JP2006271074A - Uninterruptible power supply system - Google Patents

Uninterruptible power supply system Download PDF

Info

Publication number
JP2006271074A
JP2006271074A JP2005083841A JP2005083841A JP2006271074A JP 2006271074 A JP2006271074 A JP 2006271074A JP 2005083841 A JP2005083841 A JP 2005083841A JP 2005083841 A JP2005083841 A JP 2005083841A JP 2006271074 A JP2006271074 A JP 2006271074A
Authority
JP
Japan
Prior art keywords
ups
power supply
service
power
backup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005083841A
Other languages
Japanese (ja)
Inventor
Atsushi Otsuka
淳 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2005083841A priority Critical patent/JP2006271074A/en
Publication of JP2006271074A publication Critical patent/JP2006271074A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a common reserved uninterruptible power supply system, capable of extending blackout backup time, if blackout occurs in a commercial power supply during normal operation. <P>SOLUTION: This power supply system is composed of: a forward converter for converting AC of the commercial power supply into DC; a reverse converter which converts a DC output of the electronic power rectifier to AC again; an energy-storing part for supplying the DC power to the reverse converter during blackout of the commercial power supply; a plurality of working UPS1A, 1B, having a bypass switching circuit for continuing load feed by the commercial power supply or another power supply; one reserved UPS1C formed out of the same structure as the working UPS and having a first switching device for continuing the load feed, when one of the working UPSs is stopped, because of failure or inspection; and a second switching device, which can feed the output of a reserved UPS1C to the input of the plurality of working UPS1A, 1B, if a blackout occurs in the commercial power supply. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、無停電電源システムに係り、特に停電時のバッアップ電源として、常時負荷に給電する複数台の常用無停電電源装置とこれらの常用無停電電源装置のバックアップ用として構成された予備用無停電電源装置から成る共通予備無停電電源システムに関する。   The present invention relates to an uninterruptible power supply system, and in particular, as a backup power supply in the event of a power failure, a plurality of regular uninterruptible power supply devices that constantly supply power to a load, and a backup non-use configured as a backup of these regular uninterruptible power supply devices The present invention relates to a common standby uninterruptible power supply system composed of a blackout power supply.

従来から、瞬間的な停電も許容されない例えばコンピュータ等の重要負荷の電源として無停電電源装置(以下単にUPSと称する。)が用いられており、更に365日24時間通常の運用並びに点検時にも、UPSによる連続給電が求められる場合には、常時負荷に給電する複数台の常用UPSと、常用UPSに万一故障が発生した場合や点検を行う場合にも負荷に対してUPSから給電するために構成された予備用UPSから成る所謂共通予備無停電電源システムが信頼性の高いシステムとして用いられている。   Conventionally, an uninterruptible power supply (hereinafter simply referred to as UPS) has been used as a power source for an important load such as a computer that does not allow an instantaneous power outage. Further, during normal operation and inspection for 365 days, When continuous power supply by UPS is required, in order to supply power to the load from multiple UPSs that always supply power to the load, and even when a failure occurs in the normal UPS or when inspection is performed A so-called common backup uninterruptible power supply system including a configured backup UPS is used as a highly reliable system.

共通予備無停電電源システムでは、一般的に複数台の常用UPSに対し予備用UPSは1台で構成される。   In a common standby uninterruptible power supply system, a single standby UPS is generally configured for a plurality of UPSs.

通常のUPSは、商用電源から交流が入力され、交流入力遮断器を介して順変換器で直流に変換し、さらに逆変換器で再び交流に逆変換して交流出力遮断器を介して、安定した交流出力を負荷に供給するように構成されている。また、順変換器は直流入力遮断器を介してエネルギー蓄積部である蓄電池に直流エネルギーを蓄える。   Ordinary UPS receives AC from commercial power supply, converts to DC with forward converter through AC input circuit breaker, and then converts back to AC again with reverse converter, and stable with AC output circuit breaker. The AC output is supplied to the load. The forward converter stores DC energy in a storage battery, which is an energy storage unit, via a DC input circuit breaker.

商用電源に停電が生ずると、上記蓄電池の直流エネルギーを逆変換器に供給することにより交流出力を負荷に連続して供給する。また、順変換器または逆変換器に万一故障が発生した場合にも負荷に連続して交流出力を供給するために、前記商用電源またはこれとは別のバイパス入力電源をバイパス遮断器を介して供給するバイパス回路を設け、サイリスタとコンタクタから成る無瞬断切換回路で負荷への入力を無瞬断で切り換えるように構成している。   When a power failure occurs in the commercial power supply, the AC output is continuously supplied to the load by supplying the DC energy of the storage battery to the inverter. In addition, in the event that a failure occurs in the forward converter or the reverse converter, in order to continuously supply an AC output to the load, the commercial power supply or another bypass input power supply is connected via a bypass circuit breaker. A bypass circuit that supplies power to the load is provided, and an uninterruptible switching circuit composed of a thyristor and a contactor switches the input to the load without instantaneous interruption.

又、常用UPSの内部回路の保守点検を負荷への給電を継続しながら行うことができるように、バイパス回路のバイパス遮断器の一次側から保守点検用の保守バイパス回路を分岐し、保守バイパス用遮断器を介して負荷に給電するルートを設ける。この保守バイパス回路による保守点検時は、保守バイパス用遮断器がON、交流出力遮断器がOFFとなる。   Also, the maintenance bypass circuit for maintenance and inspection is branched from the primary side of the bypass circuit breaker of the bypass circuit so that maintenance and inspection of the internal circuit of the regular UPS can be performed while continuing to supply power to the load. A route for supplying power to the load through the circuit breaker is provided. During maintenance inspection by the maintenance bypass circuit, the maintenance bypass circuit breaker is turned on and the AC output circuit breaker is turned off.

常用UPSが1台で構成される単一の無停電電源システムでは、バイパス入力の電源は通常交流入力と同様に商用電源とする。   In a single uninterruptible power supply system composed of one common UPS, the bypass input power supply is a commercial power supply in the same manner as the normal AC input.

共通予備無停電電源システムとは、通常運転時、故障時及び点検時を含め365日24時間一瞬も途切れることがなく交流電源を負荷に供給する目的で構成されたシステムであり、通常負荷に給電するための複数台の常用UPSと常用UPSの万一の故障時や点検時に常用UPSに代わり予備電源分岐盤を介して負荷に給電する予備UPSから構成される。   The common standby uninterruptible power supply system is a system configured to supply AC power to the load without interruption for 24 hours, 365 days including normal operation, failure, and inspection. In the event of a failure or inspection of a plurality of normal UPSs, a standby UPS that supplies power to a load via a standby power supply switchboard is used instead of the normal UPS.

上記のような構成においては、システムを効率良く運用していくことが重要な課題であり、例えば常用UPSが故障したときに一旦商用バイパス側に切換え、予備UPSを立ち上げてから予備UPS側に運転切換することにより予備UPSの待機無負荷電力損失を低減する提案が為されている(例えば特許文献1参照。)。
特開2003−87998号公報(第2−4頁、図1)
In the configuration as described above, it is an important issue to operate the system efficiently. For example, when the service UPS fails, the system is temporarily switched to the commercial bypass side, and the backup UPS is started and then switched to the backup UPS side. Proposals have been made to reduce standby no-load power loss of standby UPS by switching operation (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 2003-87998 (page 2-4, FIG. 1)

特許文献1に示された方法は、予備UPSの待機運転時の損失の低減に着目して為されたものであるが、商用電源が停電したとき、予備UPS用の蓄電池のエネルギーを有効活用してシステム稼働率を高めるようにすることもまた大きな課題である。   The method disclosed in Patent Document 1 is made by paying attention to reducing the loss during standby operation of the standby UPS. However, when the commercial power supply fails, the energy of the storage battery for the standby UPS is effectively used. Increasing system availability is also a major issue.

一般に予備用UPSの容量は常用UPS1台分の容量としているが、その理由は、複数台の常用UPSが同時に故障する確率が極めて小さいことによるものである。また、各UPSに付属するエネルギー蓄積部の蓄電池はプラントからの要求の停電補償時間により容量が決定され、一般には個々の常用UPS用の蓄電池と予備用UPS用の蓄電池は全て同じ容量で構成される。これは、常用UPSの1台が故障または点検中で停止したとき、その負荷に対して予備UPSから負荷給電するため、予備UPSのエネルギー蓄積部の蓄電池容量も常用UPSと同じ容量とする必要があるためである。   Generally, the capacity of the backup UPS is set to the capacity of one normal UPS, because the probability that a plurality of normal UPSs fail at the same time is extremely small. Moreover, the capacity of the storage battery of the energy storage unit attached to each UPS is determined by the power outage compensation time requested by the plant. In general, the storage battery for each regular UPS and the storage battery for the backup UPS are all configured with the same capacity. The This is because when one of the normal UPSs fails or stops during inspection, the load is supplied from the backup UPS to the load, so the storage battery capacity of the energy storage unit of the standby UPS must be the same as that of the normal UPS. Because there is.

しかしながら、通常運転時は複数台の常用UPSが異常なく運転し、負荷給電している状態であるため、このような通常運転状態で商用電源が停電した場合には、予備用UPSのエネルギー蓄積部の蓄電池はほとんど使われず有効活用されないことが多い。   However, during normal operation, a plurality of normal UPSs operate without any abnormality and load power is supplied. Therefore, when the commercial power supply fails in such normal operation state, the energy storage unit of the standby UPS In many cases, the storage battery is not used effectively.

これについて、2台の常用UPS及び予備用UPSの容量が夫々100kVAで、負荷の容量は1台目の常用UPSが100kVA、2台目の常用UPSが80kVAである共通予備無停電電源システムを例に数値を用いて説明する。   This is an example of a common standby uninterruptible power supply system in which the capacity of two normal UPSs and spare UPSs is 100 kVA, and the load capacity is 100 kVA for the first normal UPS and 80 kVA for the second normal UPS. This will be explained using numerical values.

この共通予備無停電電源システムの各々のUPSの蓄電池は、全て100kVAで10分間の停電補償時間を条件に容量を選定したもので構成されているものとする。そして通常運転状態で商用電源による交流入力に停電が発生した場合を考える。   It is assumed that each UPS storage battery of this common backup uninterruptible power supply system is configured by selecting a capacity on the condition of a power failure compensation time of 10 minutes at 100 kVA. Consider a case where a power failure occurs in an AC input from a commercial power source in a normal operation state.

このとき、2台の常用UPSは夫々当該UPS用のエネルギー蓄積部である蓄電池の直流電力により運転し、負荷給電を継続する。   At this time, each of the two regular UPSs is operated by the DC power of the storage battery, which is the energy storage unit for the UPS, and continues to supply the load.

そして10分後、1台目のUPSの蓄電池電圧がUPSの直流電圧範囲の下限以下となり、故障停止すると、予備用UPS電源のバイパス回路に切り換わり、このバイパス回路から予備用UPSの蓄電池による電力を負荷に連続して供給する。   10 minutes later, when the storage battery voltage of the first UPS falls below the lower limit of the DC voltage range of the UPS and the failure stops, it switches to the bypass circuit of the backup UPS power supply, and the power from the storage battery of the backup UPS from this bypass circuit Is continuously supplied to the load.

2台目の常用UPSの負荷は、負荷率が80%であるから、(10+α)分で、1台目の常用UPSと同様に蓄電池電圧がUPSの直流電圧範囲の下限以下となり、2台目の常用UPSも故障停止となって予備用UPS1の電源で供給されているバイパス回路に切り換わる。上記の(10+α)分は、蓄電池の負荷率×運転継続可能時間が一定であるという条件で簡易計算すると12.5分となる。   Since the load of the second UPS is 80%, the storage battery voltage is less than the lower limit of the DC voltage range of the UPS in the same manner as the first UPS in (10 + α) minutes. The normal UPS is also out of order and switched to the bypass circuit supplied by the power supply of the spare UPS 1. The above (10 + α) portion is 12.5 minutes when the simple calculation is performed under the condition that the load factor of the storage battery × the operation continuation time is constant.

しかし、前述したように予備用UPSは常用UPS1台分の容量の100kVAで構成されているため、2台目の常用UPSも故障停止で予備用UPSの給電に切り換わると、予備用UPSの負荷容量は180kVA(100kVA+80kVA)となり容量オーバーして予備用UPSも故障停止となり負荷給電が絶たれる。   However, as described above, since the backup UPS is configured with 100 kVA having the capacity of one normal UPS, if the second UPS is switched to power supply to the backup UPS due to a failure stop, the load of the backup UPS The capacity becomes 180 kVA (100 kVA + 80 kVA), and the capacity is exceeded, so that the backup UPS also stops and the load power supply is cut off.

前述したように、予備用UPSも2台の常用UPSと同じ蓄電池容量選定条件で選定され、この例では、これが100kVAで10分間の停電補償時間である。   As described above, the backup UPS is also selected under the same storage battery capacity selection conditions as the two regular UPSs. In this example, this is a power failure compensation time of 10 minutes at 100 kVA.

しかしながらこの例では、予備用UPSの蓄電池は、1台目の常用UPSが予備用UPSからの給電に切り換わって(停電10分後)から次に2台目の常用UPSが予備UPSに切り換わり(停電12.5分後)、この結果予備UPSが容量オーバーとなるまでの2分半しか使用できず、このため全体としての停電バックアップ時間を短くしている。   However, in this example, the backup UPS storage battery is switched from the first UPS to the power supply from the backup UPS (10 minutes after a power failure), and then the second UPS to the standby UPS. (After 12.5 minutes after a power failure) As a result, only 2 and a half minutes can be used until the capacity of the spare UPS becomes over, thus reducing the overall power failure backup time.

即ち、特許文献1に示されている従来の共通予備無停電電源システムの構成では、予備用UPSの蓄電池は、通常運転時に商用電源に停電が発生したとき、蓄電池能力を有効に使っていないという問題があった。   That is, in the configuration of the conventional common backup uninterruptible power supply system disclosed in Patent Document 1, the storage battery of the backup UPS does not use the storage battery capacity effectively when a power failure occurs in the commercial power supply during normal operation. There was a problem.

この発明は上記のような課題を解決するためになされたものであり、通常運転時に商用電源に停電が発生した場合の停電バックアップ時間を延長可能な共通予備無停電電源システムを提供することを目的としている。   The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a common standby uninterruptible power supply system capable of extending a power failure backup time when a power failure occurs in a commercial power supply during normal operation. It is said.

上記目的を達成するために、本発明に係る共通予備無停電電源システムは、商用電源の交流を直流に変換する順変換器と、この順変換器の直流出力を再び交流に変換して負荷に給電する逆変換器と、前記商用電源の停電時に前記逆変換器に直流電力を供給するエネルギー蓄積部と、前記商用電源または別電源により負荷給電を継続させるためのバイパス切換回路を備えた複数台の常用UPSと、前記常用UPSのうちの1台が故障や点検のため停止したとき負荷給電を継続するための第1の切換手段を有し、前記常用UPSと同一の構成から成る1台の予備用UPSと、前記商用電源が停電したとき、前記予備用UPSの出力を前記複数台の常用UPSの入力に給電可能な第2の切換手段とを備えたことを特徴としている。   In order to achieve the above object, a common standby uninterruptible power supply system according to the present invention includes a forward converter that converts alternating current of a commercial power source into direct current, and a direct current output of the forward converter is again converted into alternating current to load. A plurality of inverters including a reverse converter for supplying power, an energy storage unit for supplying DC power to the reverse converter during a power failure of the commercial power supply, and a bypass switching circuit for continuing load power supply by the commercial power supply or another power supply A normal UPS and a first switching means for continuing load power supply when one of the normal UPSs is stopped due to a failure or inspection, and one unit having the same configuration as the normal UPS. It is characterized by comprising a backup UPS and a second switching means capable of supplying the output of the backup UPS to the inputs of the plurality of service UPSs when the commercial power supply fails.

本発明によれば、常用UPS並びに予備用UPSが全て健全に運転している通常運転状態で商用電源に停電が発生したとき、予備用UPSの蓄電池を有効に使うように構成したので、停電バックアップ時間を延長可能な共通予備UPSシステムを提供することができる。   According to the present invention, when a power failure occurs in the commercial power supply in a normal operation state where all of the normal UPS and the standby UPS are operating smoothly, the backup UPS storage battery is effectively used. A common backup UPS system capable of extending the time can be provided.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下、本発明の実施例1に係る共通予備無停電電源システムについて図1乃至図4を参照して説明する。図1は、本発明の実施例1に係る共通予備無停電電源システムのブロック構成図である。   Hereinafter, a common backup uninterruptible power supply system according to Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a block configuration diagram of a common standby uninterruptible power supply system according to Embodiment 1 of the present invention.

常用UPS1A、1Bには、商用電源2A、2Bから夫々交流入力(商用側)3A、3Bが入力され、交流入力遮断器4A、4Bを介して順変換器5A、5Bで夫々直流に変換し、さらに逆変換器6A、6Bで再び交流に逆変換して無瞬断切換回路9A、9B、更には出力盤21A、21B内の交流出力遮断器10A、10Bを介して、安定した交流出力15A、15Bを夫々負荷16A、16Bに供給するように構成されている。また、順変換器5A、5Bは直流入力遮断器11A、11Bを介してエネルギー蓄積部である蓄電池12A、12Bに夫々直流エネルギーを蓄える。   The commercial UPSs 1A and 1B receive AC inputs (commercial side) 3A and 3B from the commercial power sources 2A and 2B, respectively, and are converted to DC by the forward converters 5A and 5B via the AC input circuit breakers 4A and 4B, respectively. Further, the inverters 6A and 6B reversely convert back to alternating current, and the instantaneously uninterruptible switching circuits 9A and 9B, and further through the AC output breakers 10A and 10B in the output panels 21A and 21B, the stable AC output 15A, 15B is supplied to the loads 16A and 16B, respectively. Further, the forward converters 5A and 5B store DC energy in the storage batteries 12A and 12B which are energy storage units via the DC input circuit breakers 11A and 11B, respectively.

商用電源2Aに停電が生ずると、上記蓄電池12Aの直流エネルギーを逆変換器6Aに供給することにより交流出力15Aを負荷16Aに連続して供給する。商用電源2Bに停電が生じたときも同様に蓄電池12Bによる運転を行う。また、順変換器5A、5Bまたは逆変換器6A、6Bに万一故障が発生した場合にも上記と同様に負荷16A、16Bに連続して交流出力22A、22Bを供給するために、前記交流入力2A、2Bとは別のバイパス交流入力25A、25Bをバイパス遮断器7A1、7B1を介して夫々供給するバイパス回路8A、8Bを設け、サイリスタとコンタクタから成る無瞬断切換回路9A、9Bで夫々無瞬断で切り換えるように構成している。尚、バイパス交流入力25A、25Bは後述するように予備UPS1Cから供給されるが、予備UPS1Cを保守点検中にもバイパス電源を確保するため、予備UPS1Cの電源とは別の商用電源17A、17Bからの交流入力をバイパス入力遮断器7A2、7B2を介して夫々給電可能な構成としている。   When a power failure occurs in the commercial power supply 2A, the AC output 15A is continuously supplied to the load 16A by supplying the DC energy of the storage battery 12A to the inverter 6A. Similarly, when a power failure occurs in the commercial power supply 2B, the operation by the storage battery 12B is performed. Also, in the event that a failure occurs in the forward converters 5A, 5B or the reverse converters 6A, 6B, the alternating current 22A, 22B is continuously supplied to the loads 16A, 16B in the same manner as described above. Bypass circuits 8A and 8B for supplying bypass AC inputs 25A and 25B different from inputs 2A and 2B via bypass circuit breakers 7A1 and 7B1, respectively, are provided, and uninterruptible switching circuits 9A and 9B each composed of a thyristor and a contactor are provided. It is configured to switch without interruption. The bypass AC inputs 25A and 25B are supplied from the spare UPS 1C as will be described later. However, in order to secure a bypass power source even during maintenance and inspection of the spare UPS 1C, the bypass AC inputs 25A and 25B are supplied from commercial power sources 17A and 17B different from the power source of the spare UPS 1C. The AC input can be fed through the bypass input circuit breakers 7A2 and 7B2.

予備用UPS1Cは、常用UPS1Aと同様の内部回路構成となっており、商用電源2Cから交流入力(商用側)3Cが入力され、交流入力遮断器4Cを介して順変換器5Cで直流に変換し、さらに逆変換器6Cで再び交流に逆変換して無瞬断切換回路9Cを経由してその交流出力15Cを予備電源分岐盤19に供給する。商用電源2Cの停電に備え、予備用UPS1Cの直流部に直流入力遮断器11Cを介して蓄電池12Cが接続されているのは常用UPS1Aと同様である。また、順変換器5Cまたは逆変換器6Cに万一故障が発生したときにも連続して交流出力15Cを供給するために、前記交流入力2Cとは別の交流電源17Cからの交流入力18Cをバイパス遮断器7Cを介して供給するバイパス回路8Cを設け、サイリスタとコンタクタから成る無瞬断切換回路9Cで無瞬断で切り換えるように構成している。   The standby UPS 1C has the same internal circuit configuration as the regular UPS 1A. The AC input (commercial side) 3C is input from the commercial power source 2C, and is converted into DC by the forward converter 5C via the AC input circuit breaker 4C. Further, the inverter 6C reversely converts it back to alternating current, and supplies the alternating current output 15C to the standby power switch 19 via the uninterruptible switching circuit 9C. In preparation for a power failure of the commercial power supply 2C, the storage battery 12C is connected to the DC part of the backup UPS 1C via the DC input circuit breaker 11C, as in the case of the normal UPS 1A. Further, in order to continuously supply the AC output 15C even if a failure occurs in the forward converter 5C or the reverse converter 6C, an AC input 18C from an AC power source 17C different from the AC input 2C is used. A bypass circuit 8C that is supplied via the bypass circuit breaker 7C is provided, and is configured to be switched without instantaneous interruption by an uninterruptible switching circuit 9C composed of a thyristor and a contactor.

交流出力15Cは予備電源分岐盤19の入力となり、この予備電源分岐盤19で交流出力15Cを以下のように選択的に切換えることができるように構成している。   The AC output 15C is input to the standby power supply branch board 19, and the standby power supply branch board 19 is configured to selectively switch the AC output 15C as follows.

その1つは前述したバイパス交流入力25A、25Bをバイパス遮断器7A1、7B1を介してバイパス回路8A、8Bに供給する系統であり、これは常用UPS1Aまたは1Bの故障時に用いられる。   One of them is a system for supplying the bypass AC inputs 25A and 25B described above to the bypass circuits 8A and 8B via the bypass circuit breakers 7A1 and 7B1, and this is used when the normal UPS 1A or 1B fails.

2つ目の系統は、保守バイパス回路13A、13Bを経由して出力盤21A、21Bに
夫々設けられた保守バイパス遮断器20A、20Bを介して負荷に給電する系統であり、
この系統は常用UPS1A、1Bの内部回路の保守点検を負荷6A、6Bへの給電を継続しながら行うことが可能なように設けられている。この保守バイパス回路13A、13Bによる保守点検時は、保守バイパス遮断器20A、20BがON、交流出力遮断器10A、10BがOFFとなる。
The second system is a system that supplies power to the load via maintenance bypass circuit breakers 20A and 20B provided in the output panels 21A and 21B via the maintenance bypass circuits 13A and 13B, respectively.
This system is provided so that the maintenance and inspection of the internal circuits of the service UPSs 1A and 1B can be performed while supplying power to the loads 6A and 6B. At the time of maintenance inspection by the maintenance bypass circuits 13A and 13B, the maintenance bypass circuit breakers 20A and 20B are turned on and the AC output circuit breakers 10A and 10B are turned off.

最後の系統は、交流電源が停電時に予備UPS1Cの交流出力15Cを停電時の交流入力(予備UPS側)23A、23Bとしてバイパス入力遮断器(予備UPS側)24A、24Bを介して常用UPS1A、1Bに夫々給電する系統であり、後述するようにこの系統により通常運転時に商用電源に停電が発生したとき、予備用UPS1C用の蓄電池12Cの能力を有効に使って停電バックアップ時間の延長を図る。   In the last system, the AC output 15C of the backup UPS 1C is used as the AC input (backup UPS side) 23A and 23B at the time of a power failure when the AC power supply is interrupted, and the UPS 1A and 1B are used through the bypass input circuit breakers (spare UPS side) 24A and 24B. As described later, when a power failure occurs in the commercial power source during normal operation, the power backup time is extended by effectively using the capacity of the storage battery 12C for the backup UPS 1C.

次に図2乃至図4を参照して本発明の実施例1に係る無停電電源システムの動作について説明する。   Next, the operation of the uninterruptible power supply system according to Embodiment 1 of the present invention will be described with reference to FIGS.

図2は商用電源2Aが正常時のときの常用UPS1Aの給電動作を示している。図示したように、商用電源2Aの交流入力3Aは入力遮断器4Aを介し、順変換器5Aに供給され、順変換器5Aで得られた直流電力は、逆変換器6Aで再び交流に変換され負荷へ給電されると共に、直流遮断器11Aを介して蓄電池12Aを充電する。   FIG. 2 shows a power supply operation of the service UPS 1A when the commercial power supply 2A is normal. As shown in the figure, the AC input 3A of the commercial power source 2A is supplied to the forward converter 5A via the input circuit breaker 4A, and the DC power obtained by the forward converter 5A is converted back to AC by the inverse converter 6A. Power is supplied to the load, and the storage battery 12A is charged via the DC circuit breaker 11A.

図3は商用電源2A(及び2B、2C)が停電したときの常用UPS1Aの給電動作を示している。交流入力(商用側)3A、3B及び3Cが停電すると、常用UPS1Aは蓄電池12Aの直流電力を電源とした直流運転に自動的に切り換わり瞬断することなく負荷給電を継続する。   FIG. 3 shows the power supply operation of the service UPS 1A when the commercial power source 2A (and 2B, 2C) is out of power. When the AC inputs (commercial side) 3A, 3B, and 3C are blacked out, the service UPS 1A automatically switches to DC operation using the DC power of the storage battery 12A as a power source and continues load feeding without instantaneous interruption.

これと同時に交流入力遮断器(商用側)4AをOFFしてバイパス入力遮断器(予備UPS側)24AをONし、予備UPS1Cの出力電源による交流入力(予備UPS側)23Aを入力する。   At the same time, the AC input circuit breaker (commercial side) 4A is turned OFF, the bypass input circuit breaker (spare UPS side) 24A is turned ON, and the AC input (spare UPS side) 23A from the output power of the backup UPS 1C is input.

このようにバイパス入力遮断器(予備UPS側)24AがONとなったときには、予備UPS1Cからの出力電力は、予備UPS1Cが容量オーバーとならないように、常用UPS1Aの順変換器5Aの出力にリミット値を設けて制御する。   When the bypass input circuit breaker (spare UPS side) 24A is turned on in this way, the output power from the backup UPS 1C is limited to the output of the forward converter 5A of the normal UPS 1A so that the capacity of the backup UPS 1C does not exceed the capacity. To control.

この時の常用UPS1Aの順変換器5Aの出力リミット値は、予備UPS1Cの容量を常用UPSの台数で割った値とする。   At this time, the output limit value of the forward converter 5A of the regular UPS 1A is a value obtained by dividing the capacity of the spare UPS 1C by the number of regular UPSs.

例えば図1に示すシステム構成例で常用UPS1A、1B並びに予備UPSの容量が全て100kVAだったとすると、常用UPS1A、1B1台あたりの順変換器5A、5Bの出力リミット値は、100kVA/2=50kVAとなる。   For example, in the system configuration example shown in FIG. 1, assuming that the capacities of the common UPS 1A and 1B and the spare UPS are all 100 kVA, the output limit value of the forward converters 5A and 5B per unit of the common UPS 1A and 1B is 100 kVA / 2 = 50 kVA. Become.

これにより交流入力(商用側)3A、3Bに停電が発生すると常用UPS1A、1Bは、最大50kVAを予備UPS1Cの出力電力より入力し、残りの容量を常用UPS1A、1Bが夫々構成する蓄電池12A、12Bの直流電力より供給する。   As a result, when a power failure occurs in the AC inputs (commercial side) 3A, 3B, the service UPSs 1A, 1B receive a maximum of 50 kVA from the output power of the backup UPS 1C, and the remaining batteries 12A, 12B are configured by the service UPSs 1A, 1B, respectively. Supplied from DC power.

この結果、交流入力(商用側)3A、3B及び3Cの停電と同時に、予備UPS1C用の蓄電池12Cの直流電力も常用UPS1A、1Bの交流電源として有効的に使われ、常用UPS1A、1Bは予備UPS1Cからの交流入力(予備UPS側)23A、23Bと自らの蓄電池12A、12Bの直流電力を併用することができ、従って蓄電池12A,12Bの放電電流も少なくなり、停電バックアップ時間の延長を図ることができる。   As a result, the DC power of the storage battery 12C for the backup UPS 1C is also effectively used as the AC power supply for the normal UPS 1A and 1B simultaneously with the power failure of the AC input (commercial side) 3A, 3B and 3C, and the normal UPS 1A and 1B are used as the backup UPS 1C. AC input (spare UPS side) 23A, 23B and DC power of its own storage batteries 12A, 12B can be used together, so that the discharge current of the storage batteries 12A, 12B is also reduced, and the power failure backup time can be extended. it can.

図4は、以上説明した停電時の動作をフローチャートにまとめたものある。   FIG. 4 summarizes the operation at the time of the power failure described above in a flowchart.

交流入力(商用側)3Aが停電すると(ST1)、過渡的に蓄電池12Aの直流電力で全負荷を供給し(ST2)、交流入力遮断器4Aをオフし(ST3)、バイパス入力遮断器(予備UPS側)24Aをオンする(ST4)。そして、交流入力(予備UPS側)23Aが復電して順変換器5Aが運転され(ST5)、順変換器5Aの出力を予め設定された所定の出力リミット値になるように運転し(ST6)、負荷が要求する残りの電力を蓄電池12Aが供給し(ST7)、この併用運転を継続することによって停電バックアップ時間の延長を図る(ST8)。   When the AC input (commercial side) 3A fails (ST1), the full load is transiently supplied with the DC power of the storage battery 12A (ST2), the AC input circuit breaker 4A is turned off (ST3), and the bypass input circuit breaker (standby) (UPS side) 24A is turned on (ST4). Then, the AC input (spare UPS side) 23A recovers and the forward converter 5A is operated (ST5), and the output of the forward converter 5A is operated so as to become a predetermined output limit value (ST6). ), The storage battery 12A supplies the remaining power required by the load (ST7), and the power failure backup time is extended by continuing this combined operation (ST8).

以上述べた実施例1を常用UPS1A、1Bの夫々の負荷が100kVA、80kVAの場合に適用すると、常用UPS1A、1Bの損失を考えなければ、予備UPS1Cが10分運転後UPS1Aは5分程度運転可能となることが分かる。   If the first embodiment described above is applied to the case where the loads of the normal UPS 1A and 1B are 100 kVA and 80 kVA, the UPS 1A can be operated for about 5 minutes after the standby UPS 1C is operated for 10 minutes unless the loss of the normal UPS 1A and 1B is considered. It turns out that it becomes.

以下、本発明の実施例2に係る共通予備無停電電源システムについて図5乃至図8を参照して説明する。図5は、本発明の実施例2に係る共通予備無停電電源システムのブロック構成図である。   A common standby uninterruptible power supply system according to Embodiment 2 of the present invention will be described below with reference to FIGS. FIG. 5 is a block diagram of a common standby uninterruptible power supply system according to Embodiment 2 of the present invention.

この実施例2の各部について、図1の実施例1に係る共通予備無停電電源システムの各部と同一部分は同一符号で示し、その説明は省略する。この実施例2が、実施例1と異なる点は、常用UPS1A、1Bの夫々の負荷率を検出するための直流電流検出器26A、26Bを逆変換器6A、6Bの入力部に夫々設け、この検出信号によって電流リミット調整回路27A、27Bが順変換器5A、5Bの出力リミット値を夫々調整するようにした点である。   About each part of this Example 2, the same part as each part of the common backup uninterruptible power supply system which concerns on Example 1 of FIG. 1 is shown with the same code | symbol, and the description is abbreviate | omitted. The second embodiment is different from the first embodiment in that DC current detectors 26A and 26B for detecting the load factors of the service UPSs 1A and 1B are provided at the input portions of the inverse converters 6A and 6B, respectively. The current limit adjustment circuits 27A and 27B adjust the output limit values of the forward converters 5A and 5B according to the detection signals, respectively.

即ち、この実施例2においては、常用UPS1A、1Bは交流入力(商用側)3A、3Bが停電したときの予備UPS1Cの出力電源による交流入力(予備UPS側)23A、23Bと常用UPS1A、1Bが構成する蓄電池12A,12Bの直流電力の供給の分担を、常用UPS1A、1Bの夫々の負荷率に応じてリミット値を求め、予備用UPS1Cの交流入力(予備UPS側)23A、23Bが順変換器5A、5Bに入力する容量をこのリミット値になるように夫々制御して、その残りの不足容量を常用UPS1A、1B用の蓄電池12A、12Bの直流電力から夫々供給するようにしている。   That is, in the second embodiment, the normal UPSs 1A and 1B include the AC inputs (commercial side) 3A and 3B, and the AC inputs (spare UPS side) 23A and 23B and the normal UPSs 1A and 1B by the output power of the backup UPS 1C when the power failure occurs. The share of the DC power supply of the storage batteries 12A, 12B constituting the limit value is determined according to the load factor of each of the normal UPSs 1A, 1B, and the AC input (spare UPS side) 23A, 23B of the backup UPS 1C is a forward converter The capacities input to 5A and 5B are respectively controlled so as to reach this limit value, and the remaining shortage capacity is supplied from the DC power of the storage batteries 12A and 12B for the regular UPS 1A and 1B, respectively.

以下、上記の制御動作について図6乃至図8を参照して説明する。   Hereinafter, the control operation will be described with reference to FIGS.

図6は商用電源2Aが正常時のUPS1Aの給電動作を示している。この場合は、実施例1の場合と同様に、商用電源2Aの交流入力3Aは入力遮断器4Aを介し、順変換器5Aに供給され、順変換器5Aで得られた直流電力は、逆変換器6Aで再び交流に変換され負荷へ給電されると共に、直流遮断器11Aを介して蓄電池12Aを充電する。   FIG. 6 shows the power supply operation of the UPS 1A when the commercial power source 2A is normal. In this case, as in the case of the first embodiment, the AC input 3A of the commercial power source 2A is supplied to the forward converter 5A via the input circuit breaker 4A, and the DC power obtained by the forward converter 5A is inversely converted. The battery 6A is again converted to alternating current and supplied to the load, and the storage battery 12A is charged via the direct current circuit breaker 11A.

図7は商用電源2A(及び2B、2C)が停電したときのUPS1Aの給電動作を示している。交流入力(商用側)3A、3B及び3Cが停電すると、常用UPS1Aは蓄電池12Aの直流電力を電源とした直流運転に自動的に切り換わり瞬断することなく負荷給電を継続する。   FIG. 7 shows the power supply operation of the UPS 1A when the commercial power source 2A (and 2B, 2C) fails. When the AC inputs (commercial side) 3A, 3B, and 3C are blacked out, the service UPS 1A automatically switches to DC operation using the DC power of the storage battery 12A as a power source and continues load feeding without instantaneous interruption.

これと同時に交流入力遮断器4A、4BをOFFしてバイパス入力遮断器(予備UPS側)24AをONし、予備UPS1Cの出力電源による交流入力(予備UPS側)23Aを入力する。   At the same time, the AC input circuit breakers 4A and 4B are turned off, the bypass input circuit breaker (spare UPS side) 24A is turned on, and the AC input (spare UPS side) 23A by the output power of the spare UPS 1C is input.

実施例1の場合と同様にバイパス入力遮断器(予備UPS側)24AがONとなったときには、予備UPS1Cからの出力電力は、予備UPS1Cが容量オーバーとならないように、常用UPS1Aの順変換器5Aの出力にリミット値を設けて制御する。   As in the case of the first embodiment, when the bypass input circuit breaker (spare UPS side) 24A is turned ON, the output power from the backup UPS 1C is the forward converter 5A of the normal UPS 1A so that the capacity of the backup UPS 1C does not exceed the capacity. A limit value is set to the output of the control.

この時の常用UPS1Aの順変換器5Aの出力リミット値は、予備UPS1Cの容量を常用UPSの台数で割ったものに常用UPS1Aの負荷率を乗じた値とする。この負荷率は、電流検出器26Aによって検出された電流と全負荷電流との比を演算して求める。   The output limit value of the forward converter 5A of the regular UPS 1A at this time is a value obtained by multiplying the capacity of the spare UPS 1C by the number of the regular UPSs and the load factor of the regular UPS 1A. This load factor is obtained by calculating the ratio between the current detected by the current detector 26A and the full load current.

実施例1の場合において、例えば、常用UPS1A、1B及び予備用UPS1Cの容量が100kVAで構成され、常用UPS1Aに接続される負荷16Aの負荷容量が例えば50kVAと極端に少ない場合、この常用UPS1Aに付属する蓄電池12Aの能力を有効に使用しないうちに停電バックアップ時間が終了することとなる。   In the case of the first embodiment, for example, when the capacity of the service UPS 1A, 1B and the backup UPS 1C is 100 kVA, and the load capacity of the load 16A connected to the service UPS 1A is extremely small, for example, 50 kVA, it is attached to the service UPS 1A. The power outage backup time ends before the capacity of the storage battery 12A to be used effectively.

このため、この点をさらに改善したのが実施例2であり、ここでは、常用UPS1A、1Bの実負荷容量を直流電流検出器26A、26Bで検出し、その電流値を負荷率に換算し、この負荷率に予備UPS容量の常用UPS台数分の1を乗じた値を予備UPS1Cからの夫々の交流入力とし、残りの容量を常用UPS1A、1B用の蓄電池12A、12Bの直流電力から夫々供給するようにしたものである。   For this reason, this point was further improved in Example 2, where the actual load capacities of the common UPS 1A and 1B are detected by the DC current detectors 26A and 26B, and the current value is converted into a load factor. A value obtained by multiplying the load factor by 1 / the number of common UPSs of the spare UPS capacity is used as the AC input from each of the spare UPS 1C, and the remaining capacity is supplied from the DC power of the storage batteries 12A and 12B for the regular UPS 1A and 1B. It is what I did.

例えば図5の構成例において、常用UPS1A、1B及び予備UPS1Cの容量が夫々100kVAで、常用UPSの負荷容量は、No.1常用UPS1Aが60kVA、No.2常用UPS1Bが40kVAである例を考える。   For example, in the configuration example of FIG. 5, the capacity of the normal UPS 1A, 1B and the backup UPS 1C is 100 kVA, respectively, and the load capacity of the normal UPS is No. 1 UPS 1A is 60 kVA, no. Consider an example in which 2 common UPS 1B is 40 kVA.

交流入力(商用側)3A、3Bに停電が発生すると、この実施例2では、No.1常用UPS1Aは、予備UPS1Cの出力電力から(100/2=50)kVA×0.6=30kVAを入力し、残りの30kVA分をNo.1常用UPS1A用の蓄電池12Aから供給する。No.2常用UPS1Bは同様に(100/2=50)kVA×0.4=20kVAずつ分担することになるので、予備用UPS1Cから供給する電力は、合計50kVAとなる。   When a power failure occurs in the AC input (commercial side) 3A, 3B, in this Example 2, No. The 1-use UPS 1A inputs (100/2 = 50) kVA × 0.6 = 30 kVA from the output power of the backup UPS 1C, and the remaining 30 kVA for No. 1 is input. The battery is supplied from the storage battery 12A for the single use UPS 1A. No. Similarly, since the two common UPSs 1B share (100/2 = 50) kVA × 0.4 = 20 kVA, the power supplied from the spare UPS 1C is 50 kVA in total.

上記から判るとおり、常用UPS1A、1Bが2台で構成されている場合には、常用UPS1A、1Bと予備用UPS1Cとの分担比は1/2ずつとなる。   As can be seen from the above, when the service UPSs 1A and 1B are configured in two units, the sharing ratio between the service UPSs 1A and 1B and the backup UPS 1C is halved.

例えば、常用UPSが3台で構成されているシステムの場合には、負荷容量をNo.1常用UPSが60kVA、No.2常用UPSが50kVA、No.3常用UPSが40kVAとすると、予備用UPSから供給する出力容量は、No.1常用UPSの交流入力には(100/3=33.3)kVA×0.6=20kVA、No.2常用UPSの交流入力には33.3kVA×0.5=16.7kVA,No.3常用UPSには33.3kVA×0.4=13.3kVAとなる。   For example, in the case of a system having three regular UPSs, the load capacity is set to No. 1 regular UPS is 60 kVA, no. 2 Common UPS is 50 kVA, No. 3 If the regular UPS is 40 kVA, the output capacity supplied from the backup UPS is No. (100/3 = 33.3) kVA × 0.6 = 20 kVA, no. 23.3 kVA × 0.5 = 16.7 kVA, no. For 3 regular UPS, 33.3 kVA × 0.4 = 13.3 kVA.

上記から判るとおり、常用UPSが3台で構成されている場合には、常用UPSと予備用UPSとの分担比は夫々2/3と1/3となる。   As can be seen from the above, in the case where three regular UPSs are configured, the sharing ratio between the regular UPS and the spare UPS is 2/3 and 1/3, respectively.

実施例2では、予備用UPS1Cから供給する出力容量は、各々の常用UPSの負荷率(実負荷容量)と常用UPSの台数で決まるため、実施例1に比べて常用UPS1A、1B用の蓄電池12A、12Bによる直流電力と予備用UPS1Cからの出力電源15Cによる交流入力との分担がより効率的となり、従って更に停電時の負荷給電時間(停電バックアップ時間)の延長を図ることができる。   In the second embodiment, the output capacity supplied from the backup UPS 1C is determined by the load factor (actual load capacity) of each of the regular UPSs and the number of the regular UPSs. Therefore, compared to the first embodiment, the storage battery 12A for the regular UPS 1A and 1B. , 12B and the AC input by the output power supply 15C from the backup UPS 1C become more efficient, so that the load power supply time (power failure backup time) at the time of power failure can be further extended.

図8は、以上説明した停電時の動作をフローチャートにまとめたものある。   FIG. 8 summarizes the above-described operation during a power failure in a flowchart.

交流入力(商用側)3Aが停電すると(ST1)、過渡的に蓄電池12Aの直流電力で全負荷を供給し(ST2)、交流入力遮断器4Aをオフし(ST3)、バイパス入力遮断器(予備UPS用)24Aをオンする(ST4)。そして、交流入力が復電して順変換器5Aが運転され(ST5)、順変換器5Aの出力が、予備UPS容量を台数で除算した値に電流検出器で検出した負荷率を乗じた出力リミット値になるように運転し(ST6A)、負荷が要求する残りの電力を蓄電池12Aが供給し(ST7A)、この併用運転を継続することによって停電バックアップ時間の延長を図る(ST8)。   When the AC input (commercial side) 3A fails (ST1), the full load is transiently supplied with the DC power of the storage battery 12A (ST2), the AC input circuit breaker 4A is turned off (ST3), and the bypass input circuit breaker (standby) The UPS 24A is turned on (ST4). Then, the AC input is restored and the forward converter 5A is operated (ST5), and the output of the forward converter 5A is obtained by multiplying the value obtained by dividing the spare UPS capacity by the number of units by the load factor detected by the current detector. The battery is operated to reach the limit value (ST6A), the remaining power required by the load is supplied by the storage battery 12A (ST7A), and the power failure backup time is extended by continuing this combined operation (ST8).

以上述べた実施例2を常用UPS1A、1Bの夫々の負荷が100kVA、80kVAの場合に適用すると、常用UPS1A、1Bの損失を考えなければ、予備UPS1Cが90KVA出力で約11分運転後UPS1Aは更に5分弱運転可能となることが分かる。   If Example 2 described above is applied to the case where the loads of the normal UPSs 1A and 1B are 100 kVA and 80 kVA, the UPS 1A further operates after about 11 minutes of operation with the standby UPS 1C at 90 KVA output unless the loss of the normal UPS 1A and 1B is considered. It turns out that it becomes possible to drive less than 5 minutes.

尚、この実施例2は、個々の常用UPSの負荷率が停電バックアップ運転中に変化する場合にも適用可能である。   The second embodiment can also be applied when the load factor of each regular UPS changes during a power outage backup operation.

図9は、本発明の実施例3に係る共通予備無停電電源システムのブロック構成図である。   FIG. 9 is a block diagram of a common standby uninterruptible power supply system according to Embodiment 3 of the present invention.

この実施例3の各部について、図5の実施例2に係る共通予備無停電電源システムの各部と同一部分は同一符号で示し、その説明は省略する。この実施例3が、実施例2と異なる点は、直流電流検出器26A、26Bの検出信号を、システムとして共通に設けられた最適リミット演算器28に与えるようにし、この最適リミット演算器28で演算されたリミット値に従って電流リミット調整回路27A、27Bが順変換器5A、5Bの出力リミット値を夫々調整するようにした点である。   About each part of this Example 3, the same part as each part of the common backup uninterruptible power supply system which concerns on Example 2 of FIG. 5 is shown with the same code | symbol, and the description is abbreviate | omitted. The third embodiment is different from the second embodiment in that the detection signals of the DC current detectors 26A and 26B are supplied to an optimum limit calculator 28 provided in common as a system. The current limit adjustment circuits 27A and 27B adjust the output limit values of the forward converters 5A and 5B according to the calculated limit values.

ここで最適リミット演算器28は、常用UPS1A、1Bの夫々の負荷率から、システム全体として停電バックアップ時間が最も長くなるような順変換器5A、5Bのリミット値を演算し、このリミット値となるように順変換器5A、5Bの制御を行う。   Here, the optimum limit calculator 28 calculates the limit value of the forward converters 5A and 5B that gives the longest power failure backup time as a whole system from the load rates of the normal UPSs 1A and 1B, and becomes this limit value. Thus, the forward converters 5A and 5B are controlled.

前述したように、予備UPS100kVA、常用UPS1Aの負荷率100%、常用UPS1Bの負荷率80%の場合の最適リミット演算器28の最適リミット値の演算例を以下に示す。   As described above, an example of calculating the optimum limit value of the optimum limit calculator 28 when the backup UPS 100 kVA, the load factor 100% of the regular UPS 1A, and the load factor 80% of the regular UPS 1B is shown below.

計算の考え方として、蓄電池12Aと蓄電池12Bが同時に規定電圧以下となって使い切ること、また簡単のため、蓄電池12Cもこれと同時に規定電圧以下となるものとする。   As a way of calculation, it is assumed that the storage battery 12A and the storage battery 12B are simultaneously used with the specified voltage or less, and for the sake of simplicity, the storage battery 12C is also set to the specified voltage or less at the same time.

上記条件で常用UPS1A、Bの定格出力に対する比率で表したリミット値を夫々LA、LBとすると以下の式が成立する。   If the limit values expressed by the ratio of the regular UPSs 1A and B to the rated output under the above conditions are LA and LB, the following equations are established.

まず、予備UPSの停電バックアップ運転可能時間は、
10(分)×1/(LA+LB)・・・(1)
次に常用UPS1Aの停電バックアップ運転可能時間は、
10(分)×1/(1−LA)・・・(2)
最後に、常用UPS1Bの停電バックアップ運転可能時間は、
10(分)×1/(0.8−LB)・・・(3)
上記が全て等しくなる即ち全ての蓄電池を同時に使い切る条件から、
LA=0.4、LB=0.2・・・(4)
が求まり、このときの停電バックアップ時間は16.7分となる。
First, the power outage backup operation time of the backup UPS is
10 (minutes) x 1 / (LA + LB) (1)
Next, the power outage backup operation time of the regular UPS1A is
10 (minutes) x 1 / (1-LA) (2)
Finally, the power failure backup operation time of the regular UPS1B is
10 (min) x 1 / (0.8-LB) (3)
From the condition that all of the above are equal, that is, all the storage batteries are used up simultaneously,
LA = 0.4, LB = 0.2 (4)
The power failure backup time at this time is 16.7 minutes.

以上のように全ての蓄電池のエネルギーを同時に使い切る条件で最適リミット値を演算して順変換器をその値に制御すれば、最長の停電バックアップ時間を得ることが可能となる。   As described above, if the optimum limit value is calculated under the condition that the energy of all the storage batteries is used up at the same time and the forward converter is controlled to that value, the longest power failure backup time can be obtained.

図10は、以上説明した停電時の動作をフローチャートにまとめたものある。   FIG. 10 summarizes the operation at the time of the power failure described above in a flowchart.

交流入力(商用側)3Aが停電すると(ST1)、過渡的に蓄電池12Aの直流電力で全負荷を供給し(ST2)、交流入力遮断器4Aをオフし(ST3)、バイパス入力遮断器(予備UPS側)24Aをオンする(ST4)。そして、交流入力が復電して順変換器5Aが運転され(ST5)、最適リミット演算器が全ての常用UPSの逆変換器の入力電流を検出して求められた負荷率から全ての常用UPSの最適リミット値を演算する(ST9)。次に順変換器5Aの出力を上記の最適リミット演算器から与えられた出力リミット値になるように運転し(ST6B)、負荷が要求する残りの電力を蓄電池12Aが供給し(ST7B)、この併用運転を継続することによって停電バックアップ時間の延長を図る(ST8)。   When the AC input (commercial side) 3A fails (ST1), the full load is transiently supplied with the DC power of the storage battery 12A (ST2), the AC input circuit breaker 4A is turned off (ST3), and the bypass input circuit breaker (standby) (UPS side) 24A is turned on (ST4). Then, the AC input is restored and the forward converter 5A is operated (ST5), and the optimum limit calculator detects the input currents of the reverse converters of all the normal UPSs, and all the normal UPSs are obtained from the load factors obtained. The optimum limit value is calculated (ST9). Next, the output of the forward converter 5A is operated so as to be the output limit value given from the above-mentioned optimum limit calculator (ST6B), and the storage battery 12A supplies the remaining power required by the load (ST7B). The power failure backup time is extended by continuing the combined operation (ST8).

上記計算例では、予備用UPSの蓄電池12Cも同時にエネルギーを使い切る条件としたが、必ずしもそうする必要はない。また、負荷率が非常に小さい常用UPSが存在する場合には計算結果がマイナスとなることも考えられる。この計算結果がマイナスとなった常用UPSが回生可能な順変換器を有している場合は当該常用UPSを回生運転すれば良いが、そうでない場合は計算結果がマイナスとなった当該常用UPSのリミット値を0とし、他の常用UPSが同時に蓄電池のエネルギーを使い切る条件で再度計算して他の常用UPSの最適リミット値を求めれば良い。   In the above calculation example, the reserve UPS storage battery 12C is also used as a condition of using up energy at the same time, but it is not always necessary to do so. In addition, when there is a regular UPS with a very small load factor, the calculation result may be negative. If the normal UPS with a negative calculation result has a forward converter that can be regenerated, the normal UPS may be regenerated. Otherwise, the normal UPS of the normal UPS with a negative calculation result may be used. The limit value may be set to 0, and the other limit UPS may be calculated again under the condition that the energy of the storage battery is used up at the same time to obtain the optimum limit value of the other limit UPS.

尚、この実施例3は、停電バックアップ運転中に個々の常用UPSの負荷率の変動のない場合に特に有効である。   The third embodiment is particularly effective when there is no change in the load factor of each regular UPS during a power outage backup operation.

本発明の実施例1に係る共通予備無停電電源システムのブロック構成図。The block block diagram of the common backup uninterruptible power supply system which concerns on Example 1 of this invention. 実施例1における商用入力正常時の常用UPSの給電動作説明図。FIG. 6 is a diagram illustrating a power supply operation of the normal UPS when the commercial input is normal in the first embodiment. 実施例1における商用入力停電時の常用UPSの給電動作説明図。FIG. 3 is a power supply operation explanatory diagram of a service UPS at the time of a commercial input power failure in the first embodiment. 実施例1における商用入力停電時の常用UPSの動作フローチャート。The operation | movement flowchart of service UPS at the time of the commercial input power failure in Example 1. FIG. 本発明の実施例2に係る共通予備無停電電源システムのブロック構成図。The block block diagram of the common backup uninterruptible power supply system which concerns on Example 2 of this invention. 実施例2における商用入力正常時の常用UPSの給電動作説明図。FIG. 10 is a diagram for explaining a power supply operation of a service UPS when the commercial input is normal in the second embodiment. 実施例2における商用入力停電時の常用UPSの給電動作説明図。FIG. 10 is a power supply operation explanatory diagram of a service UPS at the time of a commercial input power failure in the second embodiment. 実施例2における商用入力停電時の常用UPSの動作フローチャート。The operation | movement flowchart of service UPS at the time of the commercial input power failure in Example 2. FIG. 本発明の実施例3に係る共通予備無停電電源システムのブロック構成図。The block block diagram of the common backup uninterruptible power supply system which concerns on Example 3 of this invention. 実施例3における商用入力停電時の常用UPSの動作フローチャート。9 is an operation flowchart of a service UPS at the time of a commercial input power failure in the third embodiment.

符号の説明Explanation of symbols

1A、1B 常用UPS
1C 予備用UPS
2A、2B、2C 商用電源
3A、3B、3C 交流入力(商用側)
4A、4B、4C 交流入力遮断器
5A、5B、5C 順変換器
6A、6B、6C 逆変換器
7A1、7B1、7C バイパス遮断器
7A2、7B2 バイパス入力遮断器
8A、8B、8C バイパス回路
9A、9B、9C 無瞬断切換回路
10A、10B、10C 交流出力遮断器
11A、11B、11C 直流入力遮断器
12A、12B、12C 蓄電池
13A、13B 保守バイパス回路
(14 欠番)
15A、15B、15C 交流出力
16A、16B 負荷
17A、17B、17C 商用電源
18A、18B、18C バイパス入力
19 予備電源分岐盤
20A、20B 保守バイパス遮断器
21A、21B 出力盤
22A、22B 交流出力
23A、23B 交流入力(予備UPS側)
24A、24B バイパス入力遮断器(予備UPS側)
25A、25B バイパス交流入力
26A、26B 直流電流検出器
27A、27B 電流リミット調整回路
28 最適電流リミット演算器
1A, 1B UPS for regular use
1C spare UPS
2A, 2B, 2C Commercial power supply 3A, 3B, 3C AC input (commercial side)
4A, 4B, 4C AC input circuit breakers 5A, 5B, 5C Forward converters 6A, 6B, 6C Reverse converters 7A1, 7B1, 7C Bypass circuit breakers 7A2, 7B2 Bypass input circuit breakers 8A, 8B, 8C Bypass circuits 9A, 9B , 9C Uninterruptible switching circuit 10A, 10B, 10C AC output circuit breaker 11A, 11B, 11C DC input circuit breaker 12A, 12B, 12C Storage battery 13A, 13B Maintenance bypass circuit (14 missing number)
15A, 15B, 15C AC output 16A, 16B Load 17A, 17B, 17C Commercial power supply 18A, 18B, 18C Bypass input 19 Spare power supply switchboard 20A, 20B Maintenance bypass circuit breaker 21A, 21B Output panel 22A, 22B AC output 23A, 23B AC input (spare UPS side)
24A, 24B Bypass input circuit breaker (spare UPS side)
25A, 25B Bypass AC input 26A, 26B DC current detector 27A, 27B Current limit adjustment circuit 28 Optimal current limit calculator

Claims (7)

商用電源の交流を直流に変換する順変換器と、
この順変換器の直流出力を再び交流に変換して負荷に給電する逆変換器と、
前記商用電源の停電時に前記逆変換器に直流電力を供給するエネルギー蓄積部と、
前記商用電源または別電源により負荷給電を継続させるためのバイパス切換回路
を備えた複数台の常用UPSと、
前記常用UPSのうちの1台が故障や点検のため停止したとき負荷給電を継続するための第1の切換手段を有し、前記常用UPSと同一の構成から成る1台の予備用UPSと、
前記商用電源が停電したとき、前記予備用UPSの出力を前記複数台の常用UPSの入力に給電可能な第2の切換手段と
を備えたことを特徴とする共通予備無停電電源システム。
A forward converter for converting AC of commercial power to DC,
An inverse converter that converts the DC output of the forward converter into AC again and supplies power to the load;
An energy storage unit for supplying DC power to the inverter at the time of a power failure of the commercial power supply;
A plurality of regular UPSs equipped with a bypass switching circuit for continuing load feeding by the commercial power source or another power source;
One standby UPS having a first switching means for continuing load power supply when one of the regular UPSs is stopped due to failure or inspection; and having the same configuration as the regular UPS;
A common backup uninterruptible power supply system comprising: a second switching unit capable of supplying the output of the backup UPS to the inputs of the plurality of service UPSs when the commercial power supply fails.
更に、前記常用UPSまたは前記予備用UPSを保守点検するため、前記商用電源または別電源により負荷給電を継続させるための保守用バイパス切換手段を備えたことを特徴とする請求項1に記載の共通予備無停電電源システム。 2. The common bypass switch according to claim 1, further comprising a maintenance bypass switching means for continuing load power feeding by the commercial power source or another power source in order to maintain and inspect the regular UPS or the spare UPS. Standby uninterruptible power system. 前記商用電源が停電したとき、
前記複数台の常用UPSは、各々の常用UPSに接続されたエネルギー蓄積部の直流電力と、前記予備用UPSの交流出力の2つの電力を併用して運転するようにしたことを特徴とする請求項1または請求項2に記載の共通予備無停電電源システム。
When the commercial power supply fails
The plurality of service UPSs are operated by using both the DC power of the energy storage unit connected to each service UPS and the AC power of the backup UPS. Item 3. The common backup uninterruptible power supply system according to item 1 or item 2.
前記予備用UPSは、当該予備用UPSが供給可能な電力を常用UPSの台数で除した電力容量を各々の常用UPSに供給し、
各々の常用UPSは、残りの必要電力容量を当該常用UPSのエネルギー蓄積部から供給するようにしたことを特徴とする請求項3に記載の共通予備無停電電源システム。
The backup UPS supplies power capacity obtained by dividing the power that can be supplied by the backup UPS by the number of service UPSs to each service UPS.
4. The common standby uninterruptible power supply system according to claim 3, wherein each of the service UPSs supplies the remaining necessary power capacity from the energy storage unit of the service UPS.
前記予備用UPSは、当該予備用UPSが供給可能な電力を常用UPSの台数で除した電力容量に各々の常用UPSの負荷率を乗じた容量を各々の常用UPSに供給し、
各々の常用UPSは、残りの必要電力容量を当該常用UPSのエネルギー蓄積部から供給するようにしたことを特徴とする請求項3に記載の共通予備無停電電源システム。
The backup UPS supplies the capacity obtained by dividing the power capacity that can be supplied by the backup UPS by the number of service UPSs and the load factor of each service UPS to each service UPS.
4. The common standby uninterruptible power supply system according to claim 3, wherein each of the service UPSs supplies the remaining necessary power capacity from the energy storage unit of the service UPS.
前記複数台の常用UPSのエネルギー蓄積部の運転継続時間が等しくなるように予備用UPSが各々の常用UPSに供給すべき電力容量を演算により求め、
この演算の結果に従い前記予備用UPSは各々の常用UPSに電力を供給し、
各々の常用UPSは残りの必要容量を当該常用UPSのエネルギー蓄積部から供給するようにしたことを特徴とする請求項3に記載の共通予備無停電電源システム。
The standby UPS obtains by calculation the power capacity to be supplied to each of the regular UPSs so that the operation durations of the energy storage units of the plurality of regular UPSs are equal.
According to the result of this calculation, the backup UPS supplies power to each service UPS,
4. The common standby uninterruptible power supply system according to claim 3, wherein each of the service UPSs supplies the remaining necessary capacity from an energy storage unit of the service UPS.
前記演算の結果、解がマイナスとなる常用UPSはその解を0に修正し、当該常用UPSを除いた他の常用UPSを対象として再び演算して前記予備用UPSが各々の常用UPSに供給すべき電力容量を求めるようにしたことを特徴とする請求項6に記載の共通予備無停電電源システム。   As a result of the calculation, the service UPS having a negative solution corrects the solution to 0, calculates again for the service UPS other than the service UPS, and supplies the backup UPS to each service UPS. The common standby uninterruptible power supply system according to claim 6, wherein a power capacity to be calculated is obtained.
JP2005083841A 2005-03-23 2005-03-23 Uninterruptible power supply system Pending JP2006271074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005083841A JP2006271074A (en) 2005-03-23 2005-03-23 Uninterruptible power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005083841A JP2006271074A (en) 2005-03-23 2005-03-23 Uninterruptible power supply system

Publications (1)

Publication Number Publication Date
JP2006271074A true JP2006271074A (en) 2006-10-05

Family

ID=37206445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005083841A Pending JP2006271074A (en) 2005-03-23 2005-03-23 Uninterruptible power supply system

Country Status (1)

Country Link
JP (1) JP2006271074A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004537A (en) * 2006-05-24 2008-01-10 Tokyo Electric Power Co Inc:The Three-phase circuit breaker characteristics measuring device, detecting method of three-phase circuit breaker unbalance abnormality and program for computer to perform unbalance abnormality detection of three-phase circuit breaker
KR100875077B1 (en) 2007-01-30 2008-12-18 황병열 Uninterruptible Power Supply for Online Computer Systems Including Multihost Computers
CN105322651A (en) * 2015-11-16 2016-02-10 江苏省电力公司镇江供电公司 Automatic inputting method for standby power supply based on incomplete primary main connection on expanded inner bridge
CN105553091A (en) * 2015-12-29 2016-05-04 江苏省电力公司镇江供电公司 Method for inputting expanded inner-bridge emergency power supply of primary main connection wire based on incompleteness of two main transformers
US9343902B2 (en) 2011-04-26 2016-05-17 Nec Corporation Uninterruptible power supply apparatus and control method
JP2016525336A (en) * 2013-07-18 2016-08-22 アイネット・レジストリー、 エルエルシーAiNET Registry, LLC System and method for efficient power supply and backup
US11070078B2 (en) * 2016-10-31 2021-07-20 Verizon Media Inc. ASTS-less block redundant electrical topology with variable UPS walk-ins
KR20220023136A (en) * 2020-08-20 2022-03-02 장규돈 Redundant uninterruptible power supply
CN114825483A (en) * 2022-06-29 2022-07-29 西安热工研究院有限公司 Thermal power generating unit frequency modulation system, method and device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004537A (en) * 2006-05-24 2008-01-10 Tokyo Electric Power Co Inc:The Three-phase circuit breaker characteristics measuring device, detecting method of three-phase circuit breaker unbalance abnormality and program for computer to perform unbalance abnormality detection of three-phase circuit breaker
KR100875077B1 (en) 2007-01-30 2008-12-18 황병열 Uninterruptible Power Supply for Online Computer Systems Including Multihost Computers
US9343902B2 (en) 2011-04-26 2016-05-17 Nec Corporation Uninterruptible power supply apparatus and control method
JP2016525336A (en) * 2013-07-18 2016-08-22 アイネット・レジストリー、 エルエルシーAiNET Registry, LLC System and method for efficient power supply and backup
CN105322651A (en) * 2015-11-16 2016-02-10 江苏省电力公司镇江供电公司 Automatic inputting method for standby power supply based on incomplete primary main connection on expanded inner bridge
CN105553091A (en) * 2015-12-29 2016-05-04 江苏省电力公司镇江供电公司 Method for inputting expanded inner-bridge emergency power supply of primary main connection wire based on incompleteness of two main transformers
US11070078B2 (en) * 2016-10-31 2021-07-20 Verizon Media Inc. ASTS-less block redundant electrical topology with variable UPS walk-ins
KR20220023136A (en) * 2020-08-20 2022-03-02 장규돈 Redundant uninterruptible power supply
KR102510026B1 (en) 2020-08-20 2023-03-13 장규돈 Redundant uninterruptible power supply
CN114825483A (en) * 2022-06-29 2022-07-29 西安热工研究院有限公司 Thermal power generating unit frequency modulation system, method and device

Similar Documents

Publication Publication Date Title
EP3484015B1 (en) Power supply system and method
JP2006271074A (en) Uninterruptible power supply system
US6611068B2 (en) Power system
JP2003535563A (en) Power supply system using DC bus
US8338982B2 (en) Apparatus to maintain redundancy in four line system
KR101805273B1 (en) Energy Storage System Integrated Function of On-Line Uninterruptible Power Supply and Method for Operating That System
JP2008312371A (en) Common backup uninterruptible power supply system
JP5813426B2 (en) Individual bypass type parallel uninterruptible power supply system
JP2000102196A (en) Uninterruptible power supply
JP2007215344A (en) Uninterruptible power supply system
JP2008067491A (en) Common spare uninterruptible power supply system
RU2410816C2 (en) Device for guaranteed power supply to essential loads
JP4527064B2 (en) Uninterruptible power supply system
JP6668274B2 (en) Uninterruptible power supply system
JP2008172864A (en) Uninterruptible power supply facility and its extension method
RU2215355C1 (en) No-break power installation for railway automatic-control systems
JP7443157B2 (en) uninterruptible power system
JP2018011487A (en) Uninterruptible power supply system
US11611231B2 (en) Uninterruptible power supply system having stranded power recovery
JP4497760B2 (en) Uninterruptible power supply system
JP2003087998A (en) Uninterruptible standby power supply system in normal use
CN115843410B (en) Redundant power supply device, system, uninterruptible power supply equipment, switch and control method
JP2005218200A (en) Common uninterruptible, standby, power supply system
KR101081583B1 (en) A uninterruptible power supply
JP2022121939A (en) Uninterruptible power supply system