JP2006272066A - Asymmetric hollow fiber gas separation membrane and gas separation method - Google Patents

Asymmetric hollow fiber gas separation membrane and gas separation method Download PDF

Info

Publication number
JP2006272066A
JP2006272066A JP2005091909A JP2005091909A JP2006272066A JP 2006272066 A JP2006272066 A JP 2006272066A JP 2005091909 A JP2005091909 A JP 2005091909A JP 2005091909 A JP2005091909 A JP 2005091909A JP 2006272066 A JP2006272066 A JP 2006272066A
Authority
JP
Japan
Prior art keywords
hollow fiber
gas
gas separation
general formula
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005091909A
Other languages
Japanese (ja)
Other versions
JP4835020B2 (en
Inventor
Nozomi Tanihara
望 谷原
Hiroshi Uchida
浩 内田
Yutaka Kanatsuki
豊 金築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2005091909A priority Critical patent/JP4835020B2/en
Publication of JP2006272066A publication Critical patent/JP2006272066A/en
Application granted granted Critical
Publication of JP4835020B2 publication Critical patent/JP4835020B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an asymmetric hollow fiber gas separation membrane having improved gas permeability and practical mechanical strength, and a gas separation method using it. <P>SOLUTION: The asymmetric hollow fiber gas separation membrane is formed of a soluble aromatic polyimide comprising a specific repeating unit composed of a tetracarboxylic acid component, which comprises a diphenylhexafluoropropane structure and a biphenyl structure, and a diamine component composed of diaminodibenzothiophene, diaminodibenzothiophene=5,5-dioxide, diaminothioxanthene-10,10-dione or diaminothioxanthene-9,10,10-trione and methaphenylenediamine. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、特定の反復単位からなる可溶性の芳香族ポリイミドで形成され、優れたガス分離性能と実用的な機械的強度を有する非対称中空糸ガス分離膜、及び前記非対称中空糸分離膜を用いたガス分離方法に関する。   The present invention uses an asymmetric hollow fiber gas separation membrane formed of a soluble aromatic polyimide composed of specific repeating units and having excellent gas separation performance and practical mechanical strength, and the asymmetric hollow fiber separation membrane. The present invention relates to a gas separation method.

特許文献1には、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸とビフェニルテトラカルボン酸とをテトラカルボン酸成分とし、ジアミノジフェニレンスルホン類(後述のジアミノジベンゾチオフェン=5,5−ジオキシド類に同じ)などをジアミン成分の主成分としたポリイミドからなる非対称中空糸ガス分離膜が開示されている。この非対称中空糸ガス分離膜は、実施例から判るとおり、水素ガス透過速度と窒素ガス透過速度との比(P’H2/P’N2)が36〜41、また酸素ガス透過速度と窒素ガス透過速度との比(P’O2/P’N2)が4.1〜4.8であり、高いガス分離性能を有しているが、ガス分離性能においてはさらに改良の余地があった。また、ジアミノジフェニレンスルホン類などのジアミンと併用して、ベンゼン環を複数有する芳香族ジアミン化合物を用いることが好ましいこと、メタフェニレンジアミンなどを約10モル%以下用いてもよいことが記載されている。しかし、メタフェニレンジアミンを10モル%以上用いることについては全く言及されていなかった。 In Patent Document 1, 4,4 ′-(hexafluoroisopropylidene) diphthalic acid and biphenyltetracarboxylic acid are used as tetracarboxylic acid components, and diaminodiphenylene sulfones (diaminodibenzothiophene = 5,5-dioxides described later) are used. Asymmetric hollow fiber gas separation membranes made of polyimide having a diamine component as the main component. The asymmetric hollow fiber gas separation membrane, as seen from the examples, the ratio of hydrogen gas permeation rate and the nitrogen gas permeation rate (P 'H2 / P' N2 ) is 36 to 41, the oxygen gas transmission rate and the nitrogen gas permeation the ratio of the velocity (P 'O2 / P' N2 ) is 4.1 to 4.8, has the high gas separation performance, there is room for further improvement in gas separation performance. Further, it is described that it is preferable to use an aromatic diamine compound having a plurality of benzene rings in combination with a diamine such as diaminodiphenylene sulfones, and that about 10 mol% or less of metaphenylene diamine may be used. Yes. However, no mention was made of using metaphenylenediamine in an amount of 10 mol% or more.

特開平3−267130号公報JP-A-3-267130

本発明の目的は、特定の反復単位からなる可溶性の芳香族ポリイミドで形成され、改良されたガス分離性能と実用的な機械的強度を有する非対称中空糸ガス分離膜、及び前記非対称中空糸分離膜を用いたガス分離方法を提供することにある。本発明の非対称中空糸ガス分離膜は、水素ガスと窒素ガスとの分離性能及び酸素ガスと窒素ガスとのガス分離性能などにおいて優れるので、前記非対称中空糸分離膜を用いてや、酸素ガスと窒素ガスを含む混合ガスから酸素ガス又は窒素ガスを選択的に分離回収するガス分離方法を提供することができる。   An object of the present invention is to provide an asymmetric hollow fiber gas separation membrane formed of a soluble aromatic polyimide composed of specific repeating units and having improved gas separation performance and practical mechanical strength, and the asymmetric hollow fiber separation membrane. It is in providing the gas-separation method using this. The asymmetric hollow fiber separation membrane of the present invention is excellent in the separation performance of hydrogen gas and nitrogen gas and the separation performance of oxygen gas and nitrogen gas, etc. A gas separation method for selectively separating and recovering oxygen gas or nitrogen gas from a mixed gas containing nitrogen gas can be provided.

本発明は、下記一般式(1)で示される反復単位からなる可溶性の芳香族ポリイミドで形成されている非対称中空糸ガス分離膜に関する。   The present invention relates to an asymmetric hollow fiber gas separation membrane formed of a soluble aromatic polyimide composed of repeating units represented by the following general formula (1).

Figure 2006272066
〔但し、一般式(1)のBは、
その10〜60モル%が、下記一般式(2)で示されるジフェニルヘキサフルオロプロパン構造に基づく4価のユニットB1であり、
Figure 2006272066
[However, B in the general formula (1) is
10 to 60 mol% thereof is a tetravalent unit B1 based on a diphenylhexafluoropropane structure represented by the following general formula (2),

Figure 2006272066
その90〜40モル%が、下記一般式(3)で示されるビフェニル構造に基づく4価のユニットB2であり、
Figure 2006272066
90 to 40 mol% thereof is a tetravalent unit B2 based on a biphenyl structure represented by the following general formula (3),

Figure 2006272066
そして、一般式(1)のAは、
その85〜20モル%が、下記一般式(4)で示される2価のユニットA1、及び/又は、下記一般式(5)で示される2価のユニットA2であり、
Figure 2006272066
And A in the general formula (1) is
85 to 20 mol% thereof is a divalent unit A1 represented by the following general formula (4) and / or a divalent unit A2 represented by the following general formula (5),

Figure 2006272066
(式中、R及びR’は水素原子又は有機基であり、nは0、1又は2である。)
Figure 2006272066
(In the formula, R and R ′ are a hydrogen atom or an organic group, and n is 0, 1 or 2.)

Figure 2006272066
(式中、R及びR’は水素原子又は有機基であり、Xは−CH2−又は−CO−である。)
その15〜80モル%が、下記一般式(6)で示される2価のユニットA3である。〕
Figure 2006272066
(In the formula, R and R ′ are a hydrogen atom or an organic group, and X is —CH 2 — or —CO—.)
15-80 mol% is the divalent unit A3 represented by the following general formula (6). ]

Figure 2006272066
Figure 2006272066

また、本発明は、前記非対称中空糸ガス分離膜において、Aの85〜20モル%が前記A1からなり、A1が3,7−ジアミノ−ジメチルジベンゾチオフェン=5,5−ジオキシドからアミノ基を除いた2価のユニットであることに関する。   Further, in the asymmetric hollow fiber gas separation membrane according to the present invention, 85 to 20 mol% of A is composed of the A1, and A1 excludes an amino group from 3,7-diamino-dimethyldibenzothiophene = 5,5-dioxide. It is related to being a bivalent unit.

また、本発明は、前記非対称中空糸ガス分離膜が、水素ガス透過速度(P’H2)が50×10−5cm(STP)/cm・sec・cmHg以上で且つ水素ガス透過速度と窒素ガス透過速度との比(P’H2/P’N2)が45以上のガス分離性能を有し、さらに中空糸膜としての引張破断強度が2.5kgf/mm以上で且つ破断伸度が15%以上の実用的な機械的強度を有することに関する。 Further, according to the present invention, the asymmetric hollow fiber gas separation membrane has a hydrogen gas transmission rate (P ′ H2 ) of 50 × 10 −5 cm 3 (STP) / cm 2 · sec · cmHg or more and a hydrogen gas transmission rate. nitrogen ratio of the gas permeation rate (P 'H2 / P' N2 ) has more than 45 of the gas separation performance, and breaking elongation in more tensile strength as a hollow fiber membrane 2.5 kgf / mm 2 or more It relates to having a practical mechanical strength of 15% or more.

また、本発明は、前記非対称中空糸ガス分離膜が、酸素ガス透過速度(P’O2)が3×10−5cm(STP)/cm・sec・cmHg以上で且つ酸素ガス透過速度と窒素ガス透過速度との比(P’O2/P’N2)が5.0以上のガス分離性能を有し、さらに中空糸膜としての引張破断強度が2.5kgf/mm以上で且つ破断伸度が15%以上の実用的な機械的強度を有することに関する。 In the present invention, the asymmetric hollow fiber gas separation membrane has an oxygen gas permeation rate ( P′O2 ) of 3 × 10 −5 cm 3 (STP) / cm 2 · sec · cmHg or more, the ratio of the nitrogen gas permeation rate (P 'O2 / P' N2 ) has a 5.0 or more gas separation performance, and breaking elongation in more tensile strength as a hollow fiber membrane 2.5 kgf / mm 2 or more It has a practical mechanical strength of 15% or more.

さらに、本発明は、前記非対称中空糸ガス分離膜を用いて酸素ガス及び窒素ガスを含む混合ガスから酸素ガス又は窒素ガスを選択的に分離回収する方法、および、前記非対称中空糸ガス分離膜を用いて水素ガスを含む混合ガスから水素ガスを選択的に分離回収する方法に関する。   Furthermore, the present invention provides a method for selectively separating and recovering oxygen gas or nitrogen gas from a mixed gas containing oxygen gas and nitrogen gas using the asymmetric hollow fiber gas separation membrane, and the asymmetric hollow fiber gas separation membrane. The present invention relates to a method for selectively separating and recovering hydrogen gas from a mixed gas containing hydrogen gas.

本発明によって、高いガス分離性能、例えば水素ガスと窒素ガスとのガス分離性能及び酸素ガスと窒素ガスとの高いガス分離性能を有し、さらに実用的な機械的強度を有する非対称中空糸ガス分離膜を得ることができる。また、前記非対称中空糸分離膜を用いることによって、好適に、水素ガスを含む混合ガスから水素ガスを選択的に分離回収することや、酸素ガスと窒素ガスを含む混合ガスから酸素ガス又は窒素ガスを選択的に分離回収することができる。   According to the present invention, high gas separation performance, for example, gas separation performance between hydrogen gas and nitrogen gas, high gas separation performance between oxygen gas and nitrogen gas, and asymmetric hollow fiber gas separation having practical mechanical strength A membrane can be obtained. In addition, by using the asymmetric hollow fiber separation membrane, it is preferable to selectively separate and recover hydrogen gas from a mixed gas containing hydrogen gas, or oxygen gas or nitrogen gas from a mixed gas containing oxygen gas and nitrogen gas. Can be selectively separated and recovered.

本発明は、特定の反復単位からなる可溶性の芳香族ポリイミドで形成され、主としてガス分離性能を担う極めて薄い緻密層(好ましくは厚さが0.001〜5μm)とその緻密層を支える比較的厚い多孔質層(好ましくは厚さが10〜2000μm)とからなる非対称構造を有し、内径が10〜3000μmで外径が30〜7000μm程度の中空糸膜であって、改良されたガス分離性能と実用的な機械的強度を有する非対称中空糸ガス分離膜である。   The present invention is formed of a soluble aromatic polyimide composed of specific repeating units, and is an extremely thin dense layer (preferably having a thickness of 0.001 to 5 μm) mainly responsible for gas separation performance and a relatively thick supporting the dense layer. A hollow fiber membrane having an asymmetric structure consisting of a porous layer (preferably a thickness of 10 to 2000 μm), an inner diameter of 10 to 3000 μm and an outer diameter of about 30 to 7000 μm, and improved gas separation performance An asymmetric hollow fiber gas separation membrane having practical mechanical strength.

本発明の非対称中空糸ガス分離膜を形成する芳香族ポリイミドは、前記一般式(1)の反復単位で示される。
すなわち、テトラカルボン酸成分に起因する4価のユニットは、10〜60モル%の前記一般式(2)で示されるジフェニルヘキサフルオロプロパン構造からなるユニットと、90〜40モル%の前記一般式(3)で示されるビフェニル構造からなるユニットとからなる。ジフェニルヘキサフルオロプロパン構造が10モル%未満でビフェニル構造が90モル%を越えると、得られるポリイミドのガス分離性能が低下して、高性能ガス分離膜を得ることが難しくなる。一方、ジフェニルヘキサフルオロプロパン構造が60モル%を越えビフェニル構造が40モル%未満になると、得られるポリイミドの機械的強度が低下するので実用的な機械的強度を有する中空糸膜を得ることができなくなる。
The aromatic polyimide forming the asymmetric hollow fiber gas separation membrane of the present invention is represented by the repeating unit of the general formula (1).
That is, the tetravalent unit resulting from the tetracarboxylic acid component includes 10 to 60 mol% of a unit having a diphenylhexafluoropropane structure represented by the general formula (2) and 90 to 40 mol% of the general formula ( 3) and a unit having a biphenyl structure. If the diphenylhexafluoropropane structure is less than 10 mol% and the biphenyl structure exceeds 90 mol%, the gas separation performance of the resulting polyimide is lowered, making it difficult to obtain a high performance gas separation membrane. On the other hand, when the diphenylhexafluoropropane structure exceeds 60 mol% and the biphenyl structure is less than 40 mol%, the mechanical strength of the resulting polyimide decreases, so that a hollow fiber membrane having practical mechanical strength can be obtained. Disappear.

また、ジアミン成分に起因する2価のユニットは、85〜20モル%好ましくは80〜40モル%の前記一般式(4)及び/又は前記一般式(5)で示される構造からなるユニットと、15〜80モル%好ましくは20〜60モル%の前記一般式(6)で示されるメタフェニレン構造からなるユニットとで構成される。メタフェニレン構造からなるユニットが15モル%未満では高分離性能のガス分離膜を得るのは容易ではなく、また80モル%を越えると、ドープの粘度が高くなりすぎたり、重合物のポリイミドが溶媒に不溶となったりし、紡糸ドープとして利用できなくなるので好ましくない。   The divalent unit derived from the diamine component is 85 to 20 mol%, preferably 80 to 40 mol% of a unit having a structure represented by the general formula (4) and / or the general formula (5), 15 to 80 mol%, preferably 20 to 60 mol% of a unit having a metaphenylene structure represented by the general formula (6). If the unit having a metaphenylene structure is less than 15 mol%, it is not easy to obtain a gas separation membrane with high separation performance. If it exceeds 80 mol%, the viscosity of the dope becomes too high, or the polymer polyimide is a solvent. Insoluble in water and cannot be used as a spinning dope.

この芳香族ポリイミドの前記各ユニットを構成するモノマー成分について、説明する。
前記一般式(2)で示されるジフェニルヘキサフルオロプロパン構造からなるユニットは、テトラカルボン酸成分として、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸、その二無水物、又はそのエステル化物を用いることによって得られる。
前記一般式(3)で示されるビフェニル構造からなるユニットは、テトラカルボン酸成分として、ビフェニルテトラカルボン酸、その二無水物、又はそのエステル化物などのビフェニルテトラカルボン酸類を用いることによって得られる。前記ビフェニルテトラカルボン酸類としては、3,3’,4,4’−ビフェニルテトラカルボン酸、2,3,3’,4’−ビフェニルテトラカルボン酸、2,2’,3,3’−ビフェニルテトラカルボン酸、それらの二無水物、又はそれらのエステル化物を好適に用いることができるが、特に3,3’,4,4’−ビフェニルテトラカルボン酸、その二無水物、又はそのエステル化物が好適である。
The monomer component which comprises each said unit of this aromatic polyimide is demonstrated.
The unit comprising the diphenylhexafluoropropane structure represented by the general formula (2) uses 4,4 ′-(hexafluoroisopropylidene) diphthalic acid, its dianhydride, or its esterified product as the tetracarboxylic acid component. Can be obtained.
The unit consisting of the biphenyl structure represented by the general formula (3) can be obtained by using biphenyltetracarboxylic acid such as biphenyltetracarboxylic acid, its dianhydride, or its esterified product as the tetracarboxylic acid component. Examples of the biphenyltetracarboxylic acids include 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, and 2,2 ′, 3,3′-biphenyltetracarboxylic acid. Carboxylic acids, dianhydrides thereof, or esterified products thereof can be preferably used, but 3,3 ′, 4,4′-biphenyltetracarboxylic acid, dianhydrides thereof, or esterified products thereof are particularly preferable. It is.

前記一般式(4)又は前記一般式(5)で示される構造からなるユニットは、ジアミン成分として、それぞれ、下記一般式(7)及び一般式(8)で示される芳香族ジアミンを用いることによって得られる。   The unit which consists of a structure shown by the said General formula (4) or the said General formula (5) uses the aromatic diamine shown by following General formula (7) and General formula (8) as a diamine component, respectively. can get.

Figure 2006272066
(式中、R及びR’は水素原子又は有機基であり、nは0、1又は2である。)
Figure 2006272066
(In the formula, R and R ′ are a hydrogen atom or an organic group, and n is 0, 1 or 2.)

Figure 2006272066
(式中、R及びR’は水素原子又は有機基であり、Xは−CH−又は−CO−である。)
Figure 2006272066
(In the formula, R and R ′ are a hydrogen atom or an organic group, and X is —CH 2 — or —CO—.)

前記一般式(7)で示される芳香族ジアミンとしては、一般式(7)のnが0である下記一般式(9)で示されるジアミノジベンゾチオフェン類、又は一般式(7)のnが2である下記一般式(10)で示されるジアミノジベンゾチオフェン=5,5−ジオキシド類を好適に挙げることができる。   Examples of the aromatic diamine represented by the general formula (7) include diaminodibenzothiophenes represented by the following general formula (9) in which n in the general formula (7) is 0, or n in the general formula (7) is 2. Preferred examples include diaminodibenzothiophene = 5,5-dioxides represented by the following general formula (10).

Figure 2006272066
(式中、R及びR’は水素原子又は有機基である。)
Figure 2006272066
(In the formula, R and R ′ are a hydrogen atom or an organic group.)

Figure 2006272066
(式中、R及びR’は水素原子又は有機基である。)
Figure 2006272066
(In the formula, R and R ′ are a hydrogen atom or an organic group.)

前記のジアミノジベンゾチオフェン類(一般式(9))としては、例えば3,7−ジアミノ−2,8−ジメチルジベンゾチオフェン、3,7−ジアミノ−2,6−ジメチルジベンゾチオフェン、3,7−ジアミノ−4,6−ジメチルジベンゾチオフェン、2,8−ジアミノ−3,7−ジメチルジベンゾチオフェン、3,7−ジアミノ−2,8−ジエチルベンゾチオフェン、3,7−ジアミノ−2,6−ジエチルベンゾチオフェン、3,7−ジアミノ−4,6−ジエチルベンゾチオフェン、3,7−ジアミノ−2,8−ジプロピルジベンゾチオフェン、3,7−ジアミノ−2,6−ジプロピルジベンゾチオフェン、3,7−ジアミノ−4,6−ジプロピルジベンゾチオフェン、3,7−ジアミノ−2,8−ジメトキシジベンゾチオフェン、3,7−ジアミノ−2,6−ジメトキシジベンゾチオフェン、3,7−ジアミノ−4,6−ジメトキシジベンゾチオフェンなどを挙げることができる。   Examples of the diaminodibenzothiophenes (general formula (9)) include 3,7-diamino-2,8-dimethyldibenzothiophene, 3,7-diamino-2,6-dimethyldibenzothiophene, and 3,7-diamino. -4,6-dimethyldibenzothiophene, 2,8-diamino-3,7-dimethyldibenzothiophene, 3,7-diamino-2,8-diethylbenzothiophene, 3,7-diamino-2,6-diethylbenzothiophene 3,7-diamino-4,6-diethylbenzothiophene, 3,7-diamino-2,8-dipropyldibenzothiophene, 3,7-diamino-2,6-dipropyldibenzothiophene, 3,7-diamino -4,6-dipropyldibenzothiophene, 3,7-diamino-2,8-dimethoxydibenzothiophene, 3, - diamino-2,6-dimethoxy dibenzothiophene, and the like 3,7-diamino-4,6-dimethoxy-dibenzothiophene.

前記のジアミノジベンゾチオフェン=5,5−ジオキシド類(一般式(10))としては、例えば3,7−ジアミノ−2,8−ジメチルジベンゾチオフェン=5,5−ジオキシド、3,7−ジアミノ−2,6−ジメチルジベンゾチオフェン=5,5−ジオキシド、3,7−ジアミノ−4,6−ジメチルジベンゾチオフェン=5,5−ジオキシド、2,8−ジアミノ−3,7−ジメチルジベンゾチオフェン=5,5−ジオキシド、3,7−ジアミノ−2,8−ジエチルベンゾチオフェン=5,5−ジオキシド、3,7−ジアミノ−2,6−ジエチルベンゾチオフェン=5,5−ジオキシド、3,7−ジアミノ−4,6−ジエチルベンゾチオフェン=5,5−ジオキシド、3,7−ジアミノ−2,8−ジプロピルジベンゾチオフェン=5,5−ジオキシド、3,7−ジアミノ−2,6−ジプロピルジベンゾチオフェン=5,5−ジオキシド、3,7−ジアミノ−4,6−ジプロピルジベンゾチオフェン=5,5−ジオキシド、3,7−ジアミノ−2,8−ジメトキシジベンゾチオフェン=5,5−ジオキシド、3,7−ジアミノ−2,6−ジメトキシジベンゾチオフェン=5,5−ジオキシド、3,7−ジアミノ−4,6−ジメトキシジベンゾチオフェン=5,5−ジオキシドなどを挙げることができる。   Examples of the diaminodibenzothiophene = 5,5-dioxides (general formula (10)) include 3,7-diamino-2,8-dimethyldibenzothiophene = 5,5-dioxide and 3,7-diamino-2. , 6-Dimethyldibenzothiophene = 5,5-dioxide, 3,7-diamino-4,6-dimethyldibenzothiophene = 5,5-dioxide, 2,8-diamino-3,7-dimethyldibenzothiophene = 5,5 Dioxide, 3,7-diamino-2,8-diethylbenzothiophene = 5,5-dioxide, 3,7-diamino-2,6-diethylbenzothiophene = 5,5-dioxide, 3,7-diamino-4 , 6-Diethylbenzothiophene = 5,5-dioxide, 3,7-diamino-2,8-dipropyldibenzothiophene = 5,5-dioxide Xoxide, 3,7-diamino-2,6-dipropyldibenzothiophene = 5,5-dioxide, 3,7-diamino-4,6-dipropyldibenzothiophene = 5,5-dioxide, 3,7-diamino- 2,8-dimethoxydibenzothiophene = 5,5-dioxide, 3,7-diamino-2,6-dimethoxydibenzothiophene = 5,5-dioxide, 3,7-diamino-4,6-dimethoxydibenzothiophene = 5 Examples include 5-dioxide.

前記の一般式(8)において、Xが−CH−であるジアミノチオキサンテン−10,10−ジオン類としては、例えば3,6−ジアミノチオキサンテン−10,10−ジオン、2,7−ジアミノチオキサンテン−10,10−ジオン、3,6−ジアミノ−2,7−ジメチルチオキサンテン−10,10−ジオン、3,6−ジアミノ−2,8−ジエチル−チオキサンテン−10,10−ジオン、3,6−ジアミノ−2,8−ジプロピルチオキサンテン−10,10−ジオン、3,6−ジアミノ−2,8−ジメトキシチオキサンテン−10,10−ジオン、等を挙げることができる。 Examples of the diaminothioxanthene-10,10-diones in which X is —CH 2 — in the general formula (8) include 3,6-diaminothioxanthene-10,10-dione and 2,7-diamino. Thioxanthene-10,10-dione, 3,6-diamino-2,7-dimethylthioxanthene-10,10-dione, 3,6-diamino-2,8-diethyl-thioxanthene-10,10-dione, Examples include 3,6-diamino-2,8-dipropylthioxanthene-10,10-dione, 3,6-diamino-2,8-dimethoxythioxanthene-10,10-dione, and the like.

前記の一般式(8)において、Xが−CO−であるジアミノチオキサンテン−9,10,10−トリオン類としては、例えば3,6−ジアミノ−チオキサンテン−9,10,10−トリオン、2,7−ジアミノ−チオキサンテン−9,10,10−トリオンなどを挙げることができる。   Examples of the diaminothioxanthene-9,10,10-triones where X is —CO— in the general formula (8) include 3,6-diamino-thioxanthene-9,10,10-trione, 2 , 7-diamino-thioxanthene-9,10,10-trione.

また、前記一般式(6)で示されるメタフェニレン構造からなるユニットは、ジアミン成分として、メタフェニレンジアミンを用いることによって得られる。   Moreover, the unit which consists of a metaphenylene structure shown by the said General formula (6) is obtained by using metaphenylenediamine as a diamine component.

本発明の非対称中空糸ガス分離膜を形成する芳香族ポリイミドのジアミン成分は、85〜20モル%の前記ジアミノジベンゾチオフェン=5,5−ジオキシド類とりわけ3,7−ジアミノ−ジメチルジベンゾチオフェン=5,5−ジオキシドと、15〜80モル%のメタフェニレンジアミンとの組合せが特に好適に用いられる。なお、3,7−ジアミノ−ジメチルジベンゾチオフェン=5,5−ジオキシドは、メチル基の位置が異なる異性体のいずれか、又はそれら異性体の混合物を意味する。通常は、3,7−ジアミノ−2,8−ジメチルジベンゾチオフェン=5,5−ジオキシド、3,7−ジアミノ−2,6−ジメチルジベンゾチオフェン=5,5−ジオキシド、3,7−ジアミノ−4,6−ジメチルジベンゾチオフェン=5,5−ジオキシドを含む混合物が好適に用いられる。   The diamine component of the aromatic polyimide forming the asymmetric hollow fiber gas separation membrane of the present invention is 85 to 20 mol% of the diaminodibenzothiophene = 5,5-dioxides, especially 3,7-diamino-dimethyldibenzothiophene = 5. A combination of 5-dioxide and 15-80 mol% metaphenylenediamine is particularly preferably used. In addition, 3,7-diamino-dimethyldibenzothiophene = 5,5-dioxide means any of isomers having different methyl group positions or a mixture of these isomers. Usually, 3,7-diamino-2,8-dimethyldibenzothiophene = 5,5-dioxide, 3,7-diamino-2,6-dimethyldibenzothiophene = 5,5-dioxide, 3,7-diamino-4 , 6-Dimethyldibenzothiophene = 5,5-dioxide-containing mixture is preferably used.

また、本発明の非対称中空糸ガス分離膜を形成する芳香族ポリイミドでは、前述のテトラカルボン酸成分とジアミン成分以外のモノマー成分を、本発明の効果を維持し得る範囲内で少量(通常は20モル%以下特に10モル%以下)用いても構わない。   In addition, in the aromatic polyimide forming the asymmetric hollow fiber gas separation membrane of the present invention, a small amount of monomer components other than the tetracarboxylic acid component and the diamine component described above (usually 20) within a range where the effects of the present invention can be maintained. (Mol% or less, particularly 10 mol% or less) may be used.

本発明の非対称中空糸ガス分離膜を形成する芳香族ポリイミドは、有機極性溶媒への溶解性が優れており、前述のテトラカルボン酸成分とジアミン成分とを略等モル用いて有機極性溶媒中で重合及びイミド化することによって容易に高重合度の芳香族ポリイミド溶液として得ることができる。その結果、この芳香族ポリイミド溶液を用いて乾湿式紡糸法によって非対称中空糸膜を好適に得ることができる。   The aromatic polyimide forming the asymmetric hollow fiber gas separation membrane of the present invention is excellent in solubility in an organic polar solvent, and is used in an organic polar solvent by using approximately equimolar amounts of the aforementioned tetracarboxylic acid component and diamine component. By polymerization and imidization, an aromatic polyimide solution having a high degree of polymerization can be easily obtained. As a result, an asymmetric hollow fiber membrane can be suitably obtained by dry-wet spinning using this aromatic polyimide solution.

前記芳香族ポリイミド溶液の調製は、有機極性溶媒中にテトラカルボン酸成分とジアミン成分とを所定の組成比で加え、室温程度の低温で重合反応させてポリアミド酸を生成し次いで加熱して加熱イミド化するか又はピリジンなどを加えて化学イミド化する2段法、または、有機極性溶媒中にテトラカルボン酸成分とジアミン成分とを所定の組成比で加え、100〜250℃好ましくは130〜200℃程度の高温で重合イミド化反応させる1段法によって好適に行われる。加熱によってイミド化反応を行うときは脱離する水またはアルコールを除去しながら行うことが好適である。有機極性溶媒に対するテトラカルボン酸成分とジアミン成分の使用量は、溶媒中のポリイミドの濃度が5〜50重量%程度好ましくは5〜40重量%にするのが好適である。
重合イミド化して得られた芳香族ポリイミド溶液は、そのまま直接紡糸に用いることもできる。また、例えば得られた芳香族ポリイミド溶液を芳香族ポリイミドに対し非溶解性の溶媒中に投入して芳香族ポリイミドを析出させて単離後、改めて有機極性溶媒に所定濃度になるように溶解させて芳香族ポリイミド溶液を調製し、それを紡糸に用いることもできる。
紡糸に用いる芳香族ポリイミド溶液は、ポリイミドの濃度が5〜40重量%更には8〜25重量%になるようにするのが好ましく、溶液粘度(回転粘度)は100℃で100〜150000ポイズ好ましくは200〜10000ポイズ特に300〜5000ポイズであることが好ましい。溶液粘度が100ポイズ未満では、均質膜(フィルム)は得られるかもしれないが、機械的強度の大きな非対称中空糸膜を得ることは難しい。また、15000ポイズを越えると、紡糸ノズルから押し出しにくくなるため目的の形状の非対称中空糸膜を得ることは難しい。
The aromatic polyimide solution is prepared by adding a tetracarboxylic acid component and a diamine component in an organic polar solvent at a predetermined composition ratio, causing a polymerization reaction at a low temperature of about room temperature to produce a polyamic acid, and then heating to form a heated imide. Or a chemical imidization by adding pyridine or the like, or a tetracarboxylic acid component and a diamine component are added in a predetermined composition ratio in an organic polar solvent, and 100 to 250 ° C., preferably 130 to 200 ° C. It is suitably carried out by a one-stage method in which a polymerization imidization reaction is performed at a high temperature. When the imidization reaction is carried out by heating, it is preferred to carry out while removing water or alcohol that is eliminated. The amount of the tetracarboxylic acid component and diamine component used in the organic polar solvent is such that the concentration of the polyimide in the solvent is about 5 to 50% by weight, preferably 5 to 40% by weight.
The aromatic polyimide solution obtained by polymerization imidization can be directly used for spinning as it is. In addition, for example, the obtained aromatic polyimide solution is put into a solvent insoluble in aromatic polyimide to precipitate and isolate the aromatic polyimide, and then dissolved again in an organic polar solvent to a predetermined concentration. It is also possible to prepare an aromatic polyimide solution and use it for spinning.
The aromatic polyimide solution used for spinning preferably has a polyimide concentration of 5 to 40% by weight, more preferably 8 to 25% by weight, and the solution viscosity (rotational viscosity) is preferably 100 to 150,000 poise at 100 ° C. 200 to 10000 poise, particularly 300 to 5000 poise is preferable. If the solution viscosity is less than 100 poise, a homogeneous membrane (film) may be obtained, but it is difficult to obtain an asymmetric hollow fiber membrane having high mechanical strength. On the other hand, if it exceeds 15000 poise, it is difficult to push out from the spinning nozzle, so it is difficult to obtain an asymmetric hollow fiber membrane having the desired shape.

前記有機極性溶媒としては、得られる芳香族ポリイミドを好適に溶解できるものであれば限定されるものではないが、例えばフェノール、クレゾール、キシレノールのようなフェノール類、2個の水酸基をベンゼン環に直接有するカテコール類、3−クロルフェノール、4−クロルフェノール(後述のパラクロロフェノールに同じ)、4−ブロムフェノール、2−クロル−5−ヒドロキシトルエンなどのハロゲン化フェノール類などのフェノール系溶媒、又はN−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミドなどのアミド類からなるアミド系溶媒、あるいはそれらの混合溶媒などを好適に挙げることができる。   The organic polar solvent is not limited as long as the aromatic polyimide obtained can be suitably dissolved. For example, phenols such as phenol, cresol, and xylenol, and two hydroxyl groups directly on the benzene ring. Catechols, phenol solvents such as 3-chlorophenol, 4-chlorophenol (same as parachlorophenol described later), halogenated phenols such as 4-bromophenol, 2-chloro-5-hydroxytoluene, or N An amide solvent composed of amides such as methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, or a mixed solvent thereof Can be preferably mentioned.

本願発明のポリイミド非対称ガス分離膜は、前記芳香族ポリイミド溶液を用いて、乾湿式法による紡糸(乾湿式紡糸法)によって好適に得ることができる。乾湿式法は、膜形状にしたポリマー溶液の表面の溶媒を蒸発させて薄い緻密層(分離層)を形成し、更に、凝固液(ポリマー溶液の溶媒とは相溶し、ポリマーは不溶な溶剤)に浸漬し、その際生じる相分離現象を利用して微細孔を形成して多孔質層(支持層)を形成させる方法(相転換法)であり、Loebらが提案(例えば、米国特許3133132号)したものである。乾湿式紡糸法は、紡糸用ノズルを用いて乾湿式法によって中空糸膜を形成する方法であり、例えば特許文献1や特開昭61−133106号公報などに記載されている。   The polyimide asymmetric gas separation membrane of the present invention can be suitably obtained by spinning by a dry / wet method (dry wet spinning method) using the aromatic polyimide solution. In the dry-wet method, the solvent on the surface of the polymer solution in the form of a film is evaporated to form a thin dense layer (separation layer), and the coagulation liquid (solvent that is compatible with the solvent of the polymer solution and the polymer is insoluble) ) And forming a porous layer (support layer) using the phase separation phenomenon that occurs at that time to form a porous layer (support layer), proposed by Loeb et al. (For example, US Pat. No. 3,133,132). No.). The dry-wet spinning method is a method of forming a hollow fiber membrane by a dry-wet method using a spinning nozzle, and is described in, for example, Japanese Patent Application Laid-Open No. 61-133106.

すなわち、紡糸ノズルは、芳香族ポリイミド溶液を中空糸状体に押し出すものであればよく、チューブ・イン・オリフィス型ノズルなどが好適である。通常、押し出す際の芳香族ポリイミド溶液の温度範囲は約20℃〜150℃、特に30℃〜120℃が好適である。また、ノズルから押し出される中空糸状体の内部へ気体または液体を供給しながら紡糸がおこなわれる。
凝固液は、芳香族ポリイミド成分を実質的には溶解せず且つ芳香族ポリイミド溶液の溶媒と相溶性があるものが好適である。特に限定するものではないが、水や、メタノール、エタノール、プロピルアルコールなどの低級アルコール類や、アセトン、ジエチルケトン、メチルエチルケトンなどの低級アルキル基を有するケトン類など、あるいは、それらの混合物が好適に用いられる。
凝固工程では、ノズルから中空糸形状に吐出された芳香族ポリイミド溶液がその形状を保持できる程度に凝固させる一次凝固液に浸漬し、次いで完全に凝固させるための二次凝固液に浸漬するのが好ましい。凝固した中空糸分離膜は炭化水素などの溶媒を用いて凝固液と溶媒置換させたあとで乾燥し、更に加熱処理するのが好適である。加熱処理は、用いられた芳香族ポリイミドの軟化点又は二次転移点よりも低い温度で行うことが好ましい。
That is, the spinning nozzle only needs to extrude the aromatic polyimide solution into the hollow fiber-like body, and a tube-in-orifice nozzle or the like is preferable. Usually, the temperature range of the aromatic polyimide solution during extrusion is preferably about 20 ° C to 150 ° C, particularly 30 ° C to 120 ° C. Further, spinning is performed while supplying a gas or a liquid into the hollow fiber-like body extruded from the nozzle.
The coagulation liquid preferably does not substantially dissolve the aromatic polyimide component and is compatible with the solvent of the aromatic polyimide solution. Although not particularly limited, water, lower alcohols such as methanol, ethanol and propyl alcohol, ketones having a lower alkyl group such as acetone, diethyl ketone and methyl ethyl ketone, or mixtures thereof are preferably used. It is done.
In the coagulation step, the aromatic polyimide solution discharged from the nozzle into a hollow fiber shape is immersed in a primary coagulation liquid that solidifies to such an extent that the shape can be maintained, and then immersed in a secondary coagulation liquid for complete coagulation. preferable. The coagulated hollow fiber separation membrane is preferably subjected to solvent substitution with a coagulating liquid using a solvent such as hydrocarbon, then dried, and further subjected to heat treatment. The heat treatment is preferably performed at a temperature lower than the softening point or secondary transition point of the aromatic polyimide used.

本発明の非対称中空糸ガス分離膜は、主としてガス分離性能を担う極めて薄い緻密層(好ましくは厚さが0.001〜5μm)とその緻密層を支える比較的厚い多孔質層(好ましくは厚さが10〜2000μm)とからなる非対称構造を有し、内径が10〜3000μmで外径が30〜7000μm程度の中空糸膜であって、改良された極めて優れたガス分離性能と実用的な機械的強度を有する。すなわち、本発明の非対称中空糸ガス分離膜は、好適には、水素ガス透過速度(P’H2)が50×10−5cm(STP)/cm・sec・cmHg以上、水素ガス透過速度と窒素ガス透過速度との比(P’H2/P’N2)が45以上好ましくは50以上より好ましくは55以上、且つ中空糸膜としての引張破断強度が2.5kgf/mm以上好ましくは3.0kgf/mm以上で破断伸度が15%以上好ましくは20%以上である。また、好適には、酸素ガス透過速度(P’O2)が3×10−5cm(STP)/cm・sec・cmHg以上好ましくは4×10−5cm(STP)/cm・sec・cmHg以上、酸素ガス透過速度と窒素ガス透過速度との比(P’O2/P’N2)が5.0以上好ましくは5.5以上より好ましくは6.0以上、中空糸膜としての引張破断強度が2.5kgf/mm以上好ましくは3.0kgf/mm以上、破断伸度が15%以上好ましくは20%以上更に25%以上である。 The asymmetric hollow fiber gas separation membrane of the present invention has an extremely thin dense layer (preferably having a thickness of 0.001 to 5 μm) mainly responsible for gas separation performance and a relatively thick porous layer (preferably having a thickness) supporting the dense layer. Is a hollow fiber membrane having an inner diameter of 10 to 3000 μm and an outer diameter of about 30 to 7000 μm, and has improved extremely excellent gas separation performance and practical mechanical properties. Has strength. That is, the asymmetric hollow fiber gas separation membrane of the present invention preferably has a hydrogen gas transmission rate (P ′ H2 ) of 50 × 10 −5 cm 3 (STP) / cm 2 · sec · cmHg or more, a hydrogen gas transmission rate. the ratio of the nitrogen gas permeation rate (P 'H2 / P' N2 ) of 45 or higher, preferably more preferably 50 or more 55 or more and tensile strength as a hollow fiber membrane 2.5 kgf / mm 2 or more preferably 3 The breaking elongation is 15% or more, preferably 20% or more at 0.0 kgf / mm 2 or more. Preferably, the oxygen gas transmission rate ( P′O2 ) is 3 × 10 −5 cm 3 (STP) / cm 2 · sec · cmHg or more, preferably 4 × 10 −5 cm 3 (STP) / cm 2 · sec · cmHg or more, and the ratio of oxygen gas permeation rate to nitrogen gas permeation rate ( P′O2 / P′N2 ) is 5.0 or more, preferably 5.5 or more, more preferably 6.0 or more, as a hollow fiber membrane The tensile breaking strength is 2.5 kgf / mm 2 or more, preferably 3.0 kgf / mm 2 or more, and the breaking elongation is 15% or more, preferably 20% or more, and further 25% or more.

本発明の非対称中空糸ガス分離膜は、中空糸膜での引張破断強度が2.5kgf/mm以上、且つ引張り破断伸度が15%以上の機械的強度を有する。このような機械的強度を有するので、本発明の非対称中空糸ガス分離膜は、中空糸膜をモジュール化する工程で容易に破断することなく、取扱いが容易であり、工業的にモジュール化できる。また、引張破断強度が高いので中空糸膜モジュールとして優れた耐圧性を有し、中空糸の外側に分離対象ガスを供給するシェルフィードではシェル側圧力と中空側圧力との差異が200気圧程度までの高圧ガスを供給しても好適にガス分離を行うことができる。また、中空糸の内側に分離対象ガスを供給する中空フィードでも中空側圧力とシェル側圧力との差異が100気圧程度までの高圧ガスを供給しても好適にガス分離を行うことができる。
なお、中空糸膜での引張り破断強度が2.5kgf/mm以下、あるいは引張り破断伸びが15%以下の場合には、中空糸膜をモジュール化する工程で破断し易くなるので工業的にモジュール化することが困難になり、更に中空糸膜モジュールとしても耐圧性が低くなり用途や使用条件が限定されるので実用的なガス分離膜モジュールではなくなる。
The asymmetric hollow fiber gas separation membrane of the present invention has a mechanical strength with a tensile strength at break of 2.5 kgf / mm 2 or more at the hollow fiber membrane and a tensile elongation at break of 15% or more. Since it has such mechanical strength, the asymmetric hollow fiber gas separation membrane of the present invention is easy to handle and can be industrially modularized without being easily broken in the step of modularizing the hollow fiber membrane. In addition, since the tensile strength at break is high, it has excellent pressure resistance as a hollow fiber membrane module, and in shell feed that supplies the gas to be separated to the outside of the hollow fiber, the difference between the shell side pressure and the hollow side pressure is up to about 200 atm. Even if high pressure gas is supplied, gas separation can be suitably performed. Further, even in the case of a hollow feed for supplying a separation target gas to the inside of the hollow fiber, gas separation can be suitably performed even if a high-pressure gas having a difference between the hollow side pressure and the shell side pressure of up to about 100 atm is supplied.
If the tensile strength at break in the hollow fiber membrane is 2.5 kgf / mm 2 or less, or the elongation at break is 15% or less, the hollow fiber membrane is easily broken in the modularization process, so it is an industrial module. In addition, the pressure resistance of the hollow fiber membrane module is lowered and the use and use conditions are limited, so that it is not a practical gas separation membrane module.

本発明の非対称中空糸ガス分離膜はモジュール化して好適に用いることができる。通常のガス分離膜モジュールは、例えば、適当な長さの中空糸膜100〜1000000本程度を束ね、その中空糸束の両端部を、中空糸の少なくとも一方の両端が開口状態を保持した状態になるようにして、熱硬化性樹脂などからなる管板で固着し、得られた中空糸束と管板などからなる中空糸膜エレメントを、少なくとも混合ガス導入口と透過ガス排出口と非透過ガス排出口とを備える容器内に、中空糸膜の内側に通じる空間と中空糸膜の外側へ通じる空間とが隔絶するように収納し取り付けることによって得られる。このようなガス分離膜モジュールでは、混合ガスが混合ガス導入口から中空糸膜の内側あるいは外側に接する空間へ供給され、中空糸膜に接して流れる間に混合ガス中の特定成分が選択的に膜を透過し、透過ガスが透過ガス排出口から、膜を透過しなかった非透過ガスが非透過ガス排出口からそれぞれ排出されることによって、ガス分離が行われる。   The asymmetric hollow fiber gas separation membrane of the present invention can be suitably used in a modular form. A normal gas separation membrane module, for example, bundles about 100 to 1,000,000 hollow fiber membranes having an appropriate length, and both ends of the hollow fiber bundle are in a state in which at least one end of the hollow fiber is kept open. In this way, the hollow fiber membrane element consisting of a hollow fiber bundle and a tube sheet, etc., fixed with a tube plate made of a thermosetting resin or the like, is at least mixed gas introduction port, permeation gas discharge port, and non-permeation gas It is obtained by storing and attaching in a container having a discharge port so that the space leading to the inside of the hollow fiber membrane and the space leading to the outside of the hollow fiber membrane are isolated. In such a gas separation membrane module, a mixed gas is supplied from a mixed gas inlet to a space in contact with the inside or outside of the hollow fiber membrane, and specific components in the mixed gas are selectively selected while flowing in contact with the hollow fiber membrane. Gas separation is performed by allowing the permeate gas to permeate the membrane and the non-permeate gas that has not permeated the membrane to be discharged from the non-permeate gas outlet.

本発明の非対称中空糸ガス分離膜は、種々のガス種を高分離度で分離回収することができる。分離できるガス種には特に限定はない。例えば水素ガス、ヘリウムガス、炭酸ガス、メタンやエタンなどの炭化水素ガス、酸素ガス、窒素ガスなどの分離回収に好適に用いることができる。とりわけ、100気圧以上好ましくは200気圧以上までの高圧の水素ガスを含む混合ガスを供給して、選択的に水素ガスを透過させて、水素ガスを選択的に分離回収するために好適に用いることができる。また、100気圧以上好ましくは200気圧以上までの高圧の酸素ガス及び窒素ガスを含む混合ガスを供給して、選択的に酸素ガスを透過させて、酸素ガス又は窒素ガスを選択的に分離回収するために好適に用いることができる。本発明の中空糸ガス分離膜は、中空糸膜であるために装置当たりの膜面積を広くできるし、ガス分離性能が高く、しかも高圧の混合ガスを供給してガスを分離できるので、極めて高効率でガス分離を行うことができる。   The asymmetric hollow fiber gas separation membrane of the present invention can separate and collect various gas species with a high degree of separation. There is no particular limitation on the gas species that can be separated. For example, it can be suitably used for separation and recovery of hydrogen gas, helium gas, carbon dioxide gas, hydrocarbon gas such as methane and ethane, oxygen gas, nitrogen gas and the like. In particular, it is preferably used for selectively separating and recovering hydrogen gas by supplying a mixed gas containing hydrogen gas at a high pressure of 100 atm or higher, preferably 200 atm or higher, selectively permeating hydrogen gas. Can do. Further, a mixed gas containing high-pressure oxygen gas and nitrogen gas of 100 atm or higher, preferably 200 atm or higher is supplied, and the oxygen gas is selectively permeated to selectively separate and recover the oxygen gas or nitrogen gas. Therefore, it can be used suitably. Since the hollow fiber gas separation membrane of the present invention is a hollow fiber membrane, the membrane area per apparatus can be widened, the gas separation performance is high, and the gas can be separated by supplying a high-pressure mixed gas. Gas separation can be performed efficiently.

次に、実施例によって本発明を更に説明する。なお、本発明は以下の実施例に限定されるものではない。   Next, the present invention will be further described with reference to examples. In addition, this invention is not limited to a following example.

(中空糸膜のガス分離性能の測定)
(1)シェルフィード法によるガス分離性能の測定
50本の非対称中空糸膜と、ステンレスパイプと、エポキシ樹脂系接着剤とを使用して有効長が10cmの透過性能評価用のエレメントを作成し、これをステンレス容器に装着してペンシルモジュールとした。それに透過対象ガスを、80℃の温度、1MPaGの圧力で中空糸膜の外側に供給し、透過流量を測定した。測定した透過ガス流量、供給側圧力、透過側圧力及び有効膜面積からガスの透過速度を算出した。
(2)中空フィード法によるガス分離性能の測定
50本の非対称中空糸膜と、ステンレスパイプと、エポキシ樹脂系接着剤とを使用して有効長が15cmの透過性能評価用のエレメントを作成し、これをステンレス容器に装着してペンシルモジュールとした。それに透過対象ガスを、40℃の温度、1MPaGの圧力で中空糸膜の内側に供給し、透過流量を測定した。測定した透過ガス流量、供給側圧力、透過側圧力及び有効膜面積からガスの透過速度を算出した。
(Measurement of gas separation performance of hollow fiber membrane)
(1) Measurement of gas separation performance by the shell feed method Using 50 asymmetric hollow fiber membranes, a stainless steel pipe, and an epoxy resin adhesive, an element for evaluating permeation performance having an effective length of 10 cm is prepared. This was attached to a stainless steel container to form a pencil module. A permeation gas was supplied to the outside of the hollow fiber membrane at a temperature of 80 ° C. and a pressure of 1 MPaG, and a permeation flow rate was measured. The gas permeation rate was calculated from the measured permeate gas flow rate, supply side pressure, permeate side pressure, and effective membrane area.
(2) Measurement of gas separation performance by hollow feed method An element for evaluating permeation performance having an effective length of 15 cm was prepared using 50 asymmetric hollow fiber membranes, a stainless steel pipe, and an epoxy resin adhesive, This was attached to a stainless steel container to form a pencil module. A permeation gas was supplied to the inside of the hollow fiber membrane at a temperature of 40 ° C. and a pressure of 1 MPaG, and a permeation flow rate was measured. The gas permeation rate was calculated from the measured permeate gas flow rate, supply side pressure, permeate side pressure, and effective membrane area.

(中空糸膜の引張破断強度と破断伸度の測定)
引張試験機を用いて有効長20mm、引張速度10mm/分で測定した。測定は23℃でおこなった。中空糸断面積は中空糸の断面を光学顕微鏡で観察し、光学顕微鏡像から寸法を測定して算出した。
(Measurement of tensile strength and elongation at break of hollow fiber membrane)
Using a tensile tester, measurement was performed at an effective length of 20 mm and a tensile speed of 10 mm / min. The measurement was performed at 23 ° C. The cross-sectional area of the hollow fiber was calculated by observing the cross-section of the hollow fiber with an optical microscope and measuring the dimensions from the optical microscope image.

(耐圧性の測定方法)
50本の非対称中空糸膜と、ステンレスパイプと、エポキシ樹脂系接着剤とを使用して有効長が10cmの中空耐圧評価用ペンシルを作製した。これを油圧式ポンプに接続して、全中空糸の内側に水を供給し、水圧をゼロから増加させて、中空糸が破壊される水圧を計測した。1本のペンシルの中で、最初の破壊が起こる水圧を、中空耐圧強度とした。
(Pressure resistance measurement method)
A hollow pressure resistance evaluation pencil having an effective length of 10 cm was prepared using 50 asymmetric hollow fiber membranes, a stainless steel pipe, and an epoxy resin adhesive. This was connected to a hydraulic pump, water was supplied to the inside of all hollow fibers, the water pressure was increased from zero, and the water pressure at which the hollow fibers were broken was measured. The water pressure at which the first breakage occurred in one pencil was defined as the hollow pressure resistance.

(溶液粘度の測定方法)
ポリイミド溶液の回転粘度は、回転粘度計(ローターのずり速度1.75sec−1)を用い温度100℃で測定した。
(Measurement method of solution viscosity)
The rotational viscosity of the polyimide solution was measured at a temperature of 100 ° C. using a rotational viscometer (rotor shear rate: 1.75 sec −1 ).

以下の例で用いた化合物は以下のとおりである。
s−BPDA:3,3’,4,4’−ビフェニルテトラカルボン酸二無水物
6FDA:4,4’−(ヘキサフルオロイソプロピリデン)−ビス(無水フタル酸)
(なお、この化合物は2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物ともいう。)
TSN:3,7−ジアミノ−2,8−ジメチルジベンゾチオフェン=5,5−ジオキシドを主成分とし、メチル基の位置が異なる異性体3,7−ジアミノ−2,6−ジメチルジベンゾチオフェン=5,5−ジオキシド、3,7−ジアミノ−4,6−ジメチルジベンゾチオフェン=5,5−ジオキシドを含む混合物
mPD:メタフェニレンジアミン
DABA:3,5−ジアミノ安息香酸
The compounds used in the following examples are as follows.
s-BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride 6FDA: 4,4 ′-(hexafluoroisopropylidene) -bis (phthalic anhydride)
(This compound is also referred to as 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride.)
TSN: 3,7-diamino-2,8-dimethyldibenzothiophene = 5,5-dioxide as a main component, and isomers 3,7-diamino-2,6-dimethyldibenzothiophene = 5 having different methyl group positions Mixture containing 5-dioxide, 3,7-diamino-4,6-dimethyldibenzothiophene = 5,5-dioxide mPD: metaphenylenediamine DABA: 3,5-diaminobenzoic acid

〔実施例1〕
撹拌機と窒素ガス導入管が取り付けられたセパラブルフラスコに、s−BPDA 60ミリモルと、6FDA 40ミリモルと、TSN 60ミリモルと、mPD 40ミリモルとを、ポリマー濃度が18重量%となるように溶媒のパラクロロフェノールと共に加え、窒素ガスをフラスコ内に流通させながら、撹拌下に反応温度190℃で20時間重合イミド化反応をおこない、ポリイミド濃度が18重量%の芳香族ポリイミド溶液を調製した。この芳香族ポリイミド溶液は、100℃における溶液粘度が1780ポイズであった。
前記調製した芳香族ポリイミド溶液を、400メッシュの金網でろ過し、これをドープ液として、中空糸紡糸用ノズルを備えた紡糸装置を使用して、中空糸紡糸用ノズルからドープ液を中空糸状に吐出させた後、一次凝固液(0℃、85重量%エタノール水溶液)に浸漬し、更に一対の案内ロールを備えた二次凝固装置内の二次凝固液(0℃、85重量%エタノール水溶液)中で案内ロール間を往復させて中空糸状態を凝固させ、引取りロールによって引取り速度25m/分で引き取って、中空糸膜を得た。次いで中空糸膜をボビンに巻取り、エタノールで洗浄した後、イソオクタンでエタノールを置換し、更に100℃で加熱してイソオクタンを蒸発乾燥させ、更に300℃で30分間加熱処理して、中空糸膜を得た。
得られた外径が200μm、内径が100μmの非対称中空糸膜について、ガス分離性能と機械的強度を測定した結果を表1、表2に示す。
mPDによって、破断強度、破断伸度、耐圧性、水素ガスの透過速度(P’H2)、水素ガス透過速度と窒素ガス透過速度との比(P’H2/P’N2)、酸素ガス透過速度(P’O2)、酸素ガス透過速度と窒素ガス透過速度との比(P’O2/P’N2)などがいずれもが改良された。なお、表中のガス透過速度の単位Ncc/cm・s・cmHgは、cm(STP)/cm・sec・cmHgと同じ単位であり、表現を変えただけのものである。
[Example 1]
In a separable flask equipped with a stirrer and a nitrogen gas introduction tube, 60 mmol of s-BPDA, 40 mmol of 6FDA, 60 mmol of TSN, and 40 mmol of mPD were added so that the polymer concentration was 18% by weight. In addition to the parachlorophenol, a polymerization imidization reaction was carried out with stirring at a reaction temperature of 190 ° C. for 20 hours while flowing nitrogen gas through the flask to prepare an aromatic polyimide solution having a polyimide concentration of 18% by weight. This aromatic polyimide solution had a solution viscosity at 100 ° C. of 1780 poise.
The prepared aromatic polyimide solution is filtered through a 400-mesh wire mesh, and this is used as a dope solution, and the dope solution is formed into a hollow fiber shape from the hollow fiber spinning nozzle using a spinning device equipped with a hollow fiber spinning nozzle. After discharging, the secondary coagulation liquid (0 ° C., 85 wt% ethanol aqueous solution) in the secondary coagulation apparatus provided with a pair of guide rolls is immersed in the primary coagulation liquid (0 ° C., 85 wt% ethanol aqueous solution). A hollow fiber membrane was obtained by reciprocating between the guide rolls to solidify the hollow fiber state and taking it up with a take-up roll at a take-up speed of 25 m / min. Next, the hollow fiber membrane is wound on a bobbin, washed with ethanol, ethanol is replaced with isooctane, heated at 100 ° C. to evaporate and dry isooctane, and further heat-treated at 300 ° C. for 30 minutes to obtain a hollow fiber membrane. Got.
Tables 1 and 2 show the results of measuring gas separation performance and mechanical strength of the obtained asymmetric hollow fiber membrane having an outer diameter of 200 μm and an inner diameter of 100 μm.
Depending on mPD, breaking strength, breaking elongation, pressure resistance, hydrogen gas permeation rate (P ′ H2 ), ratio of hydrogen gas permeation rate and nitrogen gas permeation rate (P ′ H 2 / P ′ N 2 ), oxygen gas permeation rate ( P'O2 ), the ratio of oxygen gas permeation rate to nitrogen gas permeation rate ( P'O2 / P'N2 ), etc. were all improved. The unit Ncc / cm 2 · s · cmHg of the gas permeation rate in the table is the same unit as cm 3 (STP) / cm 2 · sec · cmHg, and the expression is merely changed.

〔実施例2〕
ジアミン成分を、TSN 60ミリモルとmPD 40ミリモルとに代えて、TSN 60ミリモルとmPD 30ミリモルとDABA 10ミリモルとを用いたこと以外は実施例1と同様にして中空糸膜を得た。
得られた外径が200μm、内径が100μmの非対称中空糸膜について、ガス分離性能と機械的強度を測定した結果を表1、表2に示す。
mPDによって、破断強度、破断伸度、耐圧性、水素ガスの透過速度(P’H2)、水素ガス透過速度と窒素ガス透過速度との比(P’H2/P’N2)、酸素ガス透過速度(P’O2)、酸素ガス透過速度と窒素ガス透過速度との比(P’O2/P’N2)などがいずれもが改良された。
[Example 2]
A hollow fiber membrane was obtained in the same manner as in Example 1, except that 60 mmol of TSN, 30 mmol of mPD, and 10 mmol of DABA were used in place of 60 mmol of TSN and 40 mmol of mPD.
Tables 1 and 2 show the results of measuring gas separation performance and mechanical strength of the obtained asymmetric hollow fiber membrane having an outer diameter of 200 μm and an inner diameter of 100 μm.
Depending on mPD, breaking strength, breaking elongation, pressure resistance, hydrogen gas permeation rate (P ′ H2 ), ratio of hydrogen gas permeation rate and nitrogen gas permeation rate (P ′ H 2 / P ′ N 2 ), oxygen gas permeation rate ( P'O2 ), the ratio of oxygen gas permeation rate to nitrogen gas permeation rate ( P'O2 / P'N2 ), etc. were all improved.

〔比較例1〕
ジアミン成分を、TSN 60ミリモルとmPD 40ミリモルとに代えて、TSN 95ミリモルとmPD 5ミリモルとを用いたこと以外は実施例1と同様にして中空糸膜を得た。
得られた外径が200μm、内径が100μmの非対称中空糸膜について、ガス分離性能と機械的強度を測定した結果を表1、表2に示す。ガス分離性能や機械的強度には改良の余地があった。特に、水素ガス透過速度と窒素ガス透過速度との比(P’H2/P’N2)や、酸素ガス透過速度と窒素ガス透過速度との比(P’O2/P’N2)は低いものであった。
[Comparative Example 1]
A hollow fiber membrane was obtained in the same manner as in Example 1 except that TSN (95 mmol) and mPD (5 mmol) were used in place of the diamine component instead of TSN (60 mmol) and mPD (40 mmol).
Tables 1 and 2 show the results of measuring gas separation performance and mechanical strength of the obtained asymmetric hollow fiber membrane having an outer diameter of 200 μm and an inner diameter of 100 μm. There was room for improvement in gas separation performance and mechanical strength. In particular, the ratio between the hydrogen gas transmission rate and the nitrogen gas transmission rate ( P'H2 / P'N2 ) and the ratio between the oxygen gas transmission rate and the nitrogen gas transmission rate ( P'O2 / P'N2 ) are low. there were.

〔比較例2〕
ジアミン成分を、TSN 60ミリモルとmPD 40ミリモルとに代えて、TSN 10ミリモルとmPD 90ミリモルとを用いて実施例1と同様にして芳香族ポリイミド溶液の調製を試みたが、重合イミド化時に重合物が析出するので紡糸ドープとして利用できる芳香族ポリイミド溶液を得ることができなかった。
[Comparative Example 2]
An attempt was made to prepare an aromatic polyimide solution in the same manner as in Example 1 except that the diamine component was replaced with 60 mmol of TSN and 40 mmol of mPD, and 10 mmol of TSN and 90 mmol of mPD. As a result, an aromatic polyimide solution usable as a spinning dope could not be obtained.

Figure 2006272066
Figure 2006272066

Figure 2006272066
Figure 2006272066

本発明によって、特定の反復単位からなる可溶性の芳香族ポリイミドで形成され、改良されたガス分離性能と実用的な機械的強度を有する非対称中空糸ガス分離膜を得ることができる。この前記非対称中空糸分離膜は、例えば水素ガスと窒素ガスとのガス分離性能や、酸素ガスと窒素ガスとのガス分離性能に優れる。この非対称中空糸分離膜を用いると、好適に、水素ガスを含む混合ガスから水素ガスを選択的に分離回収することや、酸素ガスと窒素ガスを含む混合ガスから酸素ガス又は窒素ガスを選択的に分離回収することができる。
According to the present invention, an asymmetric hollow fiber gas separation membrane formed of a soluble aromatic polyimide composed of specific repeating units and having improved gas separation performance and practical mechanical strength can be obtained. The asymmetric hollow fiber separation membrane is excellent in, for example, gas separation performance between hydrogen gas and nitrogen gas and gas separation performance between oxygen gas and nitrogen gas. When this asymmetric hollow fiber separation membrane is used, it is preferable to selectively separate and recover hydrogen gas from a mixed gas containing hydrogen gas, or to selectively select oxygen gas or nitrogen gas from a mixed gas containing oxygen gas and nitrogen gas. Can be separated and recovered.

Claims (6)

下記一般式(1)で示される反復単位からなる可溶性の芳香族ポリイミドで形成されている非対称中空糸ガス分離膜。
Figure 2006272066
〔但し、一般式(1)のBは、
その10〜60モル%が、下記一般式(2)で示されるジフェニルヘキサフルオロプロパン構造に基づく4価のユニットB1であり、
Figure 2006272066
その90〜40モル%が、下記一般式(3)で示されるビフェニル構造に基づく4価のユニットB2であり、
Figure 2006272066
そして、一般式(1)のAは、
その85〜20モル%が、下記一般式(4)で示される2価のユニットA1、及び/又は、下記一般式(5)で示される2価のユニットA2であり、
Figure 2006272066
(式中、R及びR’は水素原子又は有機基であり、nは0、1又は2である。)
Figure 2006272066
(式中、R及びR’は水素原子又は有機基であり、Xは−CH2−又は−CO−である。)
その15〜80モル%が、下記一般式(6)で示される2価のユニットA3である。〕
Figure 2006272066
An asymmetric hollow fiber gas separation membrane formed of a soluble aromatic polyimide comprising a repeating unit represented by the following general formula (1).
Figure 2006272066
[However, B in the general formula (1) is
10 to 60 mol% thereof is a tetravalent unit B1 based on a diphenylhexafluoropropane structure represented by the following general formula (2),
Figure 2006272066
90 to 40 mol% thereof is a tetravalent unit B2 based on a biphenyl structure represented by the following general formula (3),
Figure 2006272066
And A in the general formula (1) is
85 to 20 mol% thereof is a divalent unit A1 represented by the following general formula (4) and / or a divalent unit A2 represented by the following general formula (5),
Figure 2006272066
(In the formula, R and R ′ are a hydrogen atom or an organic group, and n is 0, 1 or 2.)
Figure 2006272066
(In the formula, R and R ′ are a hydrogen atom or an organic group, and X is —CH 2 — or —CO—.)
15-80 mol% is the divalent unit A3 represented by the following general formula (6). ]
Figure 2006272066
前記Aの85〜20モル%が前記A1からなり、A1が3,7−ジアミノ−ジメチルジベンゾチオフェン=5,5−ジオキシドからアミノ基を除いた2価のユニットであることを特徴とする請求項1に記載の非対称中空糸ガス分離膜。   85 to 20 mol% of the A is composed of the A1, and the A1 is a divalent unit obtained by removing an amino group from 3,7-diamino-dimethyldibenzothiophene = 5,5-dioxide. 2. The asymmetric hollow fiber gas separation membrane according to 1. 水素ガス透過速度(P’H2)が50×10−5cm(STP)/cm・sec・cmHg以上で且つ水素ガス透過速度と窒素ガス透過速度との比(P’H2/P’N2)が45以上のガス分離性能を有し、さらに中空糸膜としての引張破断強度が2.5kgf/mm以上で且つ破断伸度が15%以上であることを特徴とする請求項1〜2のいずれかに記載の非対称中空糸ガス分離膜。 The hydrogen gas transmission rate (P ′ H2 ) is 50 × 10 −5 cm 3 (STP) / cm 2 · sec · cm Hg or more, and the ratio of the hydrogen gas transmission rate to the nitrogen gas transmission rate (P ′ H 2 / P ′ N 2 3) has a gas separation performance of 45 or more, and further has a tensile breaking strength as a hollow fiber membrane of 2.5 kgf / mm 2 or more and a breaking elongation of 15% or more. The asymmetric hollow fiber gas separation membrane according to any one of the above. 酸素ガス透過速度(P’O2)が3×10−5cm(STP)/cm・sec・cmHg以上で且つ酸素ガス透過速度と窒素ガス透過速度との比(P’O2/P’N2)が5.0以上のガス分離性能を有し、さらに中空糸膜としての引張破断強度が2.5kgf/mm以上で且つ破断伸度が15%以上の実用的な機械的強度を有することを特徴とする請求項1〜2のいずれかに記載の非対称中空糸ガス分離膜。 The oxygen gas transmission rate ( P′O2 ) is 3 × 10 −5 cm 3 (STP) / cm 2 · sec · cmHg or more, and the ratio of the oxygen gas transmission rate to the nitrogen gas transmission rate ( P′O2 / P′N2). ) Has a gas separation performance of 5.0 or more, and has a practical mechanical strength with a tensile breaking strength as a hollow fiber membrane of 2.5 kgf / mm 2 or more and a breaking elongation of 15% or more. The asymmetric hollow fiber gas separation membrane according to any one of claims 1 and 2. 請求項3に記載の非対称中空糸ガス分離膜を用いて、水素ガスを含む混合ガスから水素ガスを選択的に分離回収する方法。   A method for selectively separating and recovering hydrogen gas from a mixed gas containing hydrogen gas using the asymmetric hollow fiber gas separation membrane according to claim 3. 請求項4に記載の非対称中空糸ガス分離膜を用いて、酸素ガス及び窒素ガスを含む混合ガスから酸素ガス又は窒素ガスを選択的に分離回収する方法。
A method for selectively separating and recovering oxygen gas or nitrogen gas from a mixed gas containing oxygen gas and nitrogen gas using the asymmetric hollow fiber gas separation membrane according to claim 4.
JP2005091909A 2005-03-28 2005-03-28 Asymmetric hollow fiber gas separation membrane and gas separation method Expired - Fee Related JP4835020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005091909A JP4835020B2 (en) 2005-03-28 2005-03-28 Asymmetric hollow fiber gas separation membrane and gas separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005091909A JP4835020B2 (en) 2005-03-28 2005-03-28 Asymmetric hollow fiber gas separation membrane and gas separation method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010162855A Division JP5348085B2 (en) 2010-07-20 2010-07-20 Method for producing an asymmetric hollow fiber gas separation membrane

Publications (2)

Publication Number Publication Date
JP2006272066A true JP2006272066A (en) 2006-10-12
JP4835020B2 JP4835020B2 (en) 2011-12-14

Family

ID=37207326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005091909A Expired - Fee Related JP4835020B2 (en) 2005-03-28 2005-03-28 Asymmetric hollow fiber gas separation membrane and gas separation method

Country Status (1)

Country Link
JP (1) JP4835020B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111918712A (en) * 2018-02-28 2020-11-10 赢创(上海)投资管理有限公司 Functionalized polyimides and membranes for gas separation
CN114284632A (en) * 2018-04-11 2022-04-05 宁德新能源科技有限公司 Isolating membrane and energy storage device
CN115490853A (en) * 2022-06-29 2022-12-20 江西有泽新材料科技有限公司 High-performance polyimide flexible copper clad laminate and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5348085B2 (en) * 2010-07-20 2013-11-20 宇部興産株式会社 Method for producing an asymmetric hollow fiber gas separation membrane

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299122A (en) * 1988-10-07 1990-04-11 Ube Ind Ltd Pervaporation of organic compound mixed liquid
JPH03267130A (en) * 1990-03-15 1991-11-28 Ube Ind Ltd Gas separation hollow-fiber membrane and its production
JPH0568859A (en) * 1991-09-10 1993-03-23 Ube Ind Ltd Gas separation hollow-fiber membrane and its production
JPH10156157A (en) * 1996-12-03 1998-06-16 Ube Ind Ltd Aromatic polyimide gas separation film
JPH10168188A (en) * 1996-12-06 1998-06-23 Ube Ind Ltd Aromatic polyimide, semipermeable membrane and its production
JP2004516131A (en) * 2000-12-19 2004-06-03 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Copolyimide gas separation membrane

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299122A (en) * 1988-10-07 1990-04-11 Ube Ind Ltd Pervaporation of organic compound mixed liquid
JPH03267130A (en) * 1990-03-15 1991-11-28 Ube Ind Ltd Gas separation hollow-fiber membrane and its production
JPH0568859A (en) * 1991-09-10 1993-03-23 Ube Ind Ltd Gas separation hollow-fiber membrane and its production
JPH10156157A (en) * 1996-12-03 1998-06-16 Ube Ind Ltd Aromatic polyimide gas separation film
JPH10168188A (en) * 1996-12-06 1998-06-23 Ube Ind Ltd Aromatic polyimide, semipermeable membrane and its production
JP2004516131A (en) * 2000-12-19 2004-06-03 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Copolyimide gas separation membrane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111918712A (en) * 2018-02-28 2020-11-10 赢创(上海)投资管理有限公司 Functionalized polyimides and membranes for gas separation
CN114284632A (en) * 2018-04-11 2022-04-05 宁德新能源科技有限公司 Isolating membrane and energy storage device
CN114284632B (en) * 2018-04-11 2024-04-05 宁德新能源科技有限公司 Isolation diaphragm and energy storage device
CN115490853A (en) * 2022-06-29 2022-12-20 江西有泽新材料科技有限公司 High-performance polyimide flexible copper clad laminate and preparation method thereof
CN115490853B (en) * 2022-06-29 2024-01-30 江西有泽新材料科技有限公司 High-performance polyimide flexible copper-clad plate and preparation method thereof

Also Published As

Publication number Publication date
JP4835020B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4507894B2 (en) Asymmetric hollow fiber gas separation membrane and gas separation method
JP5472114B2 (en) Asymmetric gas separation membrane and gas separation method
JP4857593B2 (en) Asymmetric hollow fiber gas separation membrane and gas separation method
JP6142730B2 (en) Asymmetric hollow fiber gas separation membrane and gas separation method
JP5348026B2 (en) Method for producing an asymmetric hollow fiber gas separation membrane
JP5359957B2 (en) Polyimide gas separation membrane and gas separation method
JP5359914B2 (en) Polyimide gas separation membrane and gas separation method
JP4835020B2 (en) Asymmetric hollow fiber gas separation membrane and gas separation method
JP6623600B2 (en) Asymmetric gas separation membrane and method for separating and recovering gas
JP5747730B2 (en) Polyimide gas separation membrane and gas separation method
JP6500893B2 (en) Asymmetric gas separation membrane and method for separating and recovering gas
JP4978602B2 (en) Asymmetric hollow fiber gas separation membrane and gas separation method
JP5136667B2 (en) Asymmetric hollow fiber gas separation membrane and gas separation method
JP4857592B2 (en) Asymmetric hollow fiber gas separation membrane and gas separation method
JP5348085B2 (en) Method for producing an asymmetric hollow fiber gas separation membrane
JP5099242B2 (en) Asymmetric hollow fiber gas separation membrane and gas separation method
JP5240152B2 (en) Polyimide gas separation membrane and gas separation method
JP6060715B2 (en) Polyimide gas separation membrane and gas separation method
JP4857588B2 (en) Asymmetric hollow fiber gas separation membrane and gas separation method
JP5136666B2 (en) Asymmetric hollow fiber gas separation membrane and gas separation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees