JP2006272407A - Lead-free joining material and joined body - Google Patents
Lead-free joining material and joined body Download PDFInfo
- Publication number
- JP2006272407A JP2006272407A JP2005096251A JP2005096251A JP2006272407A JP 2006272407 A JP2006272407 A JP 2006272407A JP 2005096251 A JP2005096251 A JP 2005096251A JP 2005096251 A JP2005096251 A JP 2005096251A JP 2006272407 A JP2006272407 A JP 2006272407A
- Authority
- JP
- Japan
- Prior art keywords
- lead
- free
- ore powder
- joined
- bonding material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
本発明は、非鉛系接合材及びその非鉛系接合材を用いた接合体に関する。 The present invention relates to a lead-free joining material and a joined body using the lead-free joining material.
現在、プリント配線板への電子部品の実装に用いられるはんだの鉛フリー化が進められており、データ豊富なSn−Ag−Cu系はんだを中心に適用事例が増えている。さらに、今後数年以内に多くの電子・電気製品メーカーがはんだの鉛フリー化を完了させることを目標として掲げている。 Currently, lead-free solder used for mounting electronic components on a printed wiring board is being promoted, and the number of application examples is increasing, centering on Sn-Ag-Cu solder with abundant data. In addition, many electronic and electrical product manufacturers have set the goal of completing lead-free soldering within the next few years.
しかしながら、電子部品の電極めっきや内部接合材に含まれている鉛に対しての鉛フリー化技術として汎用化されたものはない。電子・電気機器に用いられるはんだの完全な鉛フリー化には、これら電子部品の内部に含まれる鉛を含めた取り組みが不可欠である。 However, there has been no generalization as a lead-free technology for lead contained in electrode plating of electronic parts and internal bonding materials. Efforts that include lead contained in these electronic components are indispensable for completely removing lead from solder used in electronic and electrical equipment.
例えば、パワートランジスタ等のような高電圧・高電流が負荷され大きな発熱を伴うパワー半導体デバイスでは、放熱機能が必須なため、デバイス内にヒートシンクが配置される。また、パワー半導体素子を搭載する基板には、高熱伝導かつ絶縁体であるセラミックス材料が使用される。このセラミックス基板と、銅を主成分とするヒートシンクとの接合材には、従来はSn−Pb共晶はんだが使用されていた。この場合、セラミックス基板とヒートシンク用の銅は熱膨張率が大きく異なるため、Sn−Pb共晶はんだの融点である183℃から室温まで冷却した際に、セラミックス基板とヒートシンクとを接合するはんだ材内に熱応力が発生する。ここで、Sn−Pb共晶はんだを使用した場合には、Sn−Pb共晶はんだのクリープし易いという特性より、発生した熱応力を緩和することが可能であった。 For example, in a power semiconductor device such as a power transistor that is loaded with a high voltage and a high current and generates a large amount of heat, a heat dissipation function is essential, and a heat sink is disposed in the device. In addition, a ceramic material that is highly heat conductive and is an insulator is used for the substrate on which the power semiconductor element is mounted. Conventionally, Sn—Pb eutectic solder has been used as a bonding material between the ceramic substrate and a heat sink mainly composed of copper. In this case, since the thermal expansion coefficient of the ceramic substrate and the copper for the heat sink are greatly different, when the ceramic substrate and the heat sink are cooled to room temperature from the melting point of the Sn—Pb eutectic solder, 183 ° C. Thermal stress is generated. Here, when Sn—Pb eutectic solder was used, it was possible to relieve the generated thermal stress due to the property of the Sn—Pb eutectic solder being easy to creep.
しかしながら、Sn−Pb共晶はんだに代えて、Sn−Ag−Cuはんだを用いた場合、はんだ内に発生した熱応力が緩和され難く、Sn−Pb共晶はんだに比べてヒートシンクの反りを招くという問題を生じていた。そのため、かかる問題を解決できる新たな非鉛系接合材が望まれている。 However, when Sn—Ag—Cu solder is used instead of Sn—Pb eutectic solder, the thermal stress generated in the solder is not easily relaxed, and the heat sink is warped compared to Sn—Pb eutectic solder. There was a problem. Therefore, a new lead-free bonding material that can solve this problem is desired.
このような課題を解決するために、現在、Sn−3.0質量%Ag−0.5質量%Cu合金及びSn−8.0質量%Zn−3.0質量%Bi合金のクリープ特性をSn−37質量%Pb合金のクリープ特性と比較している(非特許文献1参照)。
しかしながら、このような非鉛系接合材の開発は基礎実験に留まり、工業上利用できる応力緩和に有望な非鉛系接合材を提示するには至ってない。本発明は、上記課題を解決するためになされたものである。即ち、本発明は、被接合材の反り量を低減させることができる非鉛系接合材及び接合体を提供することを目的とする。 However, the development of such a lead-free bonding material has been limited to basic experiments, and has not yet led to a promising lead-free bonding material that can be used industrially for stress relaxation. The present invention has been made to solve the above problems. That is, an object of the present invention is to provide a lead-free bonding material and a bonded body that can reduce the amount of warpage of a material to be bonded.
本発明の一の態様によれば、電子部品に用いられる熱膨張率が異なる2つの被接合材を接合するための非鉛系接合材であって、Sn或いはSn基合金中にへき開性を有し、かつ層状構造を有する鉱石粉を含有してなることを特徴とする非鉛系接合材が提供される。 According to one aspect of the present invention, there is provided a lead-free joining material for joining two materials to be joined that have different coefficients of thermal expansion used for electronic components, and has a cleavage property in Sn or Sn-based alloys. And the lead-free joining material characterized by including the ore powder which has a layered structure is provided.
本発明の他の態様によれば、電子材料に用いられる熱膨張率が異なる2つの被接合材を、請求項1乃至4のいずれか1項に記載の非鉛系接合材により接合し、かつ鉱石粉がSn或いはSn基合金中に分散して存在してなることを特徴とする接合体が提供される。 According to another aspect of the present invention, two joined materials having different thermal expansion coefficients used for electronic materials are joined by the lead-free joining material according to any one of claims 1 to 4, and There is provided a joined body in which ore powder is dispersed in Sn or a Sn-based alloy.
本発明の一の態様によれば、非鉛系接合材により電子部品に用いられる熱膨張率が異なる2つの被接合材を接合した場合には、被接合材の反り量を低減させることができる。本発明の他の態様によれば、反り量が低減した接合体を得ることができる。 According to one aspect of the present invention, when two joined materials having different thermal expansion coefficients used for electronic components are joined by a lead-free joining material, the amount of warpage of the joined material can be reduced. . According to another aspect of the present invention, a joined body with a reduced amount of warpage can be obtained.
以下に、実施の形態を挙げて本発明の説明を行うが、本発明は以下の実施の形態に限定されるものではない。 Hereinafter, the present invention will be described with reference to embodiments, but the present invention is not limited to the following embodiments.
電子部品に用いられる熱膨張率が異なる2つの被接合材を接合するための非鉛系接合材は、Sn或いはSn基合金中にへき開性を有し、かつ層状構造を有する鉱石粉が含有されることにより構成されている。Sn基合金としては、例えば、Sn−Cu,Sn−Ag,Sn−Ag−Cu,及びSn−Zn等が挙げられる。へき開性とは、ある力が加わったときに、一定の平面に割れたり、あるいは一つの面に並行に何枚にもはがれていく性質である。従って、へき開性を有する鉱石粉とは変形性に富んだ物質である。へき開性を完全に有し、かつ層状構造を有する鉱石粉としては、例えば、MoS2,タルク,石膏,マイカ等が挙げられる。 Lead-free bonding materials for bonding two materials to be bonded that have different coefficients of thermal expansion used in electronic parts contain ore powder having a cleavage structure and a layered structure in Sn or an Sn-based alloy. It is constituted by. Examples of the Sn-based alloy include Sn—Cu, Sn—Ag, Sn—Ag—Cu, and Sn—Zn. Cleavage is the property that when a certain force is applied, it breaks into a certain plane or peels off in parallel on one surface. Therefore, the ore powder having a cleavage property is a substance having a high degree of deformability. Examples of the ore powder that has complete cleavage and has a layered structure include MoS 2 , talc, gypsum, mica, and the like.
