JP2006272696A - Method for manufacturing woody shaped body and woody shaped body - Google Patents

Method for manufacturing woody shaped body and woody shaped body Download PDF

Info

Publication number
JP2006272696A
JP2006272696A JP2005093753A JP2005093753A JP2006272696A JP 2006272696 A JP2006272696 A JP 2006272696A JP 2005093753 A JP2005093753 A JP 2005093753A JP 2005093753 A JP2005093753 A JP 2005093753A JP 2006272696 A JP2006272696 A JP 2006272696A
Authority
JP
Japan
Prior art keywords
wood
water
resin
added
woody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005093753A
Other languages
Japanese (ja)
Other versions
JP4371373B2 (en
Inventor
Hirokazu Ito
弘和 伊藤
Tomohiko Otsuka
智彦 大塚
Hidehiro Hattori
英広 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Living Tech Co Ltd
Original Assignee
Yamaha Living Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Living Tech Co Ltd filed Critical Yamaha Living Tech Co Ltd
Priority to JP2005093753A priority Critical patent/JP4371373B2/en
Publication of JP2006272696A publication Critical patent/JP2006272696A/en
Application granted granted Critical
Publication of JP4371373B2 publication Critical patent/JP4371373B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • B29B7/92Wood chips or wood fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/08Making granules by agglomerating smaller particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0027Cutting off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/345Extrusion nozzles comprising two or more adjacently arranged ports, for simultaneously extruding multiple strands, e.g. for pelletising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2311/00Use of natural products or their composites, not provided for in groups B29K2201/00 - B29K2309/00, as reinforcement
    • B29K2311/14Wood, e.g. woodboard or fibreboard

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To mass-produce a woody shaped body with uniform and good quality by enhancing the moldability, strength and water resistance of the woody shaped body. <P>SOLUTION: In manufacturing the woody shaped body, water is added to a powdery blasted material obtained by blasting and drying a woody material through rapid decompression after heating/pressurizing the woody material in the presence of steam. Further, at least, a fluid resin, the powdery woody material and the water-added blasted material are mixed and this mixture is molded. Alternatively, after at least, a meltable resin and the powdery woody material are mixed while being melted and the mixture is pelletized by molding, the water-added blasted material may be added to the pellets and mixed, and the mixture may be molded. Also, the woody material may be heated/pressurized in the presence of steam, then blasted by rapidly decompressing the material, and dried without removing the existing moisture to obtain the powdery blasted material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、流動状態の樹脂と粉末状の木質系材料とを少なくとも含む素材を混合して成形する木質系成形体の製造方法および木質系成形体に関する。   The present invention relates to a method for manufacturing a wood-based molded body and a wood-based molded body in which a raw material containing at least a fluid resin and a powdery wood-based material is mixed and molded.

従来、長辺1〜10mmの針状形の木質系材料と熱可塑性樹脂とを混合してペレット状混合物を成形し、このペレット状混合物を押出し成形して木質系複合樹脂成形体を製造することが行われている(特許文献1参照)。一旦ペレット状混合物を形成するのは、最終的な木質系成形体を成形する後成形時に原料の供給をスムーズにさせるためである。木質系材料と熱可塑性樹脂とを混練すると、混練時の熱によって木質系材料から水分が放出され、水分の存在によって疎水性の熱可塑性樹脂と木質系材料との密着性が阻害され、十分な強度が得られない(特許文献1の段落0005)。そこで、木質系材料を長辺1mm以上の針状形としている。
特許文献2記載の技術では、押出機構にて軟化した所定の素材を混合して不定形の状態で押し出し、押し出した素材を不定形のまま成形機用容器に導入し、導入した不定形の素材をペレット成形装置にてペレット形状に成形している。
ペレットを形成する際、例えば、混合撹拌翼を有するミキサーにて素材の粒子どうしを衝突させて発熱させることにより溶融混合させたり、押出機により素材を剪断混合させたりすることにより、良質のペレットを成形する。ここで、押出機には直径3〜5mm程度の押出口を多数有するダイを装着してあり、内部のスクリューを回転させながら軟化状態の素材をダイの押出口から略棒状に押し出し、カッターにより長さ3〜7mm程度に切断してペレット形状に成形している。
Conventionally, a woody composite resin molded body is manufactured by mixing a needle-like woody material having a long side of 1 to 10 mm and a thermoplastic resin to form a pelletized mixture, and extruding the pelletized mixture. (See Patent Document 1). The reason why the pellet-like mixture is once formed is to smoothly supply the raw materials during the subsequent molding of the final wood-based molded body. When a wood material and a thermoplastic resin are kneaded, moisture is released from the wood material due to heat during kneading, and the presence of moisture hinders the adhesion between the hydrophobic thermoplastic resin and the wood material, which is sufficient. Strength cannot be obtained (Patent Document 1, paragraph 0005). Therefore, the wood-based material has a needle shape with a long side of 1 mm or more.
In the technique described in Patent Document 2, a predetermined material softened by an extrusion mechanism is mixed and extruded in an irregular shape, and the extruded material is introduced into a container for a molding machine in an irregular shape, and the introduced irregular material is introduced. Is formed into a pellet shape by a pellet forming apparatus.
When forming pellets, for example, by mixing particles by colliding particles with a mixer having a mixing stirring blade and generating heat, or by shear mixing materials with an extruder, high quality pellets can be obtained. Mold. Here, the extruder is equipped with a die having a large number of extrusion ports with a diameter of about 3 to 5 mm. While rotating the internal screw, the softened material is pushed out from the extrusion port of the die into a substantially rod shape, and long by a cutter. It is cut to about 3 to 7 mm and formed into a pellet shape.

また、破砕装置で廃木材を爆砕して小片材にチップ化し、当該小片材のみを混練装置でバインダと混合し、ベルト圧縮機で平板状に成形し連続的に所定時間加圧して板状の再生木材をほぼ連続的に製造することも行われている(特許文献3参照)。
さらに、リグノセルロース含有材料を水蒸気処理して乾燥し、得られるリグノセルロース系材料を含む組成物を加熱して可塑化し、可塑化した組成物を押出成形法あるいは射出成形法により成形することも行われている(特許文献4参照)。
特許文献5記載の技術では、熱可塑性樹脂と木粉材とからなる主原料に自己融着性加工を施した木粉材を加えて加熱下で混合して加圧成形することにより、木質系成形体を製造している。
特開2003−291116号公報 特開2004−17502号公報 特開2000−141323号公報 特開2003−165844号公報 特開2003−291117号公報
In addition, the waste wood is blasted with a crushing device to make chips into small pieces, only the small pieces are mixed with a binder with a kneading device, formed into a flat plate with a belt compressor, and continuously pressed for a predetermined time. It is also practiced to produce a continuous recycled wood almost continuously (see Patent Document 3).
Further, the lignocellulose-containing material is steam-treated and dried, the resulting composition containing the lignocellulosic material is heated and plasticized, and the plasticized composition is molded by an extrusion molding method or an injection molding method. (See Patent Document 4).
In the technique described in Patent Document 5, a wood-based material is obtained by adding a wood powder material subjected to a self-fusing process to a main raw material composed of a thermoplastic resin and a wood powder material, mixing the mixture under heating, and press-molding. Manufactures molded products.
JP 2003-291116 A JP 2004-17502 A JP 2000-141323 A JP 2003-165844 A JP 2003-291117 A

木粉材の配合割合が多いと、温度変化による変形が少なく、木質感が向上し、製品の質が向上する。一方、樹脂が少ないために木粉材同士を強く固着させることができないので、機械的性能が大きくないし、良好な耐水性が得られない。機械的性能の向上と耐水性の向上のためには樹脂添加量を増やさざるを得ず、樹脂添加量と製品の質とは相反するものである。しかしながら、木質系成形体の成形性、強度、耐水性を向上させることが望まれていた。
また、木粉材と樹脂とを混練すると、混練時に木粉材から水分が放出され、水分の存在によって木粉材と樹脂とが十分になじまず、当該ペレットを原料とした後成形を行おうとしたときに混練段階で原料が均質に混練されないことがあった。
When the blending ratio of the wood flour material is large, deformation due to temperature change is small, the wood texture is improved, and the product quality is improved. On the other hand, the wood powder materials cannot be firmly adhered to each other due to the small amount of resin, so that the mechanical performance is not large and good water resistance cannot be obtained. In order to improve mechanical performance and water resistance, the amount of resin added must be increased, and the amount of resin added and the quality of the product are contradictory. However, it has been desired to improve the moldability, strength, and water resistance of the wood-based molded body.
Also, when the wood powder material and the resin are kneaded, moisture is released from the wood powder material during the kneading, and the wood powder material and the resin do not fully adapt due to the presence of moisture, and the post-molding is performed using the pellet as a raw material. In some cases, the raw materials were not uniformly kneaded at the kneading stage.

本発明は、上記課題にかんがみてなされたもので、木質系成形体の成形性、強度、耐水性を向上させ、均質でより良質の木質系成形体を大量生産可能とすることを目的とする。   The present invention has been made in view of the above problems, and aims to improve the moldability, strength, and water resistance of a wood-based molded body, and to enable mass production of a homogeneous and better-quality wood-based molded body. .

上記目的を達成するため、本発明の木質系成形体の製造方法は、木質系材料を水蒸気存在下で加熱および加圧後急激に減圧して爆砕し乾燥した粉末状の爆砕材料に水を添加し、少なくとも、流動状態の樹脂と、粉末状の木質系材料と、前記水を添加した爆砕材料と、を混合して成形することにより木質系成形体を製造することを特徴とする。
以上の構成により、木質系成形体の形状に成形する際の素材の成形圧力が低下し、木質系成形体の成形性をより良好にさせることが可能になる。また、従来では水分の存在によって樹脂と木質系材料との密着性が阻害されて十分な強度が得られないため添加するどころか除去するようにしていた水を素材に添加したにもかかわらず、木質系成形体の強度を上げ、耐水性をより良好にさせて、均質でより良質の木質系成形体を量産することが可能になる。このような効果が得られる理由は、以下のことが考えられる。
すなわち、木質系材料を爆砕すると、木質系材料中のヘミセルロースが水可溶性の樹脂のような物質に変性するとともに、木質系材料中のリグニンがリグニン分解物に変性する。このリグニン分解物が流動化剤として働き、素材の成形圧力が低下し、木質系成形体の成形性を向上させるためと推察される。また、ヘミセルロースが水可溶性樹脂のような物質に変性し、水添加により素材の結着力が向上して木質系成形体の強度を向上させ、耐水性を向上させるためと推察される。
In order to achieve the above object, the method for producing a wood-based molded article of the present invention is to add water to a powdered crushed material obtained by heating and pressurizing a wood-based material in the presence of water vapor and then rapidly depressurizing and pulverizing the material. The wood-based molded body is manufactured by mixing and molding at least a resin in a fluid state, a powdery wood-based material, and the crushed material added with water.
With the above configuration, the molding pressure of the raw material when molding into the shape of the wood-based molded body is reduced, and the moldability of the wood-based molded body can be improved. In addition, the presence of moisture has hindered the adhesion between the resin and the wood-based material, and sufficient strength cannot be obtained. It is possible to increase the strength of the molded body and improve the water resistance to mass-produce a homogeneous and higher quality wooden molded body. The reason why such an effect can be obtained is as follows.
That is, when the wood-based material is crushed, hemicellulose in the wood-based material is denatured into a substance such as a water-soluble resin, and lignin in the wood-based material is denatured into a lignin decomposition product. This lignin decomposition product acts as a fluidizing agent, and it is assumed that the molding pressure of the raw material is lowered and the moldability of the wood-based molded body is improved. Further, it is presumed that hemicellulose is denatured into a substance such as a water-soluble resin, and by adding water, the binding power of the material is improved, the strength of the wood-based molded body is improved, and the water resistance is improved.

上記粉末状の爆砕材料は爆砕木粉等を用いることができ、当該爆砕木粉は、木粉を爆砕し乾燥したものでもよいし、木質系材料を爆砕し乾燥して粉砕したものでもよい。
混合する素材には、上述した各材料が少なくとも含まれればよく、第四の材料がさらに含まれる場合も請求項1記載の発明に含まれる。当該第四の材料には、マレイン酸等の所定の酸により変性された樹脂、各種機能性材料、等を用いることができる。
上記成形は、押出成形、射出成形、プレス成形、等を採用可能である。
上記流動状態の樹脂は、熱可塑性樹脂、熱硬化性樹脂、等が考えられ、疎水性の樹脂でも、親水性の樹脂でもよい。溶融可能な樹脂を用いる場合、混合される素材を加熱すると、当該素材を軟化させることができる。
Explosive pulverized wood powder or the like can be used as the powdered pulverized material. The pulverized wooden powder may be one obtained by pulverizing and drying wood powder, or one obtained by pulverizing, drying and pulverizing a woody material.
The material to be mixed may include at least each of the materials described above, and the case where the fourth material is further included is also included in the invention according to claim 1. As the fourth material, resins modified with a predetermined acid such as maleic acid, various functional materials, and the like can be used.
As the molding, extrusion molding, injection molding, press molding, or the like can be adopted.
The fluidized resin may be a thermoplastic resin, a thermosetting resin, or the like, and may be a hydrophobic resin or a hydrophilic resin. In the case where a meltable resin is used, the material can be softened by heating the material to be mixed.

前記樹脂が溶融可能な樹脂であり、少なくとも、前記溶融可能な樹脂と、前記粉末状の木質系材料とを、前記樹脂を溶融させながら混合した後、前記水を添加した爆砕材料を添加し混合して後成形することにより木質系成形体を製造すると、溶融可能な樹脂と粉末状の木質系材料との混合時に粉末状の木質系材料と粉末状の爆砕材料とが反応しないようにさせ、後成形時にこれらを十分に反応させることができ、後成形時の素材の成形性をさらに良好にさせることが可能になる。また、爆砕していない粉末状の木質系材料を樹脂と混合する際には水分が少ないほどなじみが良くなるので、水を添加した爆砕材料を後添加することにより、木質系成形体の強度をさらに上げることが可能となる。さらに、樹脂を溶融させながら混合する際に機能の低下する機能性素材を爆砕材料の後添加時に添加しても、当該機能が低下しない。従って、このような機能性素材を添加して機能を発揮させることが可能となり、木質系成形体の品質を向上させることが可能となる。   The resin is a meltable resin, and at least the meltable resin and the powdery woody material are mixed while melting the resin, and then the explosion material added with water is added and mixed. Then, when the wood-based molded body is manufactured by post-molding, the powdery wood-based material and the powder-like explosive material are prevented from reacting when mixing the meltable resin and the powdered wood-based material, These can be sufficiently reacted at the time of post-molding, and the moldability of the material at the time of post-molding can be further improved. In addition, when mixing powdery woody material that has not been crushed with the resin, the less water there is, the better the familiarity.Thus, by adding the blasting material with water added, the strength of the woody shaped body can be increased. Further increase is possible. Furthermore, even if a functional material whose function is reduced when mixing while melting the resin is added at the time of post-explosion material addition, the function does not decrease. Therefore, it is possible to add such a functional material to exert its function, and it is possible to improve the quality of the wood-based molded body.

少なくとも、前記溶融可能な樹脂と、前記粉末状の木質系材料とを、前記樹脂を溶融させながら混合してペレット形状に成形した後、前記水を添加した爆砕材料を添加し混合して後成形すると、素材の一部をペレット化することにより後成形時に原料の供給をスムーズにさせることができる。   At least the meltable resin and the powdery woody material are mixed and molded into a pellet shape while melting the resin, then the blasting material added with the water is added and mixed and post-molded Then, a part of the raw material is pelletized, so that the raw material can be supplied smoothly during post-molding.

少なくとも、前記溶融可能な樹脂と、前記粉末状の木質系材料とを、前記樹脂を溶融させながら混合して不定形の状態で押し出し、押し出した不定形の素材を粉砕し、粉砕した素材をペレット形状に成形した後、前記水を添加した爆砕材料を添加し混合して後成形すると、押し出された不定形の素材は、一旦粉砕されてペレット形状に成形されるので、より均質化された状態で素材をペレット化することができる。これにより、成形されるペレットをより均質にさせることができ、木質系成形体をより均質にさせることが可能になる。また、素材を粉砕することによりペレット形状に成形する際の加熱を少なくさせることができ、後成形時にペレットが崩れやすくなって分散性が向上し、より均質な木質系成形体を生産することが可能となる。さらに、不定形の素材を粉砕することによってペレットの成形が容易となり、単位時間当たりのペレット成形量を増やすことが可能となる。   At least the meltable resin and the powdery woody material are mixed while melting the resin and extruded in an amorphous state, the extruded amorphous material is pulverized, and the pulverized material is pelletized. After forming into a shape, adding the above-mentioned crushed material added with water, mixing and post-molding, the extruded amorphous material is once crushed and formed into a pellet shape, so it is more homogenized The material can be pelletized. Thereby, the pellets to be molded can be made more uniform, and the wood-based molded body can be made more homogeneous. In addition, by crushing the material, it is possible to reduce the heating during molding into a pellet shape, and the pellet is easily broken during post-molding, improving dispersibility, and producing a more homogeneous wood-based molded body It becomes possible. Furthermore, by pulverizing the amorphous material, it becomes easy to form pellets, and the amount of pellets formed per unit time can be increased.

なお、軟化した素材を混合して押し出すことを行わずに粉砕してペレット形状に成形すると、素材全体がなじまずにペレット化されるため、ペレット自体が均質ではなくなり、結果としてそれを使用して成形した木質系成形体の均質化の点で問題が残ってしまう。本発明では、軟化した素材を混合して押し出した後に粉砕してペレット形状に成形しているので、素材全体が良くなじんだ後にペレット化され、均質なペレットを成形することができ、結果としてそれを使用して成形した木質系成形体を均質にすることが可能となる。
また、粉末状の木質系材料が溶融可能な樹脂の等重量以上である場合、当該素材を混合して押し出すことを行わずに粉砕してペレット形状に成形すると、高充填量の木質系材料に樹脂がなじまずにペレット化されるため、木質系材料と樹脂とがばらばらに崩れて粉体状になりやすい。溶融した樹脂と木質系材料とを軟化した素材として混合して押し出した後に粉砕してペレット形状に成形すると、木質系材料に樹脂が良くなじんだ後にペレット化される。従って、後成形時に原料段階ではペレットが粉体状に崩れることなく混練段階で崩れて分散し、混練段階で容易に原料を均質に混練することができる。
さらに、不定形の素材を一旦粉砕するので、粉砕された素材に対して粉状の機能性素材を容易に混合してペレット化することがすることができ、当該機能性素材による機能が付与されたペレットを容易に得ることが可能となる。
In addition, if the softened material is mixed and extruded without being extruded and then formed into a pellet shape, the entire material will be pelletized without conformity, so the pellet itself will not be homogeneous, and as a result will be used Problems remain in terms of homogenization of the molded wood-based molded body. In the present invention, the softened material is mixed and extruded and then pulverized and formed into a pellet shape, so that the whole material is well blended and pelletized to form a uniform pellet. It becomes possible to homogenize the wood-based molded body molded using the.
In addition, when the powdery woody material is equal to or more than the meltable resin weight, if the material is pulverized and formed into a pellet shape without mixing and extruding, a high-filling woody material can be obtained. Since the resin is pelletized without familiarity, the wood-based material and the resin tend to break apart into powder. When the melted resin and the wood-based material are mixed and extruded as a softened material and then pulverized and formed into a pellet shape, the resin is well blended with the wood-based material and then pelletized. Therefore, at the time of post-molding, the pellets are broken and dispersed in the kneading stage without breaking into powder in the raw material stage, and the raw materials can be easily and uniformly kneaded in the kneading stage.
Furthermore, since the irregular shaped material is once pulverized, the functional material in powder form can be easily mixed and pelletized with the pulverized material, and the function of the functional material is given. It is possible to easily obtain a pellet.

前記粉末状の爆砕材料は、木質系材料を水蒸気存在下で加熱および加圧後急激に減圧して爆砕し、存在する水分を除去することなく乾燥して得られる粉末状の材料とされていると、木質系材料中にあるヘミセルロースから変性した成分や、同じく木質系材料中にあるリグニン分解物が、十分に残存する。   The powdered blasting material is a powdery material obtained by heating and pressurizing a woody material in the presence of water vapor and then rapidly depressurizing and crushing it, and drying it without removing the water present. And the component modified | denatured from the hemicellulose in a wood type material, and the lignin degradation product which is also in a wood type material fully remain | survive.

