JP2006273660A - Photocatalytic inorganic building material - Google Patents

Photocatalytic inorganic building material Download PDF

Info

Publication number
JP2006273660A
JP2006273660A JP2005095714A JP2005095714A JP2006273660A JP 2006273660 A JP2006273660 A JP 2006273660A JP 2005095714 A JP2005095714 A JP 2005095714A JP 2005095714 A JP2005095714 A JP 2005095714A JP 2006273660 A JP2006273660 A JP 2006273660A
Authority
JP
Japan
Prior art keywords
inorganic
building material
photocatalytic
inorganic building
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005095714A
Other languages
Japanese (ja)
Inventor
Atsushi Eguchi
敦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Original Assignee
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd filed Critical Konoshima Chemical Co Ltd
Priority to JP2005095714A priority Critical patent/JP2006273660A/en
Publication of JP2006273660A publication Critical patent/JP2006273660A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalytic inorganic building material which is rich in decorativeness because the whole of it is thoroughly colored and which has both adsorbing performance and decomposing performance for a pollutant in air. <P>SOLUTION: The photocatalytic inorganic building material of this invention is obtained by dispersing a powdery inorganic pigment having photocatalytic performance in a base material of an inorganic building material composed of a porous body, and it provides an inorganic building material having both adsorbing performance and photocatalytic performance against a pollutant in air, and further it is capable of providing an inorganic building material being uniformly colored over the whole at a low cost, because the base material is uniformly colored due to the capability of the uniform dispersion of the powdery inorganic pigment from the surface to the inside of the base material of the inorganic building material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、無機系建築材料基材中に光触媒性能を有する無機顔料を均一に分散する光触媒性無機系建築材料に関する。   The present invention relates to a photocatalytic inorganic building material in which an inorganic pigment having photocatalytic performance is uniformly dispersed in an inorganic building material substrate.

近年、建築構造物における高気密化が進み、シックハウス症候群の原因とされるアセトアルデヒドやホルムアルデヒド等の揮発性有機物質、異臭の強いアンモニア等が発生するという社会的問題が発生している。従って、細菌やウィルスなども含む空気中の汚染物質の吸着が必要とされてきており、建築構造物を構成する建築材料としても、これらの物質の吸着性能を備えたものが求められている。
ここで、空気中の汚染物質を吸着する方法としては、一般に、吸着剤の使用がある。吸着剤としては細かい孔を多数有する多孔質体が用いられている。この多孔質体としては、例えば、アパタイト、ゼオライト、活性炭、シリカゲル、珪藻土、無水シリカ、ケイ酸カルシウム等が知られている。
In recent years, building structures have become highly airtight, and societal problems have arisen that volatile organic substances such as acetaldehyde and formaldehyde, ammonia with a strong off-flavor, etc., which are the cause of sick house syndrome, are generated. Therefore, it is necessary to adsorb pollutants in the air including bacteria and viruses, and a building material having a capability of adsorbing these substances is required as a building material constituting a building structure.
Here, as a method of adsorbing contaminants in the air, generally, an adsorbent is used. As the adsorbent, a porous body having many fine pores is used. As this porous body, for example, apatite, zeolite, activated carbon, silica gel, diatomaceous earth, anhydrous silica, calcium silicate and the like are known.

このうち、例えば、多孔質体であるケイ酸カルシウムは不燃材料として知られ、また、軽量で熱的にも安定な物質であることから、種々の形状の成形体に成形され、吸着性能を備えた建築材料や保温材料として広く使用されている。一般に、このケイ酸カルシウムの合成は、常温養生や蒸気養生でも可能であるが、水熱条件下で行うことが、強度面や寸法の安定性に有利である。また、ケイ酸質原料と石灰質原料を反応させ、ケイ酸カルシウムを結晶化させるにも、同様に水熱反応が必要とされる。また、ケイ酸カルシウムを硬化させる方法としては、炭酸ガスと反応させ硬化させる炭酸化反応が知られており、この炭酸化反応は、排熱等の二酸化炭素(CO)ガスを固定化できることから二酸化炭素(CO)排出による温暖化抑制ともなる。 Of these, for example, calcium silicate, which is a porous body, is known as a non-combustible material, and since it is a lightweight and thermally stable substance, it is molded into molded bodies of various shapes and has adsorption performance. Widely used as a building material and heat insulation material. In general, this calcium silicate can be synthesized by room temperature curing or steam curing, but it is advantageous in terms of strength and dimensional stability to be performed under hydrothermal conditions. Also, a hydrothermal reaction is required in order to cause the siliceous raw material and the calcareous raw material to react to crystallize calcium silicate. Further, as a method of curing calcium silicate, a carbonation reaction is known in which it reacts with carbon dioxide gas to cure, and this carbonation reaction can fix carbon dioxide (CO 2 ) gas such as exhaust heat. It also serves to suppress global warming due to carbon dioxide (CO 2 ) emissions.

一方、近年話題となっている光触媒は、紫外線や可視光線によって励起され、接触する有機物質を分解する性能を有しているため、前記した社会的問題の解決手段として光触媒の適用は有効であり、光触媒の技術開発が盛んに行われている。また、多孔質体を基材とした建築材料に対して光触媒を適用すれば、吸着性能と分解性能を併せ持った建築材料となるため好都合である。
ここで、光触媒は光が照射される部分にのみ触媒性能が発揮されることから、多孔質体に光触媒を適用するに際しては、多孔質体の表面部のみに光触媒を存在させればよく、光が届かない内部にまで配合する必要がない。そのため、基材の表面質体と光触媒とを配合した皮膜が基材の表面に形成されている建材や(例えば、特許文献1)、また、表層部を光触媒含有層としたコンクリート構造体が広く提供されている(例えば、特許文献2)。
一方、装飾として塗料で着色した基材に光触媒層を形成する場合にあっては、塗料に有機物が配合されることから、塗料からなる塗料層に直接光触媒を接触させてしまうと塗料層が破壊されてしまうという問題があった。そのため、塗料層の上に無機材からなる層の形成を行なった後光触媒層を形成するような構成を採用していた(例えば、特許文献3)。
On the other hand, photocatalysts that have become a hot topic in recent years are capable of decomposing organic substances that are excited by ultraviolet rays or visible light and that are in contact with them. Therefore, the application of photocatalysts is effective as a solution to the above-mentioned social problems. The technological development of photocatalysts has been actively conducted. In addition, if a photocatalyst is applied to a building material based on a porous body, it is advantageous because the building material has both adsorption performance and decomposition performance.
Here, since the photocatalyst exhibits the catalytic performance only in the portion irradiated with light, when applying the photocatalyst to the porous body, it is sufficient that the photocatalyst exists only in the surface portion of the porous body. It is not necessary to mix even the inside that does not reach. Therefore, building materials in which a film in which the surface material of the base material and the photocatalyst are blended are formed on the surface of the base material (for example, Patent Document 1), and concrete structures having a surface layer portion as a photocatalyst-containing layer are widely used. Provided (for example, Patent Document 2).
On the other hand, when a photocatalyst layer is formed on a base material colored with a paint as a decoration, organic matter is blended with the paint, so if the photocatalyst is brought into direct contact with the paint layer made of paint, the paint layer is destroyed. There was a problem of being. Therefore, the structure which forms the photocatalyst layer after forming the layer which consists of an inorganic material on a coating material layer was employ | adopted (for example, patent document 3).

特開平7−113272号公報JP-A-7-113272 特開2001−317199号公報JP 2001-317199 A 特開平11−319709号公報JP 11-319709 A

しかしながら、特許文献1や特許文献2に開示されるように、基材の表面層のみに光触媒からなる層を形成した場合にあっては、表面が磨耗により光触媒が脱落したり、基材を加工した場合にあっては光触媒が存在しない部分が現れてしまうといった問題が発生していた。また、特許文献3に開示されるように、塗料層の上に無機層の形成を行なった後、光触媒層を形成するような構成を採用する場合にあっては、前記したような問題に加えて、複層構造形成のため製造工程が複雑となるほか、表面に塗料層を形成することにより、基材がもつ吸着性能、調湿性能が発揮されなくなるという問題があった。   However, as disclosed in Patent Document 1 and Patent Document 2, when a layer made of a photocatalyst is formed only on the surface layer of the base material, the photocatalyst may fall off due to wear on the surface, or the base material may be processed. In such a case, there has been a problem that a portion where the photocatalyst does not exist appears. In addition, as disclosed in Patent Document 3, in the case of adopting a configuration in which a photocatalyst layer is formed after forming an inorganic layer on a paint layer, in addition to the above-described problems. As a result, the manufacturing process becomes complicated due to the formation of a multilayer structure, and the formation of a coating layer on the surface causes problems in that the adsorption performance and humidity control performance of the base material cannot be exhibited.

本発明の目的は、前記の事情に鑑みてなされたものであり、着色されているため装飾性に富み、また、空気中の汚染物質の吸着性能と分解性能を兼ね備えた光触媒性無機系建築材料を低コストで提供することにある。   The object of the present invention has been made in view of the above circumstances, and is colored so that it has a high decorative property, and also has a photocatalytic inorganic building material that has both adsorption performance and decomposition performance of pollutants in the air. Is to be provided at a low cost.

前記の目的を達するために、本発明の光触媒性無機系建築材料は、多孔質体からなる無機系建築材料基材中に光触媒性能を有する粉末状の無機顔料を分散してなることを特徴とする。   In order to achieve the above object, the photocatalytic inorganic building material of the present invention is characterized in that a powdery inorganic pigment having a photocatalytic performance is dispersed in a porous inorganic building material substrate. To do.

本発明の光触媒性無機系建築材料は、多孔質体からなる無機系建築材料基材中に、光触媒性能を有する無機顔料を分散してなるので、通常の建築材料の機械的特性を維持しつつ、空気中の汚染物質(例えば、アセトアルデヒドやホルムアルデヒド等の揮発性有機物質、アンモニア、細菌やウィルス等)について、基材による吸着性能と、光触媒による分解性能(以下、「光触媒性能」と呼ぶこともある)を兼ね備えた無機系建築材料(光触媒性無機系建築顔料)となる。
また、無機顔料が粉末状であるため、当該無機顔料を無機系建築材料基材の表面ないし内部に均一に分散させることができることで基材が均一に着色されることとなり、塗料層の上に無機材からなる無機層の形成を行なった後、光触媒層を形成する構成を採用する必要もなく、全体が均一に着色された無機系建築材料を低コストで得ることができる。
更には、基材中に対して光触媒性能を有する無機顔料が分散されている構成を採用することにより、表面が磨耗により光触媒が脱落したり、基材を加工した場合にも光触媒が存在しない部分が現れてしまうといった問題もなく、全ての面から光触媒性能を効率よく発現させることができる。
The photocatalytic inorganic building material of the present invention is formed by dispersing an inorganic pigment having photocatalytic performance in an inorganic building material base material composed of a porous body, while maintaining the mechanical characteristics of ordinary building materials. In addition, air pollutants (for example, volatile organic substances such as acetaldehyde and formaldehyde, ammonia, bacteria, viruses, etc.) may be referred to as adsorption performance by a substrate and decomposition performance by a photocatalyst (hereinafter referred to as “photocatalytic performance”). It is an inorganic building material (photocatalytic inorganic building pigment).
Further, since the inorganic pigment is in a powder form, the base material is uniformly colored by being able to uniformly disperse the inorganic pigment on the surface or inside of the base material of the inorganic building material, and on the coating layer. After the formation of the inorganic layer made of an inorganic material, it is not necessary to adopt a configuration for forming a photocatalyst layer, and an inorganic building material that is uniformly colored as a whole can be obtained at low cost.
Furthermore, by adopting a configuration in which an inorganic pigment having photocatalytic performance is dispersed in the base material, the photocatalyst is lost due to wear on the surface or the photocatalyst does not exist even when the base material is processed. The photocatalytic performance can be efficiently expressed from all aspects without the problem of appearing.

なお、このような光触媒性能を有する無機顔料としては、例えば、酸化鉄、酸化スズ、酸化タングステン、酸化ジルコニウム等が挙げられる。
また、多孔質体からなる無機系建築材料基材としては、例えば、セメント、ケイ酸質材、石灰質材、スラグ(溶滓)及び石膏から選ばれる1または2以上の材料を主原料とし、必要により繊維補強材を混合して硬化させた材料(例えば、窯業系材料等)が挙げられる。
Examples of the inorganic pigment having such photocatalytic performance include iron oxide, tin oxide, tungsten oxide, and zirconium oxide.
In addition, as an inorganic building material substrate made of a porous material, for example, one or more materials selected from cement, siliceous material, calcareous material, slag (hot metal) and gypsum are used as a main raw material, and necessary. The material (for example, ceramics material etc.) which mixed and stiffened the fiber reinforcement is mentioned.

本発明の光触媒性無機系建築材料は、前記無機顔料の含有量が無機系建築材料全体に対して0.1〜10.0質量%であることが好ましい。
この本発明によれば、無機系建築材料基材中に分散される粉末状の無機顔料の含有量が無機系建築材料全体に対して0.1〜10.0質量%であるため、光触媒性能が効率よく発現されるとともに、コスト面も良好となる。
In the photocatalytic inorganic building material of the present invention, the content of the inorganic pigment is preferably 0.1 to 10.0% by mass with respect to the entire inorganic building material.
According to the present invention, the content of the powdered inorganic pigment dispersed in the inorganic building material substrate is 0.1 to 10.0% by mass with respect to the entire inorganic building material, so that the photocatalytic performance Is efficiently expressed and the cost is also improved.

本発明の光触媒性無機系建築材料は、前記無機顔料が粉末状であり、当該無機顔料の平均粒径が0.1〜10.0μmであることが好ましい。
この本発明によれば、無機系建築材料基材中に分散される無機顔料の平均粒径が0.1〜10.0μmであるため、無機顔料を無機系建築材料基材中により均一に分散させることができ、その結果、着色が基材全体に施されるとともに、光触媒性無機系建築材料の光触媒性能が効率よく確実に発揮されることになる。
In the photocatalytic inorganic building material of the present invention, the inorganic pigment is preferably in the form of powder, and the average particle size of the inorganic pigment is preferably 0.1 to 10.0 μm.
According to the present invention, since the average particle diameter of the inorganic pigment dispersed in the inorganic building material substrate is 0.1 to 10.0 μm, the inorganic pigment is more uniformly dispersed in the inorganic building material substrate. As a result, the entire base material is colored, and the photocatalytic performance of the photocatalytic inorganic building material is efficiently and reliably exhibited.

本発明の光触媒性無機系建築材料は、多孔質体からなる無機系建築材料基材中に光触媒性能を有する無機顔料を分散してなるものであるが、かかる光触媒性能を有する無機顔料としては、例えば、酸化鉄(Fe:赤色顔料)、酸化スズ(SnO:白色顔料)、酸化タングステン(WO:黄色顔料)、酸化ジルコニウム(ZrO:白色顔料)等が挙げられる。これらの無機顔料は、一般に市販されているので、容易に入手することが可能である。これらの無機顔料は、一種を単独で使用してもよく、また、二種以上を組み合わせて使用してもよい。
なお、これらの無機顔料の色調についてはあくまでも例示であり、これらの無機顔料であれば、色調が多少異なっても、同じものとして取り扱うものとする。
The photocatalytic inorganic building material of the present invention is formed by dispersing an inorganic pigment having photocatalytic performance in an inorganic building material base material composed of a porous body. As an inorganic pigment having such photocatalytic performance, Examples thereof include iron oxide (Fe 2 O 3 : red pigment), tin oxide (SnO 2 : white pigment), tungsten oxide (WO 3 : yellow pigment), zirconium oxide (ZrO 2 : white pigment), and the like. Since these inorganic pigments are generally commercially available, they can be easily obtained. These inorganic pigments may be used individually by 1 type, and may be used in combination of 2 or more type.
In addition, about the color tone of these inorganic pigments, it is an illustration to the last, and if it is these inorganic pigments, even if a color tone is a little different, it shall treat as the same thing.

これらの光触媒性を有する無機顔料の形態は、粉末状として用いられる。本発明におい
ては、このような無機顔料を粉末状で用いることにより、無機系建築材料の表面ないし内
部に均一に分散させることができ、光触媒性能を効率よく発揮することができる。
なお、ここでいう「粉末状」とは、一般的な粉末形状のほか、粒子形状も含むものであ
る。
The form of these inorganic pigments having photocatalytic properties is used as a powder. In the present invention, by using such an inorganic pigment in powder form, it can be uniformly dispersed on the surface or inside of the inorganic building material, and the photocatalytic performance can be efficiently exhibited.
The “powdered form” mentioned here includes not only a general powder form but also a particle form.

光触媒性能を有する粉末状の無機顔料の平均粒径は、0.1〜10.0μmとすることが好ましく、0.15〜1.0μmの範囲内とすることが特に好ましい。無機顔料の平均粒径が0.1〜10.0μmの範囲内にあることにより、無機系建築材料基材中における無機顔料の分散がより均一に行なわれ、また、比表面積も適度となるため、光触媒性無機系建築材料の光触媒性能が確実に発揮されることになる。また、着色も基材全体に施されることになり、装飾性も良好となる。
これに対して、無機顔料の平均粒径が0.1μmより小さいと、取り扱いが困難となり、一方、平均粒径が10.0μmを超えると、基材中における分散性が悪くなり、着色状態が偏るほか、光触媒性能に悪影響を与える場合がある。
The average particle size of the powdered inorganic pigment having photocatalytic performance is preferably 0.1 to 10.0 μm, particularly preferably 0.15 to 1.0 μm. When the average particle diameter of the inorganic pigment is in the range of 0.1 to 10.0 μm, the inorganic pigment is more uniformly dispersed in the base material of the inorganic building material, and the specific surface area is also appropriate. Thus, the photocatalytic performance of the photocatalytic inorganic building material is surely exhibited. Moreover, coloring will also be given to the whole base material and decorativeness will also become favorable.
On the other hand, when the average particle size of the inorganic pigment is smaller than 0.1 μm, handling becomes difficult, while when the average particle size exceeds 10.0 μm, the dispersibility in the substrate is deteriorated and the coloring state is deteriorated. In addition to being biased, it may adversely affect the photocatalytic performance.

本発明の光触媒性無機系建築材料における光触媒性能を有する無機顔料の含有量は、光触媒性無機系建築材料全体に対して0.1〜10.0質量%とすることが好ましく、0.5〜5.0質量%とすることが特に好ましい。無機顔料の含有量が0.1質量%より少ない場合には、光触媒性能が発現されない場合があるほか、基材への着色効果も現れない場合がある。一方、含有量が10.0質量%より大きい場合には、光触媒性能や着色効果は発現されるものの、元来、無機顔料が高価であるため本発明の光触媒性無機系建築材料が高価となるため、コスト面で好ましくない。   The content of the inorganic pigment having photocatalytic performance in the photocatalytic inorganic building material of the present invention is preferably 0.1 to 10.0% by mass with respect to the entire photocatalytic inorganic building material, 0.5 to It is especially preferable to set it as 5.0 mass%. When the content of the inorganic pigment is less than 0.1% by mass, the photocatalytic performance may not be exhibited, and the coloring effect on the substrate may not appear. On the other hand, when the content is more than 10.0% by mass, although the photocatalytic performance and the coloring effect are exhibited, the photocatalytic inorganic building material of the present invention is expensive because the inorganic pigment is originally expensive. Therefore, it is not preferable in terms of cost.

本発明の光触媒性無機系建築材料は、かかる無機顔料を、多孔質体からなる無機系建築材料基材に分散させることによりなるものであるが、本発明に適用される無機系建築材料基材としては、例えば、窯業系材料が挙げられる。かかる窯業系材料は、一般に、腐食や虫害を抑制することができ耐久性に優れていることから、建築内装材、天井材、間仕切壁、建築外装材等として広く用いられているものである。   The photocatalytic inorganic building material of the present invention is obtained by dispersing such an inorganic pigment in an inorganic building material substrate made of a porous material, and is applied to the inorganic building material substrate applied to the present invention. Examples of such materials include ceramic materials. Such ceramic materials are generally used as building interior materials, ceiling materials, partition walls, building exterior materials and the like because they can suppress corrosion and insect damage and are excellent in durability.

窯業系材料は、一般には、セメント、ケイ酸質材、石灰質材、スラグ(溶滓)及び石膏から選ばれる1または2以上の材料を主原料とし、必要により繊維補強材を混合して強化し、所定の形状に成形された後、水熱養生、蒸気養生、常温常圧養生等の養生工程を経て
多孔質体として得られるものである。かかる窯業系材料の特徴は、多孔質であり比重が軽い割には優れた強度を発現することができ、また、加工性、運搬性にも優れる材料である。
Ceramic materials are generally made of one or more materials selected from cement, siliceous materials, calcareous materials, slag (hot metal) and gypsum, and mixed with fiber reinforcements as necessary. After being formed into a predetermined shape, it is obtained as a porous body through a curing process such as hydrothermal curing, steam curing, and normal temperature and normal pressure curing. The ceramic material is characterized by being porous and light in specific gravity, and can exhibit excellent strength, and is excellent in workability and transportability.

ケイ酸質材とは、例えば、ケイ酸(SiO)を含有する原料をいい、例えば、ケイ石、ケイ砂、ケイ藻土、白土、パーライト等の鉱物微粉末、フライアッシュ、シリカヒューム等のダストを使用することができる。
また、石灰質材としては、例えば、生石灰、消石灰、生石灰を水または温水で消化した消石灰乳、炭酸カルシウム等を使用することができる。
The siliceous material refers to, for example, a raw material containing silicic acid (SiO 2 ), for example, mineral fine powder such as quartzite, quartz sand, diatomaceous earth, white clay, perlite, fly ash, silica fume and the like. Dust can be used.
As the calcareous material, for example, quick lime, slaked lime, slaked lime milk obtained by digesting quick lime with water or warm water, calcium carbonate, and the like can be used.

繊維補強材としては、有機系および無機系の繊維補強材を使用することができる。有機系繊維補強材としては、セルロース繊維(針葉樹晒しクラフトパルプ(NBKP)、広葉樹晒しクラフトパルプ(LBKP)等のクラフトパルプも含む)、ポリプロピレン繊維、アラミド繊維等を採用することができる。無機系繊維補強材としては、ガラス繊維、ステンレス繊維等を採用することができる。   As the fiber reinforcing material, organic and inorganic fiber reinforcing materials can be used. Cellulose fibers (including kraft pulps such as softwood bleached kraft pulp (NBKP) and hardwood bleached kraft pulp (LBKP)), polypropylene fibers, and aramid fibers can be used as the organic fiber reinforcing material. As the inorganic fiber reinforcing material, glass fiber, stainless fiber or the like can be employed.

本発明の光触媒性無機系建築材料を製造する方法の一例を説明する。
例えば、ケイ酸カルシウムを基材とする場合は、まず、所定の無機顔料を、無機系建築材料基材となるセメント、ケイ酸質材、石灰質材、繊維補強材等の混合体に添加して、無機顔料と無機系建築材料基材との混合材料を得る。この混合材料に対して水を加えて、ゲル状の流動性を帯びた混練物を調製する。
An example of the method for producing the photocatalytic inorganic building material of the present invention will be described.
For example, when calcium silicate is used as a base material, first, a predetermined inorganic pigment is added to a mixture of cement, siliceous material, calcareous material, fiber reinforcing material, etc., which becomes an inorganic building material base material. A mixed material of an inorganic pigment and an inorganic building material substrate is obtained. Water is added to the mixed material to prepare a kneaded product having gel fluidity.

次に、この混練物を所定の成形方法により成形体とする。成形方法としては、例えば、押出成形、脱水プレス成形等が挙げられる。
ここで、押出成形を用いる場合には、混練物中の各原料の比重差による不均一である影響を受けることが少なく、無機顔料も容易に均一混合した状態で成形することができる。また、成形体の形状としても、平板はもとより、回り縁、見切り縁、窓枠等の各種建築部材に適用することができ、意匠性に富む所定の形状の建築部材の成形が可能である。
Next, the kneaded product is formed into a molded body by a predetermined molding method. Examples of the molding method include extrusion molding and dehydration press molding.
Here, when extrusion molding is used, it is less affected by non-uniformity due to the difference in specific gravity of each raw material in the kneaded product, and the inorganic pigment can be easily molded in a uniformly mixed state. In addition, the shape of the molded body can be applied to various building members such as a peripheral edge, parting edge, and window frame as well as a flat plate, and a building member having a predetermined shape that is rich in design can be formed.

脱水プレス成形の場合、ゲル状の混練物では各原料の比重差が小さいので、押出成形と同様に、均一に各原料が混合されて成形を行うことができる。また、この脱水プレス成形にあっては、プレス面に絵柄を施すことにより、表面に絵柄面を備えた、装飾性に更に富んだ建築材料を得ることができる。   In the case of dehydration press molding, since the difference in specific gravity of each raw material is small in a gel-like kneaded product, each raw material can be uniformly mixed and molded similarly to extrusion molding. Moreover, in this dehydration press molding, by providing a pattern on the press surface, it is possible to obtain a building material having a pattern surface on the surface and further rich in decorativeness.

また、前記したゲル状の混練物に対して更に水を加えてスラリーとして、抄造成形により成形体としてもよい。
ここで、抄造成形等を行う場合は、その成形時において、凝集剤を添加して行うことが好ましい。本発明で使用される光触媒性能を有する無機顔料は濾水と一緒に濾過されて、成形体に全量が残らないという問題があるが、成形時に凝集剤を添加して凝集作用を起こさせることにより、基材に対する無機顔料の均一分散を行うことができるほか、抄造成形における無機顔料の流出を防止することができ、成形性の向上を図ることができるので好ましい。
Further, water may be further added to the gel-like kneaded material to form a slurry, which may be formed by papermaking.
Here, when performing paper-molding etc., it is preferable to add a flocculant at the time of the shaping | molding. The inorganic pigment having photocatalytic performance used in the present invention is filtered together with filtered water, and there is a problem that the entire amount does not remain in the molded body. In addition to being able to uniformly disperse the inorganic pigment with respect to the base material, it is possible to prevent the inorganic pigment from flowing out during papermaking and to improve the moldability, which is preferable.

凝集剤としては、ポリアクリルアミド系のカチオン高分子凝集剤等の高分子凝集剤を使用することが好ましく、また、必要に応じて硫酸アルミニウム、ポリ塩化アルミニウム(PAC)等の無機系凝集剤を併用してもよい。
凝集剤の添加量は、無機系建築材料基材の固形分100重量部に対して、固形分0.1〜5重量部とすることが好ましく、0.5〜3重量部とすることが特に好ましい。凝集剤の添加量が0.1〜5重量部の範囲内であれば凝集が好適に行われる一方、凝集剤の添加量が固形分0.1重量部より少ないと凝集がうまく行われない場合があり、また、5重量部を超えると必要以上の凝集が起こってしまう場合があるほか、コスト高にもつながるため好ましくない。
As the aggregating agent, it is preferable to use a polymer aggregating agent such as a polyacrylamide-based cationic polymer aggregating agent, and if necessary, an inorganic aggregating agent such as aluminum sulfate or polyaluminum chloride (PAC) is used in combination. May be.
The amount of the flocculant added is preferably 0.1 to 5 parts by weight, particularly 0.5 to 3 parts by weight, based on 100 parts by weight of the solid content of the inorganic building material substrate. preferable. When the addition amount of the flocculant is in the range of 0.1 to 5 parts by weight, the agglomeration is suitably performed, whereas when the addition amount of the flocculant is less than 0.1 part by weight of the solid content, the aggregation is not performed well. In addition, if the amount exceeds 5 parts by weight, more than necessary agglomeration may occur, and the cost is increased.

このようにして得られた成形体は、養生により硬化させる。養生方法としては、例えば、水熱養生、蒸気養生、常温常圧養生等の手段が挙げられる。この養生を行うことにより、水の存在下で、セメントの水和反応、ケイ酸質材と石灰質材との結合反応が進み、成形体が硬化され、強度、寸法安定性に優れる多孔質体からなる成形体となる。
また、合成されるケイ酸カルシウムは空隙の大きいことから、吸着性、調湿性、軽量、断熱性を発現することができるため、吸着性能をより向上させる場合でも、吸着剤の多量配合を必要としないという点においても好ましい。
なお、養生方法は、エネルギーコストや装置設備の維持等のコストの観点から、成形体の使用される環境に合わせて適宜選択すればよい。
The molded body thus obtained is cured by curing. Examples of the curing method include hydrothermal curing, steam curing, normal temperature and normal pressure curing, and the like. By performing this curing, in the presence of water, the cement hydration reaction, the bonding reaction between the siliceous material and the calcareous material proceeds, the molded body is cured, and from the porous body excellent in strength and dimensional stability. It becomes a formed product.
In addition, since the synthesized calcium silicate has large voids, it can exhibit adsorptivity, humidity control, light weight, and heat insulation, so even if the adsorption performance is further improved, a large amount of adsorbent is required. It is also preferable in that it does not.
In addition, what is necessary is just to select a curing method suitably according to the environment where a molded object is used from a viewpoint of costs, such as energy cost and maintenance of apparatus equipment.

また、多孔質体からなる無機系建築材料基材として、例えば特開平9−183617号公報等に開示されるような炭酸カルシウムを基材とする場合は、炭酸カルシウム粉末、繊維補強材、光触媒性能を有する無機顔料、助剤としてバインダーを混合して混合材料とした後、前記したケイ酸カルシウムを基材とした場合と同様な方法を用いて本発明の光触媒性無機系建築材料を成形すればよい。ここで、成形体の硬化を促進させるためには、助剤としてバインダーを添加してもよいが、助剤としてのバインダーを添加しない、例えば、特開2003−89569号公報等に開示される製造方法を適宜使用してもよい。   In addition, as an inorganic building material substrate made of a porous material, for example, when calcium carbonate as disclosed in JP-A-9-183617 is used as a substrate, calcium carbonate powder, fiber reinforcing material, photocatalytic performance After blending a binder as an auxiliary agent and a mixed material to form a mixed material, if the photocatalytic inorganic building material of the present invention is molded using the same method as the case of using calcium silicate as a base material, Good. Here, in order to accelerate the curing of the molded body, a binder may be added as an auxiliary agent, but a binder as an auxiliary agent is not added. For example, the production disclosed in JP-A-2003-89568 The method may be used as appropriate.

かくして得られる本発明の光触媒性無機系建築材料は、多孔質体からなる無機系建築材料基材中に、光触媒性能を有する粉末状の無機顔料を分散してなるので、空気中の汚染物質について、基材による吸着性能と、光触媒性能を兼ね備えた無機系建築材料となるほか、基材中に顔料が分散されることで、基材が均一に着色されることとなり、全体が均一に着色された無機系建築材料を低コストで得ることができる。
また、基材中に対して光触媒性を有する無機顔料が分散されている構成を採用することにより、表面が磨耗により光触媒が脱落したり、基材を加工した場合にも光触媒が存在しない部分が現れるといった問題もなく、全ての面から光触媒性能を効率よく発現させることができる。
The thus obtained photocatalytic inorganic building material of the present invention is formed by dispersing a powdery inorganic pigment having photocatalytic performance in a porous inorganic building material base material. In addition to being an inorganic building material that combines adsorption performance with the base material and photocatalytic performance, the base material is uniformly colored by dispersing the pigment in the base material, and the whole is uniformly colored. Inorganic building materials can be obtained at low cost.
In addition, by adopting a configuration in which an inorganic pigment having photocatalytic properties is dispersed in the base material, the photocatalyst is dropped due to wear on the surface, or a portion where the photocatalyst does not exist even when the base material is processed. Without any problem of appearing, photocatalytic performance can be efficiently expressed from all sides.

また、本発明の光触媒性無機系建築材料によれば、無機系建築材料として従来の(光触媒性能を有しない)無機系建築材料と遜色ない機械的特性を有する材料を得ることができる。例えば、かさ比重が1.1以下、曲げ強度が10.0N/mm以上、吸水長さ変化率が0.15%以下の無機系建築材料を得ることができる。 In addition, according to the photocatalytic inorganic building material of the present invention, a material having mechanical properties comparable to conventional inorganic building materials (not having photocatalytic performance) can be obtained as inorganic building materials. For example, an inorganic building material having a bulk specific gravity of 1.1 or less, a bending strength of 10.0 N / mm 2 or more, and a water absorption length change rate of 0.15% or less can be obtained.

なお、以上説明した態様は、本発明の一態様を示したものであって、本発明は、前記した実施形態に限定されるものではなく、本発明の目的及び効果を達成できる範囲内での変形や改良が、本発明の内容に含まれるものであることはいうまでもない。また、本発明を実施する際における具体的な構造及び形状等は、本発明の目的及び効果を達成できる範囲内において、他の構造や形状等としても問題はない。   The aspect described above shows one aspect of the present invention, and the present invention is not limited to the above-described embodiment, and is within the scope of achieving the object and effect of the present invention. Needless to say, modifications and improvements are included in the content of the present invention. Further, the specific structure, shape, and the like in carrying out the present invention are not problematic as other structures, shapes, and the like as long as the objects and effects of the present invention can be achieved.

例えば、前記した態様では、光触媒性無機系建築材料の製造方法として所定の方法を例示して説明したが、これには限定されず、任意の手段により本発明の光触媒性無機系建築材料を得るようにしても問題はない。
また、本発明の光触媒性無機系建築材料には、本発明の目的及び効果を妨げない範囲において、光触媒性能を有しない従来公知の無機顔料、例えば、酸化クロム(緑色顔料)、含水酸化鉄(黄色顔料)、カーボン(黒色顔料)等を添加してもよい。
また、メチルセルロース等の増粘剤を添加してもよい。
その他、本発明の実施における具体的な構造及び形状等は、本発明の目的を達成できる範囲で他の構造等としてもよい。
For example, in the above-described embodiment, a predetermined method is exemplified and described as a method for producing a photocatalytic inorganic building material. However, the present invention is not limited thereto, and the photocatalytic inorganic building material of the present invention is obtained by any means. There is no problem in doing so.
In addition, the photocatalytic inorganic building material of the present invention includes a conventionally known inorganic pigment that does not have photocatalytic performance, such as chromium oxide (green pigment), hydrous iron oxide ( Yellow pigment), carbon (black pigment), etc. may be added.
Moreover, you may add thickeners, such as methylcellulose.
In addition, the specific structure, shape, and the like in the implementation of the present invention may be other structures as long as the object of the present invention can be achieved.

次に、実施例及び参考例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例等の記載内容に何ら制約されるものではない。   EXAMPLES Next, although an Example and a reference example are given and this invention is demonstrated further in detail, this invention is not restrict | limited at all to description content, such as these Examples.

[実施例1、2、及び参考例1]
下記に示した原料を表1に示した配合比で用いて、下記の製造方法により、建築材料基材中に光触媒性能を有する粉末状の無機顔料(着色無機顔料)を含有した、本発明の光触媒性無機系建築材料である板材(実施例1、2)、及び対照として無機顔料を含有しない板材(参考例1)を製造した。
[Examples 1 and 2 and Reference Example 1]
Using the raw materials shown below at the blending ratio shown in Table 1, a building material substrate containing a powdery inorganic pigment (colored inorganic pigment) having photocatalytic performance by the following manufacturing method was used. A plate material (Examples 1 and 2), which is a photocatalytic inorganic building material, and a plate material (Reference Example 1) containing no inorganic pigment as a control were produced.

(使用原料)
セメント :普通ポルトランドセメント
珪砂(ケイ石粉末):SiO含有量 97.8質量%
(ブレーン比表面積 5000cm/g)
繊維補強材 :針葉樹晒しクラフトパルプ(NKBP)とポリプロピレン繊維と
からなる繊維(配合比1:1)
メチルセルロース :水溶性メチルセルロース(増粘剤として)
パーライト :真珠岩JIS S0.15−0.6
無機顔料1 :酸化チタン(TiO アナターゼ型)
(粉末状。平均粒径 0.18μm)
無機顔料2 :酸化鉄(Fe)(粉末状。平均粒径 0.5μm)
(Raw materials used)
Cement: Ordinary Portland cement Silica sand (silica powder): SiO 2 content 97.8% by mass
(Blaine specific surface area 5000 cm 2 / g)
Fiber reinforcement: Softwood bleached kraft pulp (NKBP) and polypropylene fiber
Made of fiber (mixing ratio 1: 1)
Methylcellulose: Water-soluble methylcellulose (as a thickener)
Pearlite: Pearlite JIS S0.15-0.6
Inorganic pigment 1: Titanium oxide (TiO 2 anatase type)
(Powder. Average particle size 0.18 μm)
Inorganic pigment 2: Iron oxide (Fe 2 O 3 ) (powder, average particle size 0.5 μm)

( 使用材料の配合比 )

Figure 2006273660
(Combination ratio of materials used)
Figure 2006273660

(板材の製造方法)
表1に示す配合に従って、各使用原料及び水とを混合して混合材料とした後、市販のモルタルミキサーを用いて、攪拌回転数を50rpmとして10分間混練して、混練物を得た。
そして、得られた混練物を、市販の押出成形機により押出成形して、サイズとして長さ450mm×幅300mm×厚さ12mmの板材を得た。
(Manufacturing method of plate material)
According to the composition shown in Table 1, each raw material used and water were mixed to obtain a mixed material, and then kneaded for 10 minutes at a stirring rotation speed of 50 rpm using a commercially available mortar mixer to obtain a kneaded product.
And the obtained kneaded material was extrusion-molded with a commercially available extruder, and a plate material having a length of 450 mm × width of 300 mm × thickness of 12 mm was obtained.

次に、得られた板材を、圧力 0.49MPa(5kgf)、温度 151℃の条件下、10時間水熱処理(水熱養生)を行った後、120℃で12時間乾燥させて、光触媒性無機系建築材料である板材を得た。   Next, the obtained plate was subjected to hydrothermal treatment (hydrothermal curing) for 10 hours under conditions of a pressure of 0.49 MPa (5 kgf) and a temperature of 151 ° C., and then dried at 120 ° C. for 12 hours to obtain a photocatalytic inorganic A plate material that is a building material was obtained.

[試験例1]
前記した実施例1、2及び参考例1で得られた板材について、建築材料としての性能を確認するため、下記の評価条件に従い、「かさ比重」「曲げ強度」「吸水率」及び「吸水長さ変化率」を測定して比較・評価した。また、「外観」及び「切断加工性」も確認して、比較・評価した。結果を表2に示す。
[Test Example 1]
In order to confirm the performance as a building material for the plate materials obtained in Examples 1 and 2 and Reference Example 1, according to the following evaluation conditions, “bulk specific gravity” “bending strength” “water absorption rate” and “water absorption length” "Change rate" was measured and compared. In addition, “appearance” and “cutability” were also confirmed and compared and evaluated. The results are shown in Table 2.

(かさ比重)
JIS A5430に準拠して測定した(n=3)。
(Bulk specific gravity)
Measured according to JIS A5430 (n = 3).

(曲げ強度)
JIS A1408に準拠して測定した(n=3)。
(Bending strength)
It measured based on JIS A1408 (n = 3).

(吸水率)
JIS A5430に準拠して測定した(n=3)。
(Water absorption rate)
Measured according to JIS A5430 (n = 3).

(吸水長さ変化率)
JIS A5430に準拠して測定した(n=3)。
(Change rate of water absorption length)
Measured according to JIS A5430 (n = 3).

(外観)
得られた板材の外観状態を目視にて観察・確認した。そして、外観に異常がない場合を「○」、普通の場合「△」、外観に反りが発生している場合を「×」として判定した。
(appearance)
The appearance of the obtained plate material was visually observed and confirmed. The case where there was no abnormality in the appearance was determined as “◯”, the case where it was normal, “Δ”, and the case where the appearance was warped was determined as “X”.

(切断加工性)
得られた板材をチップソー(外径 355mm)で切断し、切断面の直線性を目視にて観察・確認した。そして、切断面が良好な場合を「○」、普通の場合「△」、切断面に引き曲がりがあった場合には「×」と判定した。
(Cutability)
The obtained plate material was cut with a tip saw (outer diameter 355 mm), and the linearity of the cut surface was visually observed and confirmed. Then, the case where the cut surface was good was determined as “◯”, the case where it was normal, “Δ”, and the case where the cut surface was bent was determined as “X”.

(評価結果)

Figure 2006273660
(Evaluation results)
Figure 2006273660

表2の結果からわかるように、実施例1、2で得られた板材は、光触媒性能を有する着色顔料を含有しない参考例1と同様に、製造時に良好に硬化されており、優れた曲げ強度を発現していることがわかる。また、吸水長さ変化率も低く、吸水に対する十分な寸法安定性を有していた。そして、外観や切断加工性も良好であった。以上より、建築材料として使用しても問題のないことが確認できた。   As can be seen from the results in Table 2, the plate materials obtained in Examples 1 and 2 were cured well during production as in Reference Example 1 which did not contain a color pigment having photocatalytic performance, and had excellent bending strength. It turns out that is expressed. Further, the rate of change in water absorption length was low, and the product had sufficient dimensional stability against water absorption. And the external appearance and cutting workability were also favorable. From the above, it was confirmed that there was no problem even if it was used as a building material.

[試験例2]
光触媒性能の測定:
実施例1で得られた板材の光触媒性能を評価した。具体的には、光触媒製品フォーラム
(http://www.photocatalyst.gr.jp/)に開示される「光触媒製品における湿式分解性能試験方法」に準拠して下記の方法により確認した。
[Test Example 2]
Measurement of photocatalytic performance:
The photocatalytic performance of the plate material obtained in Example 1 was evaluated. Specifically, it was confirmed by the following method in accordance with “Method for testing wet decomposition performance in photocatalyst product” disclosed in the photocatalyst product forum (http://www.photocatalyst.gr.jp/).

(1)前処理:
本法は、実施例1の板材をサイズ50mm×50mmに切断して試験サンプルとし、この試験サンプルの試験面上にセルを固定し、前処理を以下のように行った。
吸着液として、メチレンブルー溶液20ppmを30ml試験サンプルに対して注入し、吸着させた。このメチレンブルー溶液液の吸光度が、別途準備したメチレンブルー試験液5ppmの吸光度より高い場合は、前処理を完了とした。一方、吸光度がメチレンブルー試験液より低い場合は、新たなメチレンブルー吸着液20ppmを使用し、再度12時間吸着させて吸光スペクトルを測定し、これをメチレンブルー試験液5ppmの吸光度より高くなるまで続けた。なお、吸光度は分光光度計にて測定を行い、測定波長は664nmに固定した。
このようにしてメチレンブルー試験液の吸光スペクトルを測定し、これを初期吸光スペクトルとした。
(1) Pre-processing:
In this method, the plate material of Example 1 was cut into a size of 50 mm × 50 mm to obtain a test sample, cells were fixed on the test surface of the test sample, and pretreatment was performed as follows.
As an adsorbing solution, 20 ppm of methylene blue solution was injected into a 30 ml test sample and adsorbed. When the absorbance of this methylene blue solution was higher than that of 5 ppm of a separately prepared methylene blue test solution, the pretreatment was completed. On the other hand, when the absorbance was lower than that of the methylene blue test solution, a new 20 ppm of methylene blue adsorbed solution was used and again adsorbed for 12 hours to measure the absorption spectrum. This was continued until the absorbance was higher than that of 5 ppm of the methylene blue test solution. The absorbance was measured with a spectrophotometer, and the measurement wavelength was fixed at 664 nm.
In this way, the absorption spectrum of the methylene blue test solution was measured and used as the initial absorption spectrum.

(2)試験(紫外線(UV)未照射):
(1)の前処理が完了したら、試験サンプルにメチレンブルー試験液5ppmを30ml注入し、1時間後の吸光度を測定する。そして、測定に使用した液をすみやかに試験セルに戻し、再び吸着させる。このような手順で、1時間毎、合計3時間の吸光度を測定するようにした。吸光度は濃度に比例することから、あらかじめ作成した検量線から、メチレンブルー試験液の濃度を算出した。
(2) Test (no ultraviolet (UV) irradiation):
When the pretreatment of (1) is completed, 30 ml of 5 ppm methylene blue test solution is injected into the test sample, and the absorbance after 1 hour is measured. Then, the liquid used for the measurement is immediately returned to the test cell and adsorbed again. With such a procedure, the absorbance was measured every hour for a total of 3 hours. Since the absorbance is proportional to the concentration, the concentration of the methylene blue test solution was calculated from a calibration curve prepared in advance.

(3)試験(紫外線(UV)照射):
また、(2)の測定終了後、メチレンブルー試験液を取り出し、新しいメチレンブルー試験液5ppmを30ml注入し、1.0±0.05mW/cmの紫外線を1時間照射し、吸光度を測定した。そして、測定に使用した液をすみやかに試験セルに戻し、再び照射させる。このような手順で1時間毎、合計3時間の吸光度を測定するようにし、(2)の紫外線(UV)未照射と同様に、濃度を算出した。前記した(2)及び(3)における、経過時間とメチレンブルー試験液濃度との関係を図1に示す。
(3) Test (ultraviolet (UV) irradiation):
Further, after completion of the measurement of (2), the methylene blue test solution was taken out, 30 ml of a new methylene blue test solution 5 ppm was injected, irradiated with ultraviolet rays of 1.0 ± 0.05 mW / cm 2 for 1 hour, and the absorbance was measured. Then, the liquid used for the measurement is immediately returned to the test cell and irradiated again. In such a procedure, the absorbance was measured every hour for a total of 3 hours, and the concentration was calculated in the same manner as in (2) without ultraviolet (UV) irradiation. The relationship between the elapsed time and the methylene blue test solution concentration in the above (2) and (3) is shown in FIG.

図1の結果からわかるように、試験サンプル(実施例1)はメチレンブルー試験液の濃度が紫外線(UV)を照射することにより、紫外線未照射のものよりも濃度低下が速くなることがわかり、光触媒性能を有していることが確認できた。
また、図1からは、紫外線未照射の試験サンプルにおける濃度低下も大きいことがわかる。このことから、実施例1により得られた板材(光触媒性無機系建築材料)は、空気中の臭気等を一旦吸着し、その後、臭気等を吸着した状態で光触媒による分解が可能であることが確認できた。
As can be seen from the results in FIG. 1, it can be seen that the test sample (Example 1) has a methylene blue test solution that is irradiated with ultraviolet rays (UV), and that the concentration drop is faster than that without UV irradiation. It was confirmed that it had performance.
Moreover, FIG. 1 shows that the density | concentration fall in the test sample which is not irradiated with an ultraviolet-ray is also large. From this, the plate material (photocatalytic inorganic building material) obtained in Example 1 is capable of decomposing with a photocatalyst once adsorbing odors etc. in the air and then adsorbing odors etc. It could be confirmed.

[試験例3]
光触媒性能の評価(アセトアルデヒドの分解性能の確認):
下記の手順で、実施例1で得られた板材のアセトアルデヒド除去性能を確認した。
実施例1で得られた板材をサイズ10cm×10cmに切断して試験サンプルとした。濃度既知のアセトアルデヒドガスを0.6L充填した容量1.0Lのプラスチック製の循環容器に試験サンプルを入れた後、紫外線強度を1.5mW/mとして照射し、15分毎に60分間検知管にてアセトアルデヒド濃度を測定し、吸着分解性能を確認した。結果を図2に示す。
また、本試験においてはアセトアルデヒド(CHCHO)が二酸化炭素(CO)に分解させると考えられるので、試験開始60分経過後のCO濃度についても検知管にて測定した。結果を表3に示す。
[Test Example 3]
Evaluation of photocatalytic performance (confirmation of acetaldehyde decomposition performance):
The acetaldehyde removal performance of the plate material obtained in Example 1 was confirmed by the following procedure.
The plate material obtained in Example 1 was cut into a size of 10 cm × 10 cm to obtain a test sample. After putting a test sample in a plastic circulation container with a capacity of 1.0 L filled with 0.6 L of acetaldehyde gas of known concentration, the test tube is irradiated every 15 minutes for 60 minutes with an ultraviolet intensity of 1.5 mW / m 2. Was used to measure the acetaldehyde concentration and confirm the adsorptive decomposition performance. The results are shown in FIG.
In this test, since acetaldehyde (CH 3 CHO) is considered to be decomposed into carbon dioxide (CO 2 ), the CO 2 concentration after 60 minutes from the start of the test was also measured with a detector tube. The results are shown in Table 3.

(結果)

Figure 2006273660
(result)
Figure 2006273660

図2の結果から分かるように、試験サンプルによりアセトアルデヒドは試験開始直後の段階(試験開始〜15分経過)で吸着除去され、時間の経過とともに容器内のアセトアルデヒド濃度の低下が認められた。
また、表3の結果から分かるように、試験開始時の容器内のCO濃度(400ppm)に対して、試験開始60分経過後の二酸化炭素の濃度は680ppmであり、二酸化炭素を発生していることから、同時に紫外線照射によりアセトアルデヒドを二酸化炭素に分解していることがわかる。
このように、実施例1の板材(光触媒性無機系建築材料)がアセトアルデヒドの分解性能を備えていることが確認できた。
As can be seen from the results in FIG. 2, acetaldehyde was adsorbed and removed by the test sample immediately after the start of the test (from the start of the test to 15 minutes), and a decrease in the acetaldehyde concentration in the container was observed with the passage of time.
Further, as can be seen from the results in Table 3, the concentration of carbon dioxide after 60 minutes from the start of the test is 680 ppm with respect to the CO 2 concentration (400 ppm) in the container at the start of the test, and carbon dioxide is generated. From this, it can be seen that acetaldehyde was simultaneously decomposed into carbon dioxide by ultraviolet irradiation.
Thus, it has confirmed that the board | plate material (photocatalytic inorganic building material) of Example 1 was equipped with the decomposition | disassembly performance of acetaldehyde.

本発明の光触媒性無機系建築材料は、建築内装材、天井材、間仕切壁、建築外装材等の各種建築材料として広く利用することができる。   The photocatalytic inorganic building material of the present invention can be widely used as various building materials such as building interior materials, ceiling materials, partition walls, and building exterior materials.

試験例2における経過時間とメチレンブルー試験液濃度との関係を示したグラフである。5 is a graph showing the relationship between elapsed time and methylene blue test solution concentration in Test Example 2. 試験例3における時間経過と容器内のアセトアルデヒドの濃度変化の関係を示したグラフである。It is the graph which showed the relationship between the time passage in Test Example 3, and the density | concentration change of the acetaldehyde in a container.

Claims (3)

多孔質体からなる無機系建築材料基材中に光触媒性能を有する粉末状の無機顔料を分散してなることを特徴とする光触媒性無機系建築材料。   A photocatalytic inorganic building material obtained by dispersing a powdery inorganic pigment having photocatalytic performance in an inorganic building material substrate made of a porous material. 請求項1に記載の光触媒性無機系建築材料において、
前記無機顔料の含有量が無機系建築材料全体に対して0.1〜10.0質量%であることを特徴とする光触媒性無機系建築材料。
In the photocatalytic inorganic building material according to claim 1,
Content of the said inorganic pigment is 0.1-10.0 mass% with respect to the whole inorganic building material, The photocatalytic inorganic building material characterized by the above-mentioned.
請求項1または請求項2に記載の光触媒性無機系建築材料において、
当該無機顔料の平均粒径が0.1〜10.0μmであることを特徴とする光触媒性無機系建築材料。
In the photocatalytic inorganic building material according to claim 1 or 2,
A photocatalytic inorganic building material, wherein the inorganic pigment has an average particle size of 0.1 to 10.0 μm.
JP2005095714A 2005-03-29 2005-03-29 Photocatalytic inorganic building material Pending JP2006273660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005095714A JP2006273660A (en) 2005-03-29 2005-03-29 Photocatalytic inorganic building material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005095714A JP2006273660A (en) 2005-03-29 2005-03-29 Photocatalytic inorganic building material

Publications (1)

Publication Number Publication Date
JP2006273660A true JP2006273660A (en) 2006-10-12

Family

ID=37208759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005095714A Pending JP2006273660A (en) 2005-03-29 2005-03-29 Photocatalytic inorganic building material

Country Status (1)

Country Link
JP (1) JP2006273660A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009034584A (en) * 2007-07-31 2009-02-19 Univ Of Tokyo Photocatalytic material
JP2011518657A (en) * 2008-03-31 2011-06-30 ロックウッド イタリア スパ Use of photocatalyst-coated particles for the degradation of air pollutants.
JP2012005914A (en) * 2010-06-22 2012-01-12 Fujita Corp Photocatalyst-coated material for cleaning of atmosphere, pavement method for cleaning of atmosphere which uses the photocatalyst-coated material, and method for forming atmosphere-cleaning wall surface

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003112960A (en) * 2001-09-28 2003-04-18 Okudagumi:Kk Zeolite mortar and production method therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003112960A (en) * 2001-09-28 2003-04-18 Okudagumi:Kk Zeolite mortar and production method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009034584A (en) * 2007-07-31 2009-02-19 Univ Of Tokyo Photocatalytic material
JP2011518657A (en) * 2008-03-31 2011-06-30 ロックウッド イタリア スパ Use of photocatalyst-coated particles for the degradation of air pollutants.
JP2012005914A (en) * 2010-06-22 2012-01-12 Fujita Corp Photocatalyst-coated material for cleaning of atmosphere, pavement method for cleaning of atmosphere which uses the photocatalyst-coated material, and method for forming atmosphere-cleaning wall surface

Similar Documents

Publication Publication Date Title
Sugrañez et al. Enhanced photocatalytic degradation of NOx gases by regulating the microstructure of mortar cement modified with titanium dioxide
US9724672B2 (en) Process for the preparation of an additive comprising supported and dispersed TiO2 particles
JP2008254939A (en) High strength geopolymer hardened body blended with fired kaolin as activated filler, method of producing the same, and functional hardened body
JP2018518439A (en) Lightweight composite material made from carbonated calcium silicate and method for producing the same
Fernandes et al. Using TiO2 nanoparticles as a SO2 catalyst in cement mortars
US8652580B2 (en) Manufacturing method of tiles
JP2006273660A (en) Photocatalytic inorganic building material
JP2008038365A (en) Interior finishing wall of building, and finishing coating material therefor
JPH08243402A (en) Photocatalst material and its manufacture
JP2007063083A (en) Zeolite solidified body and solidifying method
JP2007063084A (en) Diatom earth solidified body and solidifying method
JP2007070172A (en) Activated carbon compact, and compacting method
JP4009619B2 (en) Building material and method of manufacturing building material
JP2001354875A (en) Coating material for building finishing, panel for building finishing and method for manufacturing these materials
JP5051985B2 (en) Manufacturing method of building material having adsorption function and photocatalytic function
KR100805936B1 (en) built-in material for composition
JP2002327523A (en) Building indoor surface finishing material and finishing method using the same
JP2007153627A (en) Production method of zeolite building material
KR101552212B1 (en) Lec building material reducing hazardous substance and controlling humidity
JP4755408B2 (en) Method for manufacturing wall-use decorative block
CN105272050A (en) Colored opal coating powder having air-purifying function
JP5315559B2 (en) Method for producing functional building material having photocatalytic function
JP2002154861A (en) Finishing material and method for finishing surface section of building by utilizing this finishing material
KR100483475B1 (en) Multi-functional ceramics using scoria aggregate
JP2006348745A (en) Paint material for constructional finishing, paint for constructional finishing using the same, and panel for constructional finishing

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070815

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101124