へき開性を有し、かつ層状構造を有する鉱石粉のなかでも、モース硬度が1以上2.5以下の鉱石粉が好ましい。モース硬度が1以上2.5以下の鉱石粉としては、例えば、MoS2(モース硬度1),タルク(モース硬度1),石膏(モース硬度2),マイカ(モース硬度2.5)等が挙げられる。ここで、含有させる鉱石粉のモース硬度を2.5以下に限定したのは、モース硬度が2.5を超える鉱石粉を含有させると、鉱石粉の応力負荷に対する抵抗が高まるため、へき開の誘発が困難になるという問題があるからである。 Of the ore powders having a cleavage property and a layered structure, ore powders having a Mohs hardness of 1 to 2.5 are preferred. Examples of the ore powder having a Mohs hardness of 1 to 2.5 include, for example, MoS 2 (Mohs hardness 1), talc (Mohs hardness 1), gypsum (Mohs hardness 2), mica (Mohs hardness 2.5), and the like. It is done. Here, the Mohs hardness of the ore powder to be contained is limited to 2.5 or less because when the ore powder having a Mohs hardness exceeding 2.5 is contained, resistance to the stress load of the ore powder is increased, so that cleavage is induced. This is because there is a problem that it becomes difficult.
また、へき開性を有し、かつ層状構造を有する鉱石粉のなかでも、MmXn(M:金属元素群、X:非金属元素群、m,n:整数)で表される鉱石粉が好ましい。このような鉱石粉としては、例えば、MoS2,CuS,Sb2S3,Bi2S3,CuBiS2,Ag2Se,FeS,Bi4(S,Se3)等が挙げられる。 Further, among the ore powders having a cleavage property and a layered structure, ore powders represented by M m X n (M: metal element group, X: nonmetal element group, m, n: integer) preferable. Such ore powder, for example, MoS 2, CuS, Sb 2 S 3, Bi 2 S 3, CuBiS 2, Ag 2 Se, FeS, Bi 4 (S, Se 3) , and the like.
このような鉱石粉の非鉛系接合材に対する混合量は、0.5体積%以上3.0体積%以下であることが好ましい。鉱石粉の混合量を3.0体積%以下とするのは、鉱石粉の混合量が3.0体積%を超えると、例えばセラミックス基板と銅板とを非鉛系接合材を用いて接合する際にSn或いはSn基合金と銅板とのぬれ性を妨げ、また、接合後も熱伝導率の低下が顕在化するからである。一方、鉱石粉の混合量を0.5体積%以上とするのは、0.5体積%未満になると、Sn或いはSn基合金の機械的特性が表れ易く、鉱石粉による応力緩和の効果が低減するからである。なかでも、鉱石粉の混合量は0.8体積%以上1.2体積%以下の範囲とするとSn或いはSn基合金への鉱石粉の分散を均一にし易く好都合である。 The mixing amount of such ore powder with respect to the lead-free bonding material is preferably 0.5% by volume or more and 3.0% by volume or less. The mixing amount of ore powder is set to 3.0% by volume or less when the mixing amount of ore powder exceeds 3.0% by volume, for example, when bonding a ceramic substrate and a copper plate using a non-lead-based bonding material. This is because the wettability between the Sn or Sn-base alloy and the copper plate is hindered, and a decrease in thermal conductivity becomes apparent even after joining. On the other hand, if the mixing amount of ore powder is 0.5 volume% or more, if it becomes less than 0.5 volume%, the mechanical properties of Sn or Sn-based alloy are likely to appear, and the effect of stress relaxation by the ore powder is reduced. Because it does. Among these, when the mixing amount of the ore powder is in the range of 0.8 volume% or more and 1.2 volume% or less, it is easy to uniformly distribute the ore powder in the Sn or Sn-based alloy.