前記粉末状の爆砕材料は、木質系材料を水蒸気存在下で加熱および加圧後急激に減圧して爆砕し、存在する水分を除去することなく含水率(全乾質量基準)5重量%以下に乾燥して得られる粉末状の材料とされ、当該粉末状の爆砕材料に水を1〜20重量%添加すると、木質系成形体の成形性、強度、耐水性がさらに良好になる。
木質系材料を水蒸気存在下で加熱および加圧後急激に減圧して爆砕し、存在する水分を除去することなく60〜105℃で乾燥して前記粉末状の爆砕材料を得ると、木質系成形体の成形性、強度、耐水性がさらに良好になる。
前記粉末状の爆砕材料に水を噴霧して添加すると、木質系成形体の成形性、強度、耐水性がさらに良好になる。
The powdered crushed material is heated and pressurized in the presence of water vapor and then rapidly depressurized and crushed to a moisture content (total dry mass basis) of 5% by weight or less without removing existing water. When a powdery material obtained by drying is used, and when 1 to 20% by weight of water is added to the powdered crushed material, the moldability, strength, and water resistance of the wood-based molded body are further improved.
When the wood-based material is heated and pressurized in the presence of water vapor and then rapidly depressurized to explode and dried at 60 to 105 ° C. without removing the existing water, the powdery explosive material is obtained. The formability, strength and water resistance of the body are further improved.
When water is sprayed and added to the powdered blasting material, the moldability, strength and water resistance of the wood-based molded body are further improved.

また、本発明の木質系成形体の製造方法は、少なくとも、流動状態の樹脂と、粉末状の木質系材料と、木質系材料を水蒸気存在下で加熱および加圧後急激に減圧して爆砕し乾燥した粉末状の爆砕材料とに、水を添加し、混合して成形することにより木質系成形体を製造することを特徴とする。すなわち、上述した作用と同様の作用となる。   In addition, the method for producing a wood-based molded body of the present invention comprises at least a resin in a fluid state, a powdery wood-based material, and a wood-based material that is heated and pressurized in the presence of water vapor and then rapidly decompressed and crushed. A wood-based molded body is produced by adding water to a dry powdered blasting material, mixing and molding. That is, the operation is the same as that described above.

さらに、本発明の木質系成形体は、木質系材料を水蒸気存在下で加熱および加圧後急激に減圧して爆砕し乾燥した粉末状の爆砕材料に水を添加し、少なくとも、流動状態の樹脂と、粉末状の木質系材料と、前記水を添加した爆砕材料と、を混合して成形することにより得られる。本木質系成形体によると、強度、耐水性がより良好になり、均質でより良質になる。   Furthermore, the wood-based molded body of the present invention is a method in which water is added to a powder-type explosive material obtained by heating and pressurizing a wood-based material in the presence of water vapor and then rapidly depressurizing and pulverizing and drying. It is obtained by mixing and molding a powdery woody material and the above-mentioned blasting material to which water has been added. According to the present wood-based molded article, the strength and water resistance become better, and it becomes homogeneous and of higher quality.

以上説明したように、請求項1、請求項9にかかる発明によれば、木質系成形体の成形性、強度、耐水性を向上させ、均質でより良質の木質系成形体を大量生産することが可能になる。
請求項2にかかる発明では、後成形時の素材の成形性、強度をさらに向上させることが可能になる。
請求項3にかかる発明では、素材の一部をペレット化することにより後成形時に原料の供給を円滑にさせ、より良質の木質系成形体を製造することが可能となる。
As described above, according to the inventions according to claims 1 and 9, the moldability, strength and water resistance of the wood-based molded body are improved, and mass production of a homogeneous and higher-quality wood-based molded body is achieved. Is possible.
In the invention according to claim 2, it becomes possible to further improve the formability and strength of the material during post-molding.
In the invention according to claim 3, by partially pelletizing the raw material, it is possible to smoothly supply the raw material at the time of post-molding, and to produce a higher quality wood-based molded body.

請求項4にかかる発明では、流動性の小さい素材を用いてペレット化する際に、単位時間当たりのペレット成形量を向上させることができるとともに、ペレットをより均質にさせ、木質系成形体をより均質にさせたり、後成形時にペレットをより崩れやすくさせたりして木質系成形体をより容易に成形することが可能となる。
請求項5にかかる発明では、ヘミセルロースから変性した成分やリグニン分解物を十分に残存させることができるので、木質系成形体の成形性、強度、耐水性をさらに向上させることが可能になる。
請求項6〜請求項8にかかる発明では、木質系成形体の成形性、強度、耐水性をさらに向上させることが可能になる。
In the invention according to claim 4, when pelletizing using a material having low fluidity, the pellet forming amount per unit time can be improved, the pellets are made more homogeneous, and the wood-based molded body is more It is possible to form the wood-based molded body more easily by making it homogeneous or making the pellets more easily broken during post-molding.
In the invention concerning Claim 5, since the component modified from hemicellulose and the lignin decomposition product can fully remain, it becomes possible to further improve the moldability, strength, and water resistance of the wood-based molded body.
In the invention according to claims 6 to 8, it is possible to further improve the moldability, strength, and water resistance of the wood-based molded body.

請求項8にかかる発明では、木質系成形体の成形性、強度、耐水性をさらに向上させることが可能になる。
請求項10にかかる発明によれば、強度、耐水性を向上させ、均質でより良質にさせることが可能になる。
In the invention according to claim 8, it becomes possible to further improve the moldability, strength and water resistance of the wood-based molded body.
According to the invention of claim 10, it is possible to improve strength and water resistance, and to make it homogeneous and of higher quality.

以下、下記の順序に従って本発明の実施形態を説明する。
(1)木質系成形体の製造方法の概略:
(2)粉末状の乾燥爆砕材料の製造方法:
(3)水を添加した爆砕材料の調製方法:
(4)ペレットの形成方法:
(5)木質系成形体の製造方法:
(6)実施例:
(7)まとめ:
Hereinafter, embodiments of the present invention will be described in the following order.
(1) Outline of manufacturing method of wood-based molded body:
(2) Method for producing powdered dry explosion material:
(3) Preparation method of explosive material added with water:
(4) Pellet formation method:
(5) Production method of wood-based molded body:
(6) Example:
(7) Summary:

(1)木質系成形体の製造方法の概略:
図1に示すように、本実施形態の木質系成形体の製造方法は、木質系材料A1を水蒸気存在下で加熱および加圧後急激に減圧して爆砕し乾燥した粉末状の爆砕材料A2に水A3を添加し、少なくとも、流動状態の樹脂A6と、粉末状の木質系材料A5と、水を添加した爆砕材料A4と、を混合して成形することにより木質系成形体A10を製造する。より好ましくは、樹脂A6を溶融可能な樹脂とし、当該樹脂A6と粉末状の木質系材料A5とを樹脂A6を溶融させながら混合して木質系材料A5より大きいペレットA8を成形した後、水を添加した爆砕材料A4を添加し混合して後成形することによりペレットA8より大きい木質系成形体A10を製造する。
(1) Outline of manufacturing method of wood-based molded body:
As shown in FIG. 1, the method for producing a wood-based molded body of the present embodiment is obtained by heating and pressurizing a wood-based material A1 in the presence of water vapor, and then rapidly depressurizing and pulverizing and drying the powder-shaped explosive material A2. The wood-based molded body A10 is produced by adding water A3 and mixing and molding at least the resin A6 in a fluid state, the powdery wood-based material A5, and the crushed material A4 to which water is added. More preferably, the resin A6 is a meltable resin, and the resin A6 and the powdery woody material A5 are mixed while melting the resin A6 to form a pellet A8 larger than the woody material A5, and then water is added. The wood-based molded body A10 larger than the pellet A8 is produced by adding and mixing the added blasting material A4 and then post-molding.

(2)粉末状の乾燥爆砕材料の製造方法:
爆砕材料A2を形成するための木質系材料A1には、木粉,木毛,木片,木質繊維,木質パルプ,木質繊維束,等、さまざまなものを採用可能であるし、竹繊維,麻繊維,バカス,モミガラ,稲わら等セルロースを主成分とする材料を混合したものでもよい。木質系材料A1に木粉を用いると、乾燥した爆砕材料A2が確実に粉末状となる点で好適である。爆砕材料A2の粒径を1mm以下、より好ましくは500μm以下、さらに好ましくは100μm以下とすると、粉末状の木質系材料A5どうしの間や木質系材料A5と樹脂A6との間に入り込みやすくなり、木質系成形体A10を非常に均質にさせることができる点で、好適である。なお、粒子形状は、球状、不定形状、繊維状、薄片状、等とすることができる。爆砕することにより木質系材料A1が砕かれるので、粒径1mmより大きい木材チップを木質系材料A1として用いてそのまま粉末状の爆砕材料A2とすることができる。むろん、例えば粒径1mm以下の粉末状の木質系材料A1を爆砕し乾燥して粉末状の爆砕材料A2としてもよいし、粒径1mmより大きい木質系材料A1を爆砕し乾燥した後に粉砕して粉末状の爆砕材料A2としてもよい。
(2) Method for producing powdered dry explosion material:
Various materials such as wood flour, wood wool, wood fragments, wood fiber, wood pulp, wood fiber bundle, etc. can be adopted as the wood material A1 for forming the blasting material A2, bamboo fiber, hemp fiber, etc. It may be a mixture of materials mainly composed of cellulose, such as bacus, rice bran and rice straw. When wood powder is used for the woody material A1, it is preferable in that the dried crushed material A2 is surely powdered. When the particle size of the blasting material A2 is 1 mm or less, more preferably 500 μm or less, and even more preferably 100 μm or less, the powdery woody material A5 can easily enter between the woody materials A5 and the woody material A5 and the resin A6. This is preferable in that the wood-based molded body A10 can be made very homogeneous. The particle shape can be spherical, indeterminate, fibrous, flaky, or the like. Since the wood-based material A1 is crushed by the blasting, the wood chip having a particle diameter of 1 mm or more can be used as the wood-based material A1 to obtain the powdered blasting material A2. Of course, for example, a powdery woody material A1 having a particle size of 1 mm or less may be crushed and dried to obtain a powdery blasting material A2, or a woody material A1 having a particle size of 1 mm or more may be crushed, dried and pulverized. It is good also as a powdery explosion material A2.

木質系材料A1の爆砕は、木質系材料A1を圧力反応釜(圧力容器)の中に入れて水蒸気存在下で飽和水蒸気圧180〜260℃、より好ましくは200〜230℃まで加熱しながら加圧し、圧力反応釜のバルブを開いて急激に外気へ放出して減圧することにより行う。温度を前記下限以上にすると、木質系材料中のヘミセルロースを水可溶性の樹脂のような物質へ十分に変性させることができるとともに、木質系材料中のリグニンをリグニン分解物へ十分に変性させることができる点で好適である。一方、温度を前記上限以下にすると、分解縮合等の副反応を抑制することができる点で好適である。
加熱および加圧の処理時間は、1〜50分程度とすればよく、加熱温度が高いほど短く、加熱温度が低いほど長くすればよい。また、木質系材料が大きいほど長く、木質系材料が小さいほど短くすればよい。加熱温度が180〜230℃の場合、1〜5分程度とすればよい。処理時間を前記下限以上にすると、木質系材料中のヘミセルロースを水可溶性の樹脂のような物質へ十分に変性させることができるとともに、木質系材料中のリグニンをリグニン分解物へ十分に変性させることができる点で好適である。一方、処理時間を前記上限以下にすると、分解縮合等の副反応を抑制することができる点で好適である。
なお、木質系材料A1に対して爆砕前に水を添加しなくても木質系材料A1自体の水分によって爆砕処理を行うことが可能であるが、爆砕前に水を添加すると木質系材料A1の爆砕処理をより良好に行うことが可能となる。ここで、木質系材料A1に対して添加する水の好ましい量は、木質系材料A1の重量を基準とした相対量で10〜500重量%、より好ましくは100〜200重量%である。水の添加量を前記下限以上にすると木質系材料の空隙に水が十分に入り込んで木質系材料が十分に爆砕される点で好ましく、水の添加量を前記上限以下にすると乾燥処理を行う爆砕後の木質系材料が多くなりすぎず乾燥処理の時間が長くなりすぎない点で好ましいからである。
For the explosion of the wood-based material A1, the wood-based material A1 is placed in a pressure reaction kettle (pressure vessel) and pressurized while heating to a saturated steam pressure of 180 to 260 ° C, more preferably 200 to 230 ° C in the presence of steam. This is done by opening the valve of the pressure reaction kettle and suddenly releasing it to the outside air to reduce the pressure. When the temperature is at least the lower limit, hemicellulose in the woody material can be sufficiently denatured into a substance such as a water-soluble resin, and lignin in the woody material can be sufficiently denatured into a lignin degradation product. It is preferable in that it can be performed. On the other hand, when the temperature is set to the upper limit or less, it is preferable in that side reactions such as decomposition condensation can be suppressed.
The treatment time for heating and pressurization may be about 1 to 50 minutes, and the shorter the heating temperature, the longer the heating time. Further, the larger the wood-based material, the longer, and the smaller the wood-based material, the shorter. When the heating temperature is 180 to 230 ° C., it may be about 1 to 5 minutes. When the treatment time is not less than the above lower limit, hemicellulose in the woody material can be sufficiently denatured into a substance such as a water-soluble resin, and lignin in the woody material can be sufficiently denatured into a lignin degradation product. It is suitable at the point which can do. On the other hand, when the treatment time is less than or equal to the above upper limit, it is preferable in that side reactions such as decomposition condensation can be suppressed.
In addition, it is possible to perform the explosion treatment with the moisture of the wood-based material A1 itself without adding water to the wood-based material A1 before the explosion, but if water is added before the explosion, the wood-based material A1 It becomes possible to perform a blasting process more favorably. Here, the preferable amount of water to be added to the wood material A1 is 10 to 500% by weight, more preferably 100 to 200% by weight, based on the weight of the wood material A1. Explosive crushing is preferred in that the amount of water added is not less than the above lower limit and water is sufficiently penetrated into the voids of the wood based material and the wood based material is sufficiently crushed. This is because it is preferable in that the amount of the later woody material does not increase too much and the time for drying treatment does not become too long.

上記爆砕には、以下の3つの物理的作用があるとされている。
1.水熱条件下に晒されることにより、細胞壁自体が軟化することである。
2.軟化した細胞壁は凝縮水の気化に伴う急激な体積膨張によって物理的に破壊される。
3.圧力反応釜のノズルからの高速噴射により機械的に破壊される。
It is said that the above explosion has the following three physical actions.
1. The cell wall itself is softened by being exposed to hydrothermal conditions.
2. The softened cell wall is physically destroyed by rapid volume expansion accompanying vaporization of condensed water.
3. It is mechanically destroyed by high-speed injection from the nozzle of the pressure reactor.

また、上記爆砕では、以下の化学的な変性も生じる。
すなわち、圧力反応釜の中では高温・高圧の水蒸気に木質系材料が晒され、このようないわゆる水熱条件下でヘミセルロース中のアセチル基が遊離し、pH3以下に低下する。その結果、ヘミセルロースは部分加水分解を受けて低分子化し、当該低分子化によって生成される疎水性のフルフラールおよびヒドロキシメチルフルフラールがフラン樹脂化し、接着剤の効果を発生する。これにより、木質系材料A1に自己融着性を持たせる加工を施したことになる。また、リグニンは、アリルエーテル結合の開裂によって低分子化する。このリグニンはフェノール性水酸基を有しているので、疎水性の接着剤と親水性の木粉との架橋剤になり、さらに低分子化することでより架橋効果を発生しやすくなる。そして、リグニンの変質によりセルロースが露出する。
Moreover, the following chemical modification | denaturation also arises in the said explosion.
That is, in the pressure reaction kettle, the woody material is exposed to high-temperature and high-pressure steam, and the acetyl group in hemicellulose is liberated under such so-called hydrothermal conditions, and the pH is lowered to 3 or less. As a result, hemicellulose undergoes partial hydrolysis to lower the molecular weight, and the hydrophobic furfural and hydroxymethylfurfural generated by the lowering of molecular weight become furan resin, producing an adhesive effect. As a result, the wood-based material A1 has been processed to have self-fusing properties. In addition, lignin is reduced in molecular weight by cleavage of the allyl ether bond. Since this lignin has a phenolic hydroxyl group, it becomes a cross-linking agent between a hydrophobic adhesive and hydrophilic wood flour, and the cross-linking effect is more easily generated by lowering the molecular weight. And cellulose is exposed by alteration of lignin.

木質系材料を上記処理条件で加熱および加圧すると、加水分解や熱分解が進み、水素結合で架橋されたセルロースどうしの間に高圧によって水が入り、木質系材料中のヘミセルロースが例えばフルフラールを経てフラン樹脂に変性するといった水可溶性の樹脂のような物質に変性し、木質系材料中のリグニンが部分的に切断されて活性の高い重合前の樹脂のようなリグニン分解物に変性する。ここで、加圧された木質系材料が一挙に大気圧まで開放されると、木質系材料内の水分が急激に蒸気化する爆発が生じて木質系材料の組織が破壊され、木質系材料中のセルロースがフィブリル化し、木質系材料が細分化されて粉末状や繊維状等に砕かれる。そして、加水分解物や熱分解物が木質系材料の組織内のみならず、組織から材料表面にも浸出する。この時点では爆砕材料に多量の水分が存在するので、乾燥処理を行う。   When the wood-based material is heated and pressurized under the above-mentioned treatment conditions, hydrolysis and thermal decomposition proceed, water enters by high pressure between celluloses cross-linked by hydrogen bonds, and hemicellulose in the wood-based material passes through, for example, furfural. It is modified into a substance such as a water-soluble resin such as a furan resin, and the lignin in the wood-based material is partially cleaved to be denatured into a lignin degradation product such as a highly active resin before polymerization. Here, when the pressurized wood-based material is released to atmospheric pressure at once, an explosion in which the moisture in the wood-based material rapidly vaporizes occurs, destroying the structure of the wood-based material, and in the wood-based material The cellulose becomes fibrillated, and the wood-based material is subdivided into powders or fibers. And a hydrolyzate and a pyrolyzate exude not only in the structure | tissue of a wood type material but the material surface from a structure | tissue. At this time, a large amount of moisture is present in the blasting material, so a drying process is performed.

従来、爆砕木粉を乾燥する際には、素早く乾燥させるため、乾燥処理前に爆砕木粉を絞るといった脱水処理を行っていた。しかし、本願発明者は、加水分解物や熱分解物が水分に溶出していることに着目し、存在する水分を除去することなく乾燥することにより、水可溶性樹脂や流動化剤の機能を発揮する有用な爆砕木粉が得られることを見い出した。   Conventionally, when explosive wood flour is dried, dehydration treatment is performed such that the explosive wood flour is squeezed before the drying treatment in order to dry quickly. However, the inventor of the present application pays attention to the fact that the hydrolyzate or thermal decomposition product is eluted in the water, and demonstrates the function of the water-soluble resin and the fluidizing agent by drying without removing the existing water. It was found that useful crushed wood flour can be obtained.

図2は、粉末状の乾燥爆砕材料A2の製造方法を吸水処理とともに示している。まず、木質系材料A1を圧力反応釜C1に投入し(投入工程S1)、上述した処理条件にて木質系材料を水蒸気存在下で加熱および加圧後急激に減圧する爆砕処理を行う(爆砕工程S2)。圧力反応釜C1のバルブC2から噴出される爆砕材料A11には固形分A12とともに多量の水分A13が存在し、爆砕材料A11の含水率(全乾質量基準)は50重量%以上となっている。ここで、存在する水分A13を除去することなく60〜105℃、より好ましくは80〜100℃で加熱しながら、含水率5重量%以下、より好ましくは含水率3重量%、さらに好ましくは含水率1重量%、特に好ましくは絶乾状態(含水率0重量%)になるまで乾燥処理を行う(乾燥工程S3)。加熱温度を前記下限以上にすると、迅速に爆砕材料を乾燥させることができる点で好適である。加熱温度を前記上限以下にすると、加水分解物や熱分解物の変性を抑制することができる点で好適である。含水率を前記上限以下にすると、乾燥爆砕材料に所定比率の水を添加したときに適度な水分量として爆砕材料に水可溶性樹脂や流動化剤の機能を十分に発揮させることができ、特に絶乾処理を行うと、より適度な水分量として爆砕材料に水可溶性樹脂や流動化剤の機能をさらに十分に発揮させることができる点で好適である。なお、含水率は、JIS Z2101−1994(木材の試験方法)3.2に従って測定することができる。すなわち、乾燥前の質量をm1(g)、全乾質量をm2(g)とすると、含水率は{(m1−m2)/m2}×100(重量%)となる。以下も、同様である。
乾燥処理の際、例えば送風乾燥機を用い、送風機C4にて爆砕材料に送風しながら乾燥処理を行うと、迅速に爆砕材料を乾燥させることができる点で好適である。ここで、爆砕材料を時々撹拌したり、平たく薄く乾燥台に載せたりすると、爆砕材料を偏り無く乾燥させることができる点で好適である。
FIG. 2 shows a manufacturing method of the powdery dry explosion material A2 together with the water absorption treatment. First, the wood-based material A1 is charged into the pressure reaction vessel C1 (charging step S1), and a blasting process is performed in which the wood-based material is heated and pressurized in the presence of water vapor and then rapidly depressurized (explosion process). S2). The blasting material A11 ejected from the valve C2 of the pressure reaction kettle C1 has a large amount of moisture A13 together with the solid content A12, and the moisture content (total dry mass basis) of the blasting material A11 is 50% by weight or more. Here, the water content is 5% by weight or less, more preferably 3% by weight, even more preferably the water content while heating at 60 to 105 ° C., more preferably 80 to 100 ° C., without removing the existing water A13. The drying treatment is performed until 1% by weight, particularly preferably completely dry (water content: 0% by weight) (drying step S3). When the heating temperature is set to the lower limit or more, it is preferable in that the explosive material can be quickly dried. When heating temperature is made below the said upper limit, it is suitable at the point which can suppress modification | denaturation of a hydrolyzate or a thermal decomposition product. When the moisture content is less than or equal to the above upper limit, when a predetermined ratio of water is added to the dry explosion material, the explosion material can sufficiently exhibit the functions of the water-soluble resin and the fluidizing agent as an appropriate amount of water. When the dry treatment is performed, it is preferable in that the function of the water-soluble resin and the fluidizing agent can be more fully exhibited in the crushed material with a more appropriate amount of water. The water content can be measured according to JIS Z2101-1994 (wood testing method) 3.2. That is, if the mass before drying is m1 (g) and the total dry mass is m2 (g), the water content is {(m1-m2) / m2} × 100 (% by weight). The same applies to the following.
In the drying process, for example, using a blower dryer and performing the drying process while blowing air to the blasting material with the blower C4 is preferable in that the blasting material can be quickly dried. Here, it is preferable to stir the explosive material from time to time or to place it flat and thin on a drying table in that the explosive material can be dried without unevenness.

乾燥処理後、必要に応じて乾燥爆砕材料を所定の粉砕機構C5にて例えば1〜100μmに粉砕する(粉砕工程S4)。粉砕機構としては、後述する粉砕機を用いる等、公知の種々の粉砕機を使用可能である。なお、粒子形状は、球状、不定形状、繊維状、薄片状、等とすることができる。乾燥した爆砕材料は、組織が脆くなっているので容易に粉砕することができ、爆砕していない木質系材料を粉砕するのと比べて少ない動力、短い時間で粉末状にすることができる。
木質系材料A1の粒径が1mm以下、より好ましくは500μm以下、さらに好ましくは100μm以下であると、乾燥工程S3で乾燥爆砕木粉を得ることができ、粉砕工程S4を省略することができる点で好適である。
以上のようにして、粉末状の乾燥爆砕材料A2を製造することができる。爆砕材料A2には木質系材料中にあるヘミセルロースから変性した成分やリグニン分解物が十分に残存しているので、木質系成形体の成形性、強度、耐水性を良好にさせることが可能になる。
After the drying process, the dry blasting material is pulverized to, for example, 1 to 100 μm by a predetermined pulverization mechanism C5 as necessary (pulverization step S4). As the pulverization mechanism, various known pulverizers such as a pulverizer described later can be used. The particle shape can be spherical, indeterminate, fibrous, flaky, or the like. The dried crushed material can be easily pulverized because of its brittle structure, and can be made into a powder with less power and in a shorter time than pulverizing a non-explosive wood-based material.
When the particle size of the wood-based material A1 is 1 mm or less, more preferably 500 μm or less, and even more preferably 100 μm or less, dry explosion-crushed wood powder can be obtained in the drying step S3, and the pulverizing step S4 can be omitted. It is suitable.
As described above, the powdery dry explosion material A2 can be manufactured. Since the components and lignin degradation products modified from hemicellulose in the woody material remain sufficiently in the blasting material A2, it becomes possible to improve the moldability, strength, and water resistance of the woody molded body. .

(3)水を添加した爆砕材料の調製方法:
粉末状の乾燥爆砕材料A2を形成すると、当該爆砕材料A2に水A3を1〜20重量%(爆砕材料A4が80〜99重量%)、より好ましくは3〜15重量%、さらに好ましくは5〜10重量%となるように添加する吸水処理を行い、水を添加した爆砕材料A4を調製する(吸水工程S5)。水の配合比を前記下限以上にすると、後成形時の素材の成形圧力が低下し、木質系成形体の成形性をより良好にさせるとともに、木質系成形体の強度を上げ、耐水性をより良好にさせる点で好適である。これは、ヘミセルロースに由来する水可溶性の樹脂のような物質を水可溶性樹脂として十分に機能させることにより、後成形時の素材の結着力が向上して木質系成形体の強度を向上させ、耐水性を向上させるためと推察される。一方、水の配合比を前記上限以下にすると、後成形時に水の存在による素材の不均質が生じず、木質系成形体の強度、耐水性を向上させ、均質で良質の木質系成形体が得られる点で好適である。
(3) Preparation method of explosive material added with water:
When the powdered dry explosion material A2 is formed, water A3 is added to the explosion material A2 in an amount of 1 to 20% by weight (explosion material A4 is 80 to 99% by weight), more preferably 3 to 15% by weight, and still more preferably 5 to 5%. Water absorption treatment is performed to add 10% by weight, and a crushed material A4 to which water has been added is prepared (water absorption step S5). When the mixing ratio of water is not less than the above lower limit, the molding pressure of the material at the time of post-molding is reduced, the moldability of the wood-based molded body is improved, the strength of the wooden-based molded body is increased, and the water resistance is further It is preferable in terms of making it better. This is because a substance such as a water-soluble resin derived from hemicellulose sufficiently functions as a water-soluble resin, thereby improving the binding force of the material during post-molding and improving the strength of the wood-based molded body. It is presumed to improve the performance. On the other hand, when the mixing ratio of water is less than the above upper limit, the material does not become heterogeneous due to the presence of water during post-molding, and the strength and water resistance of the wood-based molded body are improved. It is suitable at the point obtained.

水を添加する際には、例えば、所定の噴霧機C6から乾燥爆砕材料A2に水を均一に噴霧する。すると、水を添加した爆砕材料を混合しなくても後成形に用いることができるので、好適である。むろん、所定の容器から水を乾燥爆砕材料A2中に入れ、水を添加した爆砕材料を混合してもよい。吸水処理を行う温度は、室温レベルでよく、0〜40℃、より好ましくは2〜30℃、さらに好ましくは4〜20℃とすればよい。温度を前記下限以上にすると、水が凍らない点で好適である。温度を前記上限以下にすると、添加した水の蒸発を抑制することができる点で好適である。吸水処理を行う湿度は、外気レベルでよいが、水分の蒸発や吸湿を防ぐ観点から、30〜70v/v%、より好ましくは35〜65v/v%、さらに好ましくは40〜60v/v%とすることができる。また、吸水処理を行う際には、無風状態としても送風状態としてもよいが、添加した水の蒸発や吸湿を防ぐ観点からは無風状態とすることが好ましい。
水分を添加した爆砕材料A4は、温度50℃以下、湿度15〜60v/v%、無風状態で4時間保管して使用してもよいが、添加した水の蒸発や吸湿を防ぐ観点からはなるべく速やかに(例えば1時間以内に)使用するのが好ましい。
When adding water, for example, water is sprayed uniformly from the predetermined sprayer C6 onto the dry explosion material A2. Then, since it can use for post-molding, without mixing the explosion material which added water, it is suitable. Of course, water from a predetermined container may be put into the dry explosion material A2, and the explosion material added with water may be mixed. The temperature for the water absorption treatment may be a room temperature level, 0 to 40 ° C, more preferably 2 to 30 ° C, and even more preferably 4 to 20 ° C. When the temperature is set to the above lower limit or more, it is preferable in that water does not freeze. When the temperature is set to the upper limit or less, it is preferable in that evaporation of the added water can be suppressed. The humidity at which the water absorption treatment is performed may be at the outside air level, but from the viewpoint of preventing moisture evaporation and moisture absorption, it is 30 to 70 v / v%, more preferably 35 to 65 v / v%, still more preferably 40 to 60 v / v%. can do. Moreover, when performing a water absorption process, although it may be set as a windless state or a ventilation state, it is preferable to set it as a windless state from a viewpoint of preventing evaporation and moisture absorption of the added water.
Explosive material A4 to which moisture is added may be stored and used for 4 hours in a temperature of 50 ° C. or less, humidity of 15 to 60 v / v% and no wind, but from the viewpoint of preventing evaporation and moisture absorption of the added water as much as possible. It is preferable to use it promptly (for example, within 1 hour).

(4)ペレットの形成方法:
ペレットA8を成形するための木質系材料A5は、爆砕材料A2を形成するための木質系材料A1と同じ材料を用いることができる。また、種々の工場等で発生する廃材を粉砕して木質系材料A5を得てもよい。木質系材料A5の粒径は種々の径が採用可能であるが、後述するように不定形の素材を粒径1mm以下に粉砕するため、木質系材料A5の粒径も1mm以下とすると好適である。
(4) Pellet formation method:
As the wood material A5 for forming the pellet A8, the same material as the wood material A1 for forming the explosion material A2 can be used. Further, the wood material A5 may be obtained by pulverizing waste materials generated in various factories. Various particle diameters can be adopted for the wood-based material A5. However, as described later, since the irregular-shaped material is pulverized to a particle diameter of 1 mm or less, the particle diameter of the wood-based material A5 is preferably 1 mm or less. is there.

流動状態の樹脂A6は、溶融状態の熱可塑性樹脂といった溶融状態の樹脂、流動状態の熱硬化性樹脂、等が考えられ、疎水性の樹脂でも、親水性の樹脂でもよい。ペレット製造装置B1に原料を供給する際には、流動状態とされた樹脂A6を流入させてもよいし、固形状の樹脂A6を流動状態にさせて流入させてもよいし、固形状の樹脂A6をペレット製造装置B1に投入してもよい。
樹脂A6に用いる熱可塑性樹脂としては、種々の樹脂を採用可能であり、例えば、ポリプロピレン(PP),ポリエチレン(PE),ポリスチレン,ポリメチルメタアクリレート,塩化ビニル,ポリアミド(ナイロン),ポリカーボネート,ポリアセタール,ポリブチレンテレフタレート,ポリエチレンテレフタレート等を使用可能である。むろん、これらの樹脂を複数組み合わせて使用してもよい。また、ペレット製造装置B1に投入する際には、固形の原反として投入してもよいし、溶融された状態にして投入してもよい。
樹脂A6に用いる熱硬化性樹脂としては、フェノール樹脂,ユリア樹脂,メラミン樹脂,不飽和ポリエステル樹脂,エポキシ樹脂等を使用可能である。
The fluidized resin A6 may be a molten resin such as a molten thermoplastic resin, a fluidized thermosetting resin, etc., and may be a hydrophobic resin or a hydrophilic resin. When supplying the raw material to the pellet manufacturing apparatus B1, the resin A6 in a fluidized state may be allowed to flow in, the solid resin A6 may be allowed to flow in, or the solid resin may be allowed to flow in. You may throw A6 into pellet manufacturing apparatus B1.
As the thermoplastic resin used for the resin A6, various resins can be used. For example, polypropylene (PP), polyethylene (PE), polystyrene, polymethyl methacrylate, vinyl chloride, polyamide (nylon), polycarbonate, polyacetal, Polybutylene terephthalate, polyethylene terephthalate, etc. can be used. Of course, a plurality of these resins may be used in combination. Further, when it is charged into the pellet manufacturing apparatus B1, it may be charged as a solid raw material or may be charged in a molten state.
As the thermosetting resin used for the resin A6, phenol resin, urea resin, melamine resin, unsaturated polyester resin, epoxy resin, or the like can be used.

上述したいずれかの樹脂のみを上記樹脂A6とすることができるが、上記熱可塑性樹脂のいずれかを選択して樹脂A6の主成分とするとともに、熱可塑性樹脂に親水基を付与するマレイン酸(所定の酸)を用いて選択された樹脂を変性したものを樹脂A6の副成分としてもよい。むろん、熱可塑性樹脂を変性させる酸はフマル酸等でもよく、主成分とは異なる樹脂を変性したものを樹脂A6の副成分としてもよい。さらに、熱可塑性樹脂を酸により変性した樹脂も通常熱可塑性樹脂であるため、変性した樹脂のみを上記樹脂A6として使用してもよい。
変性した樹脂を製造するには、例えば付加重合前の原料にマレイン酸を添加して付加重合を行えばよい。すると、付加重合後の高分子には、親水基の一つであるカルボキシル基が付加される。従って、熱可塑性樹脂に含まれる変性した樹脂は、木質系材料A5とのなじみが良くなっている。
Only one of the above-mentioned resins can be used as the resin A6, but maleic acid (selecting any one of the thermoplastic resins as a main component of the resin A6 and imparting a hydrophilic group to the thermoplastic resin ( A modification of a resin selected using a predetermined acid may be used as a subcomponent of the resin A6. Of course, the acid that modifies the thermoplastic resin may be fumaric acid or the like, and a modified component of a resin different from the main component may be used as a subcomponent of the resin A6. Furthermore, since a resin obtained by modifying a thermoplastic resin with an acid is also usually a thermoplastic resin, only the modified resin may be used as the resin A6.
In order to produce the modified resin, for example, addition polymerization may be performed by adding maleic acid to the raw material before addition polymerization. Then, a carboxyl group which is one of hydrophilic groups is added to the polymer after addition polymerization. Therefore, the modified resin contained in the thermoplastic resin has good compatibility with the wood-based material A5.

木質系材料A5と樹脂A6との配合割合については、一般に、木質系材料が多いと温度変化による変形は少なく、木質感が向上する。木質系材料がリッチな素材である場合、加熱により軟化されても素材は流動性が小さいが、後述する作用によりペレットを大量生産することが可能である。一方、熱可塑性樹脂が多いと、加熱軟化した素材の流動性は大きく、製造されたペレットは強度を意味する機械的性能が大きくなり、耐水性が向上する。本実施形態では、木質系材料A5と、同材料A5と等重量以下の樹脂A6とを、同樹脂A6を溶融させながら所定の押出機構にて混合して成形することなく不定形の状態で押し出した後、押し出した不定形の素材を所定の粉砕機構にて粉砕し、粉砕した素材を所定の成形機構にてペレット形状に成形する。ペレット用素材の好ましい配合割合は、木質系材料A5が70〜99.9重量%、樹脂A6(例えば付加重合前のPP用原料にマレイン酸を添加して付加重合させて変性させたPPを添加したPP)が0.1〜30重量%である。木質系材料を70重量%以上にするのは好適な靱性を得るためであり、熱可塑性樹脂を0.1質量%以上にするのは木質系材料同士を結合させて固まらせるためである。   Regarding the blending ratio of the wood-based material A5 and the resin A6, generally, when there is a large amount of the wood-based material, the deformation due to temperature change is small and the wood texture is improved. When the woody material is a rich material, the material has low fluidity even when softened by heating, but it is possible to mass-produce pellets by the action described below. On the other hand, when there are many thermoplastic resins, the fluidity | liquidity of the raw material heat-softened is large, the mechanical performance which means the intensity | strength of the manufactured pellet becomes large, and water resistance improves. In the present embodiment, the wood-based material A5 and the resin A6 having an equal weight or less than the material A5 are extruded in an indeterminate state without being mixed and molded by a predetermined extrusion mechanism while melting the resin A6. After that, the extruded amorphous material is pulverized by a predetermined pulverization mechanism, and the pulverized material is formed into a pellet shape by a predetermined molding mechanism. The preferable blending ratio of the raw material for pellets is 70 to 99.9% by weight of wood-based material A5, and resin A6 (for example, PP modified by addition polymerization by adding maleic acid to the raw material for PP before addition polymerization is added. PP) is 0.1 to 30% by weight. The reason why the wood-based material is made 70% by weight or more is to obtain suitable toughness, and the reason why the thermoplastic resin is made 0.1% by weight or more is to bond and harden the wood-based materials.

上述した流動状態の樹脂A6と粉末状の木質系材料A5のみをペレット製造装置に供給してもペレットA8を成形することができるが、さらに異なる第四の素材A7もペレット製造装置に供給してペレットを成形してもよい。第四の素材としては、木質系材料以外の充てん材、相溶化剤(例えば親水基を有する相溶化剤)、ステアリン酸アミド等の樹脂成形用の滑剤、合成樹脂の繊維や鉱物繊維等の繊維状素材、これらの組み合わせ等を用いることができる。ペレット用の素材中における第四の素材の配合比は、木質系材料A5や樹脂A6の物理的性質、化学的性質を十分に残す観点からは、木質系材料A5と等重量以下かつ樹脂A6と等重量以下とすればよい。例えば、樹脂A6としてPEを用い、合成樹脂の繊維として径0.1μm〜1mmでアスペクト比(径に対する長さの比)が10のPP繊維を用いる場合、ペレット用素材の好ましい配合割合は、PEが0.1〜30重量%、木質系材料A5とPP繊維の合計が70〜99.9重量%であって、木質系材料A5が69.9〜99.8重量%の範囲内、PP繊維が0.1〜30重量%の範囲内である。   The pellet A8 can be formed by supplying only the resin A6 in the fluid state and the powdery woody material A5 to the pellet manufacturing apparatus, but a different fourth material A7 is also supplied to the pellet manufacturing apparatus. Pellets may be formed. The fourth material includes fillers other than wood-based materials, compatibilizers (for example, compatibilizers having hydrophilic groups), resin molding lubricants such as stearamide, fibers such as synthetic resin fibers and mineral fibers. Shaped materials, combinations thereof, and the like can be used. The blending ratio of the fourth material in the material for pellets is equal to or less than the weight of the wood material A5 and the resin A6 from the viewpoint of sufficiently retaining the physical properties and chemical properties of the wood material A5 and the resin A6. What is necessary is just to be equal weight or less. For example, when PE is used as the resin A6 and PP fibers having a diameter of 0.1 μm to 1 mm and an aspect ratio (length ratio to the diameter) of 10 are used as synthetic resin fibers, the preferred blending ratio of the pellet material is PE. 0.1 to 30% by weight, the total of the wood material A5 and PP fiber is 70 to 99.9% by weight, and the wood material A5 is in the range of 69.9 to 99.8% by weight, PP fiber Is in the range of 0.1 to 30% by weight.

樹脂A3に溶融可能な樹脂を用いる場合、ペレット製造装置B1に原料A5,A6(,A7)が投入されると、同装置B1にて、原料A5,A6(,A7)からなる素材を加熱して軟化させ、軟化した素材を混合しながら不定形の状態で押し出し、その後不定形の素材を粉砕機に導入して粉砕し、粉砕した素材を成形機に導入してペレット形状に成形して固化させ、ペレットA8を成形する。   When a meltable resin is used as the resin A3, when the raw materials A5, A6 (, A7) are charged into the pellet manufacturing apparatus B1, the raw material made of the raw materials A5, A6 (, A7) is heated in the apparatus B1. Softened, mixed with the softened material, extruded in an irregular shape, then introduced the irregular shaped material into a pulverizer, pulverized, introduced the crushed material into a molding machine, molded into a pellet shape and solidified To form pellets A8.

ペレット製造装置は、例えば、図3〜図7に示す各部11〜15,20,40を備える装置10とすることができる。
材料供給装置11は、中空の略円筒形状に形成され、原料を開口部11a1から投入してホッパ装置11aに収容する。ホッパ装置11a内では、撹拌翼駆動モータ11a5の駆動がベルト11a4を介して撹拌翼接続円板11a3に伝達され、当該円板11a3と撹拌翼11a2が回転駆動する。これにより、ホッパ装置11a内の素材は撹拌されつつ混合され、混合材料供給口11a6から素材搬送装置12に供給される。
素材搬送装置12は、各部12a〜fを備え、混合材料供給口12aにて混合材料供給口11a6より素材の供給を受ける。略円筒形状の中空管12b内には、一部(図2、図3の右側)がペレット成形装置20内に挿入されたスクリュー軸12cが配設されている。このスクリュー軸12cは、軸方向に沿って複数フライトの螺旋状ネジ山が形成され、スクリューとされている。素材は、中空管12bとスクリュー軸12cとスクリューのネジ山にて形成される空間に収容される。当該空間に収容された素材は、スクリュー軸駆動モータ12eの駆動によりギヤ部12dを介して回転動作するスクリュー軸12cによって形成される所定の押出速度に基づいて、混合されながら混合材料流入口12aから流動体流出口12fに向かって押し出される。
A pellet manufacturing apparatus can be set as the apparatus 10 provided with each part 11-15, 20, 40 shown in FIGS. 3-7, for example.
The material supply device 11 is formed in a hollow and substantially cylindrical shape, and a raw material is charged through the opening 11a1 and accommodated in the hopper device 11a. In the hopper device 11a, the drive of the stirring blade drive motor 11a5 is transmitted to the stirring blade connection disk 11a3 via the belt 11a4, and the disk 11a3 and the stirring blade 11a2 are rotationally driven. Thereby, the raw material in the hopper apparatus 11a is mixed while being stirred, and is supplied to the raw material conveyance apparatus 12 from the mixed material supply port 11a6.
The material conveying device 12 includes the respective parts 12a to 12f and receives the material from the mixed material supply port 11a6 at the mixed material supply port 12a. In the substantially cylindrical hollow tube 12b, a screw shaft 12c having a part (the right side in FIGS. 2 and 3) inserted into the pellet forming apparatus 20 is disposed. The screw shaft 12c is a screw having a plurality of flight spiral threads formed along the axial direction. The material is accommodated in a space formed by the hollow tube 12b, the screw shaft 12c, and the screw thread. The material accommodated in the space is mixed from the mixed material inlet 12a while being mixed based on a predetermined extrusion speed formed by the screw shaft 12c that rotates through the gear portion 12d by the drive of the screw shaft drive motor 12e. It is pushed out toward the fluid outlet 12f.

素材搬送装置12に併設されている素材加熱装置13は、各部13a,bを備え、混合材料流入口12aから供給された素材を加熱し、樹脂を溶融させて素材を軟化させる。従って、スクリューの回転動作によって押し出される素材は、軟化状態で流動体流出口12fに押し出される。ヒータ部13aに設けられた発熱体により高温とされた空気をブロア部13bにて中空管12bに吹き付けることにより、中空管12b内の素材が加熱される。ここで、素材の温度が樹脂の融点よりも高く、木質系材料が炭化しないようにヒータ部の加熱を設定すると、木質系材料を炭化させずに両者を溶融混合することができる。なお、素材搬送装置12が素材を搬送する能力は、軟化された素材の粘度等の性質に応じて決定すればよい。
軟化状態の素材は、流動体流出口12fからペレット成形装置20に押し込まれ、不定形の状態で押し出され、不定形のまま導入部に導入され、ペレット形状に成形されて、冷却槽40にて冷却される。
The material heating device 13 provided in the material conveying device 12 includes the respective portions 13a and 13b, heats the material supplied from the mixed material inlet 12a, melts the resin, and softens the material. Accordingly, the material pushed out by the rotation of the screw is pushed out to the fluid outlet 12f in a softened state. The air in the hollow tube 12b is heated by blowing air heated to high temperature by the heating element provided in the heater unit 13a to the hollow tube 12b by the blower unit 13b. Here, if the heating of the heater part is set so that the temperature of the raw material is higher than the melting point of the resin and the wood-based material is not carbonized, both can be melt-mixed without carbonizing the wood-based material. Note that the ability of the material conveying device 12 to convey the material may be determined according to the properties such as the viscosity of the softened material.
The softened material is pushed into the pellet forming apparatus 20 from the fluid outlet 12f, extruded in an irregular shape, introduced into the introduction portion in an irregular shape, molded into a pellet shape, and then cooled in the cooling bath 40. To be cooled.

選別搬送装置14は、径1〜4mm、より好ましくは径2〜3mmの略円形状の小穴が多数形成された選別搬送網、搬送網振動モータ、ペレット収容部を有している。冷却されて固化されたペレットは、順次選別搬送網に投入され、搬送網振動モータによって選別搬送網が振動することにより同選別搬送網の小穴にて大きさが選別される。そして、選別搬送網上に残存するペレットは、同選別搬送網上をペレット回収部に向かって移動していき、図示しないサイクロンによってペレット収容部に収容されることになる。また、選別搬送網から落下したペレットは、回収されて再利用される。
制御盤15は、複数の操作ボタンと、本装置10の運転条件の設定や運転状態をモニタリングする操作ディスプレイとが前面に配置されている。本装置10の操作者は、この制御盤15を使用して各種操作を行う。
The sorting / conveying device 14 has a sorting / conveying network, a conveying net vibration motor, and a pellet storage part in which a large number of substantially circular small holes having a diameter of 1 to 4 mm, more preferably 2 to 3 mm are formed. The cooled and solidified pellets are sequentially put into the sorting and transporting network, and the sorting and transporting network is vibrated by the transporting network vibration motor, whereby the size is sorted at the small holes of the sorting and transporting network. Then, the pellets remaining on the sorting and conveying network move toward the pellet collecting unit on the sorting and conveying network, and are accommodated in the pellet accommodating unit by a cyclone (not shown). Also, the pellets that have fallen from the sorting and conveying network are collected and reused.
The control panel 15 is provided with a plurality of operation buttons and an operation display for monitoring the setting of operation conditions and the operation state of the apparatus 10 on the front surface. An operator of the apparatus 10 performs various operations using the control panel 15.

図5はペレット成形装置20の要部の斜視図であり、図6と図7は図4のB方向から見て示した垂直断面図である。なお、図6においてスクリュー軸12cとスクリューのネジ山については側面視して示している。以下、図6と図7を基準とした上下左右の関係により各部材の配置を説明する。
ペレット成形装置20は、図示した各部21〜23,25〜27,30等を備えている。軟化状態の素材の押出方向を軸とした円筒形状の金属製外筒部21の左側には、素材流入口21aが設けられており、軟化状態の素材は素材搬送装置12から素材流入口21aに流入する。本実施形態では、外筒部21内にスクリュー12gの先端部(左端部)が挿入されており、外筒部21内に搬送された軟化状態の素材は同スクリュー12gの回転動作により混合されながら右方向に押され、外筒部21の素材出口側(図の右側)の端部に取り付けられた金属製部材の出口部22から左側に押し出され、不定形の素材M1として金属製の粉砕機用ホッパ32内に落下する。出口部22には、成形用のダイではなく、製造されるペレットよりもはるかに径の大きい単一の開口22aが形成されており、軟化して混合された素材は同開口22aを貫通して成形されることなく不定形の状態で押し出される。
FIG. 5 is a perspective view of the main part of the pellet forming apparatus 20, and FIGS. 6 and 7 are vertical sectional views as seen from the direction B of FIG. In FIG. 6, the screw shaft 12c and the thread of the screw are shown in side view. Hereinafter, the arrangement of each member will be described based on the vertical and horizontal relationships with reference to FIGS. 6 and 7.
The pellet forming apparatus 20 includes the illustrated portions 21 to 23, 25 to 27, 30 and the like. A material inlet 21a is provided on the left side of the cylindrical metal outer cylinder portion 21 with the direction of extrusion of the softened material as an axis, and the softened material is transferred from the material conveying device 12 to the material inlet 21a. Inflow. In the present embodiment, the distal end portion (left end portion) of the screw 12g is inserted into the outer cylinder portion 21, and the softened material conveyed into the outer cylinder portion 21 is mixed by the rotational operation of the screw 12g. A metal crusher that is pushed rightward and pushed to the left side from the outlet 22 of the metal member attached to the end of the outer cylinder 21 on the material outlet side (right side in the figure), as an indeterminate material M1 It falls into the hopper 32 for use. The outlet 22 is not a molding die, but is formed with a single opening 22a that is much larger in diameter than the pellets to be produced. The softened and mixed material passes through the opening 22a. Extruded in an irregular shape without being molded.

なお、従来のように上記出口部22の代わりにペレットと略同じ径とされた貫通穴が多数形成されたダイを外筒部21の右端部に取り付けると、樹脂の配合割合が小さい素材では樹脂を溶融させても素材の流動性が小さいため、ダイの部分で大きな抵抗が生じ、スクリュー12gの回転速度も制限されて素材の押出流量は非常に少ない。上記出口部22では大きな抵抗が生じないため、スクリュー12gの回転速度が制限されず素材の押出流量を大きくすることができる。
なお、素材の流動性は、JIS K7210に規定されたMFR(メルトマスフローレイト。単にメルトフローレイトともいう)に準拠して単位時間当たりにメルトフローレイト測定装置から押し出される素材の質量を測定することにより求められる流量(単位:g/10min)で表すことができる。この流量がJIS K7210に準拠して求められるMFRであり、以下、この流量を単にMFRとも呼ぶことにする。
通常、粉末状の木質系材料と熱可塑性樹脂の配合比が重量比で70〜99.9:0.1〜30と木質系材料の多い素材は、当該素材を試料として、押出機構内で不定形の素材が押し出される出口の位置(図6のP1)における素材の温度を試験温度θ(℃)とし、荷重Mnomを2.16kgとして、JIS K7210に準拠したMFRを測定すると、求められるMFRが1.0g/10min以下となる。MFRが小さいほど試料の流動性が小さいため、木質系材料の多い素材は流動性が小さいことになる。例えば、MFRが50g/10minのポリプロピレン(熱可塑性樹脂)を80重量%、粒径1mm以下の微粒状の木粉を20重量%配合した素材では、押出機構の出口の素材温度180℃を試験温度θとし、荷重Mnomを2.16kgとしてMFRを測定すると、MFRは0.0g/10minとなるか、或いは測定することができなくなってしまう。
流動性の小さい素材については、ペレット成形用のダイ(押出口が直径1〜8mm)を外筒部の端部に取り付けた押出成形機における素材の排出圧力Pe(上記出口の位置P1に相当する位置における素材の圧力)が大きくなりすぎ、押し出すことが困難となって、ペレットを大量生産することができない。なお、排出圧力Peは、押出成形機内において上記出口の位置P1に相当する位置に圧力計の検出部を挿入して測定することができる。特に、排出圧力Peが25.0MPa以上となる流動性の低い素材では、ペレット成形用のダイを装着した押出成形機では機械の耐久性の観点からペレットの成形を行っていない。通常、粉末状の木質系材料と熱可塑性樹脂の配合比が重量比で70〜99.9:0.1〜30である素材は樹脂が加熱軟化した状態で排出圧力Peが25.0MPa以上となってしまうが、このような流動性の小さい素材であっても本ペレット製造装置は混練しながら素材を押し出すことができる。
In addition, when a die having a large number of through-holes having substantially the same diameter as the pellet is attached to the right end portion of the outer cylinder portion 21 instead of the outlet portion 22 as in the prior art, a resin with a small resin blending ratio is used. Since the flowability of the material is small even if the material is melted, a large resistance is generated in the die portion, the rotational speed of the screw 12g is limited, and the extrusion flow rate of the material is very small. Since no great resistance is generated at the outlet portion 22, the rotational speed of the screw 12g is not limited and the extrusion flow rate of the material can be increased.
In addition, the fluidity of the material is measured by measuring the mass of the material extruded from the melt flow rate measuring device per unit time in accordance with MFR (melt mass flow rate, also simply referred to as melt flow rate) defined in JIS K7210. Can be expressed by a flow rate (unit: g / 10 min) determined by This flow rate is MFR obtained in accordance with JIS K7210. Hereinafter, this flow rate is also simply referred to as MFR.
In general, a blending ratio of a powdery woody material and a thermoplastic resin is 70 to 99.9: 0.1 to 30 in a weight ratio, and a material having a lot of woody material is not used in the extrusion mechanism using the material as a sample. When the material temperature at the exit position (P1 in FIG. 6) where the standard material is extruded is the test temperature θ (° C.), the load Mnom is 2.16 kg, and the MFR according to JIS K7210 is measured, the required MFR is 1.0 g / 10 min or less. Since the fluidity of the sample is smaller as the MFR is smaller, the material having a larger amount of wood-based material has lower fluidity. For example, for a material containing 80% by weight of polypropylene (thermoplastic resin) with an MFR of 50 g / 10 min and 20% by weight of finely divided wood powder having a particle size of 1 mm or less, the material temperature of 180 ° C. at the outlet of the extrusion mechanism is the test temperature When MFR is measured with θ and a load Mnom of 2.16 kg, the MFR becomes 0.0 g / 10 min or cannot be measured.
For a material with low fluidity, the material discharge pressure Pe (corresponding to the outlet position P1) in an extrusion molding machine in which a pellet forming die (extruding port is 1 to 8 mm in diameter) is attached to the end of the outer cylinder. The pressure of the material at the position) becomes too large, making it difficult to extrude, making it impossible to mass produce pellets. The discharge pressure Pe can be measured by inserting a detection unit of a pressure gauge at a position corresponding to the outlet position P1 in the extruder. In particular, in a low-fluidity material with a discharge pressure Pe of 25.0 MPa or more, an extrusion molding machine equipped with a pellet forming die does not perform pellet molding from the viewpoint of machine durability. Usually, a material in which the blending ratio of the powdery wood-based material and the thermoplastic resin is 70 to 99.9: 0.1 to 30 by weight is a discharge pressure Pe of 25.0 MPa or more with the resin softened by heating. However, even with such a material with low fluidity, the present pellet manufacturing apparatus can extrude the material while kneading.

本実施形態では、出口部の開口22aの断面積S1を外筒部21の出口部22側の端部における開口部分の断面積S0(外筒部の内側面で囲まれた部分の断面積)以上として、素材の排出圧力Peを確実に5.0MPa以下と小さくし、出口部から素材が円滑に押し出されるようにしている。図6ではS1=S0の場合を示しているが、S1>S0としてもよい。外筒部の出口部側の端部における断面積を比較対象とする限り、斜軸のスクリューを有する押出機でも同様のことが言える。むろん、S1<S0の場合であっても、成形するペレットよりもはるかに大きい径の開口を出口部に形成しておけば、素材を円滑に押し出すことが可能である。素材の排出圧力の観点から、出口部の開口は、素材の排出圧力Peを5.0MPa以下、より好ましくは3.0MPa以下、さらに好ましくは1.0MPa以下にさせる形状とすればよい。すると、単位時間あたり不定形の素材を大量に押し出すことができるので、ペレットを大量生産することができる。ここで、出口部の開口の断面積S1を大きくすれば排出圧力が小さくなり、S1を小さくすれば排出圧力が大きくなるので、同断面積S1を調節することによって排出圧力Peを調整することができる。
粉砕機用ホッパ32は、出口部の開口22aから押し出された軟化状態の不定形の素材M1を一旦収容し、下部開口32bから略上下方向を中心軸とする円筒形状の金属製粉砕室33内へ供給することができる。ホッパの開口32aは出口部22から離されて同出口部22の下側に位置しているので、押し出した素材M1が後続の素材M1の押し出しを阻害することなく、ホッパ32は出口部の開口22aから押し出された不定形の素材M1を収容することができる。そして、押出機構から押し出された素材を不定形のまま導入する不定形素材導入部31が、ホッパ32と粉砕室33に形成されていることになる。
In the present embodiment, the cross-sectional area S1 of the opening 22a of the outlet portion is defined as the cross-sectional area S0 of the opening portion at the end portion on the outlet portion 22 side of the outer cylinder portion 21 (the cross-sectional area of the portion surrounded by the inner surface of the outer cylinder portion). As described above, the discharge pressure Pe of the material is reliably reduced to 5.0 MPa or less so that the material is smoothly pushed out from the outlet. Although FIG. 6 shows the case of S1 = S0, it may be S1> S0. As long as the cross-sectional area at the end portion on the outlet side of the outer tube portion is to be compared, the same can be said for an extruder having an oblique axis screw. Of course, even in the case of S1 <S0, it is possible to smoothly extrude the material if an opening having a diameter much larger than the pellet to be formed is formed at the outlet. From the viewpoint of the discharge pressure of the material, the opening at the outlet may be shaped so that the discharge pressure Pe of the material is 5.0 MPa or less, more preferably 3.0 MPa or less, and even more preferably 1.0 MPa or less. Then, since a large amount of amorphous materials can be extruded per unit time, pellets can be mass-produced. Here, if the cross-sectional area S1 of the opening of the outlet portion is increased, the discharge pressure decreases, and if S1 is decreased, the discharge pressure increases. Therefore, the discharge pressure Pe can be adjusted by adjusting the cross-sectional area S1. .
The pulverizer hopper 32 temporarily accommodates an indeterminate soft material M1 extruded from the opening 22a of the outlet, and the cylindrical pulverization chamber 33 having a substantially vertical direction as a central axis from the lower opening 32b. Can be supplied to. Since the hopper opening 32a is separated from the outlet portion 22 and is located below the outlet portion 22, the extruded material M1 does not obstruct the extrusion of the subsequent material M1, and the hopper 32 opens the outlet portion. The amorphous material M1 extruded from 22a can be accommodated. Then, the amorphous material introducing portion 31 for introducing the material extruded from the extrusion mechanism in an irregular shape is formed in the hopper 32 and the crushing chamber 33.

粉砕機(粉砕機構)30は、各部32〜37等を備え、不定形素材導入部31に導入された不定形の素材を複数の回転刃35,35の回転動により粒径1mm以下に粉砕する。回転テーブル34は粉砕室33内の下部において上下方向に回転軸を向けて回転可能とされ、回転刃35,35は回転テーブル34の上面に取り付けられて粉砕室33内の不定形の素材を回転動により粉砕可能とされ、電動モータ36は上下方向に向けて配設された円柱状の回転駆動軸36aを介して回転テーブル34を回転駆動し、粉体輸送機37は成形機用容器23の上部において下方に向けて開口した粉体吐出口37aまで粉砕後の素材M2を移送する。ホッパ32の下側において同ホッパの下部開口32bに連通する上部開口が形成された粉砕室33の下側(回転テーブル34の下面から下側)には、当該粉砕室33と略同じ径の円筒形状の金属製粉体収容室33aが設けられており、当該収容室33aに粉砕後の素材が粉体輸送機37へ吸い込まれる粉体吸引口37bが形成されている。すなわち、粉砕室33内の不定形の素材M1は、回転する回転刃35,35により粉砕され、粉砕室33の内周面と回転テーブル34の外周面との間33bから落下して粉体吸引口37bから粉体輸送機37に吸い込まれ、粉体吐出口37aよりも上側まで斜め上方に移送されて、粉体吐出口37aから吐出される。   The crusher (crushing mechanism) 30 includes units 32 to 37 and the like, and crushes the irregular shaped material introduced into the irregular shaped material introduction unit 31 to a particle size of 1 mm or less by the rotational movement of the plurality of rotary blades 35 and 35. . The rotary table 34 is rotatable in the vertical direction at the lower part in the grinding chamber 33, and the rotary blades 35, 35 are attached to the upper surface of the rotary table 34 to rotate the amorphous material in the grinding chamber 33. The electric motor 36 rotationally drives the rotary table 34 via a columnar rotary drive shaft 36a arranged in the vertical direction, and the powder transporting machine 37 is connected to the molding machine container 23. The pulverized material M2 is transferred to a powder discharge port 37a that opens downward at the top. A cylinder having substantially the same diameter as that of the crushing chamber 33 is provided below the crushing chamber 33 in which an upper opening communicating with the lower opening 32b of the hopper 32 is formed on the lower side of the hopper 32 (lower side from the lower surface of the rotary table 34). A metal powder storage chamber 33a having a shape is provided, and a powder suction port 37b through which the pulverized material is sucked into the powder transport machine 37 is formed in the storage chamber 33a. That is, the irregular shaped material M1 in the pulverizing chamber 33 is pulverized by the rotating rotary blades 35, 35 and falls from the inner peripheral surface 33b of the pulverizing chamber 33 and the outer peripheral surface of the rotary table 34 to suck the powder. It is sucked into the powder transport machine 37 from the port 37b, is transported obliquely upward to the upper side of the powder discharge port 37a, and is discharged from the powder discharge port 37a.

粉砕機30にて粉砕された素材M2を導入する粉砕素材導入部24が形成された成形機用容器23は、各部23a,bを備え、容器用外筒部23aの下側開口を塞ぐように取り付けられた底部円板23bに、粉砕された素材の粒子よりも大きい範囲で直径1mm以上8mm以下、例えば直径3〜5mm程度の多数の貫通穴23dが略上下方向に向けて形成されている。容器用外筒部23aの上側の開口23cは粉砕機の粉体吐出口37aから離されて同吐出口37aの下側に位置しているので、成形機用容器23は吐出口37aから下方に向けて吐出された粉砕後の素材M2を収容することができる。
成形機用容器23内に設けられた押し込みローラ25,25は、略水平に設置された略円柱状の棒状部材25aの両端にて回転可能に取り付けられ、自ら回転しながら底部円板23b上を周回する。棒状部材25aは、両端からの中間部にて略上下方向に設けられた回転軸材25bに固定され、同回転軸材25bを中心軸として回転動可能に設けられている。ローラ駆動用電動モータ25cに対して通電を行って動作させ、回転軸材25bを回転させると、棒状部材25aの両端にあるローラ25,25が底部円板23b上を周回する。このとき、ローラ25,25は、底部円板23bの上面とローラ25,25との間の摩擦力により自ら回転しながら略円形の貫通穴23dの上側開口から粉砕後の素材を加圧して押し込む。すると、押し込まれた素材は、貫通穴23dの下側開口から略棒状に押し出される。
The molding machine container 23 formed with the pulverized material introduction part 24 for introducing the material M2 pulverized by the pulverizer 30 includes the respective parts 23a and 23b, and closes the lower opening of the container outer cylinder part 23a. A large number of through-holes 23d having a diameter of 1 mm or more and 8 mm or less, for example, a diameter of about 3 to 5 mm, are formed in the attached bottom disk 23b in a substantially larger range than the pulverized raw material particles. Since the upper opening 23c of the outer cylinder portion 23a for the container is separated from the powder discharge port 37a of the pulverizer and is located below the discharge port 37a, the container 23 for the molding machine is located downward from the discharge port 37a. The crushed material M2 discharged toward the container can be accommodated.
The push-in rollers 25 and 25 provided in the molding machine container 23 are rotatably mounted at both ends of a substantially cylindrical rod-like member 25a installed substantially horizontally, and rotate on the bottom disk 23b while rotating by themselves. Go around. The rod-shaped member 25a is fixed to a rotary shaft member 25b provided in a substantially vertical direction at an intermediate portion from both ends, and is provided to be rotatable about the rotary shaft member 25b as a central axis. When the roller driving electric motor 25c is energized and operated to rotate the rotating shaft member 25b, the rollers 25 and 25 at both ends of the rod-like member 25a circulate on the bottom disk 23b. At this time, the rollers 25 and 25 press and push the pulverized material from the upper opening of the substantially circular through hole 23d while rotating by the frictional force between the upper surface of the bottom disc 23b and the rollers 25 and 25. . Then, the pushed material is pushed out in a substantially rod shape from the lower opening of the through hole 23d.

成形機用容器23の下側にて回転可能に取り付けられた金属製ダイフェースカッタ部26は、各部26a,bを備え、ダイフェースカッタ部26を回転駆動するカッタ駆動用電動モータ27により回転動作する。本実施形態では、モータ27への取付部となるカッタテーブル26aに取り付けられて固定された各カッタ26bが底部円板23bの下面を摺動し、回転動作することによって貫通穴23dの下側開口から下方へ押し出される略棒状の素材を粉砕後の素材の粒子よりも大きい範囲で長さ1mm以上30mm以下、例えば長さ3〜7mm程度に切断する。カッタ26bは鋭利な刃先(丸みを帯びた刃先も可)を有しており、同刃先を略棒状に押し出される素材の断面方向に向けて移動させることにより同素材を切断してペレット形状に形成する。
なお、比較的融点の低い樹脂を素材に用いる場合、粉砕後の素材を成形機構にて加熱することなく底部円板23bとローラ25との間の摩擦力により十分に強固なペレットに成形される。一方、ポリアミド、ポリエチレンテレフタレート(PET)、ポリカーボネート等の比較的融点の高い樹脂を素材に用いる場合には、成形機用容器23(底部円板23bなど)やローラ25等にヒータを埋設して同ヒータに通電する等して温度を上昇させ、温度を上昇させた成形機用容器23やローラ25等によって素材を加熱すると、十分に強固なペレットに成形されるので好適である。
A metal die face cutter unit 26 rotatably attached to the lower side of the molding machine container 23 includes portions 26a and 26b, and is rotated by a cutter driving electric motor 27 that rotates the die face cutter unit 26. To do. In the present embodiment, each cutter 26b attached and fixed to a cutter table 26a serving as an attachment portion to the motor 27 slides on the lower surface of the bottom disc 23b and rotates to thereby open the lower opening of the through hole 23d. A substantially rod-shaped material extruded downward is cut into a length of 1 mm to 30 mm, for example, about 3 to 7 mm in a range larger than the pulverized material particles. The cutter 26b has a sharp cutting edge (a rounded cutting edge is also possible), and the same material is cut into a pellet shape by moving the cutting edge in the cross-sectional direction of the material to be extruded in a substantially rod shape. To do.
When a resin having a relatively low melting point is used as the material, the material after pulverization is molded into a sufficiently strong pellet by the frictional force between the bottom disk 23b and the roller 25 without being heated by a molding mechanism. . On the other hand, when a resin having a relatively high melting point such as polyamide, polyethylene terephthalate (PET), or polycarbonate is used as a material, a heater is embedded in the molding machine container 23 (bottom disk 23b, etc.), the roller 25, etc. When the temperature is raised by energizing the heater or the like, and the material is heated by the molding machine container 23, the roller 25, or the like whose temperature has been raised, it is preferable because it is formed into a sufficiently strong pellet.

以上の構成により、素材搬送装置12が軟化した素材をスクリュー12gにより混合しながら外筒部21内に押し込むと、溶融状態の樹脂が粉末状の木質系材料に滲み込みながら付着するので、木質系材料に樹脂が十分になじんだ(相溶化した)不定形の素材が形成される。ここで、出口部の開口の断面積S1が外筒部の出口部側端部における開口部分の断面積S0以上とされているので、MFRが1.0g/10min以下と低流動性の素材であっても、素材の排出圧力Peは5.0MPa以下、通常は1.0MPa以下となる。すると、軟化しているが流動性の低い素材は、成形されることなく不定形の状態で(図5の不定形の素材M1)容易に押し出される。なお、素材中の木質系材料の配合割合が多いと素材M1は粉っぽい感じで押し出され、素材中の熱可塑性樹脂の配合割合が多いと素材M1は太いうどん状となって押し出される。
粉砕機30では、樹脂となじんだ木質系材料が粉砕され、均質にされて、粉体吸引口37bから粉体輸送機37に吸い込まれ、粉体吐出口37aから下方に向けて吐出される。粉砕素材導入部24に導入される粉砕後の素材は、粉砕されているので、貫通穴23d内に入り込みやすく、単位時間当たりのペレット成形量が多い。また、貫通穴23dに入った状態で、素材の粒子間に適度な空隙(後成形時の熱を加える混練工程で崩れる程度の空隙)が生じる。貫通穴23dに押し込まれた粉砕後の素材は、貫通穴23dの下側開口から直径1〜8mmの略棒状に押し出され、カッタ26bにより断面方向に切断されて1〜30mmの長さとされ、粉砕後の素材の粒子よりも大きいペレットA8に成形される。
With the above configuration, when the material softened by the material conveying device 12 is pushed into the outer cylinder portion 21 while being mixed with the screw 12g, the molten resin adheres to the powdery woody material so that it adheres. An amorphous material in which the resin is sufficiently familiar (compatibilized) with the material is formed. Here, since the cross-sectional area S1 of the opening of the outlet portion is set to be equal to or larger than the cross-sectional area S0 of the opening portion at the outlet side end portion of the outer cylinder portion, the MFR is 1.0 g / 10 min or less and a low fluidity material. Even if it exists, the discharge pressure Pe of a raw material will be 5.0 Mpa or less, and usually 1.0 Mpa or less. Then, the softened but low fluidity material is easily extruded without being molded (indeterminate material M1 in FIG. 5). Note that if the mixing ratio of the wood-based material in the material is large, the material M1 is pushed out like a powder, and if the mixing ratio of the thermoplastic resin in the material is large, the material M1 is extruded in a thick noodle shape.
In the pulverizer 30, the wood-based material that has become familiar with the resin is pulverized, homogenized, sucked into the powder transporter 37 from the powder suction port 37b, and discharged downward from the powder discharge port 37a. Since the pulverized material introduced into the pulverized material introduction unit 24 is pulverized, it easily enters the through hole 23d and has a large amount of pellet forming per unit time. In addition, in the state of entering the through hole 23d, an appropriate gap (a gap that is broken in the kneading step in which heat is applied during post-molding) is generated between the raw material particles. The pulverized material pushed into the through hole 23d is extruded into a substantially rod shape having a diameter of 1 to 8 mm from the lower opening of the through hole 23d, cut into a cross-sectional direction by the cutter 26b to have a length of 1 to 30 mm, and pulverized. It is formed into a pellet A8 larger than the particles of the later material.

このように、押出機構で押し出された不定形の素材は、一旦粉砕されて成形機構に供給されるので、非常に均質にされた状態で素材をペレットに成形することができ、非常に均質で良質な木質系成形体を得ることができる。また、木質系材料に樹脂が良くなじんだ(相溶化した)後にペレット化されるので、後成形時に原料段階ではペレット形状を維持させることができる一方、熱が加わる混練段階でペレットを崩れやすくさせて良好に分散させる。従って、粉砕機構を設けない場合と比べて木質系成形体を成形することが容易となる。さらに、不定形の素材が粉砕されることによってペレットを成形しやすくなるので、単位時間当たりのペレット生産量をさらに増やすことが可能となる。
なお、ペレット成形装置としては、不定形の素材を略平板状に圧延可能な圧延ロールと、同圧延ロールにて圧延された略平板状の素材を細断するシュレッダーとを備え、不定形素材導入部に導入された不定形の素材を略平板状に圧延して細断することによりペレット形状に成形する装置等でもよい。
In this way, the amorphous material extruded by the extrusion mechanism is once pulverized and supplied to the molding mechanism, so that the material can be molded into pellets in a very homogeneous state. A good wood-based molded body can be obtained. In addition, since the resin is well blended (compatibilized) with the wood-based material, it is pelletized, so that the pellet shape can be maintained in the raw material stage during post-molding, while the pellet is easily broken in the kneading stage where heat is applied. Disperse well. Therefore, it becomes easier to form a wood-based molded body than in the case where no crushing mechanism is provided. Furthermore, since pellets can be easily formed by pulverizing the amorphous material, the amount of pellets produced per unit time can be further increased.
In addition, the pellet forming equipment is equipped with a rolling roll capable of rolling an irregular shaped material into a substantially flat plate shape, and a shredder that shreds the substantially flat shaped material rolled by the rolling roll. An apparatus or the like for forming an irregular material introduced into the part into a pellet shape by rolling the material into a substantially flat plate shape and chopping it may be used.

(5)木質系成形体の製造方法:
上記ペレットA8を成形した後、後成形では水を添加した爆砕材料A4を添加し混合して木質系成形体の形状に成形し、木質系成形体A10を製造する。図1に示す押出成形装置B2では、ペレットA8と水添加後の爆砕材料A4とを後成形の原料としてホッパB3に投入し、加熱機付き押出機A8にて加熱しながら混練して軟化させる。ペレットA8は、加熱されて混練されることにより、崩れて分散し、水添加後の爆砕材料A4と一緒に均質に混合される。これにより、粉末状の木質系材料A5と爆砕材料A4とが反応し、木質系成形体の強度を向上させる。混練された素材は、所定形状のダイから押し出されて切断機A9にて切断され、木質系成形体の形状に押出成形されて、木質系成形体A10が形成される。
(5) Production method of wood-based molded body:
After molding the pellet A8, in the post-molding, the blasting material A4 to which water has been added is added and mixed to form the shape of the wood-based molded body to produce the wood-based molded body A10. In the extrusion molding apparatus B2 shown in FIG. 1, the pellet A8 and the crushed material A4 after the addition of water are put into the hopper B3 as raw materials for post-molding, and are kneaded and softened while being heated by the extruder A8 with a heater. The pellet A8 is heated and kneaded to be disintegrated and dispersed, and is uniformly mixed together with the explosion material A4 after the addition of water. As a result, the powdery woody material A5 and the blasting material A4 react to improve the strength of the woody molded body. The kneaded material is extruded from a die having a predetermined shape, cut by a cutting machine A9, and extruded into the shape of a wood-based molded body to form a wood-based molded body A10.

ペレットA8と水添加後の爆砕材料A4との配合割合については、ペレットA8が70〜99.9重量%(より好ましくは80〜99重量%、さらに好ましくは85〜98重量%)、爆砕材料A4が0.1〜30重量%(より好ましくは1〜20重量%、さらに好ましくは2〜15重量%)である。爆砕材料A4の配合比を下限以上にすると、素材の成形圧力が低下し、木質系成形体の成形性をより良好にさせるとともに、木質系成形体の強度を上げ、耐水性をより良好にさせる点で好適である。これは、ヘミセルロースに由来する水可溶性の樹脂のような物質を水可溶性樹脂として十分に機能させることにより、素材の結着力が向上して木質系成形体の強度を向上させ、耐水性を向上させるためと推察される。一方、爆砕材料A4の配合比を前記上限以下にすると、ペレットが十分に存在することにより素材が十分に均質になり、木質系成形体の強度、耐水性を向上させ、均質で良質の木質系成形体が得られる点で好適である。   Regarding the blending ratio of the pellet A8 and the blasting material A4 after the addition of water, the pellet A8 is 70 to 99.9% by weight (more preferably 80 to 99% by weight, more preferably 85 to 98% by weight), and the blasting material A4. Is 0.1 to 30% by weight (more preferably 1 to 20% by weight, still more preferably 2 to 15% by weight). When the blending ratio of the blasting material A4 is set to the lower limit or more, the molding pressure of the raw material is lowered, the moldability of the wood-based molded body is improved, the strength of the wood-based molded body is increased, and the water resistance is further improved. This is preferable in terms of points. This is because a substance such as a water-soluble resin derived from hemicellulose sufficiently functions as a water-soluble resin, thereby improving the binding force of the material and improving the strength of the wood-based molded body and improving the water resistance. This is probably because of this. On the other hand, when the blending ratio of the blasting material A4 is less than or equal to the above upper limit, the material is sufficiently homogeneous due to the presence of sufficient pellets, improving the strength and water resistance of the wood-based molded body, and being a homogeneous and high-quality wood-based material This is preferable in that a molded body can be obtained.

上述した水添加後の爆砕材料A4とペレットA8のみを所定の成形装置に供給しても木質系成形体A10を製造することができるが、さらに異なる第五の素材A9も成形装置に供給して木質系成形体を成形してもよい。第五の素材としては、木質系材料以外の充てん材、相溶化剤(例えば親水基を有する相溶化剤)、ステアリン酸アミド等の樹脂成形用の滑剤、合成樹脂の繊維や鉱物繊維等の繊維状素材、これらの組み合わせ等を用いることができる。木質系成形体用の素材中における第五の素材の配合比は、木質系材料A5や樹脂A6の物理的性質、化学的性質を十分に残す観点からは、木質系材料A5と等重量以下かつ樹脂A6と等重量以下とすればよい。例えば、樹脂A6としてPEを用い、ペレット用素材の配合割合を樹脂A6が30重量%、粉末状の木質系材料A1が70重量%とし、合成樹脂の繊維として径0.1μm〜1mmでアスペクト比(径に対する長さの比)が10のPP繊維を用いる場合、木質系成形体用素材の好ましい配合割合は、爆砕材料A4が0.1〜30重量%、ペレットA4とPP繊維の合計が70〜99.9重量%であって、ペレットA4が69.9〜99.8重量%の範囲内、PP繊維が0.1〜30重量%の範囲内である。   Although the wood-based molded body A10 can be manufactured even if only the above-mentioned crushed material A4 and pellets A8 after addition of water are supplied to a predetermined molding apparatus, a different fifth material A9 is also supplied to the molding apparatus. A wood-based molded body may be molded. The fifth material includes fillers other than wood-based materials, compatibilizers (for example, compatibilizers having hydrophilic groups), resin molding lubricants such as stearamide, fibers such as synthetic resin fibers and mineral fibers. Shaped materials, combinations thereof, and the like can be used. The blending ratio of the fifth material in the material for the wood-based molded body is equal to or less than the weight of the wood-based material A5 from the viewpoint of leaving sufficient physical and chemical properties of the wood-based material A5 and the resin A6. The weight may be equal to or less than that of the resin A6. For example, PE is used as the resin A6, the blending ratio of the material for pellets is 30% by weight for the resin A6, 70% by weight for the powdery woody material A1, and the diameter is 0.1 μm to 1 mm as the fiber of the synthetic resin. When PP fibers having a ratio of length to diameter of 10 are used, the preferable blending ratio of the wood-based molded body material is 0.1 to 30% by weight of the explosion material A4, and the total of the pellets A4 and PP fibers is 70. ˜99.9 wt%, pellet A4 is in the range of 69.9 to 99.8 wt%, PP fiber is in the range of 0.1 to 30 wt%.

木質系成形体を製造する際には、汎用的な樹脂成形用の押出成形機や射出成形機やプレス成形機を用いて木質系成形体を成形することができる。本発明は、木質系材料A5と当該木質系材料と等重量以下の樹脂A6とを有する低流動性の素材を用いるので、特に後成形で素材を押し出す押出成形や素材を射出する射出成形を行う場合に適用すると好適である。
押出成形機としては、一軸スクリュー混練押出成形機や二軸スクリュー混練押出成形機など、種々の装置を用いることができる。例えば、図8に示すように、原料A4,A8(,A9)からなる原料m3を投入するためのホッパ61、軟化状態の素材の押出方向を軸とした円筒形状の金属製外筒部62、同外筒部62の素材出口側(図の右側)の端部に取り付けられた金属製ダイ63、外筒部62内に挿入されたスクリュー64、同スクリューを回転駆動するスクリュー軸駆動モータ65、外筒部62に併設されて当該外筒部内を所定温度に加熱する加熱機(第二の加熱機構)66、ダイ63の外側(右側)に設けられたカッタ67、を備える加熱機付き一軸スクリュー混練押出成形機60を用いることができる。同押出成形機60は、ダイ63の押出口63aから軟化状態の素材を押し出して木質系成形体の形状に成形する。木質系成形体の形状に成形された素材は、図示しない冷却槽(第二の冷却機構)にて冷却されて固化し、木質系成形体A10として冷却槽から回収される。成形後の素材を即座に固化させることにより、木質系成形体どうしが相互に接着してしまうことを防止することができる。
When producing a wood-based molded body, the wood-based molded body can be molded using a general-purpose resin molding extruder, injection molding machine or press molding machine. Since the present invention uses a low-fluidity material having a wood-based material A5 and a resin A6 that is equal to or less than the weight of the wood-based material, particularly extrusion molding for extruding the material in post-molding or injection molding for injecting the material is performed. It is preferable to apply to the case.
As the extruder, various devices such as a single screw kneading extruder and a twin screw kneading extruder can be used. For example, as shown in FIG. 8, a hopper 61 for charging a raw material m3 made of raw materials A4, A8 (, A9), a cylindrical metal outer cylindrical portion 62 with the direction of extrusion of the softened material as an axis, A metal die 63 attached to the end of the outer cylinder part 62 on the material outlet side (right side in the figure), a screw 64 inserted into the outer cylinder part 62, a screw shaft drive motor 65 for rotationally driving the screw, A uniaxial screw with a heater provided with a heater (second heating mechanism) 66 that is attached to the outer cylinder portion 62 and heats the inside of the outer cylinder portion to a predetermined temperature, and a cutter 67 provided on the outside (right side) of the die 63. A kneading extruder 60 can be used. The extrusion molding machine 60 extrudes a softened material from the extrusion port 63a of the die 63 and forms it into the shape of a wood-based molded body. The material molded into the shape of the wood-based molded body is cooled and solidified by a cooling tank (second cooling mechanism) (not shown), and is recovered from the cooling tank as a wood-based molded body A10. By immediately solidifying the molded material, it is possible to prevent the wood-based molded bodies from adhering to each other.

また、射出成形機としては、例えば、上記押出成形機60の各部61〜66と同様の構成を備えるとともに、図9に示すように、基部71、この基部71上に上下動可能に支持された下金型72、この下金型72を上下動させる図示しないシリンダ、下金型72の上面に対向して開閉可能に配置された上金型73、基部71上であって下金型72の左側に設けられて上金型73を回動可能に支持する支持部74、上金型73を回動させる図示しないモータ、下金型72と上金型73とで挟まれる空間に押出口63aから押し出された軟化状態の素材を注入するため図9において上金型73の上面に設けられた注入口75、を備える射出成形機70を用いることができる。同射出成形機は、両金型72,73に挟まれた空間内に軟化状態の素材を射出して木質系成形体の形状に成形する。そして、図示しない冷却機構にて金型72,73を冷却すると、射出された素材が固化し、木質系成形体A10が形成される。   Moreover, as an injection molding machine, for example, it has the same structure as each part 61-66 of the said extrusion molding machine 60, and as shown in FIG. 9, it was supported on this base part 71 so that a vertical movement was possible. A lower mold 72, a cylinder (not shown) for moving the lower mold 72 up and down, an upper mold 73 disposed so as to be openable and closable so as to face the upper surface of the lower mold 72, and on the base 71, the lower mold 72 A support portion 74 provided on the left side for rotatably supporting the upper mold 73, a motor (not shown) for rotating the upper mold 73, and a space between the lower mold 72 and the upper mold 73 and the extrusion port 63a. In order to inject the softened material extruded from the injection mold 70, an injection molding machine 70 provided with an injection port 75 provided on the upper surface of the upper mold 73 in FIG. 9 can be used. The injection molding machine injects a softened material into a space sandwiched between both molds 72 and 73 and molds it into the shape of a wood-based molded body. And if metal mold | die 72,73 is cooled with the cooling mechanism which is not shown in figure, the injected raw material will solidify and the wood type molded object A10 will be formed.

以上説明したように、従来では水の存在によって樹脂と木質系材料との密着性が阻害されて十分な強度が得られないため添加するのが非常識であるとされていた水を粉末状の乾燥爆砕材料A2に添加することによって、木質系成形体の形状に成形する際の素材の成形圧力が低下し、木質系成形体の成形性を向上させることが可能になる。また、素材に水を添加したにもかかわらず、木質系成形体の強度を向上させ、耐水性を向上させて、均質でより良質の木質系成形体を大量生産することが可能になる。その結果、得られる木質系成形体は、良好な強度、良好な耐水性を示し、均質で非常に良質となる。   As explained above, water that was previously considered insane to add because the presence of water hinders the adhesion between the resin and the wood-based material and does not provide sufficient strength. By adding to the dry explosion material A2, the molding pressure of the raw material at the time of molding into the shape of the wood-based molded body is reduced, and the moldability of the wood-based molded body can be improved. In addition, despite the addition of water to the material, it is possible to improve the strength of the wood-based molded body, improve the water resistance, and mass-produce a homogeneous and higher-quality wood-based molded body. As a result, the resulting wood-based molded article exhibits good strength and good water resistance, and is homogeneous and of very good quality.

(4)各種変形例:
上記粉砕機構には、種々の公知の粉砕機を使用可能である。
上記成形機用容器を加熱する容器加熱手段を設けてもよい。
上記カッタを加熱するカッタ加熱手段を設けてもよい。
(4) Various modifications:
Various known pulverizers can be used for the pulverization mechanism.
You may provide the container heating means which heats the said container for molding machines.
A cutter heating means for heating the cutter may be provided.

図10に示すように、ペレットを形成せず、水を添加した爆砕材料A4と、粉末状の木質系材料A5と、流動状態あるいは流動可能な樹脂A6と、必要に応じて第四、第五の素材A8,A9を同時にホッパB3に供給し、これらの原料A4,A5,A6(A8,A9)を一緒に混合して押出成形等で成形することにより木質系成形体A10を製造してもよい。この製造方法によっても、木質系成形体の成形性、強度、耐水性を向上させ、均質でより良質の木質系成形体を量産することが可能になる。これは、リグニン分解物が水添加によって流動化剤として機能し、素材の成形圧力が低下して木質系成形体の成形性を向上させるとともに、ヘミセルロースから爆砕により変性した水可溶性樹脂のような物質が水添加により樹脂として働き、素材の結着力が向上して木質系成形体の強度を向上させ、耐水性を向上させるためと推察される。
また、水を添加した爆砕材料A4の代わりに、粉末状の爆砕材料A2と水A3とを原料A5,A6(A8,A9)とともに同時にホッパB3に供給し、これらの原料を一緒に混合して押出成形等で成形することにより木質系成形体A10を製造してもよい。すなわち、少なくとも、流動状態の樹脂と、粉末状の木質系材料と、木質系材料を水蒸気存在下で加熱および加圧後急激に減圧して爆砕し乾燥した粉末状の爆砕材料とに、水を添加し、混合して成形することにより木質系成形体を製造する。この製造方法によっても、同様の効果は得られる。
As shown in FIG. 10, the crushed material A4 to which water was added without forming pellets, the powdery woody material A5, the resin A6 in a fluid state or flowable, and the fourth and fifth as necessary. Even if the raw materials A8 and A9 are simultaneously supplied to the hopper B3, these raw materials A4, A5 and A6 (A8 and A9) are mixed together and molded by extrusion molding or the like to produce the wood-based molded body A10. Good. This manufacturing method also improves the moldability, strength, and water resistance of the wood-based molded body, and enables mass production of a homogeneous and higher-quality wood-based molded body. This is because the lignin degradation product functions as a fluidizing agent by adding water, the molding pressure of the material is lowered to improve the moldability of the wood-based molded body, and a substance such as a water-soluble resin modified by explosion from hemicellulose It is presumed that this works as a resin by adding water, the binding force of the material is improved, the strength of the wooden molded body is improved, and the water resistance is improved.
Also, instead of the blasting material A4 to which water is added, the powdered blasting material A2 and the water A3 are supplied to the hopper B3 together with the raw materials A5 and A6 (A8, A9), and these raw materials are mixed together. You may manufacture wood type molded object A10 by shape | molding by extrusion molding etc. That is, at least water is added to the resin in a fluid state, the powdery wood-based material, and the powdered material after heating and pressurizing the wood-based material in the presence of water vapor and then rapidly depressurizing and pulverizing and drying. A wood-based molded body is produced by adding, mixing and molding. The same effect can be obtained by this manufacturing method.

また、樹脂A6と粉末状の木質系材料A5と必要に応じて第四の素材A7とを混合した後、水を添加した爆砕材料A4と必要に応じて第五の素材A9とを添加し混合して後成形してもよい。この製造方法によると、樹脂と粉末状の木質系材料との混合時に粉末状の木質系材料と粉末状の爆砕材料とが反応しないようにさせ、後成形時にこれらを十分に反応させることができ、後成形時の素材の成形性をさらに良好にさせることが可能になる。また、爆砕していない粉末状の木質系材料を樹脂と混合する際には水分が少ないほどなじみが良くなるので、水を添加した爆砕材料を後添加することにより、木質系成形体の強度をさらに上げることが可能となる。
特に、樹脂A6が溶融可能な場合、樹脂A6を加熱溶融させるときに素材中の水分が蒸発するので、ヘミセルロースから変性した物質により得られる水可溶性樹脂の機能が無くなりはしないものの低下したり、リグニン分解物により得られる流動化剤の機能が無くなりはしないものの低下したりすることがある。水を添加した爆砕材料A4を後添加することによって、これらのような機能の低下を防ぐことができ、水可溶性樹脂の機能や流動化剤の機能を十分に発揮させて、木質系成形体の成形性、強度、耐水性を非常に良好にさせる。
In addition, after mixing resin A6, powdery wood-based material A5 and fourth material A7 as necessary, blasting material A4 to which water is added and fifth material A9 as necessary are mixed and mixed Then, it may be formed later. According to this manufacturing method, it is possible to prevent the powdery woody material and the powdered explosive material from reacting when mixing the resin and the powdery woody material, and to sufficiently react these during post-molding. It becomes possible to further improve the moldability of the material at the time of post-molding. In addition, when mixing powdery woody material that has not been crushed with the resin, the less water there is, the better the familiarity.Thus, by adding the blasting material with water added, the strength of the woody shaped body can be increased. Further increase is possible.
In particular, when the resin A6 can be melted, the water in the material evaporates when the resin A6 is heated and melted, so that the function of the water-soluble resin obtained from the substance modified from hemicellulose is not lost, but the lignin is reduced. Although the function of the fluidizing agent obtained by the decomposition product is not lost, it may decrease. By post-adding the blasting material A4 to which water has been added, it is possible to prevent these functions from being lowered, and to fully exhibit the functions of the water-soluble resin and the fluidizing agent. Makes moldability, strength and water resistance very good.

(6)実施例:
以下、実施例を示して具体的に本発明を説明するが、本発明は以下の例により限定されるものではない。
[調製例1]
本調製例は、乾燥した粉末状の爆砕材料A2を調製した一例である。
木質系材料A1として、粒径1mm以下に粉砕した木粉(含水率5重量%)を2kg用いた。当該木粉を圧力反応釜の中に入れ、さらに6kgすなわち300重量%(当該木粉の重量を基準とした相対量)の水を添加して、水蒸気存在下で飽和水蒸気圧230℃まで加熱しながら加圧した。この状態を、10分間保持した後、圧力反応釜のバルブを開いて圧力反応釜の内容物を急激に外気へ放出して減圧し、木粉を爆砕した。このときに得られた爆砕物の含水率は、200重量%であった。
存在する水分A13を除去することなく上記爆砕物を乾燥台上に平たく薄く厚さ1cmとなるように載せ、送風乾燥機にて100℃で加熱しながら、送風機C4にて爆砕材料に風速0.5m/secで送風しながら、24時間、絶乾処理を行った。その後、送風乾燥機内を30℃に下げ、乾燥爆砕木粉(A2)を得た。当該乾燥爆砕木粉の含水率を測定したところ、0重量%であった。なお、以下の調製例2では、調製した乾燥爆砕木粉を速やかに使用した。
(6) Example:
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not limited by the following examples.
[Preparation Example 1]
This preparation example is an example of preparing a dry powdered blasting material A2.
As the woody material A1, 2 kg of wood powder (water content 5% by weight) pulverized to a particle size of 1 mm or less was used. The wood flour is put into a pressure reaction kettle, and further 6 kg, that is, 300% by weight (relative amount based on the weight of the wood flour) is added and heated to a saturated water vapor pressure of 230 ° C. in the presence of water vapor. The pressure was applied. After maintaining this state for 10 minutes, the valve of the pressure reaction kettle was opened, and the contents of the pressure reaction kettle were suddenly discharged to the outside air to reduce the pressure, and the wood flour was crushed. The moisture content of the crushed material obtained at this time was 200% by weight.
The crushed material is placed on a drying table so as to have a thickness of 1 cm without removing the existing moisture A13 and heated at 100 ° C. with a blower dryer, while the blower C4 blows the blasting material with a wind speed of 0. An absolute drying treatment was performed for 24 hours while blowing air at 5 m / sec. Then, the inside of a ventilation dryer was lowered | hung to 30 degreeC and dry explosion crushed wood flour (A2) was obtained. It was 0 weight% when the moisture content of the said dry explosion crushed wood powder was measured. In the following Preparation Example 2, the prepared dry explosion wood flour was used promptly.

[調製例2]
本調製例は、水を添加した爆砕材料A4を調製した一例である。
温度25℃、湿度30v/v%、無風状態のもと、上記調製例1で得られた乾燥爆砕木粉1kgに対して水を0.05kg、すなわち、水A3の配合比が5重量%となるように、噴霧機を用いて添加した。その後、軽くかき混ぜ、水を添加した爆砕木粉を調製した。なお、以下の実施例では、調製した水添加後の爆砕木粉を速やかに使用した。
[Preparation Example 2]
This preparation example is an example in which the explosion material A4 to which water was added was prepared.
Under a temperature of 25 ° C., a humidity of 30 v / v%, and no wind, 0.05 kg of water with respect to 1 kg of the dry crushed wood powder obtained in Preparation Example 1, that is, the blending ratio of water A3 is 5% by weight. It added so that it might become. Then, it stirs lightly and the crushed wood powder which added water was prepared. In the following examples, the prepared crushed wood powder after addition of water was used promptly.

[調製例3]
本調製例は、ペレットA8を調製した例である。
木質系材料A5として、粒径1mm以下に粉砕した木粉(含水率5重量%)を用いた。熱可塑性樹脂(主成分)として、JIS K7210の附属書A表1の条件M(試験温度230℃、荷重2.16kg)におけるMFRが30(g/10min)の粒状ポリプロピレン(PPと記載)を用いた。添加剤(副成分)として、マレイン酸を用いてポリプロピレンを変性したマレイン酸変性樹脂(三洋化成社製ユーメックス、CA60)を用いた。
加熱機付き混練押出機として径80mmのコニカル二軸押出成形機(シンシナティエクストルージョン社製タイタン80)を用い、押出機構の出口部にダイを取り付けず、スクリューの回転速度を10rpmとして使用した。従って、出口部の開口の断面積S1が外筒部の出口部側端部における開口部分の断面積S0に等しい条件で試験を行っている。
以下に記載した素材の配合量で木粉とPPとマレイン酸変性樹脂とを加熱機付き混練押出機に投入し、素材を230℃に加熱して混合しながら不定形の状態で押し出してホッパに受け止めた。押出機構内の出口の位置における素材の温度は、180℃であった。この180℃を試験温度θとし、荷重を2.16kgとして素材のMFRをMFR測定装置にて測定するとともに、押出機構内の出口の位置P1における排出圧力Peを圧力計にて測定した。そして、ホッパに受け止めた不定形の素材を粉砕機にて粒径1mm以下に粉砕し、ペレット成形機にて径5mm、長さ5mmのペレット形状に成形し、ペレットを作製した。

素材の配合量: 試験区1 試験区2 試験区3
木粉 78重量部 68重量部 88重量部
PP 18重量部 18重量部 8重量部
マレイン酸変性樹脂 2重量部 2重量部 2重量部
計 98重量部 88重量部 98重量部

素材の配合量(比較例用): 試験区4 試験区5
木粉 80重量部 90重量部
PP 18重量部 8重量部
マレイン酸変性樹脂 2重量部 2重量部
計 100重量部 100重量部
[Preparation Example 3]
This preparation example is an example of preparing pellet A8.
As the woody material A5, wood powder (water content 5% by weight) pulverized to a particle size of 1 mm or less was used. As the thermoplastic resin (main component), granular polypropylene (described as PP) having an MFR of 30 (g / 10 min) in condition M (test temperature 230 ° C., load 2.16 kg) in Annex A Table 1 of JIS K7210 is used. It was. As an additive (subcomponent), a maleic acid-modified resin (Yumex, CA60 manufactured by Sanyo Chemical Co., Ltd.) obtained by modifying polypropylene with maleic acid was used.
A conical twin screw extruder (Titan 80 manufactured by Cincinnati Extrusion Co., Ltd.) having a diameter of 80 mm was used as a kneading extruder with a heater. A die was not attached to the exit portion of the extrusion mechanism, and the screw rotation speed was 10 rpm. Therefore, the test is performed under the condition that the cross-sectional area S1 of the opening of the outlet part is equal to the cross-sectional area S0 of the opening part at the outlet part side end of the outer cylinder part.
Wood powder, PP, and maleic acid-modified resin are charged into a kneading extruder with a heater at the blending amount of the materials described below, and the materials are heated to 230 ° C. and extruded in an indeterminate state while being mixed into a hopper. I took it. The temperature of the raw material in the position of the exit in an extrusion mechanism was 180 degreeC. The 180 ° C. was the test temperature θ, the load was 2.16 kg, the MFR of the material was measured with an MFR measuring device, and the discharge pressure Pe at the outlet position P1 in the extrusion mechanism was measured with a pressure gauge. Then, the amorphous material received by the hopper was pulverized to a particle size of 1 mm or less by a pulverizer, and formed into a pellet shape having a diameter of 5 mm and a length of 5 mm by a pellet molding machine to produce a pellet.

Mixing amount of materials: Test Zone 1 Test Zone 2 Test Zone 3
Wood flour 78 parts 68 parts 88 parts PP 18 parts 18 parts 8 parts 8 parts maleic acid modified resin 2 parts 2 parts 2 parts Total 98 parts 88 parts 98 parts

Mixing amount of materials (for comparative example): Test Zone 4 Test Zone 5
Wood powder 80 parts 90 parts PP 18 parts 8 parts maleic acid modified resin 2 parts 2 parts Total 100 parts 100 parts

[実施例1]
本実施例は、水を添加した爆砕材料A4を後添加して木質系成形体を形成した例である。
水を添加した爆砕材料A4には、調製例2で調製した水添加後の爆砕木粉を用いた。ペレットA8には、調製例3で調製した試験区1,2,3のペレットを用いた。
加熱機付き混練押出機として径80mmのコニカル二軸押出成形機(シンシナティエクストルージョン社製タイタン80)を用い、押出機構の出口部に110mm×9mm角の開口を有するダイを取り付け、スクリューの回転速度を7rpmとして使用した。
以下に記載した素材の配合量でペレットと水添加後の爆砕木粉を加熱機付き混練押出機に投入し、素材を230℃に加熱して混合しながら110mm×9mm角に押出成形し、長さ1000mmの木質系成形体を作製して、20℃に空冷した。押出機構内の出口の位置における素材の温度は、180℃であった。押出機構内の出口の位置における排出圧力(成形圧力)を圧力計にて測定するとともに、冷却後の木質系成形体の曲げ強度をJIS K7171−1994(プラスチック−曲げ特性の試験方法)の曲げ強さに準拠して測定した。以下も、同様である。

素材の配合量: 試験区1 試験区2 試験区3
ペレット 98重量% 88重量% 98重量%
水添加後の爆砕木粉 2重量% 12重量% 2重量%
計 100重量% 100重量% 100重量%
[Example 1]
In this example, a crushed material A4 to which water has been added is post-added to form a wood-based molded body.
As the crushed material A4 to which water was added, the crushed wood powder after adding water prepared in Preparation Example 2 was used. For the pellet A8, the pellets in the test groups 1, 2, and 3 prepared in Preparation Example 3 were used.
Using a conical twin-screw extruder with a diameter of 80 mm (Titan 80 manufactured by Cincinnati Extrusion Co., Ltd.) as a kneading extruder with a heater, a die having a 110 mm × 9 mm square opening is attached to the outlet of the extrusion mechanism, and the screw rotation speed Was used as 7 rpm.
The pellets and the crushed wood powder after addition of water were added to the kneading extruder with a heater at the blending amount of the materials described below, and the materials were extruded to 110 mm × 9 mm square while being heated to 230 ° C. and mixed. A wood-based molded body having a thickness of 1000 mm was produced and air-cooled to 20 ° C. The temperature of the raw material in the position of the exit in an extrusion mechanism was 180 degreeC. The discharge pressure (molding pressure) at the outlet position in the extrusion mechanism is measured with a pressure gauge, and the bending strength of the wood-based molded body after cooling is determined according to JIS K7171-1994 (plastic-bending property test method). Measured according to the above. The same applies to the following.

Mixing amount of materials: Test Zone 1 Test Zone 2 Test Zone 3
Pellet 98% by weight 88% by weight 98% by weight
Explosive wood flour after water addition 2% 12% 2%
Total 100% by weight 100% by weight 100% by weight

[実施例2]
本実施例は、水を添加した爆砕材料A4を木質系材料A5および樹脂A6と同時に押出成形機に供給して木質系成形体を形成した例である。
水を添加した爆砕材料A4には、調製例2で調製した水添加後の爆砕木粉を用いた。木質系材料A5、樹脂A6(PPとマレイン酸変性樹脂)は、調製例3と同じものを用いた。また、加熱機付き混練押出機は実施例1と同じものを用い、スクリューの回転速度も実施例1と同じにした。
以下に記載した素材の配合量で木粉とPPとマレイン酸変性樹脂と水添加後の爆砕木粉を加熱機付き混練押出機に投入し、素材を230℃に加熱して混合しながら110mm×9mm角に押出成形し、長さ1000mmの木質系成形体を作製して、20℃に空冷した。押出機構内の出口の位置における素材の温度は、180℃であった。押出機構内の出口の位置における排出圧力(成形圧力)を圧力計にて測定するとともに、冷却後の木質系成形体の曲げ強度を測定した。

素材の配合量: 試験区1 試験区2
木粉 78重量% 68重量%
PP 18重量% 18重量%
マレイン酸変性樹脂 2重量% 2重量%
水添加後の爆砕木粉 2重量% 12重量%
計 100重量% 100重量%
[Example 2]
In this example, a crushed material A4 to which water was added was supplied to an extruder simultaneously with the wood material A5 and the resin A6 to form a wood material.
As the crushed material A4 to which water was added, the crushed wood powder after adding water prepared in Preparation Example 2 was used. The same woody material A5 and resin A6 (PP and maleic acid-modified resin) as in Preparation Example 3 were used. Moreover, the same kneading extruder with a heater was used as in Example 1, and the rotational speed of the screw was also the same as in Example 1.
The wood powder, PP, maleic acid-modified resin and the crushed wood powder after the addition of water were charged into a kneading extruder with a heater at the blending amount of the materials described below, and the materials were heated to 230 ° C. and mixed to 110 mm × A 9 mm square extrusion molding was carried out to produce a wood-based molded body having a length of 1000 mm, and air-cooled to 20 ° C. The temperature of the raw material in the position of the exit in an extrusion mechanism was 180 degreeC. The discharge pressure (molding pressure) at the outlet position in the extrusion mechanism was measured with a pressure gauge, and the bending strength of the wood-based molded body after cooling was measured.

Mixing amount of materials: Test Zone 1 Test Zone 2
Wood powder 78% by weight 68% by weight
PP 18% by weight 18% by weight
Maleic acid-modified resin 2% by weight 2% by weight
Explosive wood flour after water addition 2% 12%
Total 100% by weight 100% by weight

[比較例1]
本比較例は、実施例1に対する比較例であり、水を添加していない乾燥した粉末状の爆砕材料A2を用い、当該爆砕材料A4を後添加して木質系成形体を形成した例である。
乾燥した粉末状の爆砕材料A2には、調製例1で調製した乾燥爆砕木粉を用いた。ペレットA8には、調製例3で調製した試験区4,5のペレットを用いた。また、加熱機付き混練押出機は実施例1と同じものを用い、スクリューの回転速度も実施例1と同じにした。
以下に記載した素材の配合量でペレットと水添加後の爆砕木粉を加熱機付き混練押出機に投入し、素材を230℃に加熱して混合しながら110mm×9mm角に押出成形し、長さ1000mmの木質系成形体を作製して、20℃に冷却した。押出機構内の出口の位置における素材の温度は、180℃であった。押出機構内の出口の位置における排出圧力(成形圧力)を圧力計にて測定するとともに、冷却後の木質系成形体の曲げ強度を測定した。

素材の配合量: 試験区1 試験区2
ペレット 98重量% 88重量%
乾燥爆砕木粉 2重量% 12重量%
計 100重量% 100重量%
[Comparative Example 1]
This comparative example is a comparative example with respect to Example 1, and is an example in which a dry powdered blasting material A2 to which water was not added was used, and the blasting material A4 was added later to form a wood-based molded body. .
The dry crushed wood powder prepared in Preparation Example 1 was used as the dry powdered crushed material A2. For the pellet A8, the pellets in the test groups 4 and 5 prepared in Preparation Example 3 were used. Moreover, the same kneading extruder with a heater was used as in Example 1, and the rotational speed of the screw was also the same as in Example 1.
The pellets and the crushed wood powder after addition of water were added to the kneading extruder with a heater at the blending amount of the materials described below, and the materials were extruded to 110 mm × 9 mm square while being heated to 230 ° C. and mixed. A wood-based molded body having a thickness of 1000 mm was prepared and cooled to 20 ° C. The temperature of the raw material in the position of the exit in an extrusion mechanism was 180 degreeC. The discharge pressure (molding pressure) at the outlet position in the extrusion mechanism was measured with a pressure gauge, and the bending strength of the wood-based molded body after cooling was measured.

Mixing amount of materials: Test Zone 1 Test Zone 2
Pellet 98% by weight 88% by weight
Dry crushed wood powder 2% by weight 12% by weight
Total 100% by weight 100% by weight

[比較例2]
本比較例は、実施例2に対する比較例であり、水を添加していない乾燥した粉末状の爆砕材料A2を用い、当該爆砕材料A4を木質系材料A5および樹脂A6と同時に押出成形機に供給して木質系成形体を形成した例である。
乾燥した粉末状の爆砕材料A2には、調製例1で調製した乾燥爆砕木粉を用いた。木質系材料A5、樹脂A6(PPとマレイン酸変性樹脂)は、調製例3と同じものを用いた。また、加熱機付き混練押出機は実施例1と同じものを用い、スクリューの回転速度も実施例1と同じにした。
以下に記載した素材の配合量でペレットと水添加後の爆砕木粉を加熱機付き混練押出機に投入し、素材を230℃に加熱して混合しながら110mm×9mm角に押出成形し、長さ1000mmの木質系成形体を作製して、20℃に冷却した。押出機構内の出口の位置における素材の温度は、180℃であった。押出機構内の出口の位置における排出圧力(成形圧力)を圧力計にて測定するとともに、冷却後の木質系成形体の曲げ強度を測定した。

素材の配合量: 試験区1 試験区2
木粉 78重量% 68重量%
PP 18重量% 18重量%
マレイン酸変性樹脂 2重量% 2重量%
乾燥爆砕木粉 2重量% 12重量%
計 100重量% 100重量%
[Comparative Example 2]
This comparative example is a comparative example with respect to Example 2, using a dry powdered blasting material A2 to which water has not been added, and supplying the blasting material A4 to the extruder simultaneously with the woody material A5 and the resin A6. In this example, a wood-based molded body is formed.
The dry crushed wood powder prepared in Preparation Example 1 was used as the dry powdered crushed material A2. The same woody material A5 and resin A6 (PP and maleic acid-modified resin) as in Preparation Example 3 were used. Moreover, the same kneading extruder with a heater was used as in Example 1, and the rotational speed of the screw was also the same as in Example 1.
The pellets and the crushed wood powder after addition of water were added to the kneading extruder with a heater at the blending amount of the materials described below, and the materials were extruded to 110 mm × 9 mm square while being heated to 230 ° C. and mixed. A wood-based molded body having a thickness of 1000 mm was prepared and cooled to 20 ° C. The temperature of the raw material in the position of the exit in an extrusion mechanism was 180 degreeC. The discharge pressure (molding pressure) at the outlet position in the extrusion mechanism was measured with a pressure gauge, and the bending strength of the wood-based molded body after cooling was measured.

Mixing amount of materials: Test Zone 1 Test Zone 2
Wood powder 78% by weight 68% by weight
PP 18% by weight 18% by weight
Maleic acid-modified resin 2% by weight 2% by weight
Dry crushed wood powder 2% by weight 12% by weight
Total 100% by weight 100% by weight

[比較例3]
本比較例は、実施例1試験区2に対する比較例であり、脱水処理を行って乾燥した粉末状の爆砕材料を用い、当該爆砕材料を後添加して木質系成形体を形成した例である。
調製例1と同じ方法で木粉を爆砕し、得られた爆砕物を布で絞って脱水した。その後、脱水した爆砕物を乾燥台上に平たく薄く厚さ1cmとなるように載せ、送風乾燥機にて100℃で加熱しながら、送風機C4にて爆砕材料に風速0.5m/secで送風しながら、24時間、絶乾処理を行った。その後、送風乾燥機内を30℃に下げ、乾燥爆砕木粉を得た。当該乾燥爆砕木粉の含水率を測定したところ、0重量%であった。なお、調製した乾燥爆砕木粉は速やかに使用した。
ペレットA8には、調製例3で調製した試験区2のペレットを用いた。また、加熱機付き混練押出機は実施例1と同じものを用い、スクリューの回転速度も実施例1と同じにした。
以下に記載した素材の配合量でペレットと水添加後の爆砕木粉を加熱機付き混練押出機に投入し、素材を230℃に加熱して混合しながら110mm×9mm角に押出成形し、長さ1000mmの木質系成形体を作製して、20℃に冷却した。押出機構内の出口の位置における素材の温度は、180℃であった。押出機構内の出口の位置における排出圧力(成形圧力)を圧力計にて測定するとともに、冷却後の木質系成形体の曲げ強度を測定した。

素材の配合量:
ペレット 88重量%
脱水処理した爆砕木粉 12重量%
計 100重量%
[Comparative Example 3]
This comparative example is a comparative example for the test section 2 of Example 1 and is an example in which a powdery crushed material that has been dehydrated and dried is used, and the crushed material is added afterwards to form a wood-based molded body. .
Wood flour was crushed by the same method as in Preparation Example 1, and the resulting crushed material was squeezed with a cloth and dehydrated. After that, the dehydrated explosive material was placed on a drying table so as to be flat and thin with a thickness of 1 cm. While heated at 100 ° C. with a blower dryer, the blown material was blown with a blower C4 at a wind speed of 0.5 m / sec. However, the drying process was performed for 24 hours. Thereafter, the inside of the blower dryer was lowered to 30 ° C. to obtain dry crushed wood powder. It was 0 weight% when the moisture content of the said dry explosion crushed wood powder was measured. The prepared dry crushed wood powder was used promptly.
As the pellet A8, the pellet of the test group 2 prepared in Preparation Example 3 was used. Moreover, the same kneading extruder with a heater was used as in Example 1, and the rotational speed of the screw was also the same as in Example 1.
The pellets and the crushed wood powder after addition of water were added to the kneading extruder with a heater at the blending amount of the materials described below, and the materials were extruded to 110 mm × 9 mm square while being heated to 230 ° C. and mixed. A wood-based molded body having a thickness of 1000 mm was prepared and cooled to 20 ° C. The temperature of the raw material in the position of the exit in an extrusion mechanism was 180 degreeC. The discharge pressure (molding pressure) at the outlet position in the extrusion mechanism was measured with a pressure gauge, and the bending strength of the wood-based molded body after cooling was measured.

Material content:
88% by weight of pellets
12% by weight dehydrated explosive wood flour
100% by weight

[比較例4]
本比較例は、爆砕木粉を用いずに木質系成形体を形成した例である。
ペレットA8には、調製例3で調製した試験区4,5のペレットを用いた。また、加熱機付き混練押出機は実施例1と同じものを用い、スクリューの回転速度も実施例1と同じにした。
ペレットを加熱機付き混練押出機に投入し、素材を230℃に加熱して混合しながら110mm×9mm角に押出成形することを試み、素材を押し出すことができた場合に長さ1000mmの木質系成形体を作製し、20℃に冷却した。押出機構内の出口の位置における素材の温度は、180℃であった。押出機構内の出口の位置における排出圧力(成形圧力)を圧力計にて測定するとともに、冷却後の木質系成形体の曲げ強度を測定した。
[Comparative Example 4]
This comparative example is an example in which a wood-based molded body was formed without using explosive wood flour.
For the pellet A8, the pellets in the test groups 4 and 5 prepared in Preparation Example 3 were used. Moreover, the same kneading extruder with a heater was used as in Example 1, and the rotational speed of the screw was also the same as in Example 1.
When the pellets are put into a kneading extruder with a heater and the material is heated to 230 ° C. and mixed, it is tried to extrude to 110 mm × 9 mm square, and when the material can be extruded, a woody system with a length of 1000 mm A molded body was prepared and cooled to 20 ° C. The temperature of the raw material in the position of the exit in an extrusion mechanism was 180 degreeC. The discharge pressure (molding pressure) at the outlet position in the extrusion mechanism was measured with a pressure gauge, and the bending strength of the wood-based molded body after cooling was measured.

以上の実施例1,2と比較例1〜4について、木質系成形体成形時の排出圧力(成形圧力)、曲げ強度を測定した結果、木質系成形体の様子を観察した結果を表1〜4に示す。

Figure 2006272696
About Examples 1 and 2 and Comparative Examples 1 to 4, the results of measuring the discharge pressure (molding pressure) and bending strength at the time of molding a wooden molded body, and the results of observing the state of the wooden molded body are shown in Tables 1 to 4 shows.
Figure 2006272696

爆砕木粉の後添加を行った実施例1と比較例1の試験区1(爆砕木粉2重量%)どうしを比較すると、排出圧力は水を添加していない比較例が9MPaであるのに対し水を添加した実施例が8MPaと小さくなり、曲げ強度は水を添加していない比較例が62MPaであるのに対し水を添加した実施例が72MPaと大きくなった。実施例の木質系成形体は、比較例以上に均質であり、耐水性も比較例以上に良好であった。
また、実施例1と比較例1の試験区2(爆砕木粉12重量%)どうしを比較すると、排出圧力は水を添加していない比較例が7MPaであるのに対し水を添加した実施例が5MPaと小さくなり、曲げ強度は比較例が78MPaであるのに対し水を添加した実施例が85MPaと大きくなった。実施例の木質系成形体は、比較例以上に均質であり、耐水性も比較例以上に良好であった。
なお、爆砕木粉の配合量が多いほど、排出圧力が低下して木質系成形体の成形性が向上し、曲げ強度が向上することがわかった。
以上より、乾燥爆砕木粉に対して水を添加することによって、木質系成形体の成形性、強度、耐水性を向上させ、均質でより良質の木質系成形体が得られることが確認された。
Comparing Example 1 in which post-explosion wood flour was added and Test Zone 1 of Comparative Example 1 (2% by weight of explosion wood flour), the discharge pressure was 9 MPa in the comparative example to which water was not added. On the other hand, the example in which water was added was as small as 8 MPa, and the flexural strength was 62 MPa in the comparative example in which no water was added, whereas the example in which water was added was as large as 72 MPa. The woody moldings of the examples were more homogeneous than the comparative examples, and the water resistance was better than the comparative examples.
Moreover, when comparing the test area 2 of Example 1 and Comparative Example 1 (explosive wood flour 12 wt%), the discharge pressure was 7 MPa in the comparative example in which no water was added, but the example in which water was added. The bending strength of the comparative example was 78 MPa, while the example with water added increased to 85 MPa. The woody moldings of the examples were more homogeneous than the comparative examples, and the water resistance was better than the comparative examples.
In addition, it turned out that discharge pressure falls, the moldability of a wood type molded object improves, and bending strength improves, so that there are many compounding quantities of explosive wood powder.
From the above, it was confirmed that by adding water to the dry crushed wood powder, the moldability, strength and water resistance of the wood-based molded body were improved, and a homogeneous and better-quality wood-based molded body could be obtained. .

Figure 2006272696
Figure 2006272696

爆砕木粉を他の原料と同時に添加した実施例2と比較例2の試験区1(爆砕木粉2重量%)どうしを比較すると、排出圧力は同じであるのに対し、曲げ強度は水を添加していない比較例が41MPaであるのに対し水を添加した実施例が42MPaと若干ながら大きくなった。比較例の木質系成形体は、やや不均質であり、耐水性も実施例より劣った。
また、実施例2と比較例2の試験区2(爆砕木粉12重量%)どうしを比較すると、排出圧力は同じであるのに対し、曲げ強度は比較例が51MPaであるのに対し水を添加した実施例が53MPaと大きくなった。比較例の木質系成形体は、やや不均質であり、耐水性も実施例より劣った。
なお、爆砕木粉の配合量が多いほど、排出圧力が低下して木質系成形体の成形性が向上し、曲げ強度が向上することがわかった。
以上より、乾燥爆砕木粉に対して水を添加することによって、木質系成形体の強度、耐水性を向上させ、均質でより良質の木質系成形体が得られることが確認された。
Comparing Example 2 in which explosive wood flour was added at the same time with other raw materials and Test Zone 1 of Comparative Example 2 (explosive wood flour 2% by weight), the discharge pressure was the same, but the bending strength was water. The comparative example without addition was 41 MPa, while the example with water added was slightly increased to 42 MPa. The wood-based molded body of the comparative example was slightly heterogeneous and inferior in water resistance to the examples.
Moreover, when comparing the test section 2 of Example 2 and Comparative Example 2 (12% by weight of crushed wood powder), the discharge pressure is the same, whereas the bending strength is 51 MPa in the comparative example, but water is used. The added example was as large as 53 MPa. The wood-based molded body of the comparative example was slightly heterogeneous and inferior in water resistance to the examples.
In addition, it turned out that discharge pressure falls, the moldability of a wood type molded object improves, and bending strength improves, so that there are many compounding quantities of explosive wood powder.
From the above, it was confirmed that by adding water to the dry explosion-crushed wood powder, the strength and water resistance of the wood-based molded body were improved, and a homogeneous and better-quality wood-based molded body was obtained.

Figure 2006272696
Figure 2006272696

爆砕木粉の脱水処理を行ったか否かが異なる実施例1試験区2と比較例3とを比較すると、排出圧力は爆砕木粉を脱水した比較例が7MPaであるのに対し爆砕木粉の脱水処理を行わなかった実施例が6MPaと小さくなり、曲げ強度は爆砕木粉を脱水した比較例が52MPaであるのに対し爆砕木粉の脱水処理を行わなかった実施例が85MPaと大きくなった。
以上より、爆砕木粉を乾燥させる際に水分を除去することなく乾燥することによって、木質系成形体の成形性、強度、耐水性が向上することが確認された。
Comparing Example 1 test area 2 and Comparative Example 3 in which the dehydration treatment of the crushed wood powder is different, the discharge pressure is 7 MPa in the comparative example in which the crushed wood powder is dehydrated. The example in which the dehydration treatment was not performed was reduced to 6 MPa, and the bending strength was 52 MPa in the comparative example in which the explosive wood flour was dehydrated, whereas the example in which the dehydration treatment was not performed was increased to 85 MPa. .
From the above, it was confirmed that the moldability, strength, and water resistance of the wood-based molded body are improved by drying the explosive wood flour without removing water.

Figure 2006272696
Figure 2006272696

ペレットを成形した実施例1試験区1と比較例4試験区1とを比較すると、排出圧力は爆砕木粉を添加しなかった比較例が15MPaであるのに対し爆砕木粉を添加した実施例が9MPaと小さくなった。また、曲げ強度は爆砕木粉を添加しなかった比較例が35MPaであるのに対し爆砕木粉を添加した実施例が72MPaと大きくなった。実施例の木質系成形体は、比較例以上に均質であり、耐水性も比較例以上に良好であった。
実施例1試験区3と比較例4試験区2とを比較すると、素材はMFRが0.0g/10minと流動性が小さかったため、比較例では排出圧力が25MPa以上となって押出機から素材を押し出すことができなかった。一方、実施例では、押出機から素材を押し出すことができた。
以上より、爆砕木粉を添加することによって、木質系成形体の成形性、強度、耐水性を向上させ、均質でより良質の木質系成形体が得られることが確認された。
Comparing Example 1 test section 1 and Comparative Example 4 test section 1 in which pellets were formed, the discharge pressure was 15 MPa in the comparative example in which no explosive wood flour was added, whereas in the example in which explosive wood flour was added Was as small as 9 MPa. Further, the bending strength was 35 MPa in the comparative example in which no crushed wood powder was added, whereas the example in which the crushed wood powder was added was as large as 72 MPa. The woody moldings of the examples were more homogeneous than the comparative examples, and the water resistance was better than the comparative examples.
When comparing the test section 3 of Example 1 and the test section 2 of the comparative example 4, the material had an MFR of 0.0 g / 10 min and its fluidity was small, so in the comparative example, the discharge pressure was 25 MPa or more and the material was removed from the extruder. Could not be extruded. On the other hand, in the Example, the raw material was able to be extruded from the extruder.
From the above, it was confirmed that by adding explosive wood flour, the moldability, strength and water resistance of the wood-based molded body were improved, and a homogeneous and better-quality wood-based molded body was obtained.

(7)まとめ:
本発明の木質系成形体の製造方法では、木質系成形体成形時の素材の成形圧力が低下し、木質系成形体の成形性を向上させるとともに、従来では水分の存在によって十分な強度が得られないため除去するようにしていた水を素材に添加したにもかかわらず、木質系成形体の強度、耐水性を向上させ、均質でより良質の木質系成形体を大量生産することが可能になる。このような効果は、爆砕材料を後添加することによって向上するし、粉末状の木質系材料と樹脂と必要に応じて第四の素材とからペレットを一旦成形して爆砕材料を後添加することによってさらに向上する。
また、木質系材料を水蒸気存在下で爆砕し、存在する水分を除去することなく乾燥して粉末状の爆砕材料を得ると、ヘミセルロースから変性した成分やリグニン分解物が十分に残存することによって、木質系成形体の成形性、強度、耐水性をさらに向上させることが可能になる。
(7) Summary:
In the method for producing a wood-based molded body of the present invention, the molding pressure of the raw material at the time of molding the wood-based molded body is reduced, the moldability of the wood-based molded body is improved, and conventionally, sufficient strength is obtained by the presence of moisture. Despite the addition of water that had been removed because it was not possible, the strength and water resistance of the wood-based molded body were improved, making it possible to mass-produce homogeneous and higher-quality wood-based molded bodies Become. Such effects can be improved by post-addition of the blasting material, and once the pellet is formed from the powdery woody material, the resin and, if necessary, the fourth material, the blasting material is post-added. It is further improved by.
In addition, when the woody material is crushed in the presence of water vapor and dried without removing the existing water to obtain a powdered crushed material, the components modified from hemicellulose and the lignin degradation product remain sufficiently, It becomes possible to further improve the moldability, strength, and water resistance of the wood-based molded body.

木質系成形体の製造方法を示す概略の流れ図。The schematic flowchart which shows the manufacturing method of a wood type molded object. 水を添加した爆砕材料を調製する方法を示す概略の流れ図。The schematic flowchart which shows the method of preparing the explosion material which added water. ペレット製造装置の外観側面図。The external appearance side view of a pellet manufacturing apparatus. ペレット製造装置の外観上面図。The external appearance top view of a pellet manufacturing apparatus. ペレット成形装置の要部を示す斜視図。The perspective view which shows the principal part of a pellet shaping | molding apparatus. ペレット成形装置の要部を図3のB方向から見て示す垂直断面図。The vertical sectional view which shows the principal part of a pellet shaping | molding apparatus seeing from the B direction of FIG. ペレット成形装置の要部を図3のB方向から見て示す垂直断面図。The vertical sectional view which shows the principal part of a pellet shaping | molding apparatus seeing from the B direction of FIG. 加熱機付き押出成形機の構造を一部断面視して示す要部側面図。The principal part side view which shows the structure of the extruder with a heater in partial cross section. 加熱機付き射出成形機の構造を示す要部断面図。The principal part sectional drawing which shows the structure of the injection molding machine with a heater. 変形例の木質系成形体の製造方法を示す概略の流れ図。The general | schematic flowchart which shows the manufacturing method of the wood type molded object of a modification.

符号の説明Explanation of symbols

10,B1…ペレット製造装置
20…ペレット成形装置
21…外筒部
22…出口部
22a…開口
23…成形機用容器
24…粉砕素材導入部
30…粉砕機(粉砕機構)
40…冷却槽
A1…木質系材料
A2…粉末状の爆砕材料
A3…水
A4…水を添加した爆砕素材
A5…粉末状の木質系材料
A6…樹脂
A8…ペレット
A10…木質系成形体
M1…不定形の素材
M2…粉砕後の素材
DESCRIPTION OF SYMBOLS 10, B1 ... Pellet manufacturing apparatus 20 ... Pellet shaping | molding apparatus 21 ... Outer cylinder part 22 ... Outlet part 22a ... Opening 23 ... Molding machine container 24 ... Crushing material introduction part 30 ... Crusher (crushing mechanism)
40 ... Cooling tank A1 ... Woody material A2 ... Powdered explosion material A3 ... Water A4 ... Explosive material A5 added with water ... Powdery woody material A6 ... Resin A8 ... Pellet A10 ... Woody molded body M1 ... Not used Standard material M2 ... Material after grinding

Claims (10)

木質系材料を水蒸気存在下で加熱および加圧後急激に減圧して爆砕し乾燥した粉末状の爆砕材料に水を添加し、少なくとも、流動状態の樹脂と、粉末状の木質系材料と、前記水を添加した爆砕材料と、を混合して成形することにより木質系成形体を製造することを特徴とする木質系成形体の製造方法。   Heating and pressurizing the woody material in the presence of water vapor and then adding water to the powdered blasting material which has been rapidly depressurized and crushed and dried, at least the resin in a fluid state, the powdery woody material, A method for producing a wood-based molded body, comprising producing a wood-based molded body by mixing and molding an explosion material to which water has been added. 前記樹脂が溶融可能な樹脂であり、少なくとも、前記溶融可能な樹脂と、前記粉末状の木質系材料とを、前記樹脂を溶融させながら混合した後、前記水を添加した爆砕材料を添加し混合して後成形することにより木質系成形体を製造することを特徴とする請求項1に記載の木質系成形体の製造方法。   The resin is a meltable resin, and at least the meltable resin and the powdery woody material are mixed while melting the resin, and then the explosion material added with water is added and mixed. The wood-based molded body according to claim 1, wherein the wood-based molded body is manufactured by post-molding. 少なくとも、前記溶融可能な樹脂と、前記粉末状の木質系材料とを、前記樹脂を溶融させながら混合してペレット形状に成形した後、前記水を添加した爆砕材料を添加し混合して後成形することを特徴とする請求項2に記載の木質系成形体の製造方法。   At least the meltable resin and the powdery woody material are mixed and molded into a pellet shape while melting the resin, then the blasting material added with the water is added and mixed and post-molded The method for producing a woody molded body according to claim 2, wherein: 少なくとも、前記溶融可能な樹脂と、前記粉末状の木質系材料とを、前記樹脂を溶融させながら混合して不定形の状態で押し出し、押し出した不定形の素材を粉砕し、粉砕した素材をペレット形状に成形した後、前記水を添加した爆砕材料を添加し混合して後成形することを特徴とする請求項2に記載の木質系成形体の製造方法。   At least the meltable resin and the powdery woody material are mixed while melting the resin and extruded in an amorphous state, the extruded amorphous material is pulverized, and the pulverized material is pelletized. 3. The method for producing a woody molded article according to claim 2, wherein after forming into a shape, the crushed material to which water has been added is added and mixed, followed by molding. 前記粉末状の爆砕材料は、木質系材料を水蒸気存在下で加熱および加圧後急激に減圧して爆砕し、存在する水分を除去することなく乾燥して得られる粉末状の材料とされていることを特徴とする請求項1〜請求項4のいずれかに記載の木質系成形体の製造方法。   The powdered blasting material is a powdery material obtained by heating and pressurizing a woody material in the presence of water vapor and then rapidly depressurizing and crushing it, and drying it without removing the water present. The manufacturing method of the wood type molded object in any one of Claims 1-4 characterized by the above-mentioned. 前記粉末状の爆砕材料は、木質系材料を水蒸気存在下で加熱および加圧後急激に減圧して爆砕し、存在する水分を除去することなく含水率(全乾質量基準)5重量%以下に乾燥して得られる粉末状の材料とされ、当該粉末状の爆砕材料に水を1〜20重量%添加し、少なくとも、当該水を添加した爆砕材料と、前記流動状態の樹脂と、前記粉末状の木質系材料と、を混合して成形することを特徴とする請求項5に記載の木質系成形体の製造方法。   The powdered crushed material is heated and pressurized in the presence of water vapor and then rapidly depressurized and crushed to a moisture content (total dry mass basis) of 5% by weight or less without removing existing water. It is a powdery material obtained by drying, and water is added to the powdery crushed material in an amount of 1 to 20% by weight. At least the blasted material to which the water is added, the resin in the fluid state, and the powdery material 6. A method for producing a wood-based molded article according to claim 5, wherein the wood-based material is mixed and molded. 木質系材料を水蒸気存在下で加熱および加圧後急激に減圧して爆砕し、存在する水分を除去することなく60〜105℃で乾燥して前記粉末状の爆砕材料を得るとともに、当該粉末状の爆砕材料に水を添加し、少なくとも、当該水を添加した爆砕材料と、前記流動状態の樹脂と、前記粉末状の木質系材料と、を混合して成形することを特徴とする請求項5に記載の木質系成形体の製造方法。   The wood-based material is heated and pressurized in the presence of water vapor and then rapidly depressurized and crushed, and dried at 60 to 105 ° C. without removing the existing water to obtain the powdery blasted material. 6. Water is added to the blasting material, and at least the blasting material to which the water is added, the resin in the fluidized state, and the powdery woody material are mixed and molded. The manufacturing method of the wood type molded object as described in any one of. 前記粉末状の爆砕材料に水を噴霧して添加し、少なくとも、当該水を添加した爆砕材料と、流動状態の樹脂と、粉末状の木質系材料と、を混合して成形することにより木質系成形体を製造することを特徴とする請求項1〜請求項7のいずれかに記載の木質系成形体の製造方法。   Water is sprayed and added to the powdered blasting material, and at least the blasting material to which the water is added, a fluid resin, and a powdery woody material are mixed and molded to form a woody system. The method for producing a woody molded article according to any one of claims 1 to 7, wherein the molded article is produced. 少なくとも、流動状態の樹脂と、粉末状の木質系材料と、木質系材料を水蒸気存在下で加熱および加圧後急激に減圧して爆砕し乾燥した粉末状の爆砕材料とに、水を添加し、混合して成形することにより木質系成形体を製造することを特徴とする木質系成形体の製造方法。   At least water is added to the resin in the fluidized state, the powdery wood-based material, and the powdered material that is heated and pressurized in the presence of water vapor and then rapidly depressurized and crushed and dried. A method for producing a wood-based molded body, comprising producing a wood-based molded body by mixing and molding. 木質系材料を水蒸気存在下で加熱および加圧後急激に減圧して爆砕し乾燥した粉末状の爆砕材料に水を添加し、少なくとも、流動状態の樹脂と、粉末状の木質系材料と、前記水を添加した爆砕材料と、を混合して成形することにより得られる木質系成形体。
Heating and pressurizing the woody material in the presence of water vapor and then adding water to the powdered blasting material which has been rapidly depressurized and crushed and dried, at least the resin in a fluid state, the powdery woody material, A wood-based molded body obtained by mixing and molding an explosion material to which water has been added.
JP2005093753A 2005-03-29 2005-03-29 MANUFACTURING METHOD FOR WOOD-BASED MOLDED BODY AND WOOD-BASED MOLDED BODY Expired - Fee Related JP4371373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005093753A JP4371373B2 (en) 2005-03-29 2005-03-29 MANUFACTURING METHOD FOR WOOD-BASED MOLDED BODY AND WOOD-BASED MOLDED BODY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005093753A JP4371373B2 (en) 2005-03-29 2005-03-29 MANUFACTURING METHOD FOR WOOD-BASED MOLDED BODY AND WOOD-BASED MOLDED BODY

Publications (2)

Publication Number Publication Date
JP2006272696A true JP2006272696A (en) 2006-10-12
JP4371373B2 JP4371373B2 (en) 2009-11-25

Family

ID=37207906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005093753A Expired - Fee Related JP4371373B2 (en) 2005-03-29 2005-03-29 MANUFACTURING METHOD FOR WOOD-BASED MOLDED BODY AND WOOD-BASED MOLDED BODY

Country Status (1)

Country Link
JP (1) JP4371373B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142305A1 (en) * 2006-06-09 2007-12-13 Toyota Boshoku Kabushiki Kaisha Molded article and process for producing the same
WO2008084641A1 (en) * 2006-12-22 2008-07-17 Panasonic Corporation Diaphragm for speaker, frame for speaker, dust cap for speaker, speaker and apparatus using them, and method for manufacturing component for speaker
JP2008247963A (en) * 2007-03-29 2008-10-16 Mitsubishi Motors Corp Lignocellulose material molding and its molding method
CN101563939A (en) * 2006-12-22 2009-10-21 松下电器产业株式会社 Diaphragm for speaker, frame for speaker, dust cap for speaker, speaker and apparatus using them, and method for manufacturing component for speaker
JP2011236410A (en) * 2010-04-12 2011-11-24 Sankyo Kasei Kk Plant-based resin pellet, method for producing the same, and injection molding machine by using the plant-based resin material
JP2012011583A (en) * 2010-06-29 2012-01-19 Cdm Consulting Co Ltd Method for processing thinned out wood for fuel and processing device
US8455575B2 (en) 2011-09-20 2013-06-04 Fuji Xerox Co., Ltd. Wood powder-containing material, method of manufacturing the same, and compact
EP2814657A4 (en) * 2012-02-14 2015-07-22 Weyerhaeuser Nr Co Process for making composite polymer
EP2960029A1 (en) * 2014-06-24 2015-12-30 HIB Trim Part Solutions GmbH Method for producing a plastic part reinforced with natural fibres
CN110549453A (en) * 2019-06-29 2019-12-10 江苏益飞环保科技有限公司 Method for manufacturing composite aerogel thermal insulation material for negative ion ecological decorative plate
GB2588097A (en) * 2019-10-04 2021-04-21 Moving Beans Ltd Packaging item
CN115256580A (en) * 2022-08-08 2022-11-01 徐州华汇生物资源催化利用研究院有限公司 Bamboo wood flour evaporation and reuse treatment equipment and process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102447997B1 (en) * 2020-12-07 2022-09-28 서용성 Formular and production method of eco friendly soild fuel with coffee by-product

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142305A1 (en) * 2006-06-09 2007-12-13 Toyota Boshoku Kabushiki Kaisha Molded article and process for producing the same
US8101112B2 (en) 2006-06-09 2012-01-24 Toyota Boshoku Kabushiki Kaisha Process for injection molding resin with plant material
US8230966B2 (en) 2006-12-22 2012-07-31 Panasonic Corporation Diaphragm for speaker, frame for speaker, dust cap for speaker, speaker and apparatus using them, and method for manufacturing component for speaker
WO2008084641A1 (en) * 2006-12-22 2008-07-17 Panasonic Corporation Diaphragm for speaker, frame for speaker, dust cap for speaker, speaker and apparatus using them, and method for manufacturing component for speaker
CN101563939A (en) * 2006-12-22 2009-10-21 松下电器产业株式会社 Diaphragm for speaker, frame for speaker, dust cap for speaker, speaker and apparatus using them, and method for manufacturing component for speaker
US8235168B2 (en) 2006-12-22 2012-08-07 Panasonic Corporation Diaphragm for speaker, frame for speaker, dust cap for speaker, speaker and apparatus using them, and method for manufacturing component for speaker
US8122996B2 (en) 2006-12-22 2012-02-28 Panasonic Corporation Diaphragm for speaker, frame for speaker, dust cap for speaker, speaker and apparatus using them, and method for manufacturing component for speaker
US8177021B1 (en) 2006-12-22 2012-05-15 Panasonic Corporation Diaphragm for speaker, frame for speaker, dust cap for speaker, speaker and apparatus using them, and method for manufacturing component for speaker
JP2008247963A (en) * 2007-03-29 2008-10-16 Mitsubishi Motors Corp Lignocellulose material molding and its molding method
JP2011236410A (en) * 2010-04-12 2011-11-24 Sankyo Kasei Kk Plant-based resin pellet, method for producing the same, and injection molding machine by using the plant-based resin material
JP2012011583A (en) * 2010-06-29 2012-01-19 Cdm Consulting Co Ltd Method for processing thinned out wood for fuel and processing device
US8455575B2 (en) 2011-09-20 2013-06-04 Fuji Xerox Co., Ltd. Wood powder-containing material, method of manufacturing the same, and compact
EP2814657A4 (en) * 2012-02-14 2015-07-22 Weyerhaeuser Nr Co Process for making composite polymer
EP2960029A1 (en) * 2014-06-24 2015-12-30 HIB Trim Part Solutions GmbH Method for producing a plastic part reinforced with natural fibres
CN110549453A (en) * 2019-06-29 2019-12-10 江苏益飞环保科技有限公司 Method for manufacturing composite aerogel thermal insulation material for negative ion ecological decorative plate
GB2588097A (en) * 2019-10-04 2021-04-21 Moving Beans Ltd Packaging item
CN115256580A (en) * 2022-08-08 2022-11-01 徐州华汇生物资源催化利用研究院有限公司 Bamboo wood flour evaporation and reuse treatment equipment and process

Also Published As

Publication number Publication date
JP4371373B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
JP4371373B2 (en) MANUFACTURING METHOD FOR WOOD-BASED MOLDED BODY AND WOOD-BASED MOLDED BODY
JP3892019B2 (en) Pellet manufacturing method and pellet manufacturing apparatus
JP6210583B2 (en) Cellulose fiber-dispersed polyethylene resin composite, molded body and pellets using the same, and method for producing cellulose fiber-dispersed polyethylene resin composite
JP5146393B2 (en) Method for producing thermoplastic resin composition
JP2009108141A (en) Process for producing thermoplastic resin composition and process for producing molded thermoplastic resin
JP2003165844A (en) Lignocellulose-containing material and its utilization
CN104602880B (en) Manufacture the method and system and joint product of joint product
JP2017155248A (en) Manufacturing method of a cellulose fiber dispersed polyethylene resin composite and recycling method of cellulose fiber adhered polyethylene thin film piece
JP5946226B2 (en) Oil palm derived biomass powder and method for producing the same, biomass composite molded body and method for producing the same
JP2011005742A (en) Method for producing thermoplastic resin composition
JP2004017502A (en) Pellet manufacturing apparatus and pellet manufacturing method
JP5136258B2 (en) Method for producing thermoplastic composition and method for producing molded body
JP2012097210A (en) Method for producing thermoplastic resin composition and production apparatus therefor
US9145496B2 (en) Composite product, a method for manufacturing a composite product and its use, a material component and a final product
JP6739047B2 (en) Bamboo powder composite resin manufacturing method, bamboo powder resin mixed melt manufacturing method, bamboo powder resin mixed melt, and bamboo powder composite resin
JP4695119B2 (en) Wood compound manufacturing method and wood compound
JP4745303B2 (en) Filler and manufacturing method thereof
EP3386703B1 (en) Process for manufacturing a precursor material
JP2020097679A (en) Method for producing cellulose composite powder
WO2004073944A1 (en) Lignocellulose rotary driver
JP2009108142A (en) Thermoplastic resin composition, method for producing the same, and method for manufacturing molded product
JP2010275400A (en) Method for manufacturing thermoplastic resin composition
JP4241556B2 (en) Pellet manufacturing method and pellet manufacturing apparatus
JP3198742U (en) Biodegradable composite resin pellet manufacturing equipment
JP2006082353A (en) Woody thermoplastic resin composition and method for producing woody thermoplastic resin molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees