JP2006272004A - High-frequency coil and magnetic resonance imaging apparatus using the same - Google Patents

High-frequency coil and magnetic resonance imaging apparatus using the same Download PDF

Info

Publication number
JP2006272004A
JP2006272004A JP2006190509A JP2006190509A JP2006272004A JP 2006272004 A JP2006272004 A JP 2006272004A JP 2006190509 A JP2006190509 A JP 2006190509A JP 2006190509 A JP2006190509 A JP 2006190509A JP 2006272004 A JP2006272004 A JP 2006272004A
Authority
JP
Japan
Prior art keywords
coil
irradiation
magnetic field
frequency
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006190509A
Other languages
Japanese (ja)
Inventor
Yukihiro Yasugi
幸浩 八杉
Shizuka Nagai
静 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2006190509A priority Critical patent/JP2006272004A/en
Publication of JP2006272004A publication Critical patent/JP2006272004A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plane high-frequency coil, suitable for an open type MRI apparatus, and having high irradiating/receiving efficiency and good irradiating/receiving uniformity. <P>SOLUTION: This high-frequency coil is a plane coil constructed so that a plurality of linear conductors 2 are radially connected to the inside of a ring-like conductor 1. A resonance capacity 3 inserted in the ring-like conductor 1 is adjusted to take wavelength matching in one wavelength of irradiation frequency. This plane coil generates a rotary magnetic field of a plane parallel to the coil surface when a high-frequency current is input, and an orthogonal coil can be obtained using one coil by inputting the current from two positions having 90-degree separation of the ring-like conductor 1. This type of plane coils are disposed opposite to each other on the upper and lower sides of an MRI apparatus to constitute an irradiation coil 10. Since the irradiation coil can be shaped like a plane not to obstruct opening of an imaging space, it is possible to provide the high-performance MRI apparatus, which can easily gain access to a subject and achieve wide-range clinical application. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、磁気共鳴イメージング装置(以下、MRI装置という)に用いられる新規な形状の高周波コイル及びそれを備えたMRI装置に関する。   The present invention relates to a novel high-frequency coil used in a magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus) and an MRI apparatus including the same.

MRI装置では、核磁気共鳴現象を利用して被検体中の所望の検査部位における原子核スピンの密度分布、緩和時間分布を計測して、その計測データから被検体の断面を画像表示するものであり、被検体に高周波パルスを照射するための照射コイル及び被検体から発生する核磁気共鳴信号を受信するための受信コイルが備えられている。   In the MRI apparatus, the nuclear magnetic resonance phenomenon is used to measure the nuclear spin density distribution and relaxation time distribution at a desired examination site in the subject, and the cross section of the subject is displayed as an image from the measured data. An irradiation coil for irradiating a subject with a high frequency pulse and a receiving coil for receiving a nuclear magnetic resonance signal generated from the subject are provided.

これら照射コイル及び受信コイルは、静磁場方向に応じて種々の形状、形態の高周波コイルが使用されている。例えば、被検体の上下方向に静磁場を与える垂直磁場方式のMRI装置の場合、高周波磁界は上下方向を軸とする水平方向の回転磁界となり、ソレノイド型コイルやサドル型コイルが用いられている。また、照射、受信効率や均一度を向上させる目的で、直交方式も利用されている。これは直交状態(90度)に配置された2つの高周波コイル(ソレノイド型コイルとサドル型コイル等)を組み合わせ、位相の90度異なった照射パルスあるいは受信信号を同時に照射、受信して回転磁界を印加、検出するものである。   These irradiation coils and reception coils use high-frequency coils having various shapes and forms according to the direction of the static magnetic field. For example, in the case of a vertical magnetic field type MRI apparatus that applies a static magnetic field in the vertical direction of the subject, the high-frequency magnetic field is a horizontal rotating magnetic field with the vertical direction as the axis, and a solenoid type coil or a saddle type coil is used. Further, an orthogonal method is also used for the purpose of improving irradiation, reception efficiency and uniformity. This is a combination of two high-frequency coils (solenoid type coil and saddle type coil, etc.) arranged in an orthogonal state (90 degrees), and simultaneously irradiates and receives irradiation pulses or received signals whose phases differ by 90 degrees to generate a rotating magnetic field. Application and detection.

一方、近年、IVRと呼ばれる手技がX線装置の分野で普及しつつあるが、MRI装置の分野でも撮像をしながら各種臨床行為を行うことが要求されている。このためにはMRI装置の撮像空間が開放されていることが重要となる。つまり、静磁場発生磁石の開口面積が広く、照射や受信を行う高周波コイルが被検体を覆わない構造であることが必要である。   On the other hand, in recent years, a technique called IVR is becoming widespread in the field of X-ray apparatuses, but in the field of MRI apparatuses, it is required to perform various clinical actions while imaging. For this purpose, it is important that the imaging space of the MRI apparatus is open. In other words, it is necessary that the static magnetic field generating magnet has a large opening area and the high-frequency coil that performs irradiation and reception does not cover the subject.

IVRに適したMRI装置として開口面積の広いオープン構造の磁石を採用した垂直磁場方式のMRI装置が実用化されているが、このような垂直磁場方式のMRI装置に従来のソレノイド型やサドル型の高周波コイルを適用した場合、被検体の一部を覆ってしまうという問題があった。特に照射コイルは照射の均一性を確保する目的から比較的大きなコイルが必要とされ、オープン構造を妨げる影響が大きい。   As an MRI apparatus suitable for IVR, a vertical magnetic field type MRI apparatus adopting an open structure magnet having a wide opening area has been put into practical use. When the high frequency coil is applied, there is a problem that a part of the subject is covered. In particular, the irradiation coil requires a relatively large coil for the purpose of ensuring the uniformity of irradiation, and has a great influence on the open structure.

これに対し、垂直磁場方式のMRI装置に適した平面コイルとして図7(a)に示すような平面コイル7が提案されており、この平面コイルを磁場空間の上下に2つ対向配置して照射コイルとして用いたMRI装置が実用化されている。このコイルは、中央に位置する2本の導体に同一方向に電流が流れるように左右のループが形成されており、図示するように高周波電流iを流すことによって、コイルの上下に横方向の照射磁界Bを発生させる。   On the other hand, a planar coil 7 as shown in FIG. 7A has been proposed as a planar coil suitable for a vertical magnetic field type MRI apparatus, and two planar coils are arranged opposite to each other above and below the magnetic field space for irradiation. An MRI apparatus used as a coil has been put into practical use. In this coil, left and right loops are formed so that currents flow in the same direction through two conductors located at the center. By flowing a high-frequency current i as shown in the figure, irradiation in the horizontal direction is performed above and below the coil. A magnetic field B is generated.

しかし、この平面照射コイルでは横方向の磁界を発生しうるのは中央の直線導体の上下部分であり、左右のループの中心部分では縦方向の磁界を生じてしまい、照射磁界として利用できる範囲が狭く、照射磁界の均一度や、照射効率も低いという問題があった。   However, in this planar irradiation coil, the horizontal magnetic field can be generated in the upper and lower parts of the central straight conductor, and the vertical magnetic field is generated in the central part of the left and right loops. There is a problem that it is narrow and the uniformity of the irradiation magnetic field and the irradiation efficiency are low.

これを改善するために、図7(b)に示すように平面コイル7a、7bを直交状態に組み合わせ、直交照射を行っているが、この場合にも照射の不均一性を十分に解決するためには平面コイル7を大きくする必要があり、装置の制約上困難であった。また、このような直交コイルを構成するためには照射コイルの厚さが増加し、撮像空間を狭めてしまうという新たな問題も生じていた。さらに一般に高磁場装置では照射信号の周波数が高くなり波長が短くなるために、このような平面コイルを適用した場合、コイル導体上に不必要な電流分布が生じて、照射コイルとしての良好な動作が期待できなくなる。勿論、以上の問題は照射コイルのみならず、この方式の受信コイルにおいても同様である。   In order to improve this, as shown in FIG. 7B, the planar coils 7a and 7b are combined in an orthogonal state and orthogonal irradiation is performed. In this case as well, in order to sufficiently solve the unevenness of irradiation. In this case, it is necessary to enlarge the planar coil 7, which is difficult due to restrictions on the apparatus. In addition, in order to configure such an orthogonal coil, the thickness of the irradiation coil increases, and a new problem of narrowing the imaging space has occurred. Furthermore, since the frequency of the irradiation signal is generally increased and the wavelength is shortened in the high magnetic field apparatus, when such a planar coil is applied, an unnecessary current distribution is generated on the coil conductor, and the operation as an irradiation coil is good. Cannot be expected. Of course, the above problem is not only applied to the irradiation coil but also to this type of receiving coil.

本発明は、オープン構造のMRI装置において被検体の開放を妨げない構造を有し、照射効率、受信感度、均一性ともに高く、高磁場装置にも適用しうる平面高周波コイルを提供することを目的とする。また本発明はIVRに適したオープン構造を有し、良好な画像の得られるMRI装置を提供することを目的とする。   An object of the present invention is to provide a planar high-frequency coil that has a structure that does not hinder the opening of a subject in an open-structure MRI apparatus, has high irradiation efficiency, reception sensitivity, and uniformity, and can be applied to a high magnetic field apparatus. And It is another object of the present invention to provide an MRI apparatus having an open structure suitable for IVR and capable of obtaining a good image.

上記目的を達成する本発明の高周波コイルは、リング状導体と、このリング状導体の内側を放射状に接続した複数の直線導体と、リング状導体あるいは直線導体に接続又は分布された複数のキャパシタンスとを備えている。   The high-frequency coil of the present invention that achieves the above object includes a ring-shaped conductor, a plurality of linear conductors radially connecting the inside of the ring-shaped conductor, and a plurality of capacitances connected or distributed to the ring-shaped conductor or the linear conductor. It has.

本発明の高周波コイルにおいて、リング状導体或いは直線導体に接続又は分布されるキャパシタンスとは、コンデンサ等の素子によるキャパシタンスのみならず、導体自体のキャパシタンスをも含む概念であり、導体自体のキャパシタンスを含むキャパシタンスが、リング状導体を流れる高周波電流の1波長と波長整合するように調整されているものとする。従って導体自体のキャパシタンスのみによって波長整合されている場合には、必ずしも素子を挿入しなくてもよい。またキャパシタンス素子を接続する場合、リング状導体でも直線導体でも、またその両方であってもよいが、発生する磁場の均一度の点からはリング状導体に接続することが好ましい。   In the high-frequency coil of the present invention, the capacitance connected or distributed to the ring-shaped conductor or the straight conductor is a concept including not only the capacitance due to an element such as a capacitor but also the capacitance of the conductor itself, and includes the capacitance of the conductor itself. It is assumed that the capacitance is adjusted to be wavelength-matched with one wavelength of the high-frequency current flowing through the ring-shaped conductor. Therefore, when wavelength matching is performed only by the capacitance of the conductor itself, it is not always necessary to insert an element. When connecting the capacitance element, it may be a ring-shaped conductor, a straight conductor, or both, but it is preferable to connect to the ring-shaped conductor from the viewpoint of the uniformity of the generated magnetic field.

この高周波コイルでは、直線導体に流れる電流によって横方向の磁場を生じる。この場合、リング状導体がそれを流れる高周波電流と波長整合していることにより、リング状導体に1波長に相当する電流分布を生じ、ある瞬間には一方向の電流が流れる。この電流分布は高周波電流の位相の変化に伴い、変化するので、これにより放射線状の直線導体に順次電流が流れることになる。従って高周波コイルの面と平行な回転磁場が発生する。同様にコイル面と平行な回転磁場を検出できる。従ってオープン構造の垂直磁場方式のMRI装置において被検体の開放を妨げることなく配置され、水平回転磁場を発生し或いは検出することができる。   In this high frequency coil, a transverse magnetic field is generated by the current flowing through the straight conductor. In this case, the ring-shaped conductor is wavelength-matched with the high-frequency current flowing therethrough, so that a current distribution corresponding to one wavelength is generated in the ring-shaped conductor, and a current in one direction flows at a certain moment. Since this current distribution changes as the phase of the high-frequency current changes, this causes current to flow sequentially through the radial linear conductor. Therefore, a rotating magnetic field parallel to the surface of the high frequency coil is generated. Similarly, a rotating magnetic field parallel to the coil surface can be detected. Therefore, in an MRI apparatus having an open structure and a vertical magnetic field method, the MRI apparatus is arranged without hindering the opening of the subject, and a horizontal rotating magnetic field can be generated or detected.

本発明の高周波コイルは、好適にはリング状導体の少なくとも2ヵ所に入力及び/又は出力端子を有し、1つのコイルで直交照射コイルあるいは直交受信コイルを構成する。これによりコイルの厚さを増すことなく直交化し、照射効率或いは検出効率を高めることができる。   The high-frequency coil of the present invention preferably has input and / or output terminals at at least two locations of the ring-shaped conductor, and one coil constitutes an orthogonal irradiation coil or an orthogonal reception coil. Thereby, it can orthogonalize without increasing the thickness of a coil, and can improve irradiation efficiency or detection efficiency.

本発明の高周波コイルは、MRI装置の照射コイルとして、受信コイルとして或いはその両方として、また照射兼受信コイルとして用いることができる。   The high-frequency coil of the present invention can be used as an irradiation coil of an MRI apparatus, as a reception coil or both, and as an irradiation and reception coil.

MRI装置としては垂直磁場方式、水平磁場方式のいずれであってもよく、いずれの場合にも静磁場方向に対し垂直な面上に配置される。照射コイル或いは照射兼受信コイルとして本発明の高周波コイルを備える場合には、2個のコイルを被検体を挟んで対向した位置であって、両コイルによって形成される磁場方向が一致するように配置すること好適である。特に上下に磁石及び平面状の傾斜磁場コイルを配置したオープン構造の垂直磁場方式のMRI装置において、傾斜磁場コイルに近接して配置することが好適である。   The MRI apparatus may be either a vertical magnetic field system or a horizontal magnetic field system, and in any case, the MRI apparatus is disposed on a plane perpendicular to the static magnetic field direction. When the high-frequency coil according to the present invention is provided as an irradiation coil or an irradiation / reception coil, the two coils are positioned opposite to each other with the subject interposed therebetween, and are arranged so that the magnetic field directions formed by both coils coincide. It is suitable to do. In particular, in an open structure vertical magnetic field type MRI apparatus in which a magnet and a planar gradient magnetic field coil are disposed above and below, it is preferable to dispose the magnetic field coil close to the gradient magnetic field coil.

また本発明の好適な態様では、平面状高周波コイルはその2ヵ所に端子を設け、1つのコイルで直交照射コイルあるいは直交受信コイルを構成する。1つのコイルで直交コイルを構成できるので、厚さを増加することなく、即ち広い空間を提供し、しかも照射効率或いは検出効率の高い直交コイルとすることができる。   In a preferred aspect of the present invention, the planar high-frequency coil is provided with terminals at two locations, and one coil constitutes an orthogonal irradiation coil or an orthogonal reception coil. Since the orthogonal coil can be configured by one coil, the orthogonal coil can be provided without increasing the thickness, that is, providing a wide space and having high irradiation efficiency or detection efficiency.

本発明による高周波コイルの実施例を図面を参照して説明する。   Embodiments of a high frequency coil according to the present invention will be described with reference to the drawings.

図1はMRI装置用照射コイルの1実施例を示す図で、この照射コイル10は、リング状導体1とその内側に放射線状に接続された8本の直線導体2とからなる平面形状のコイルで、リング状導体1を8分割するように共振容量(キャパシタンス)3が8個挿入され、1箇所の共振容量3の両端に入力端子4が接続されている。   FIG. 1 is a view showing an embodiment of an irradiation coil for an MRI apparatus. This irradiation coil 10 is a planar coil comprising a ring-shaped conductor 1 and eight linear conductors 2 connected radially inside the ring-shaped conductor 1. Thus, eight resonance capacitors (capacitances) 3 are inserted so that the ring-shaped conductor 1 is divided into eight, and the input terminals 4 are connected to both ends of the resonance capacitor 3 at one location.

このような照射コイルにおいて、水平回転磁束を発生する原理について図2を用いて説明する。図中、a〜hはリング状導体1と直線導体2の8ヵ所の接合点を示す。図2(a)は、図1の平面照射コイル10のリング状導体1を切り離して開いた状態で表現した回路であり、共振容量3と直線導体2のインダクタンスとがハシゴ型回路を構成している。入力端子4から入力された高周波電流はリング状導体1の遅延特性によって特定の電流分布を示す。この電流分布は共振容量3を調整することにより、リング状導体1にちょうど1波長分の電流分布(同図(b))を形成するようにすることができ、本発明の照射コイルではこのような調整がなされている。   The principle of generating a horizontal rotating magnetic flux in such an irradiation coil will be described with reference to FIG. In the figure, a to h indicate eight junction points of the ring-shaped conductor 1 and the straight conductor 2. FIG. 2A is a circuit expressed in a state where the ring-shaped conductor 1 of the planar irradiation coil 10 of FIG. 1 is separated and opened, and the resonance capacitor 3 and the inductance of the linear conductor 2 constitute a ladder-type circuit. Yes. The high-frequency current input from the input terminal 4 shows a specific current distribution due to the delay characteristic of the ring-shaped conductor 1. By adjusting the resonance capacitance 3, this current distribution can be formed so that a current distribution corresponding to one wavelength (FIG. 5B) is formed in the ring-shaped conductor 1, and this is the case with the irradiation coil of the present invention. Adjustments have been made.

電流分布は入力された高周波電流に従って刻々と変化し、リング状導体1上に電流密度変化を生じさせる。今、図のような電流分布が生じている瞬間を考えると、接合点aと接合点eの電流密度が最も高く逆極性であることからa−e間の直線導体2に大きく電流iが流れることが解る(同図(c))。また、接合点bと接合点dは電流密度が等しく逆極性であり、同様に接合点hと接合点fは電流密度が等しく逆極性であるため、b−d間とh−f間にも電流iが流れるが、接合点c、gには電流密度がないため、電流は流れない。   The current distribution changes momentarily according to the input high-frequency current, causing a change in current density on the ring-shaped conductor 1. Considering the moment when the current distribution as shown in the figure occurs, since the current density at the junction point a and the junction point e is the highest and has a reverse polarity, a large current i flows through the straight conductor 2 between a and e. This is understood ((c) in the figure). Further, since the junction point b and the junction point d have the same current density and the opposite polarity, and similarly, the junction point h and the junction point f have the same current density and the opposite polarity, and therefore, between the points b-d and h-f. Although current i flows, no current flows because there is no current density at junctions c and g.

従って、平面コイル全体として見た場合には、同図(d)に示すように点aから点eに向かって電流iが流れることになり、平面照射コイルの上下に水平磁束Bが生じる。この電流iの向きはリング状導体1の電流密度変化に従って変わり、その結果水平磁束Bは回転することになる。   Therefore, when viewed as the entire planar coil, current i flows from point a to point e as shown in FIG. 4D, and horizontal magnetic flux B is generated above and below the planar irradiation coil. The direction of the current i changes according to the change in the current density of the ring-shaped conductor 1, and as a result, the horizontal magnetic flux B rotates.

以上、照射コイルとしての動作を説明したが、受信コイルとしての動作も相反定理により同様であり、水平磁束Bによって直線導体に電流iが誘導されることにより水平磁束Bを検出する。この電流の向きが変化することにより、回転磁界を検出することができる。   Although the operation as the irradiation coil has been described above, the operation as the reception coil is the same by the reciprocity theorem, and the horizontal magnetic flux B is detected when the current i is induced in the linear conductor by the horizontal magnetic flux B. A rotating magnetic field can be detected by changing the direction of the current.

このような構成の高周波コイルは高磁場装置に好適に採用でき、例えば静磁場強度1.5テスラの高磁場装置では、共振周波数64MHz程度、波長4.7m程度であり、直径1m程度の実用的な高周波コイルを構成することができる。   The high-frequency coil having such a configuration can be suitably used for a high magnetic field device. For example, in a high magnetic field device having a static magnetic field strength of 1.5 Tesla, a resonant frequency of about 64 MHz, a wavelength of about 4.7 m, and a practical diameter having a diameter of about 1 m. A high-frequency coil can be configured.

本高周波コイルを低磁場装置に適用する場合、使用周波数が低くなるため、コイルの大きさによってはリング状導体1に1波長分の電流分布を形成することが困難である。その場合には、リング状導体1あるいは直線導体2にインダクタンスを挿入し、遅延量を調整することにより実用的な大きさのコイルを構成することが可能である。   When this high-frequency coil is applied to a low magnetic field device, the frequency used is low, and it is difficult to form a current distribution for one wavelength in the ring-shaped conductor 1 depending on the size of the coil. In that case, it is possible to configure a practically sized coil by inserting inductance into the ring-shaped conductor 1 or the straight conductor 2 and adjusting the delay amount.

本発明の高周波コイルは、適用されるMRI装置の性能や用途等によって種々の変更が可能であり、例えば、図示する例ではリング状導体1に共振容量3を挿入しているが、これは直線導体2に挿入してもよい。また直線導体の数は、図示するような8本に限らず、それより多くても少なくてもよく、直線導体の数を増やすことにより照射の均一度を向上できる。   The high-frequency coil of the present invention can be variously modified depending on the performance and application of the applied MRI apparatus. For example, in the illustrated example, the resonance capacitor 3 is inserted into the ring-shaped conductor 1, but this is a straight line. It may be inserted into the conductor 2. Further, the number of linear conductors is not limited to eight as shown in the figure, but may be more or less, and the uniformity of irradiation can be improved by increasing the number of linear conductors.

図3に本発明の高周波コイルの他の実施例を示す。図3(a)は図1の高周波コイルを直交コイル10'として構成した実施例を示し、この高周波コイル10'はリング状導体1の2ヵ所、90度をなす位置に入力端子4a、4bが設けられている。この高周波コイルを照射コイルとして用いる場合には、これら入力端子4a、4bから90度位相の異なった照射パルス(高周波電流i、i’)を入力する。リング状導体1は1波長に整合が取れているため、入力端子4aから見た場合、それと90度位置(図2、接合点c)には電流分布が生じない。従って、この位置から照射パルスを入力しても2つの入力が互いに干渉することはなく、あたかも2つの照射コイルのように動作することができる。   FIG. 3 shows another embodiment of the high frequency coil of the present invention. FIG. 3 (a) shows an embodiment in which the high frequency coil of FIG. 1 is configured as an orthogonal coil 10 '. The high frequency coil 10' has two terminals of the ring-shaped conductor 1 at positions of 90 degrees with input terminals 4a and 4b. Is provided. When this high-frequency coil is used as an irradiation coil, irradiation pulses (high-frequency currents i and i ') having a phase difference of 90 degrees are input from these input terminals 4a and 4b. Since the ring-shaped conductor 1 is matched to one wavelength, when viewed from the input terminal 4a, no current distribution is generated at the 90 ° position (FIG. 2, junction point c). Therefore, even if an irradiation pulse is input from this position, the two inputs do not interfere with each other, and can operate as if they were two irradiation coils.

このように直交状態に配置された2つの照射コイルを使用することにより、必要な強度の照射パルスを得るのにパワーアンプの出力を半減することができる。また従来の直交照射方式では2つの照射コイルを必要としたのに対し、1つのコイルで直交照射コイルを構成できるので、照射コイルの厚さを抑え、撮像空間を圧迫しないというメリットもある。   By using two irradiation coils arranged in an orthogonal state in this way, the output of the power amplifier can be halved to obtain an irradiation pulse with a required intensity. Further, in contrast to the conventional orthogonal irradiation method that requires two irradiation coils, since the orthogonal irradiation coil can be configured by one coil, there is an advantage that the thickness of the irradiation coil is suppressed and the imaging space is not compressed.

この直交コイルは、端子4a、4bを出力端子とすることによりMRI装置の受信コイルとしても適用でき、検出効率を向上することができる。   This orthogonal coil can also be applied as a receiving coil of an MRI apparatus by using the terminals 4a and 4b as output terminals, and the detection efficiency can be improved.

尚、このように本発明の高周波コイルを直交コイルとして用いる場合には、直線導体の数は2組の端子の角度に対応して所定の数とする必要がある。例えば2つの入力端子を90度の角度で設ける場合には、4の倍数、例えば8本ないしは12本が適当である。   In addition, when using the high frequency coil of this invention as an orthogonal coil in this way, it is necessary to make the number of straight conductors into a predetermined number corresponding to the angle of two sets of terminals. For example, when two input terminals are provided at an angle of 90 degrees, a multiple of 4, for example, 8 or 12 is appropriate.

図3(b)は、本発明の高周波コイル10”の他の実施例を示す図で、この高周波コイルは中央にリング5を挿入したものである。既に述べたように直線導体2の本数は多いほど照射パルスの均一性が向上すると考えられるが、照射磁界強度は直線導体の集まる平面照射コイルの中心付近で高くなる。この高周波コイル10”では中心リング5を挿入することにより、中心付近において磁界強度が高くなることを低減できる。中心リング5を挿入した場合にも、コイルの動作原理は図1の高周波コイルと全く同様である。   FIG. 3 (b) is a diagram showing another embodiment of the high-frequency coil 10 ″ of the present invention, in which this high-frequency coil has a ring 5 inserted in the center. As already described, the number of the linear conductors 2 is as follows. It is considered that the uniformity of the irradiation pulse increases as the number increases, but the intensity of the irradiation magnetic field increases near the center of the planar irradiation coil where the linear conductors gather. In this high frequency coil 10 ″, by inserting the center ring 5, It can reduce that magnetic field intensity becomes high. Even when the center ring 5 is inserted, the operating principle of the coil is exactly the same as that of the high-frequency coil of FIG.

次に上述した高周波コイルを組込んだ本発明のMRI装置について説明する。
図4は垂直磁場方式のMRI装置の全体構成概略を示すブロック図で、このMRI装置は、主として被検体14の置かれる測定空間に静磁場を発生する磁場発生装置11、静磁場に重畳される傾斜磁場を発生する傾斜磁場コイル12、被検体14に高周波磁場を照射する照射コイル10、被検体14から発生する核磁気共鳴(NMR)信号を受信する受信コイル13、被検体14を寝かせて測定空間に搬送するためのベッド15、これらを制御するためのMRIユニット16及び表示装置17より構成される。
Next, the MRI apparatus of the present invention incorporating the above-described high frequency coil will be described.
FIG. 4 is a block diagram showing an overall configuration outline of a vertical magnetic field type MRI apparatus. This MRI apparatus is superposed on a magnetic field generator 11 that generates a static magnetic field mainly in a measurement space where a subject 14 is placed, and the static magnetic field. Gradient magnetic field coil 12 that generates a gradient magnetic field, irradiation coil 10 that irradiates a subject 14 with a high-frequency magnetic field, receiving coil 13 that receives a nuclear magnetic resonance (NMR) signal generated from the subject 14, and subject 14 that are laid down It comprises a bed 15 for transporting to a space, an MRI unit 16 for controlling these, and a display device 17.

MRIユニット15は、撮像における種々のパルスシーケンスをコントロールする制御装置18、制御装置18のコントロールに従って照射コイル10により被検体14にスピン励起のための高周波パルスを照射する高周波装置19、傾斜磁場電源20及び受信コイル17で検出し、高周波装置19で収集した信号データに画像再構成演算等を行なう画像データ演算装置21により構成される。表示装置17は演算装置21で得られたMRI画像を表示する。   The MRI unit 15 includes a control device 18 for controlling various pulse sequences in imaging, a high-frequency device 19 for irradiating a subject 14 with a high-frequency pulse for spin excitation by an irradiation coil 10 according to the control of the control device 18, a gradient magnetic field power supply 20 And an image data calculation device 21 that performs image reconstruction calculation and the like on the signal data detected by the receiving coil 17 and collected by the high frequency device 19. The display device 17 displays the MRI image obtained by the arithmetic device 21.

磁場発生装置11は、被検体14の周りのある広がりをもった空間に垂直に強く均一な静磁場を発生させるもので、永久磁石方式あるいは超電導方式等の磁場発生手段からなり、術者や操作者が被検体の近くで生検等の処置を施すことができるようにオープン構造になっている。   The magnetic field generator 11 generates a strong and uniform static magnetic field perpendicular to a space around the subject 14, and includes a magnetic field generating means such as a permanent magnet system or a superconducting system. It has an open structure so that a person can perform a procedure such as biopsy near the subject.

傾斜磁場コイル12は、X、Y、Zの3軸方向のコイルをそれぞれ平板状にして組合せたもので、上下の磁場発生手段11に近接して3組配置されている。これら傾斜磁場コイル12は、制御装置18に制御される傾斜磁場電源20の出力電流によって被検体14の周りに必要な傾斜磁場空間を形成し、NMR信号に位置情報を与える。   The gradient magnetic field coils 12 are obtained by combining three coils in the X, Y, and Z directions in a flat plate shape, and three sets of gradient magnetic field coils 12 are arranged close to the upper and lower magnetic field generating means 11. These gradient magnetic field coils 12 form a necessary gradient magnetic field space around the subject 14 by the output current of the gradient magnetic field power source 20 controlled by the control device 18, and give position information to the NMR signal.

受信コイル13は、この実施例では検査部位(ここでは頭部)に応じた形状のコイルで検査に際して被検体14に装着される。   In this embodiment, the receiving coil 13 is a coil having a shape corresponding to the examination site (here, the head) and is attached to the subject 14 during examination.

照射コイル10は、図1に示すようなリング状導体と放射線状の直線導体とからなる平面コイルで、図5に示すように2つの平面照射コイル10a、10bを磁場発生装置11内の磁場空間上下に対向して配置し、照射コイル10を構成する。このとき、上下の平面照射コイル10a、10bの入力端子4を互いに逆接続するか、あるいは入力する高周波パルスの位相を180度ずらして与える。これにより、上下のコイルの対応する直線導体2に大きさが同一で逆向きの電流iが流れ、照射コイル10の中心付近にそれぞれの電流によって同じ向きの磁束Bが生じる。既に述べたように入力された高周波電流により次々に電流の流れる直線導体2が変化することにより、それに伴い発生磁束Bの向きも変化し、磁場空間にスピンを励起するのに必要な水平の回転磁界を得ることができる。   The irradiation coil 10 is a planar coil composed of a ring-shaped conductor and a radial linear conductor as shown in FIG. 1, and two planar irradiation coils 10a and 10b are connected to a magnetic field space in the magnetic field generator 11 as shown in FIG. The irradiation coil 10 is configured so as to face the upper and lower sides. At this time, the input terminals 4 of the upper and lower planar irradiation coils 10a and 10b are reversely connected to each other, or the phase of the input high frequency pulse is shifted by 180 degrees. As a result, currents i of the same magnitude and opposite directions flow in the corresponding linear conductors 2 of the upper and lower coils, and magnetic fluxes B in the same direction are generated near the center of the irradiation coil 10 by the respective currents. As described above, the direction of the generated magnetic flux B changes along with the change of the linear conductor 2 through which the current flows one after another by the input high-frequency current, and the horizontal rotation necessary to excite the spin in the magnetic field space. A magnetic field can be obtained.

尚、図示していないが、この照射コイルには、受信コイルとの干渉を避けるために受信動作中はコイルループがオープンとなるようなデカップリング回路が付加されている。デカップリング回路はピンダイオードなどの高周波スイッチング素子をコイルループに直列に接続し、スイッチング電流を制御することによって実現できる。この場合、すべてのリング状導体と直線導体により作られるループに、このデカップリング回路を付加する必要がある。   Although not shown, a decoupling circuit is added to the irradiation coil so that the coil loop is open during the receiving operation in order to avoid interference with the receiving coil. The decoupling circuit can be realized by connecting a high-frequency switching element such as a pin diode in series with the coil loop and controlling the switching current. In this case, it is necessary to add this decoupling circuit to a loop formed by all ring-shaped conductors and straight conductors.

このように垂直磁場方式のMRI装置の照射コイルとして本発明の平面コイルを用いたことにより、オープン構造のMRI装置とすることができ、しかも高効率且つ均一性よく高周波パルスの照射を行えるので良好な画像を得ることができる。   As described above, by using the planar coil of the present invention as the irradiation coil of the vertical magnetic field type MRI apparatus, an open structure MRI apparatus can be obtained, and high-frequency pulse irradiation can be performed with high efficiency and uniformity. Can be obtained.

照射コイルとしては、図1に示す1つの入力端子4を設けた高周波コイルの他、本発明の高周波コイルの種々の変更例を採用することができる。例えば、照射コイルの照射効率の向上には直交照射方式が有効であり、このためには図3(a)に示すようにリング状導体1の2ヵ所に入力端子4a、4bを設けた高周波コイルを用い、これら入力端子4a、4bから90度位相の異なった照射パルス(高周波電流)を入力する。これにより1つのコイルで直交照射方式を実現でき、少ない照射パワーアンプの出力で効率良く回転磁場を照射することができる。   As the irradiation coil, in addition to the high-frequency coil provided with one input terminal 4 shown in FIG. 1, various modifications of the high-frequency coil of the present invention can be adopted. For example, the orthogonal irradiation method is effective for improving the irradiation efficiency of the irradiation coil, and for this purpose, as shown in FIG. 3A, a high-frequency coil provided with input terminals 4a and 4b at two locations on the ring-shaped conductor 1 Are used to input irradiation pulses (high-frequency current) having a phase difference of 90 degrees from these input terminals 4a and 4b. Accordingly, the orthogonal irradiation method can be realized with one coil, and the rotating magnetic field can be efficiently irradiated with a small output of the irradiation power amplifier.

また照射均一性を向上させるためには、直線導体数の多い高周波コイルを採用してもよい。この場合、照射磁界強度がコイル中央で高くなるのを低減するために図3(b)に示すように中心リング5を挿入した照射コイルを用いることが有効である。   In order to improve the irradiation uniformity, a high frequency coil having a large number of linear conductors may be employed. In this case, in order to reduce the intensity of the irradiation magnetic field at the center of the coil, it is effective to use an irradiation coil in which the center ring 5 is inserted as shown in FIG.

更に低磁場装置の場合には、リング状導体や直線導体に共振容量だけでなく、インダクタンスを付加することにより波長整合をとった高周波コイルを用いる。これにより比較的周波数の低い低磁場装置であっても、実用的な大きさの高周波コイルを組込むことができ、上述した実施例と同様の効果を得ることができる。   Further, in the case of a low magnetic field device, a high-frequency coil is used in which wavelength matching is achieved by adding not only a resonance capacity but also an inductance to a ring-shaped conductor or a straight conductor. Thereby, even a low magnetic field device having a relatively low frequency can incorporate a high-frequency coil having a practical size, and the same effect as the above-described embodiment can be obtained.

以上、本発明による平面コイルの構成及びそれを組込んだMRI装置について説明したが、本発明による平面コイルはMRI装置の受信コイルとしても適用することができる。この応用例を図6に示す。   The configuration of the planar coil according to the present invention and the MRI apparatus incorporating the planar coil according to the present invention have been described above. However, the planar coil according to the present invention can also be applied as a receiving coil of the MRI apparatus. An example of this application is shown in FIG.

本発明の平面コイルは、相反定理により、図2(d)に示す磁界Bによってそれと直交する直線導体に電流iが誘導されることにより磁界Bを検出する。NMR信号は静磁場と垂直な面内の回転磁場として検出されるので、本発明の平面コイルを受信コイルとして用いる場合は、信号回転面と平行な面であって被検体近傍に設置する。例えば、図6(a)は垂直磁場方式のMRI装置の場合で、この場合には平面受信コイル6を被検体の関心領域(ここでは頭部)の下側或いは上側に水平に設置する。また同図(b)は水平磁場方式のMRI装置の場合で、この場合には信号回転面は垂直となるので、頭頂部位置等に垂直に設置する。同図(c)は、装置例は少ないが、横磁場方式MRI装置の場合で、被検体14の左右位置に設置して使用できる。   According to the reciprocity theorem, the planar coil of the present invention detects the magnetic field B when the current i is induced in a linear conductor orthogonal to the magnetic field B shown in FIG. Since the NMR signal is detected as a rotating magnetic field in a plane perpendicular to the static magnetic field, when the planar coil of the present invention is used as a receiving coil, it is installed in the vicinity of the subject and is parallel to the signal rotating surface. For example, FIG. 6A shows a case of a vertical magnetic field type MRI apparatus. In this case, the planar receiving coil 6 is installed horizontally below or above the region of interest (here, the head) of the subject. FIG. 6B shows a horizontal magnetic field type MRI apparatus. In this case, since the signal rotation plane is vertical, it is installed perpendicularly to the position of the top of the head or the like. FIG. 6C shows a few examples of the apparatus, but in the case of a transverse magnetic field type MRI apparatus, it can be used at the left and right positions of the subject 14.

図6からも分かるように本発明の平面受信コイル6は、被検体の関心領域を覆わない形状であるので、被検体に閉塞感を与えることなく、またIVR等における処置を容易に行うことができる。   As can be seen from FIG. 6, the planar receiving coil 6 of the present invention has a shape that does not cover the region of interest of the subject, so that it is possible to easily perform treatment in IVR or the like without giving the subject a feeling of blockage. it can.

また本発明の平面コイルを受信コイルとして用いる場合も、2つの出力端子を90度位置に設けたものを使用することにより、1つのコイルで直交受信コイルを構成できるので検出効率を高めることができ、また従来のコイルのように、2つのコイルを互いに検出方向を直交させて重ねて配置する必要がないので、撮像空間を広く確保できる。   In addition, when the planar coil of the present invention is used as a receiving coil, the use of two output terminals provided at a 90-degree position makes it possible to increase the detection efficiency because an orthogonal receiving coil can be configured with one coil. Further, unlike the conventional coil, it is not necessary to arrange the two coils with their detection directions orthogonal to each other, so that a wide imaging space can be secured.

以上述べたように本発明によれば、平面形状であってしかも照射/受信効率のよい高周波コイルを構成できるので、撮像空間の開放を妨げることがなく、被検体へのアクセスが容易で広範囲な臨床応用を可能とする高性能なMRI装置を提供できる。   As described above, according to the present invention, since a high-frequency coil having a planar shape and high irradiation / reception efficiency can be configured, it is easy to access a wide range of subjects without obstructing the opening of the imaging space. A high-performance MRI apparatus capable of clinical application can be provided.

本発明による高周波コイルの一実施例を示す構成図。The block diagram which shows one Example of the high frequency coil by this invention. 本発明による照射コイルの原理を説明する図。The figure explaining the principle of the irradiation coil by this invention. (a)及び(b)はそれぞれ本発明による高周波コイルの一実施例を示す構成図。(A) And (b) is a block diagram which shows one Example of the high frequency coil by this invention, respectively. 本発明が適用されるMRI装置の構成図。The block diagram of the MRI apparatus with which this invention is applied. MRI装置における照射コイルの配置を説明する図。The figure explaining arrangement | positioning of the irradiation coil in an MRI apparatus. 本発明による受信コイルの配置を説明する図。The figure explaining arrangement | positioning of the receiving coil by this invention. (a)は従来の平面コイル及びその感度分布を示す図、(b)は従来の平面コイルを直交コイルとして用いた場合を示す図。(A) is a figure which shows the conventional planar coil and its sensitivity distribution, (b) is a figure which shows the case where the conventional planar coil is used as an orthogonal coil.

符号の説明Explanation of symbols

1・・・・・・リング状導体
2・・・・・・直線導体
3・・・・・・共振容量
4、4a、4b・・・・・・入力端子
5・・・・・・中心リング
6・・・・・・平面受信コイル
10、10a、10b・・・・・・照射コイル
10'、10"・・・・・・照射コイル
11・・・・・・磁場発生装置(磁気回路)
12・・・・・・傾斜磁場コイル
21・・・・・・演算装置(画像再構成手段)
DESCRIPTION OF SYMBOLS 1 ... Ring-shaped conductor 2 ... Linear conductor 3 ... Resonance capacity 4, 4a, 4b ... Input terminal 5 ... Center ring 6 ・ ・ ・ ・ ・ ・ Planar receiving coil
10, 10a, 10b ... Irradiation coil
10 ', 10 "... irradiation coil
11 .... Magnetic field generator (magnetic circuit)
12 ・ ・ ・ ・ ・ ・ Gradient magnetic field coil
21 ・ ・ ・ ・ ・ ・ Calculation device (Image reconstruction means)

Claims (6)

磁気共鳴イメージング装置において被検体に高周波磁場を照射し及び/又は前記被検体から発生する磁気共鳴信号を検出する高周波コイルであって、
リング状導体と、このリング状導体の内側を放射状に接続した複数の直線導体と、前記リング導体あるいは直線導体に接続又は分布された複数のキャパシタンスとを備えたことを特徴とする平面状の高周波コイル。
A high frequency coil that irradiates a subject with a high frequency magnetic field and / or detects a magnetic resonance signal generated from the subject in a magnetic resonance imaging apparatus,
A planar high-frequency device comprising: a ring-shaped conductor; a plurality of linear conductors radially connected to the inside of the ring-shaped conductor; and a plurality of capacitances connected to or distributed on the ring conductor or the linear conductor. coil.
前記キャパシタンスは、前記リング状導体を流れる高周波電流の1波長と整合するように調整されていることを特徴とする請求項1記載の高周波コイル。   2. The high frequency coil according to claim 1, wherein the capacitance is adjusted so as to match one wavelength of a high frequency current flowing through the ring-shaped conductor. 前記リング状導体の少なくとも2箇所に信号入力手段及び/又は信号出力手段を有することを特徴とする請求項1記載の高周波コイル。   2. The high frequency coil according to claim 1, further comprising signal input means and / or signal output means in at least two places of the ring-shaped conductor. 被検体に静磁場を与える磁気回路と、前記被検体に傾斜磁場を印加する傾斜磁場コイルと、前記被検体を構成する原子の原子核に磁気共鳴を起こさせる高周波パルスを印加する照射コイルと、前記被検体から発生する磁気共鳴信号を検出する受信コイルと、検出された磁気共鳴信号を使って画像を再構成する画像再構成手段とを備えた磁気共鳴イメージング装置において、
前記照射コイル及び/又は受信コイルが、請求項1ないし3いずれか1項記載の平面状の高周波コイルであって前記磁気回路の形成する磁場と垂直となる面に配置されていることを特徴とする磁気共鳴イメージング装置。
A magnetic circuit for applying a static magnetic field to the subject, a gradient magnetic field coil for applying a gradient magnetic field to the subject, an irradiation coil for applying a high-frequency pulse for causing magnetic resonance in atomic nuclei constituting the subject, In a magnetic resonance imaging apparatus comprising a receiving coil for detecting a magnetic resonance signal generated from a subject, and an image reconstruction means for reconstructing an image using the detected magnetic resonance signal,
The said irradiation coil and / or receiving coil are the planar high frequency coils of any one of Claim 1 thru | or 3, Comprising: It is arrange | positioned on the surface perpendicular | vertical to the magnetic field which the said magnetic circuit forms, It is characterized by the above-mentioned. Magnetic resonance imaging device.
2つの前記平面状の高周波コイルを、前記被検体を挟んで対向した位置に配置したことを特徴とする請求項4記載の磁気共鳴イメージング装置。   The magnetic resonance imaging apparatus according to claim 4, wherein the two planar high-frequency coils are arranged at positions facing each other with the subject interposed therebetween. 前記平面状高周波コイルの2個所に信号の入出力手段を設け、1つのコイルで直交照射コイルあるいは直交受信コイルを構成したことを特徴とした請求項4又は5記載の磁気共鳴イメージング装置。   6. The magnetic resonance imaging apparatus according to claim 4, wherein signal input / output means are provided at two locations of the planar high-frequency coil, and an orthogonal irradiation coil or an orthogonal reception coil is constituted by one coil.
JP2006190509A 2006-07-11 2006-07-11 High-frequency coil and magnetic resonance imaging apparatus using the same Pending JP2006272004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006190509A JP2006272004A (en) 2006-07-11 2006-07-11 High-frequency coil and magnetic resonance imaging apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006190509A JP2006272004A (en) 2006-07-11 2006-07-11 High-frequency coil and magnetic resonance imaging apparatus using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9165877A Division JPH119570A (en) 1997-06-23 1997-06-23 High frequency coil and magnetic resonance imaging apparatus using the same

Publications (1)

Publication Number Publication Date
JP2006272004A true JP2006272004A (en) 2006-10-12

Family

ID=37207269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006190509A Pending JP2006272004A (en) 2006-07-11 2006-07-11 High-frequency coil and magnetic resonance imaging apparatus using the same

Country Status (1)

Country Link
JP (1) JP2006272004A (en)

Similar Documents

Publication Publication Date Title
JP4749417B2 (en) Inspection apparatus using magnetic resonance and coil for receiving nuclear magnetic resonance signal
JP5675921B2 (en) High frequency coil and magnetic resonance imaging apparatus using the same
JP5547724B2 (en) Inductive power transmission system
US4799016A (en) Dual frequency NMR surface coil
JP4733177B2 (en) Magnetic resonance imaging apparatus and RF coil for magnetic resonance imaging apparatus
US10031198B2 (en) Methods and systems for a dual wind gradient coil
JPH06504622A (en) High frequency volume resonator for nuclear magnetic resonance
JPH03188828A (en) Surface resonator for nuclear magnetic resonance tomographic equipment
JP2004000592A (en) Method and device for minimizing coupling of inclined coil and rf coil
JPH06500631A (en) High frequency volume resonator for nuclear magnetic resonance
US6297636B1 (en) RF coil, RF magnetic field generating apparatus and magnetic resonance imaging method and apparatus
JP2006314796A (en) Three concentric coil array
US20210356536A1 (en) Arrangement allowing the performance of both magnetic particle imaging and magnetic resonance imaging and a device comprising this arrangement
US8358132B2 (en) Irradiating coil and magnetic resonance imaging apparatus using the same
US6320383B1 (en) RF coil, RF magnetic field generating apparatus and magnetic resonance imaging method and apparatus
KR101856376B1 (en) Multi- channel Helmholtz coil for magnetic resonance imaging and magnetic resonance imaging system
JPS62207446A (en) Examination apparatus using nuclear magnetic resonance
JPH119570A (en) High frequency coil and magnetic resonance imaging apparatus using the same
JP2006272004A (en) High-frequency coil and magnetic resonance imaging apparatus using the same
JP2008119357A (en) Rf coil for mri apparatus, method of usage of rf coil for mri apparatus, and mri apparatus
Obungoloch Development of ultra low field magnetic resonance imaging for diagnosis of hydrocephalus in developing countries
KR20160002548A (en) RF(radio frequency) coil for magnetic resonance imaging and magnetic resonance imaging system
JP2002224082A (en) Magnetic resonance imaging device
JP7267816B2 (en) MAGNETIC RESONANCE IMAGING DEVICE, RF COIL, AND MAGNETIC RESONANCE IMAGING METHOD
Sun Radio-frequency Transmit Coils and Imaging Techniques for TRASE MRI

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701