本発明者らは、種々の接合材料について研究を重ねた結果、へき開性を有し、かつ層状構造を有する鉱石粉をSn或いはSn基合金中に分散させた非鉛系接合材が、熱応力緩和に有用であることを見出した。この非鉛系接合材によれば、電子部品に用いる熱膨張率が異なる2つの被接合材の接合(例えば、セラミックス基板と銅板との接合)に関して、接合後の冷却時において熱膨張率が大きな被接合材側(例えば、セラミックス基板と銅板との接合では銅板側)の接合部により大きな熱応力が発生するが、Sn或いはSn基合金中にへき開性を有し、かつ層状構造を有する鉱石粉が存在することにより、各接合部位において応力に応じてその鉱石粉が変形または粉砕して、熱応力が緩和される。これにより、非接合材の反り量を低減することができる。 As a result of repeated studies on various bonding materials, the present inventors have found that a lead-free bonding material in which ore powder having a cleavage structure and a layered structure is dispersed in Sn or an Sn-based alloy has a thermal stress. It was found useful for relaxation. According to this lead-free joining material, the thermal expansion coefficient is large at the time of cooling after joining with respect to joining of two materials to be joined (for example, joining of a ceramic substrate and a copper plate) having different thermal expansion coefficients used for electronic components. A large thermal stress is generated in the bonded portion on the workpiece side (for example, the copper plate side in the case of bonding a ceramic substrate and a copper plate), but the ore powder has a cleaving property in Sn or Sn-based alloy and has a layered structure. Due to the presence of the ore, the ore powder is deformed or pulverized in accordance with the stress at each joining portion, and the thermal stress is relieved. Thereby, the curvature amount of a non-joining material can be reduced.
また、このような非鉛系接合材を使用して、電子部品に用いられる熱膨張率が異なる2つの被接合材を接合した場合には、接合・組立された、耐熱性・放熱性を有するデバイス、組立体または装置が提供可能となる。 In addition, when such a lead-free joining material is used to join two materials to be joined that have different coefficients of thermal expansion used for electronic components, the joined and assembled heat resistance and heat dissipation are provided. A device, assembly or apparatus can be provided.
このような非鉛系接合材は、従来のパワー半導体デバイスの内部接合材の代替物として使用することができる。また、パワー半導体デバイス及びこれを用いた装置において、接合体の形成、皮膜形成に適した材料である。例えば、パワー半導体デバイスは、パワー半導体素子として、トランジスタ、サイリスタ、GTOサイリスタ、ダイオード、MOS電界効果トランジスタ(MOSFET)などを用いており、パワートランジスタモジュール等のパワーモジュールやパワーIC等の形態に構成される。このようなデバイス中の接合及びデバイスが組み込まれた装置における接合体の形成に用いることができる。Cu,Ag,Au,Ni,Al,SUSステンレス鋼等の単種の金属製の部材だけでなく、合金材及び複合金属材料等の部材の接合についても適用可能である。接合する被接合材の材質に応じて、非接合材に予め金属プリコートをメッキや圧着法等によって施してもよく、プリコートの組成やプリコート方法は適宜選択することができる。 Such a lead-free bonding material can be used as an alternative to the conventional bonding material for power semiconductor devices. Moreover, in a power semiconductor device and an apparatus using the same, it is a material suitable for formation of a joined body and film formation. For example, a power semiconductor device uses a transistor, a thyristor, a GTO thyristor, a diode, a MOS field effect transistor (MOSFET) or the like as a power semiconductor element, and is configured in the form of a power module such as a power transistor module or a power IC. The It can be used for bonding in such a device and formation of a bonded body in an apparatus incorporating the device. Not only a single type of metal member such as Cu, Ag, Au, Ni, Al, SUS stainless steel, but also the joining of members such as alloy materials and composite metal materials can be applied. Depending on the material of the materials to be joined, a metal precoat may be applied in advance to the non-joint material by plating, a pressure bonding method, or the like, and the precoat composition and precoat method can be appropriately selected.
非鉛系接合材は、例えばソルダペーストおよびシート状の形態で使用される。非鉛系接合材の印刷厚さおよびシート厚さは0.05mm以上0.5mmの範囲内にあり、好ましくは適度な熱伝導性を確保するため0.1mm以上0.3mmの範囲内とすることで効果が高まる。また、パワー半導体デバイスのセラミック基板の非鉛系接合材と接する側に予めNi/AuフラッシュめっきやSnめっき等のめっき層を形成してもよい。Ni/Auフラッシュめっきは、セラミックス基板とヒートシンクとしての銅板とを非鉛系接合材により接合する際に、セラミックス基板の非鉛系接合材に接する側に形成された銅板の過剰な溶解を抑制するために形成されるものであり、Snめっきは、非鉛系接合材のSnとセラミックス基板の非鉛系接合材に接する側に形成された銅板との反応性を向上させるために形成されるものである。この場合、Ni/Auフラッシュめっきの厚みとしては、Niを1μm以下、Auを0.1μm以下とすることが好ましい。 The lead-free bonding material is used, for example, in the form of a solder paste and a sheet. The printed thickness and sheet thickness of the lead-free bonding material are in the range of 0.05 mm or more and 0.5 mm, and preferably in the range of 0.1 mm or more and 0.3 mm in order to ensure appropriate thermal conductivity. This increases the effect. Further, a plating layer such as Ni / Au flash plating or Sn plating may be formed in advance on the side of the ceramic substrate of the power semiconductor device in contact with the lead-free bonding material. Ni / Au flash plating suppresses excessive dissolution of the copper plate formed on the side of the ceramic substrate in contact with the lead-free joining material when the ceramic substrate and the copper plate as the heat sink are joined with the lead-free joining material. The Sn plating is formed to improve the reactivity between the Sn of the lead-free joining material and the copper plate formed on the side of the ceramic substrate in contact with the lead-free joining material. It is. In this case, the thickness of the Ni / Au flash plating is preferably 1 μm or less for Ni and 0.1 μm or less for Au.
非鉛系接合材は、具体的には、例えば以下のようにして使用される。図1(a)及び図1(b)は本実施の形態に係るパワー半導体デバイスと金属板とを非鉛系接合材により接合する工程を模式的に示した図である。 Specifically, the lead-free bonding material is used as follows, for example. FIG. 1A and FIG. 1B are diagrams schematically showing a process of joining the power semiconductor device and the metal plate according to the present embodiment with a lead-free joining material.
図1(a)に示されるようにパワー半導体デバイス10は、上下両面にCu部11a,11bが形成されたセラミックス基板11と、Cu部11a上に搭載されたパワー半導体素子12と、Cu部11bに形成されたNi/AuフラッシュめっきやSnめっき等のめっき層13等から構成されている。一方、銅、銀、アルミニウム等熱伝導性の高い金属材料、あるいはその合金材料製のヒートシンクとしての金属板20(又は薄膜)上には非鉛系接合材のソルダペースト30が塗布されている。そして、図1(b)に示されるようにソルダペースト状の接合体30を加熱溶融させることにより、パワー半導体デバイス10と金属板20(又は薄膜)とを接合する。これにより、接合体が作成される。
As shown in FIG. 1A, a
以下、実施例について説明する。 Examples will be described below.
(接合材の調製)
溶融後の金属組成がCuが0.7質量%、Snが残部となるように、純度99.99%以上のSn0.993kgおよびCu0.007kgのインゴット片を用い、融解させ溶湯とした。その後、溶湯の温度をフィードバック制御により250℃に保った。溶湯の一部をはんだ溶融槽から取り出し、スプレーアトマイズ法、遠心噴霧法、超音波製粉法、液中製粉法などにより、粉末はんだを製造し、さらに、振動式ふるいなどにより20〜30μmの粒度範囲に分別された、粉末はんだを300g得た。得られた粉末はんだとロジン15体積%、臭素含有活性剤0.1体積%を含有するフラックスとを、質量比で9:1となるよう、混練機を用いて、ムラなく均一に練り上げ、Sn−Cuソルダペーストを作製した。また、同様にしてSn−Ag−Cuソルダペーストを作製した。
(Preparation of bonding material)
An ingot piece having a purity of 99.99% or more of Sn 0.993 kg and Cu 0.007 kg was melted to form a molten metal so that the metal composition after melting was 0.7 mass% Cu and the balance was Sn. Thereafter, the temperature of the molten metal was kept at 250 ° C. by feedback control. A part of the molten metal is taken out from the solder melting tank, and powder solder is manufactured by spray atomizing method, centrifugal spraying method, ultrasonic milling method, submerged milling method, and the particle size range of 20-30 μm by vibrating sieve etc. As a result, 300 g of powder solder was obtained. The obtained powder solder and a flux containing 15% by volume of rosin and 0.1% by volume of a bromine-containing activator are kneaded uniformly using a kneader so that the mass ratio is 9: 1. A Cu solder paste was prepared. Similarly, an Sn—Ag—Cu solder paste was prepared.
次に、表1に示す混合比となるように、鉱石粉をSn−Cuソルダペースト中及びSn−Ag−Cuソルダペースト中にそれぞれ加え、混練機を用いて、均一に練り上げ、Sn基合金に鉱石粉が含有された非鉛系接合材を得た。また、比較例として使用した接合材を表2に示す。
(接合材の使用)
実際のデバイス接合に用いられるセラミックス基板および銅板を用いた試験を行った。プロセスの接合温度は250℃とした。用いた被接合材は、長さ70mm×幅35mm×厚さ1mm(Cu部:長さ60mm×幅26mm×厚さ0.3mm)のCu張りセラミックス基板と長さ100mm×幅50mm×厚さ10mmの銅板であり、実施例に係る非鉛系接合材及び比較例に係る接合材でそれぞれ接合し、その際の銅板の反り量を測定した。
(Use of bonding material)
Tests using ceramic substrates and copper plates used for actual device bonding were performed. The bonding temperature of the process was 250 ° C. The material to be joined is a 70 mm long × 35 mm wide × 1 mm thick (Cu portion: length 60 mm × width 26 mm × thickness 0.3 mm) Cu-clad ceramic substrate, length 100 mm × width 50 mm ×
以下、結果について述べる。表1及び表2に示されるように、本実施例に係る非鉛系接合材を使用した場合は、比較例に係る接合材を使用した場合によりも、銅板の反り量が小さかった。この結果から、本実施例に係る非鉛系接合材を使用して、セラミックス基板と銅板を接合した場合には、銅板の反り量を低減できることが確認された。 The results will be described below. As shown in Tables 1 and 2, when the lead-free bonding material according to this example was used, the amount of warpage of the copper plate was smaller than when the bonding material according to the comparative example was used. From this result, it was confirmed that the warpage amount of the copper plate can be reduced when the ceramic substrate and the copper plate are joined using the lead-free joining material according to the present example.
1…接合体、10…パワー半導体デバイス、11…セラミックス基板、12…パワー半導体素子、13…めっき層、20…金属板、30…非鉛系接合材。 DESCRIPTION OF SYMBOLS 1 ... Bonded body, 10 ... Power semiconductor device, 11 ... Ceramic substrate, 12 ... Power semiconductor element, 13 ... Plating layer, 20 ... Metal plate, 30 ... Lead-free joining material.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005096251A JP4198692B2 (en) | 2005-03-29 | 2005-03-29 | Lead-free joining materials and joints |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005096251A JP4198692B2 (en) | 2005-03-29 | 2005-03-29 | Lead-free joining materials and joints |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006272407A true JP2006272407A (en) | 2006-10-12 |
JP4198692B2 JP4198692B2 (en) | 2008-12-17 |
Family
ID=37207641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005096251A Expired - Fee Related JP4198692B2 (en) | 2005-03-29 | 2005-03-29 | Lead-free joining materials and joints |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4198692B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011036901A (en) * | 2009-08-17 | 2011-02-24 | Tamura Seisakusho Co Ltd | Solder bonding agent composition |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10359806A1 (en) | 2003-12-19 | 2005-07-14 | Modine Manufacturing Co., Racine | Heat exchanger with flat tubes and flat heat exchanger tube |
DE102005053924B4 (en) | 2005-11-11 | 2016-03-31 | Modine Manufacturing Co. | Intercooler in plate construction |
US8424592B2 (en) | 2007-01-23 | 2013-04-23 | Modine Manufacturing Company | Heat exchanger having convoluted fin end and method of assembling the same |
US20090250201A1 (en) | 2008-04-02 | 2009-10-08 | Grippe Frank M | Heat exchanger having a contoured insert and method of assembling the same |
-
2005
- 2005-03-29 JP JP2005096251A patent/JP4198692B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011036901A (en) * | 2009-08-17 | 2011-02-24 | Tamura Seisakusho Co Ltd | Solder bonding agent composition |
Also Published As
Publication number | Publication date |
---|---|
JP4198692B2 (en) | 2008-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11411150B2 (en) | Advanced solder alloys for electronic interconnects | |
US11145615B2 (en) | Solder material for semiconductor device | |
TWI233684B (en) | Electronic device | |
CN113977132B (en) | Lead-free solder alloy composition and method for preparing lead-free solder alloy | |
JP4054029B2 (en) | Solder material and semiconductor device using the same | |
CN1443625A (en) | Soldering flux | |
JP5041102B2 (en) | Lead-free solder alloy, joining member and manufacturing method thereof, and electronic component | |
JP5242521B2 (en) | Solder bonding composition | |
TW201213552A (en) | Bi-Sn-BASED HIGH-TEMPERATURE SOLDER ALLOY | |
JP4198692B2 (en) | Lead-free joining materials and joints | |
JPWO2013099849A1 (en) | Sn-Cu lead-free solder alloy | |
JP6810915B2 (en) | Solder material | |
JP2021037551A (en) | Molding solder | |
JP4115979B2 (en) | Lead-free solder material | |
WO2005119755A1 (en) | Soldering method, solder pellet for die bonding, method for manufacturing solder pellet for die bonding and electronic component | |
JP2008238233A (en) | Non-lead based alloy joining material, joining method, and joined body | |
JP2005503926A (en) | Improved composition, method and device suitable for high temperature lead-free solders | |
JP3752064B2 (en) | Solder material and electronic component using the same | |
JP2007141948A (en) | Semiconductor device | |
JP2005262317A (en) | JOINING METHOD WITH Au-Sn BASED BRAZING FILLER METAL | |
JP5699472B2 (en) | Solder material, manufacturing method thereof, and manufacturing method of semiconductor device using the same | |
JP2004247742A (en) | Electronic apparatus | |
JP2006303346A (en) | Semiconductor module | |
JP4425738B2 (en) | Lead-free solder alloy, lead-free solder alloy manufacturing method, mounting structure, mounting method, lead-free fuse alloy, lead-free fuse alloy manufacturing method, plate-shaped fuse, lead-free alloy and lead-free alloy manufacturing method | |
JP6724979B2 (en) | Zygote |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Effective date: 20080701 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20080708 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080903 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Effective date: 20080930 Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20081001 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |