gas flow rate is narrowed.

上記の (C)では、精錬用ガスを送風する配管,ポンプやダンパー等の大幅な設備改造が必要であり、高額の設備投資を要するばかりでなく、工事のために設備稼働を長期間休止しなければならない。
上記の (D)では、 (C)と同様に、精錬用ガスを送風する配管,ポンプやダンパー等の大幅な設備改造が必要である。しかも精錬用容器の炉底構造も変更しなければならないので、一層高額の費用を要する。
特開昭57-114623 号公報 川崎製鉄技報17(1985)4,357-364
In (C) above, drastic remodeling of piping for refining gas, pumps, dampers, etc. is necessary, which not only requires expensive capital investment but also suspends equipment operation for a long period of time for construction. There must be.
In (D) above, as in (C), major equipment modifications such as piping, pumps and dampers for blowing refining gas are required. Moreover, since the furnace bottom structure of the refining vessel must be changed, a higher cost is required.
JP-A-57-114623 Kawasaki Steel Technical Report 17 (1985) 4,357-364

本発明は上記のような問題を解消し、優れた耐スポリーング性と攪拌力を有し、かつ精錬用ガスの吹き込み量を広範囲にわたって変更できる底吹き羽口を提供することを目的とする。また本発明の底吹き羽口は、既存の精錬用容器や周辺機器の大幅な改造を必要とせずに使用できる。   An object of the present invention is to provide a bottom blowing tuyere that solves the above-described problems, has excellent anti-spooring properties and stirring power, and can change the amount of refining gas blown over a wide range. Further, the bottom blow tuyere of the present invention can be used without requiring significant modification of existing refining containers and peripheral equipment.

本発明は、溶融金属を収容して精錬する精錬用容器の底部に配設され、精錬用ガスを精錬用容器内へ吹き込む底吹き羽口であって、円柱状に成形した羽口耐火物に精錬用ガスの流路を細管状に成形して2本以上設け、羽口耐火物の上端面に流路を開口させ、羽口耐火物の中心軸を中心とする円周上に、流路の開口部の中心である開口中心点を等間隔で配置し、開口中心点を通る鉛直線と流路の中心軸とのなす傾斜角αが全ての開口中心点にて10〜45°の範囲にある底吹き羽口である。   The present invention is a bottom-blown tuyere that is disposed at the bottom of a refining vessel for containing and refining molten metal and blows a refining gas into the refining vessel. Two or more refining gas flow paths are formed into a thin tubular shape, the flow path is opened at the upper end surface of the tuyere refractory, and the flow path is formed on the circumference around the central axis of the tuyere refractory. The opening center points, which are the centers of the openings, are arranged at equal intervals, and the inclination angle α between the vertical line passing through the opening center point and the center axis of the flow path is in the range of 10 to 45 ° at all opening center points. It is a bottom blowing tuyere.

本発明の底吹き羽口は、開口中心点によって形成される円の開口中心点における接線と流路の中心軸とのなす角を水平面上に投影した捻り角βが、全ての開口中心点にて接線に対して±10°以内であることが好ましい。さらに開口中心点が配置される円周が、羽口耐火物の中心軸を中心として2ケ以上であることが好ましい。   In the bottom blow tuyere of the present invention, the twist angle β obtained by projecting the angle formed by the tangent line at the opening center point of the circle formed by the opening center point and the center axis of the flow path on the horizontal plane is at all opening center points. And preferably within ± 10 ° with respect to the tangent. Furthermore, it is preferable that the circumference at which the opening center point is arranged is two or more around the center axis of the tuyere refractory.

本発明によれば、底吹き羽口の耐スポリーング性と攪拌力を向上するとともに、精錬用ガスの吹き込み量を広範囲にわたって変更することが可能である。しかも本発明の底吹き羽口を使用する際には、既存の精錬用容器や周辺機器の大幅な改造を必要としないので、設備投資を低く抑えることができる。   According to the present invention, it is possible to improve the anti-sporing property and stirring force of the bottom blowing tuyere and to change the refining gas blowing amount over a wide range. In addition, when using the bottom blow tuyere of the present invention, it is not necessary to significantly modify the existing refining vessel and peripheral equipment, so that the capital investment can be kept low.

図1は、本発明の底吹き羽口の上端面の例を模式的に示す斜視図である。なお、底吹き羽口は底吹き転炉等の精錬用容器の底部に配設(すなわち炉底耐火物に埋設)されるが、図1では底吹き羽口の周辺の炉底耐火物は図示を省略する。
図1に示すように、本発明の底吹き羽口では、円柱状の羽口耐火物1に細管状の精錬用ガスの流路2を設け、底吹き羽口の上端面にその流路2を開口させる。流路2は、羽口耐火物1内に2本以上設ける。なお図1には流路2を6本設ける例を示す。これらの流路2の開口部の中心Cp(以下、開口中心点という)は、羽口耐火物1の中心軸CL1 を中心とする円CAの円周上に等間隔で配置される。
FIG. 1 is a perspective view schematically showing an example of the upper end surface of the bottom blowing tuyere of the present invention. The bottom blowing tuyere is disposed at the bottom of a refining vessel such as a bottom blowing converter (that is, buried in the furnace bottom refractory), but the furnace bottom refractory around the bottom blowing tuyere is shown in FIG. Is omitted.
As shown in FIG. 1, in the bottom blow tuyere of the present invention, a cylindrical tuyere refractory 1 is provided with a thin tubular refining gas flow channel 2, and the flow channel 2 is provided on the upper end surface of the bottom blow tuyere. Open. Two or more flow paths 2 are provided in the tuyere refractory 1. FIG. 1 shows an example in which six flow paths 2 are provided. The centers Cp of the openings of these flow paths 2 (hereinafter referred to as opening center points) are arranged at equal intervals on the circumference of a circle CA centered on the central axis CL1 of the tuyere refractory 1.

図2は、図1中の任意の流路2の開口部近傍を拡大して示す側面図である。流路2の中心軸CL2 と開口中心点Cpを通る鉛直線とのなす角α(以下、傾斜角という)は、全ての開口中心点において10〜45°とする。
図3は、本発明の底吹き羽口から精錬用容器内の溶融金属へ精錬用ガスを吹き込む例を模式的に示す断面図である。底吹き羽口は、その上端面が精錬用容器の上面に露出するように配設される。精錬用ガス4は、底吹き羽口の下部から供給され、流路2内を通って開口部から気泡4aとなって溶融金属3へ吹き込まれる。流路2は、各開口中心点Cpにて、鉛直線に対して一定の傾斜角αで傾斜しているので、溶融金属3へ吹き込まれた精錬用ガス4の気泡4aは旋回流SEを形成する。したがって、本発明の底吹き羽口を用いて精錬用ガス4を吹き込むことによって、溶融金属3を十分に攪拌できる。
FIG. 2 is an enlarged side view showing the vicinity of the opening of an arbitrary channel 2 in FIG. An angle α (hereinafter referred to as an inclination angle) formed by the central axis CL2 of the flow path 2 and a vertical line passing through the opening center point Cp is 10 to 45 ° at all the opening center points.
FIG. 3 is a cross-sectional view schematically showing an example in which a refining gas is blown from the bottom blowing tuyeres of the present invention into the molten metal in the refining vessel. The bottom blowing tuyere is disposed such that the upper end surface is exposed on the upper surface of the refining vessel. The refining gas 4 is supplied from the bottom of the bottom blowing tuyere, passes through the flow path 2 and is blown into the molten metal 3 as bubbles 4a from the opening. Since the flow path 2 is inclined at a constant inclination angle α with respect to the vertical line at each opening center point Cp, the bubbles 4a of the refining gas 4 blown into the molten metal 3 form a swirling flow SE. To do. Therefore, the molten metal 3 can be sufficiently stirred by blowing the refining gas 4 using the bottom blowing tuyere of the present invention.

既に説明した通り、本発明の底吹き羽口では、円柱状の羽口耐火物1に2本以上の精錬用ガスの流路2を設ける。流路2の本数や内径は、精錬用容器の寸法,溶融金属の種類あるいは精錬用ガスの吹き込み量等に応じて適宜設定する。
なお、傾斜角αが10°未満では、溶融金属3の旋回流SEが生じない。一方、傾斜角αが45°を超えると、羽口出口で膨張性気泡による叩き損耗が大きくなるので、開口部の欠損が生じやすくなる。したがって傾斜角αは10〜45°の範囲内を満足するのが好ましい。
As already explained, in the bottom blow tuyere of the present invention, two or more refining gas flow paths 2 are provided in the cylindrical tuyere refractory 1. The number and inner diameter of the flow path 2 are appropriately set according to the size of the refining vessel, the type of molten metal, the amount of refining gas blown in, and the like.
If the inclination angle α is less than 10 °, the swirl flow SE of the molten metal 3 does not occur. On the other hand, if the inclination angle α exceeds 45 °, the hitting damage due to the expandable bubbles at the tuyere exit becomes large, so that the opening is easily lost. Therefore, it is preferable that the inclination angle α satisfies the range of 10 to 45 °.

また流路2の中心軸CL2 は、開口中心点Cpが配置される円周CAの接線方向であることが好ましい。ただし図4に示すように、円CAの開口中心点Cpにおける接線CBと流路2の中心軸CL2 とのなす角を水平面(すなわち平面図)上に投影した角β(以下、捻り角という)が±10°以内とすることもできる。ここでは、図4において接線CBの下側に設定する捻り角βをプラス,接線CBの上側に設定する捻り角βをマイナスとして説明する。捻り角βがプラス10°を超えると、流路2から吹き込まれた精錬用ガス4が円CA内で干渉して、旋回流SEが形成されない。一方、捻り角βがマイナス10°を超えると、流路2から吹き込まれた精錬用ガス4が精錬用容器の側壁(図示せず)の方向に放散されるので、旋回流SEが形成されない。つまり溶融金属3の旋回流SEを形成するために、捻り角βは±10°以内とするのが好ましい。   The central axis CL2 of the flow path 2 is preferably tangential to the circumference CA where the opening center point Cp is arranged. However, as shown in FIG. 4, an angle β (hereinafter referred to as a twist angle) projected on a horizontal plane (that is, a plan view) is an angle formed by a tangent line CB at the opening center point Cp of the circle CA and the central axis CL2 of the flow path 2. Can be within ± 10 °. Here, in FIG. 4, the twist angle β set below the tangent line CB is assumed to be plus, and the twist angle β set above the tangent line CB is assumed to be minus. When the twist angle β exceeds + 10 °, the refining gas 4 blown from the flow path 2 interferes in the circle CA, and the swirling flow SE is not formed. On the other hand, when the twist angle β exceeds −10 °, the refining gas 4 blown from the flow path 2 is dissipated in the direction of the side wall (not shown) of the refining vessel, so that the swirl flow SE is not formed. That is, in order to form the swirl flow SE of the molten metal 3, the twist angle β is preferably within ± 10 °.

また、図1には開口中心点Cpによって形成される円CAが1ケの例を示したが、円CAを2ケ以上形成しても良い。図5には、円CAを2ケ形成する例を示す。これらの円CA1 ,CA2 は、いずれも羽口耐火物1の中心軸CL1 を中心とする同心円である。
このようにして本発明の底吹き羽口は、耐スポーリング性と攪拌力を向上できる。しかも、精錬用ガス4の流路2の本数や内径を好適範囲内を満足する数値に設定することによって、精錬用ガスの吹き込み量を小流量から大流量まで広範囲にわたって変更することが可能である。また本発明の底吹き羽口の寸法(すなわち外径,高さ等)を従来の羽口と同一にすれば、既存の精錬用容器や周辺機器を使用できる。
FIG. 1 shows an example in which one circle CA is formed by the opening center point Cp, but two or more circles CA may be formed. FIG. 5 shows an example in which two circles CA are formed. These circles CA1 and CA2 are both concentric circles centered on the central axis CL1 of the tuyere refractory 1.
In this manner, the bottom blow tuyere of the present invention can improve the spalling resistance and the stirring power. In addition, by setting the number and the inner diameter of the flow passages 2 of the refining gas 4 to values that satisfy the preferable range, it is possible to change the refining gas blowing amount over a wide range from a small flow rate to a large flow rate. . Further, if the bottom blow tuyere of the present invention has the same dimensions (that is, outer diameter, height, etc.) as the conventional tuyere, existing refining containers and peripheral equipment can be used.

直径500mm の実験用容器の底部に底吹き羽口を配設した。底吹き羽口は、流路2を図5に示すように配置したものを使用した。羽口耐火物1の外径は120mm とし、流路2の内径は1mmとした。流路2の本数は合計30本とし、円CA1 に20本を等間隔で配置し、円CA2 に10本を等間隔で配置した。各流路2の開口中心点Cpにおける傾斜角αは一定とし、そのα値が0°,5°,10°,20°,30°,45°,60°の7種類の底吹き羽口を使用した。捻れ角βは±0°とした。   A bottom-blown tuyere was placed at the bottom of a 500 mm diameter laboratory container. As the bottom blowing tuyere, the one in which the flow path 2 is arranged as shown in FIG. 5 was used. The outer diameter of the tuyere refractory 1 was 120 mm, and the inner diameter of the flow path 2 was 1 mm. The total number of the flow paths 2 is 30, 20 are arranged at equal intervals in the circle CA1, and 10 are arranged at equal intervals in the circle CA2. The inclination angle α at the opening center point Cp of each flow path 2 is constant, and seven types of bottom blowing tuyere with α values of 0 °, 5 °, 10 °, 20 °, 30 °, 45 °, and 60 ° are provided. used. The twist angle β was ± 0 °.

この実験用容器にイオン交換水(いわゆる純水)を深さ500mm まで収容し、底吹き羽口の下部から空気を供給(流量: 0.8m3 (標準状態)/分)し、流路2を介してイオン交換水に吹き込んだ。実験用容器内のイオン交換水に空気を吹き込みながら、水面の中央に塩化カリウム水溶液(濃度:1質量%)を10cm3 滴下した。
このときの電気伝導度の推移を測定した。センサーの位置は、実験用容器の底部の壁面近傍に設置した。塩化カリウム水溶液の滴下により、イオン交換水の電気伝導度は上昇し、充分時間が経過した後に一定値になる。この電気伝導度の推移において、塩化カリウム水溶液の滴下を開始してから、最終的に到達する電気伝導度の±5%以内の値に電気伝導度が上昇するまでの時間を均一混合時間とした。
Ion exchange water (so-called pure water) is stored in this experimental vessel up to a depth of 500 mm, air is supplied from the bottom of the bottom blowing tuyere (flow rate: 0.8 m 3 (standard state) / min), Was blown into the ion exchange water. While blowing air into the ion exchange water in the experimental container, 10 cm 3 of an aqueous potassium chloride solution (concentration: 1% by mass) was dropped into the center of the water surface.
The transition of electrical conductivity at this time was measured. The sensor was placed in the vicinity of the wall surface at the bottom of the experimental container. By dripping the potassium chloride aqueous solution, the electric conductivity of the ion exchange water increases, and reaches a constant value after a sufficient time has elapsed. In this transition of electrical conductivity, the time from the start of dropping of the aqueous potassium chloride solution until the electrical conductivity rose to a value within ± 5% of the finally reached electrical conductivity was defined as the uniform mixing time. .

均一混合時間の測定は、傾斜角αを変更した7種類の底吹き羽口毎に3回ずつ行ない、その平均値を計算した。傾斜角αと均一混合時間の平均値との関係を図6に示す。ただし図6では、均一混合時間を攪拌指数として示す。攪拌指数とは、傾斜角α=0°の底吹き羽口の均一混合時間の平均値を基準値(=1)として、相対的に評価する指標である。つまり攪拌指数が小さいほど、均一混合時間が短い(すなわち攪拌力が強い)ことを示す。図6から明らかなように、傾斜角αが10°以上の範囲で攪拌指数が減少している。   The measurement of the uniform mixing time was performed three times for each of the seven types of bottom blowing tuyeres with different inclination angles α, and the average value was calculated. FIG. 6 shows the relationship between the inclination angle α and the average value of the uniform mixing time. However, in FIG. 6, uniform mixing time is shown as a stirring index. The stirring index is an index that is relatively evaluated with the average value of the uniform mixing time of the bottom blowing tuyere having an inclination angle α = 0 ° as a reference value (= 1). That is, the smaller the stirring index, the shorter the uniform mixing time (that is, the stronger the stirring power). As is clear from FIG. 6, the stirring index decreases in the range where the inclination angle α is 10 ° or more.

次に、底吹き羽口を配設した試験転炉(容量5ton )に溶鋼を収容して、精錬を行ない、Mnの歩留りと底吹き羽口の損耗量を調査した。底吹き羽口は、流路2を図1に示すように配置したものを使用した。ただし試験転炉で用いた底吹き羽口では、流路2の本数は10本とし、円CAに10本を等間隔で配置した。流路2の内径は2mmとした。各流路2の開口中心点Cpにおける傾斜角αは一定とし、そのα値が0°,10°,20°,60°の3種類の底吹き羽口を使用した。捻れ角βは±0°とした。   Next, molten steel was accommodated in a test converter (capacity 5 tons) provided with a bottom blow tuyere and refined, and the yield of Mn and the wear amount of the bottom blow tuyere were investigated. As the bottom blowing tuyere, the one in which the flow path 2 is arranged as shown in FIG. 1 was used. However, in the bottom blowing tuyere used in the test converter, the number of the flow paths 2 was 10 and 10 were arranged at equal intervals in a circle CA. The inner diameter of the flow path 2 was 2 mm. The inclination angle α at the opening center point Cp of each channel 2 was constant, and three types of bottom blowing tuyere whose α values were 0 °, 10 °, 20 °, and 60 ° were used. The twist angle β was ± 0 °.

この試験転炉に溶鋼を5ton 収容し、底吹き羽口の下部からN2 ガスを供給(流量: 1.0m3 (標準状態)/分)し、流路2を介して溶鋼に吹き込んだ。試験転炉内の溶鋼にN2 ガスを吹き込みながら、溶鋼の浴面にMn鉱石を 100kg投入した。Mn鉱石を投入した後、15分経過したときにN2 ガスの吹き込みを停止した。溶鋼の温度は1650℃であった。
2 ガスの吹き込みを停止した後の溶鋼のMn含有量(質量%)を測定し、溶鋼量(=5ton )と吹錬前後の鋼中のMn含有量から溶鋼中のMn量(kg)を算出し、さらに下記の式でMn歩留りを算出した。
In this test converter, 5 tons of molten steel was accommodated, N 2 gas was supplied from the bottom of the bottom blowing tuyere (flow rate: 1.0 m 3 (standard state) / min), and blown into the molten steel through the flow path 2. While N 2 gas was blown into the molten steel in the test converter, 100 kg of Mn ore was poured into the molten steel bath surface. After 15 minutes have passed since the Mn ore was charged, the N 2 gas blowing was stopped. The temperature of the molten steel was 1650 ° C.
Measure the Mn content (mass%) of the molten steel after stopping the N 2 gas blowing, and calculate the Mn content (kg) in the molten steel from the molten steel amount (= 5 tons) and the Mn content in the steel before and after blowing. The Mn yield was calculated by the following formula.

Mn歩留り(%)=100 ×MSTEEL /MORE
STEEL :溶鋼中のMn量(kg)
ORE :Mn鉱石中のMn量(kg)
傾斜角αとMn歩留りとの関係を図7に示す。ただし図7では、Mn歩留りを歩留り指数として示す。歩留り指数とは、傾斜角α=0°のMn歩留りを基準値(=1)として、相対的に評価する指標である。つまり歩留り指数が大きいほど、攪拌力が強いことを示す。図7から明らかなように、傾斜角αが10°以上の範囲で歩留り指数が増加している。
Mn Yield (%) = 100 x M STEEL / M ORE
M STEEL : Mn content in molten steel (kg)
M ORE : Mn content in Mn ore (kg)
FIG. 7 shows the relationship between the inclination angle α and the Mn yield. However, in FIG. 7, the Mn yield is shown as a yield index. The yield index is an index that is relatively evaluated with the Mn yield at an inclination angle α = 0 ° as a reference value (= 1). That is, the larger the yield index, the stronger the stirring force. As is apparent from FIG. 7, the yield index increases in the range where the inclination angle α is 10 ° or more.

また、N2 ガスの吹き込みを停止した後、試験転炉から溶鋼を排出し、底吹き羽口を回収して、底吹き羽口の長さ(mm)を測定した。N2 ガスの吹き込みを開始する前に予め測定した長さと、吹き込みを停止した後で測定した長さとの差を求めて、その数値を底吹き羽口の損耗量とした。傾斜角αと底吹き羽口の損耗量との関係を図8に示す。ただし図8では、底吹き羽口の損耗量を損耗指数として示す。損耗指数とは、傾斜角α=0°の損耗量を基準値(=1)として、相対的に評価する指標である。つまり損耗指数が大きいほど、損耗量が多いことを示す。図8から明らかなように、傾斜角αが45°以下の範囲で、損耗指数が減少した。 Further, after stopping the N 2 gas blowing, the molten steel was discharged from the test converter, the bottom blowing tuyere was collected, and the length (mm) of the bottom blowing tuyere was measured. The difference between the length measured in advance before the N 2 gas blowing was started and the length measured after the blowing was stopped was obtained, and the value was used as the amount of wear of the bottom blowing tuyere. FIG. 8 shows the relationship between the inclination angle α and the amount of wear of the bottom blowing tuyere. However, in FIG. 8, the amount of wear of the bottom blowing tuyere is shown as a wear index. The wear index is an index that is relatively evaluated with a wear amount at an inclination angle α = 0 ° as a reference value (= 1). That is, the larger the wear index, the greater the wear amount. As is apparent from FIG. 8, the wear index decreased when the inclination angle α was 45 ° or less.

本発明の底吹き羽口の上端面の例を模式的に示す斜視図である。It is a perspective view which shows typically the example of the upper end surface of the bottom blowing tuyere of this invention. 図1中の流路の開口部近傍を拡大して示す側面図である。It is a side view which expands and shows the opening part vicinity of the flow path in FIG. 本発明の底吹き羽口から精錬用容器内の溶融金属へ精錬用ガスを吹き込む例を模式的に示す断面図である。It is sectional drawing which shows typically the example which blows the gas for refining from the bottom blowing tuyere of this invention to the molten metal in the container for refining. 図1中の流路の開口部近傍を拡大して示す平面図である。It is a top view which expands and shows the opening part vicinity of the flow path in FIG. 本発明の底吹き羽口の上端面の他の例を模式的に示す平面図である。It is a top view which shows typically the other example of the upper end surface of the bottom blowing tuyere of this invention. 傾斜角αと攪拌指数との関係を示すグラフである。It is a graph which shows the relationship between inclination-angle (alpha) and a stirring index. 傾斜角αと歩留り指数との関係を示すグラフである。It is a graph which shows the relationship between inclination-angle (alpha) and a yield index. 傾斜角αと損耗指数との関係を示すグラフである。It is a graph which shows the relationship between inclination-angle (alpha) and a wear index.

符号の説明Explanation of symbols

1 羽口耐火物
2 精錬用ガスの流路
3 溶融金属
4 精錬用ガス
4a 気泡
5 炉底耐火物
SE 旋回流
CL1 羽口耐火物の中心軸
CL2 流路の中心軸
Cp 開口中心点
CA 開口中心点で形成される円
CB 開口中心点で形成される円の接線
1 Tuyere refractory 2 Refining gas flow path 3 Molten metal 4 Refining gas
4a Bubble 5 Furnace bottom refractory
SE swirl flow
CL1 Center axis of tuyere refractories
Center axis of CL2 flow path
Cp Opening center point
CA A circle formed by the center point of the opening
The tangent of the circle formed by the CB opening center point

Claims (3)

溶融金属を収容して精錬する精錬用容器の底部に配設され、精錬用ガスを前記精錬用容器内へ吹き込む底吹き羽口であって、円柱状に成形した羽口耐火物に前記精錬用ガスの流路を細管状に成形して2本以上設け、前記羽口耐火物の上端面に前記流路を開口させ、前記羽口耐火物の中心軸を中心とする円周上に、前記流路の開口部の中心である開口中心点を等間隔で配置し、前記開口中心点を通る鉛直線と前記流路の中心軸とのなす傾斜角αが全ての開口中心点にて10〜45°の範囲にあることを特徴とする底吹き羽口。   A bottom-blown tuyere that is disposed at the bottom of a refining vessel for containing and refining molten metal, and blows a refining gas into the refining vessel. Two or more gas flow paths are formed in a thin tubular shape, the flow path is opened at the upper end surface of the tuyere refractory, and on the circumference centered on the central axis of the tuyere refractory, The opening center points that are the centers of the openings of the flow paths are arranged at equal intervals, and an inclination angle α formed by a vertical line passing through the opening center point and the central axis of the flow path is 10 to 10 at all opening center points. Bottom blowing tuyere characterized by being in the range of 45 °. 前記開口中心点によって形成される円の前記開口中心点における接線と前記流路の中心軸とのなす角を水平面上に投影した捻り角βが全ての開口中心点にて前記接線に対して±10°以内であることを特徴とする請求項1に記載の底吹き羽口。   A twist angle β obtained by projecting an angle formed between a tangent line at the opening center point of the circle formed by the opening center point and the center axis of the flow path onto the horizontal plane is ± with respect to the tangent line at all opening center points. The bottom-blown tuyere according to claim 1, wherein the bottom-blown tuyere is within 10 °. 前記開口中心点が配置される円周が、前記羽口耐火物の中心軸を中心として2ケ以上であることを特徴とする請求項1または2に記載の底吹き羽口。
3. The bottom-blown tuyere according to claim 1, wherein the circumference at which the opening center point is arranged is two or more around the central axis of the tuyere refractory.
JP2005096209A 2005-03-29 2005-03-29 Bottom-blown tuyere for use in refining vessel Pending JP2006274364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005096209A JP2006274364A (en) 2005-03-29 2005-03-29 Bottom-blown tuyere for use in refining vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005096209A JP2006274364A (en) 2005-03-29 2005-03-29 Bottom-blown tuyere for use in refining vessel

Publications (1)

Publication Number Publication Date
JP2006274364A true JP2006274364A (en) 2006-10-12

Family

ID=37209397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005096209A Pending JP2006274364A (en) 2005-03-29 2005-03-29 Bottom-blown tuyere for use in refining vessel

Country Status (1)

Country Link
JP (1) JP2006274364A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027201A (en) * 2014-06-30 2016-02-18 Jfeスチール株式会社 Bottom-blown tuyere block for converter
CN111455134A (en) * 2020-06-10 2020-07-28 北京联合荣大工程材料股份有限公司 Ladle and ventilating device for bottom blowing of ladle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027201A (en) * 2014-06-30 2016-02-18 Jfeスチール株式会社 Bottom-blown tuyere block for converter
CN111455134A (en) * 2020-06-10 2020-07-28 北京联合荣大工程材料股份有限公司 Ladle and ventilating device for bottom blowing of ladle

Similar Documents

Publication Publication Date Title
KR20110138145A (en) Measuring probes for measuring and taking samples with a metal melt
JP6660044B2 (en) Method of acid refining of molten iron and top blowing lance
KR20210010363A (en) Tuyere for a basic oxygen furnace
JP2006274364A (en) Bottom-blown tuyere for use in refining vessel
Ballal et al. A water model study of bottom-blown oxygen steelmaking processes
KR101366298B1 (en) Apparatus for refining molten steel
CN211645310U (en) Dynamic free molten iron pretreatment desulfurization spray gun
JP2006283065A (en) Gas-blowing tuyere
CN107326193A (en) A kind of two step lead smelting process techniques and device
JP2014521837A (en) Method and apparatus for dephosphorizing liquid hot metal such as liquid blast furnace
BRPI0412256B1 (en) Fine-grained metal charging process in an electric arc furnace
JP2011202236A (en) Top-blowing lance for converter, and method for operating converter
JP6658365B2 (en) Hot metal refining method
JP3752051B2 (en) Scrap melting method and scrap melting lance
RU2750254C1 (en) Device for bottom blowing of metal by gas in ladle
CN105779690B (en) Increase the method for increasing silicon production foundry iron outside silicon method and molten iron furnace outside molten iron furnace
JP5729120B2 (en) Operation method of bottom blow converter
JP6540301B2 (en) Molten iron discharge work method
Tajik et al. The influence of placement and sintering time of the steel ladle filler-sand
JP2018024911A (en) Method for melting bullion adhered in ladle in molten iron preliminary treatment
TWI722622B (en) Method for manufacturing steel and method for reducing basicity of slag
PL84113B1 (en)
KR101540923B1 (en) Ladle of steel making
Santos et al. Slag splashing: Blow parameters equationing
KR200198915Y1 (en) The lance of refining with converter