JP2006269728A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2006269728A
JP2006269728A JP2005085512A JP2005085512A JP2006269728A JP 2006269728 A JP2006269728 A JP 2006269728A JP 2005085512 A JP2005085512 A JP 2005085512A JP 2005085512 A JP2005085512 A JP 2005085512A JP 2006269728 A JP2006269728 A JP 2006269728A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
main surface
substrate
metal layer
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005085512A
Other languages
Japanese (ja)
Inventor
Yoshinori Kotani
佳範 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005085512A priority Critical patent/JP2006269728A/en
Publication of JP2006269728A publication Critical patent/JP2006269728A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device where a semiconductor substrate is bonded with a frame through a metal layer without occurrence of a hole and unbonded portions. <P>SOLUTION: The metal layer 5 is arranged between the p-type Si substrate 1 and the frame 6. In distribution of dopant concentration of a second main face-side of the p-type Si substrate 1, concentration of a center of a second main face of the Si substrate 1 is the largest and it becomes smaller at a periphery. Thus, molten eutectic by heating starts from the center of the second main face of the p-type Si substrate 1, and the hole and unbonded portions do not occur between the Si substrate 1 and the frame 6. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、チップ下面と電気的に接合されたフレームを介して実装される半導体装置およびその製造方法に関する。   The present invention relates to a semiconductor device mounted via a frame electrically joined to a lower surface of a chip and a manufacturing method thereof.

従来の半導体装置としては、半導体素子の半導体基板の電極や拡散層を有する第一主面の反対側である第二主面にAu等のメタル層を形成し、フレームとの接合に用いるものがあった(例えば、特許文献1参照)。   As a conventional semiconductor device, a metal layer such as Au is formed on a second main surface opposite to the first main surface having an electrode and a diffusion layer of a semiconductor substrate of a semiconductor element, and used for bonding to a frame. (For example, see Patent Document 1).

図4は、前記特許文献1に記載された従来の半導体装置を示すものである。   FIG. 4 shows a conventional semiconductor device described in Patent Document 1. In FIG.

図4において、100は半導体素子、101は半導体基板、101aは半導体基板とメタル層との共晶層、102は拡散層、103は絶縁皮膜、104は電極、105はAu等から成るメタル層、106はフレーム、106aはフレームとメタル層との共晶域を各々示しており、半導体素子100の半導体基板101の電極104や拡散層102を有する第一主面の反対側である第二主面にAu等から成るメタル層105をあらかじめ蒸着しておき、フレーム106をその下部のヒーター等(図示せず)で加熱しておき、半導体素子100のメタル層105をフレーム106表面に当接させることで昇温させてAu等から成るメタル層105を熔融させて該メタル層105と半導体基板101との共晶層101aと、該メタル層105とフレーム106との共晶域106aとを得て半導体素子100とフレーム106とを機械的及び電気的に接合させるものであった。
特開平5−299443号公報
In FIG. 4, 100 is a semiconductor element, 101 is a semiconductor substrate, 101a is a eutectic layer of the semiconductor substrate and a metal layer, 102 is a diffusion layer, 103 is an insulating film, 104 is an electrode, 105 is a metal layer made of Au or the like, Reference numeral 106 denotes a frame, and reference numeral 106a denotes a eutectic region of the frame and the metal layer. The second main surface is the opposite side of the first main surface having the electrode 104 and the diffusion layer 102 of the semiconductor substrate 101 of the semiconductor element 100. A metal layer 105 made of Au or the like is vapor-deposited in advance, and the frame 106 is heated by a heater or the like (not shown) below the frame 106 so that the metal layer 105 of the semiconductor element 100 is brought into contact with the surface of the frame 106. The metal layer 105 made of Au or the like is melted by elevating the temperature of the eutectic layer 101a of the metal layer 105 and the semiconductor substrate 101; The semiconductor element 100 and the frame 106 were those that are mechanically and electrically joined to give a KyoAkiraiki 106a of the arm 106.
JP-A-5-299443

しかしながら、前記従来の構成では、加熱されたフレーム106表面に半導体素子100のメタル層105を当接させて昇温して該メタル層105が熔融する際、半導体素子100が有する熱容量が作用して、メタル層105の半導体基板101の第二主面周縁部に位置するメタル層105より熔融が始まって次第に該メタル層105の中央部へと熔融が進んで行くのでメタル層105とフレーム106との間の空気あるいは加熱昇温で発生したフレーム106表面からのガス等が半導体基板101とフレーム106との間から逃げ出す事ができず、最終的に該半導体基板101と該フレーム106との間に空孔を生じさせる事となる。   However, in the conventional configuration, when the metal layer 105 of the semiconductor element 100 is brought into contact with the surface of the heated frame 106 to raise the temperature and the metal layer 105 melts, the heat capacity of the semiconductor element 100 acts. The metal layer 105 is melted from the metal layer 105 located at the peripheral edge of the second main surface of the semiconductor substrate 101 and gradually melts toward the center of the metal layer 105. The air or the gas generated from the surface of the frame 106 generated by heating and heating cannot escape from between the semiconductor substrate 101 and the frame 106, and finally, there is no space between the semiconductor substrate 101 and the frame 106. It will cause a hole.

また、フレーム106表面に半導体素子100のメタル層105を当接させて熔融したメタル層105が半導体基板101とフレーム106との間隙より半導体基板101周辺のフレーム106表面へ拡がるが、この際メタル層105の半導体基板101周辺のフレーム106表面への拡がりは、図4に示す半導体基板101の第二主面の中心Oから該半導体基板101のコーナーまでの距離aに比して半導体基板101の第二主面の中心Oから該半導体基板101の辺を垂直に結ぶ垂線bの距離の方が短い為に、該中心Oを中心として半導体基板101の外縁方向へ拡がるので該垂線bの延長部分に分布の最大部を有し両側のコーナーにかけて減少した分布と成る。この為、メタル層105に充分なボリューム(厚み)を持たせておかなければ半導体基板101のコーナー近傍の第二主面下に形成されるメタル層105が、半導体基板101周辺の表面へ拡がった部分のメタル層105側へ取られてボリューム不足となって半導体基板101のコーナー近傍の第二主面下に空孔や未着部を生じる事となる。   Further, the metal layer 105 melted by bringing the metal layer 105 of the semiconductor element 100 into contact with the surface of the frame 106 spreads from the gap between the semiconductor substrate 101 and the frame 106 to the surface of the frame 106 around the semiconductor substrate 101. 105 extends to the surface of the frame 106 around the semiconductor substrate 101 as compared with the distance a from the center O of the second main surface of the semiconductor substrate 101 to the corner of the semiconductor substrate 101 shown in FIG. Since the distance of the perpendicular line b connecting the side of the semiconductor substrate 101 perpendicularly from the center O of the two main surfaces is shorter, the distance extends from the center O toward the outer edge of the semiconductor substrate 101. The distribution has the maximum part of the distribution and decreases toward the corners on both sides. Therefore, if the metal layer 105 does not have a sufficient volume (thickness), the metal layer 105 formed under the second main surface near the corner of the semiconductor substrate 101 spreads to the surface around the semiconductor substrate 101. The portion is taken to the metal layer 105 side and the volume becomes insufficient, resulting in the formation of vacancies and unattached portions under the second main surface near the corner of the semiconductor substrate 101.

これら上述の事は半導体基板101が有するボロン等のP型ドーパントや燐等のN型ドーパントが低濃度である程半導体基板とメタル層との共晶層101aが形成され難いので更にその発生傾向が大きくなり、半導体装置として、半導体基板101とフレーム106との電気的接続抵抗の増大や動作時の放熱を阻害する熱抵抗の増大と、機械強度不足と熱応力等の繰り返しによるフレーム106と半導体基板101との間の破断に至る等の問題を引き起こすという課題を有していた。   The above-described facts are more likely to occur because the eutectic layer 101a of the semiconductor substrate and the metal layer is less likely to be formed as the concentration of the P-type dopant such as boron or the N-type dopant such as phosphorus in the semiconductor substrate 101 decreases. As a semiconductor device, the frame 106 and the semiconductor substrate increase due to an increase in electrical connection resistance between the semiconductor substrate 101 and the frame 106, an increase in thermal resistance that hinders heat dissipation during operation, and insufficient mechanical strength and thermal stress. 101 has a problem of causing a problem such as a breakage with respect to 101.

本発明は、前記従来の課題を解決するもので、空孔や未着部を生ずる事なくフレームと半導体素子との接合を実現する半導体装置およびその製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object of the present invention is to provide a semiconductor device that realizes bonding between a frame and a semiconductor element without generating holes or unattached portions, and a method for manufacturing the same.

前記従来の課題を解決するために、本発明の半導体装置は、第一導電型半導体基板の第二主面表層に、該半導体基板と同一導電型で且つ、半導体基板の第二主面中央が高濃度で周辺にかけて濃度が下がるドーパントの分布を有し、半導体基板の第二主面とフレームとをメタル層を介して共晶接合させる際の、加熱によるメタル層の熔融と、該メタル層と第一導電型半導体基板及びフレームとの共晶接合が、第一導電型半導体基板の第二主面中央部相当位置より始まって順次周辺へ拡がっていく事を特徴とする。   In order to solve the above-described conventional problems, the semiconductor device of the present invention has a surface of the second main surface of the first conductivity type semiconductor substrate having the same conductivity type as the semiconductor substrate and a center of the second main surface of the semiconductor substrate. It has a high concentration of dopant distribution that decreases in concentration toward the periphery, melting the metal layer by heating when the second main surface of the semiconductor substrate and the frame are eutectic bonded via the metal layer, and the metal layer The eutectic bonding between the first conductive type semiconductor substrate and the frame starts from a position corresponding to the center portion of the second main surface of the first conductive type semiconductor substrate and gradually spreads to the periphery.

前記従来の課題を解決するために、本発明の半導体装置の製造方法は、第一導電型半導体基板の第二主面を研削研磨して厚み調整の後に熱酸化法によって該半導体基板の第二主面上に酸化皮膜を形成させる酸化工程と、酸化工程終了後の酸化皮膜にフォトリソグラフィーを用いた選択的エッチング除去にて該酸化皮膜にパターニングを施すパターニング工程と、パターニング工程終了後の第一導電型半導体基板の第二主面側に、パターニングされた酸化皮膜をマスクとして第一導電型半導体基板と同一導電型のドーパントを該半導体基板の第二主面に蒸着させる蒸着工程と、蒸着工程終了後の第一導電型半導体基板の第二主面に形成された酸化皮膜をエッチングで全面除去するエッチング工程と、エッチング工程終了後の第一導電型半導体基板の第二主面にメタル層を形成するメタライズ工程と、を含む事を特徴とする。   In order to solve the above-described conventional problems, a method of manufacturing a semiconductor device according to the present invention includes grinding and polishing the second main surface of a first conductivity type semiconductor substrate, adjusting the thickness, and then thermally oxidizing the second main surface of the semiconductor substrate. An oxidation process for forming an oxide film on the main surface, a patterning process for patterning the oxide film by selective etching removal using photolithography on the oxide film after completion of the oxidation process, and a first after completion of the patterning process A vapor deposition step of depositing a dopant having the same conductivity type as the first conductive type semiconductor substrate on the second main surface side of the semiconductor substrate on the second main surface side of the conductive type semiconductor substrate using the patterned oxide film as a mask; An etching process for removing the entire oxide film formed on the second main surface of the first conductive type semiconductor substrate after the etching by etching, and a first conductive type semiconductor substrate after the etching process is completed A metallization forming a metal layer on the second major surface of, characterized in that it comprises a.

更に、本発明の半導体装置の製造方法は、パターニング工程で、酸化皮膜の第一導電型半導体基板の第二主面中央に位置する部分を円面に選択的エッチング除去して第一のパターンを得る事を特徴とする。   Furthermore, in the method for manufacturing a semiconductor device according to the present invention, in the patterning step, a portion of the oxide film located at the center of the second main surface of the first conductive type semiconductor substrate is selectively etched and removed on the circular surface to form the first pattern. It is characterized by getting.

更に、本発明の半導体装置の製造方法は、パターニング工程で、酸化皮膜に点在するホールを選択的エッチング除去にて形成し、ホールの数密度は第一導電型半導体基板の第二主面中央に位置する部分が高くて、周辺になるほど低い第二のパターンを得る事を特徴とする。   Furthermore, in the method for manufacturing a semiconductor device of the present invention, in the patterning step, holes scattered in the oxide film are formed by selective etching removal, and the number density of holes is the center of the second main surface of the first conductivity type semiconductor substrate. The second pattern is characterized in that the portion located at is higher and lower toward the periphery.

更に、本発明の半導体装置の製造方法は、パターニング工程で、酸化皮膜の第一導電型半導体基板の第二主面の対角線に位置する部分を選択的エッチング除去して十字型の第三のパターンを得る事を特徴とする。   Furthermore, in the method for manufacturing a semiconductor device of the present invention, in the patterning step, a portion of the oxide film located on the diagonal line of the second main surface of the first conductive type semiconductor substrate is selectively removed by etching to form a cross-shaped third pattern. It is characterized by obtaining.

更に、本発明の半導体装置の製造方法は、第三のパターンの線幅は、中央が最も広くて先端になる程先細りする形状である事を特徴とする。   Furthermore, the semiconductor device manufacturing method according to the present invention is characterized in that the line width of the third pattern is a shape in which the center is widest and tapers toward the tip.

本構成によって、半導体基板とフレームとの間に空孔や未着部が生じる事なく接合することができる。   With this configuration, bonding can be performed between the semiconductor substrate and the frame without generating voids or unattached portions.

以上のように、本発明の半導体装置およびその製造方法によれば、半導体基板とフレームとの間に空孔や未着部が生じないので半導体装置として、半導体基板とフレームとの電気的接続抵抗の増大や動作時の放熱を阻害する熱抵抗の増大や、機械強度不足と熱応力等の繰り返しによるフレームと半導体基板との間の破断に至る等の問題を引き起こす事なく電気特性と信頼性に優れたものとすることができる。   As described above, according to the semiconductor device and the manufacturing method thereof of the present invention, since no voids or unattached portions are generated between the semiconductor substrate and the frame, the electrical connection resistance between the semiconductor substrate and the frame as the semiconductor device Increased thermal resistance, which hinders heat dissipation during operation, and increases in electrical characteristics and reliability without causing problems such as mechanical strength deficiency and breakage between the frame and the semiconductor substrate due to repeated thermal stress, etc. It can be excellent.

以下本発明の実施の形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明における半導体装置の上面図と該上面図のA−A線に沿った側方断面図である。   FIG. 1 is a top view of a semiconductor device according to the present invention and a side sectional view taken along line AA of the top view.

図1において、1はP型Si基板、2は拡散層、3は絶縁皮膜、4は電極、5はメタル層、6はフレーム、10は半導体素子を各々示しており、P型Si基板1の第一主面に拡散層2や絶縁皮膜3や電極4を有した半導体素子10の第二主面にメタル層5を有し、該メタル層5を介してP型Si基板1とフレーム6が接合されており、P型Si基板1の第二主面のドーパント濃度は中央をピークとして周辺へかけて減少していく様に分布していて、該P型Si基板1と同一導電型のP型である。   In FIG. 1, 1 is a P-type Si substrate, 2 is a diffusion layer, 3 is an insulating film, 4 is an electrode, 5 is a metal layer, 6 is a frame, and 10 is a semiconductor element. The semiconductor element 10 having the diffusion layer 2, the insulating film 3, and the electrode 4 on the first main surface has a metal layer 5 on the second main surface, and the P-type Si substrate 1 and the frame 6 are interposed through the metal layer 5. The dopant concentration of the second main surface of the P-type Si substrate 1 is distributed so as to decrease from the center to the periphery, and P having the same conductivity type as the P-type Si substrate 1 is bonded. It is a type.

係る構成によれば、フレーム6をその下部のヒーター等(図示せず)で加熱しておき、半導体素子10のメタル層5をフレーム6表面に当接させることで昇温させてAu等から成るメタル層5を熔融させて該メタル層5と半導体基板であるP型Si基板1との共晶層(図示せず)と、該メタル層5とフレーム6との共晶域(図示せず)とを得て半導体素子10とフレーム6とを機械的及び電気的に接合させる際に、半導体素子10が有する熱容量の作用でメタル層5のP型Si基板1の第二主面周縁部に位置するメタル層5より熔融が始まって次第に該メタル層5の中央部へと熔融が進んで行く事を防いで、P型Si基板1の第二主面のドーパントの濃度分布が作用してドーパント濃度が高いP型Si基板1の第二主面の中央部よりメタル層5の熔融とそれに伴う該メタル層5とP型Si基板1及びメタル層5とフレーム6との共晶域(図示せず)が形成されて周辺へ拡がって行くのでメタル層5とフレーム6との間の空気あるいは加熱昇温で発生したフレーム6表面からのガス等がP型Si基板1とフレーム6との間から追い出されて行き、最終的に該P型Si基板1と該フレーム6との間に空孔を生じさせる事が無く、高比抵抗のSi基板であっても、低温で且つ安定に半導体素子とフレームの接合が可能と出来る。   According to such a configuration, the frame 6 is heated by a heater or the like (not shown) below the frame 6, and the metal layer 5 of the semiconductor element 10 is brought into contact with the surface of the frame 6 to increase the temperature to be made of Au or the like. A eutectic layer (not shown) between the metal layer 5 and the P-type Si substrate 1 as a semiconductor substrate by melting the metal layer 5 and a eutectic region (not shown) between the metal layer 5 and the frame 6. When the semiconductor element 10 and the frame 6 are mechanically and electrically joined to each other, the metal layer 5 is positioned at the peripheral edge of the second main surface of the P-type Si substrate 1 by the action of the heat capacity of the semiconductor element 10. The melting of the metal layer 5 starts and then gradually progresses to the center of the metal layer 5, and the dopant concentration distribution on the second main surface of the P-type Si substrate 1 acts to cause the dopant concentration. Metal layer from the central portion of the second main surface of the P-type Si substrate 1 having a high height And a corresponding eutectic region (not shown) of the metal layer 5 and the P-type Si substrate 1 and the metal layer 5 and the frame 6 is formed and spreads to the periphery. Gas or the like from the surface of the frame 6 generated by the air or heating temperature is expelled from between the P-type Si substrate 1 and the frame 6, and finally between the P-type Si substrate 1 and the frame 6. There is no generation of voids between them, and even with a high resistivity Si substrate, the semiconductor element and the frame can be bonded stably at a low temperature.

ここで、メタル層5は例えばAuやAuを含んだ単層または多層のメタル層であり、フレーム6はCu、Fe、Ni等の金属あるいは、それらを含んだ合金であり又、該フレーム6の表面にはメッキ(図示せず)が施される場合もある。また、P型Si基板1は50mΩcmの比抵抗をもつボロンがドープされたもので、その第二主面に形成されたドーパントの分布は同一導電型のボロンの濃度分布である。   Here, the metal layer 5 is a single layer or a multilayer metal layer containing Au or Au, for example, and the frame 6 is a metal such as Cu, Fe, or Ni, or an alloy containing them. The surface may be plated (not shown). The P-type Si substrate 1 is doped with boron having a specific resistance of 50 mΩcm, and the distribution of the dopant formed on the second main surface is a concentration distribution of boron of the same conductivity type.

なお、本実施の形態において、P型Si基板1としたがこれをN型Si基板としても良い。この場合、N型Si基板の第二主面に形成されるドーパントの分布もN型とする。   In the present embodiment, the P-type Si substrate 1 is used, but it may be an N-type Si substrate. In this case, the distribution of the dopant formed on the second main surface of the N-type Si substrate is also N-type.

このような半導体装置の製造方法は、図2と図3とを参考にできる。   Such a semiconductor device manufacturing method can be referred to FIG. 2 and FIG.

図2において、1はP型Si基板、5はメタル層、7はSiO2皮膜を各々示しており、P型Si基板1の第一主面に形成されている構成を省略し、P型Si基板1の第二主面を上にして該P型Si基板1の第二主面の製造フローに沿った断面図である。 In FIG. 2, reference numeral 1 denotes a P-type Si substrate, 5 denotes a metal layer, and 7 denotes an SiO 2 film, and the configuration formed on the first main surface of the P-type Si substrate 1 is omitted. FIG. 3 is a cross-sectional view along the manufacturing flow of the second main surface of the P-type Si substrate 1 with the second main surface of the substrate 1 facing up.

図2(a)は、P型Si基板1の第二主面を研削研磨して厚み調整の後に熱酸化法によってP型Si基板1の第二主面にSiO2皮膜7を形成させる酸化工程終了時点を示す断面である。 FIG. 2A shows an oxidation process in which the second main surface of the P-type Si substrate 1 is ground and polished, and after adjusting the thickness, a SiO 2 film 7 is formed on the second main surface of the P-type Si substrate 1 by a thermal oxidation method. It is a cross section which shows the end time.

ここで、例えば半導体素子が1.0mm×1.0mmの方形型の場合、P型Si基板1の厚みは120μm、SiO2皮膜7の膜厚は2000Å程度とすることが好ましい。 Here, for example, when the semiconductor element is a square type of 1.0 mm × 1.0 mm, the thickness of the P-type Si substrate 1 is preferably 120 μm, and the thickness of the SiO 2 film 7 is preferably about 2000 mm.

図2(b)は、酸化工程終了後のSiO2皮膜7にフォトリソグラフィーを用いた選択的エッチング除去にて、後に述べるパターニングを施すパターニング工程を示している。 FIG. 2B shows a patterning process in which the SiO 2 film 7 after the oxidation process is subjected to patterning described later by selective etching removal using photolithography.

ここで、SiO2皮膜7のパターニングを施された部分はP型Si基板1の第二主面を露出させる窓と成る。 Here, the patterned portion of the SiO 2 film 7 serves as a window for exposing the second main surface of the P-type Si substrate 1.

図2(c)は、パターニング工程終了後のP型Si基板1の第二主面側に、パターニングされたSiO2皮膜7をマスクとしてP型ドーパントであるボロンを該P型Si基板1の第二主面露出部に蒸着させる蒸着工程を示している。 FIG. 2 (c) shows the second main surface side of the P-type Si substrate 1 after the patterning step is completed, and boron as a P-type dopant is added to the second main surface side of the P-type Si substrate 1 using the patterned SiO 2 film 7 as a mask. The vapor deposition process made to vapor-deposit on a 2 main surface exposed part is shown.

ここで、上述の蒸着時にP型Si基板1は1000℃に加熱させて、P型Si基板1の第二主面露出部の表面にボロンが蒸着すると同時に該P型Si基板1表層に拡散される。   Here, during the above-described deposition, the P-type Si substrate 1 is heated to 1000 ° C., and boron is deposited on the surface of the exposed portion of the second main surface of the P-type Si substrate 1 and simultaneously diffused into the surface layer of the P-type Si substrate 1. The

図2(d)は、蒸着工程終了後のP型Si基板1の第二主面に形成されたSiO2皮膜7をエッチングで全面除去するエッチング工程終了時点を示す図である。 FIG. 2D is a diagram showing the end of the etching process in which the SiO 2 film 7 formed on the second main surface of the P-type Si substrate 1 after the completion of the vapor deposition process is removed by etching.

ここで、蒸着工程にてP型Si基板1の第二主面露出部からその表層に拡散したボロンがパターニング工程で施されたパターン形状を保って該P型Si基板1の第二主面表層に残される事と成る。   Here, the second main surface surface layer of the P-type Si substrate 1 while maintaining the pattern shape in which boron diffused to the surface layer from the exposed portion of the second main surface of the P-type Si substrate 1 in the vapor deposition step is maintained. Will be left behind.

図2(e)は、エッチング工程終了後のP型Si基板1の第二主面にAuやAuを含む層を単層または多層に蒸着してメタル層5を形成するメタライズ工程の終了時点の断面を示す図である。   FIG. 2E shows the end of the metallization process in which a metal layer 5 is formed by vapor-depositing a single layer or multiple layers of Au or Au on the second main surface of the P-type Si substrate 1 after completion of the etching process. It is a figure which shows a cross section.

ここで、例えばメタル層5はAu単層で厚み4μm程度であることが好ましい。   Here, for example, the metal layer 5 is preferably a single Au layer and has a thickness of about 4 μm.

尚、本実施の形態ではP型Si基板1の第一主面側を省略して説明したが、一般に半導体基板の第一主面側に半導体拡散層とSiO2膜等から成る酸化皮膜を形成しておき、半導体基板の第一主面側の最後の酸化皮膜の形成と上述の酸化工程を同時に行う事が可能で、上述のパターニング工程は半導体基板の第一主面と相対位置を合わせる為に両面アライナーを用いるとよい。 Although the first main surface side of the P-type Si substrate 1 is omitted in the present embodiment, an oxide film composed of a semiconductor diffusion layer and a SiO 2 film is generally formed on the first main surface side of the semiconductor substrate. In addition, the formation of the final oxide film on the first main surface side of the semiconductor substrate and the above-described oxidation step can be performed at the same time, and the above-described patterning step is performed in order to align the relative position with the first main surface of the semiconductor substrate. It is recommended to use a double-sided aligner.

図3は、図2(b)のパターニング工程でSiO2皮膜7に窓形成するパターンについて示す図である。 FIG. 3 is a view showing a pattern for forming a window in the SiO 2 film 7 in the patterning step of FIG.

図3(A)は、SiO2皮膜7の中央に円面に窓形成を施した第一のパターンを示すものである。 FIG. 3A shows a first pattern in which a window is formed on the circular surface in the center of the SiO 2 film 7.

ここで、例えば半導体素子が1.0mm×1.0mmの方形型の場合、中央の円面はφ300μm程度であることが好ましい。   Here, for example, when the semiconductor element is a square type of 1.0 mm × 1.0 mm, the center circular surface is preferably about φ300 μm.

図3(A)のパターン形状にP型Si基板1の第二主面にボロンの高濃度部を有する事によって図1のフレーム6をその下部のヒーター等(図示せず)で加熱しておき、半導体素子10のメタル層5をフレーム6表面に当接させることで昇温させてAu等から成るメタル層5を熔融させて該メタル層5と半導体基板であるP型Si基板1との共晶層(図示せず)と、該メタル層5とフレーム6との共晶域(図示せず)とを得て半導体素子10とフレーム6とを機械的及び電気的に接合させる際に、P型Si基板1の第二主面のボロンの高濃度部が作用してボロン濃度が高い該P型Si基板1の第二主面の中央部よりメタル層5の熔融とそれに伴う該メタル層5とP型Si基板1及びメタル層5とフレーム6との共晶層(図示せず)が形成されて、周辺部が先に熔融して共晶する事が無い。   The frame 6 of FIG. 1 is heated by a heater or the like (not shown) below it by having a high concentration portion of boron on the second main surface of the P-type Si substrate 1 in the pattern shape of FIG. Then, the metal layer 5 of the semiconductor element 10 is brought into contact with the surface of the frame 6 to raise the temperature, and the metal layer 5 made of Au or the like is melted, so that the metal layer 5 and the P-type Si substrate 1 as a semiconductor substrate can be used together. When a crystal layer (not shown) and a eutectic region (not shown) of the metal layer 5 and the frame 6 are obtained and the semiconductor element 10 and the frame 6 are mechanically and electrically joined, P The high concentration portion of boron on the second main surface of the Si substrate 1 acts to melt the metal layer 5 from the central portion of the second main surface of the P-type Si substrate 1 and the metal layer 5 associated therewith. And a P-type Si substrate 1 and a eutectic layer (not shown) of the metal layer 5 and the frame 6 are formed. , It is not the peripheral portion is eutectic and melting earlier.

図3(B)は、SiO2皮膜7に点在するホールを示すが、その分布は中央に集中して周辺になるに従って点在分布を低くさせた第二のパターンを示すものである。 FIG. 3 (B) shows holes scattered in the SiO 2 film 7, and the distribution thereof is a second pattern in which the distribution is concentrated in the center and becomes lower toward the periphery.

ここで、例えば半導体素子が1.0mm×1.0mmの方形型の場合、ホール径はφ10μm、ホールの数密度は中央付近で0.3個/100μm2で、最疎部で0.03個/100μm2程度であることが好ましい。 Here, for example, when the semiconductor element is a square type of 1.0 mm × 1.0 mm, the hole diameter is φ10 μm, the hole number density is 0.3 / 100 μm 2 near the center, and 0.03 at the most distant portion. It is preferably about / 100 μm 2 .

図3(B)のパターン形状にP型Si基板1の第二主面にボロンの高濃度部を有する事によって図1のフレーム6をその下部のヒーター等(図示せず)で加熱しておき、半導体素子10のメタル層5をフレーム6表面に当接させることで昇温させてAu等から成るメタル層5を熔融させて該メタル層5と半導体基板であるP型Si基板1との共晶層(図示せず)と、該メタル層5とフレーム6との共晶域(図示せず)とを得て半導体素子10とフレーム6とを機械的及び電気的に接合させる際に、P型Si基板1の第二主面のボロンの高濃度部が作用してボロン高濃度部の点在率が高いP型Si基板1の第二主面の中央近傍よりメタル層5の熔融とそれに伴う該メタル層5とP型Si基板1及びメタル層5とフレーム6との共晶層(図示せず)が形成されて、徐々に周辺部へ熔融して共晶が拡がって行く。   The frame 6 of FIG. 1 is heated by a heater or the like (not shown) in the lower part thereof by having a high concentration portion of boron on the second main surface of the P-type Si substrate 1 in the pattern shape of FIG. Then, the metal layer 5 of the semiconductor element 10 is brought into contact with the surface of the frame 6 to raise the temperature, and the metal layer 5 made of Au or the like is melted, so that the metal layer 5 and the P-type Si substrate 1 as a semiconductor substrate can be used together. When a crystal layer (not shown) and a eutectic region (not shown) of the metal layer 5 and the frame 6 are obtained and the semiconductor element 10 and the frame 6 are mechanically and electrically joined, P The high concentration portion of boron on the second main surface of the Si substrate 1 acts to melt the metal layer 5 from the vicinity of the center of the second main surface of the P type Si substrate 1 where the high concentration of boron is high. The eutectic layer (not shown) of the metal layer 5 and the P-type Si substrate 1 and the metal layer 5 and the frame 6 is accompanied. There is formed, go eutectic spread gradually melting to the periphery.

図3(C)は、SiO2皮膜7の対角線で十字である第三のパターンで且つ中央から先端にかけて先細りさせたパターンを示すものである。 FIG. 3C shows a third pattern that is a cross on the diagonal line of the SiO 2 film 7 and is tapered from the center to the tip.

ここで、例えば半導体素子が1.0mm×1.0mmの方形型の場合、対角線の各先端幅は30μmで、中央部の最大幅は200μm程度であることが好ましい。   Here, for example, when the semiconductor element is a square type of 1.0 mm × 1.0 mm, it is preferable that the width of each end of the diagonal line is 30 μm and the maximum width of the central part is about 200 μm.

図3(C)のパターン形状にP型Si基板1の第二主面にボロンの高濃度部を有する事によって図4に示す様に、フレーム106表面に半導体素子100のメタル層105を当接させて熔融したメタル層105が半導体基板101とフレーム106との間隙より半導体基板101周辺のフレーム106表面へ拡がるが、この際メタル層105の半導体基板101周辺のフレーム106表面への拡がりは、半導体基板101の第二主面の中心Oから該半導体基板101のコーナーまでの距離aに比して半導体基板101の第二主面の中心Oから該半導体基板101の辺を垂直に結ぶ垂線bの距離の方が短い為に、該中心Oを中心として半導体基板101の外縁方向へ拡がるので該垂線bの延長部分に分布の最大部を有し両側のコーナーにかけて減少した分布と成り、この為にメタル層105に充分なボリューム(厚み)を持たせておかなければ半導体基板101のコーナー近傍の第二主面下に形成されるメタル層105が、半導体基板101周辺の表面へ拡がった部分のメタル層105側へ取られてボリューム不足となって半導体基板101のコーナー近傍の第二主面下に空孔や未着部を生じる事を、阻止して十字状のパターンの先端よりも中央近傍のメタル層5が先に熔融共晶し始めて、P型Si基板1の第二主面コーナー部に達するので、垂線bに相当する延長線上のフレーム6表面にメタル層5が拡がらず、P型Si基板1の第二主面コーナー部にメタル層5のボリュームを確保することが出来る。   As shown in FIG. 4, the metal layer 105 of the semiconductor element 100 is brought into contact with the surface of the frame 106 by having a high concentration portion of boron on the second main surface of the P-type Si substrate 1 in the pattern shape of FIG. The molten metal layer 105 spreads from the gap between the semiconductor substrate 101 and the frame 106 to the surface of the frame 106 around the semiconductor substrate 101. At this time, the spread of the metal layer 105 to the surface of the frame 106 around the semiconductor substrate 101 Compared with the distance a from the center O of the second main surface of the substrate 101 to the corner of the semiconductor substrate 101, a perpendicular line b connecting the side of the semiconductor substrate 101 perpendicularly from the center O of the second main surface of the semiconductor substrate 101 Since the distance is shorter, it extends in the direction of the outer edge of the semiconductor substrate 101 with the center O as the center, so that the extended portion of the perpendicular line b has a maximum portion of distribution and extends to the corners on both sides. For this reason, if the metal layer 105 does not have a sufficient volume (thickness), the metal layer 105 formed below the second main surface in the vicinity of the corner of the semiconductor substrate 101 is formed on the semiconductor substrate 101. The cross-section prevents the formation of voids and unattached portions under the second main surface near the corner of the semiconductor substrate 101 due to the lack of volume due to the metal layer 105 side of the portion extending to the peripheral surface. Since the metal layer 5 in the vicinity of the center of the pattern begins to be melted eutectic first and reaches the second main surface corner of the P-type Si substrate 1, the metal is formed on the surface of the frame 6 on the extension line corresponding to the perpendicular b. The layer 5 does not expand, and the volume of the metal layer 5 can be secured at the corner portion of the second main surface of the P-type Si substrate 1.

図3(D)は、図3(A)〜(C)のパターンを合成して形成したパターンで、各々の作用が全て得られるので図1のフレーム6をその下部のヒーター等(図示せず)で加熱しておき、半導体素子10のメタル層5をフレーム6表面に当接させることで昇温させてAu等から成るメタル層5を熔融させて該メタル層5と半導体基板であるP型Si基板1との共晶層(図示せず)と、該メタル層5とフレーム6との共晶域(図示せず)とを得て半導体素子10とフレーム6とを機械的及び電気的に接合させる際に、P型Si基板1の第二主面のボロンの高濃度部が作用して該P型Si基板1の第二主面中央部より熔融共晶が始まって、中央部から順次周辺へ熔融共晶が拡がって行き、P型Si基板1の第二主面コーナー部のメタル層5がボリューム不足と成る事も無いので、P型Si基板1とフレーム6との間に空孔や未着部の無い接合と出来る。   FIG. 3D is a pattern formed by synthesizing the patterns of FIGS. 3A to 3C, and all the functions are obtained. Therefore, the frame 6 of FIG. ), The metal layer 5 of the semiconductor element 10 is brought into contact with the surface of the frame 6 to raise the temperature, and the metal layer 5 made of Au or the like is melted. A eutectic layer (not shown) with the Si substrate 1 and a eutectic region (not shown) between the metal layer 5 and the frame 6 are obtained, and the semiconductor element 10 and the frame 6 are mechanically and electrically connected. When bonding, a high-concentration portion of boron on the second main surface of the P-type Si substrate 1 acts to start melt eutectic from the central portion of the second main surface of the P-type Si substrate 1, and sequentially from the central portion. The melt eutectic spreads to the periphery, and the metal layer 5 at the corner of the second main surface of the P-type Si substrate 1 is the volume. Since it is also not composed with arm insufficient, can with no junctions holes and arrive portion between the P-type Si substrate 1 and the frame 6.

ここで、SiO2皮膜7のパターンと、P型Si基板1とフレーム6とをメタル層5を介して接合させた際のP型Si基板1の第二主面側のボロンの濃度分布を考えると、一般に半導体層に濃度分布を持たせて拡散を行う場合は、拡散のマスク範囲やドーピング濃度や時間を変えて二度またはそれ以上の回数に渡って繰り返し拡散工程を経る必要が有るが、本発明のドーパントの濃度分布は、P型Si基板1とフレーム6との接合時に熔融するメタル層5の特性を活かしてP型Si基板1の第二主面に加えるドーパントの濃度は一定であって一度の蒸着で濃度分布をコントロール出来る事と成り、図1に示す様な濃度分布を得ることができる。 Here, the pattern of the SiO 2 film 7 and the boron concentration distribution on the second main surface side of the P-type Si substrate 1 when the P-type Si substrate 1 and the frame 6 are bonded via the metal layer 5 are considered. In general, when diffusion is performed by giving a concentration distribution to a semiconductor layer, it is necessary to repeat the diffusion process twice or more times by changing the diffusion mask range, doping concentration, and time. The dopant concentration distribution of the present invention is such that the concentration of the dopant added to the second main surface of the P-type Si substrate 1 is constant taking advantage of the characteristics of the metal layer 5 that melts when the P-type Si substrate 1 and the frame 6 are joined. Thus, the concentration distribution can be controlled by one deposition, and the concentration distribution as shown in FIG. 1 can be obtained.

尚、本製造方法の実施の形態では、半導体基板としてP型Si基板を用いて説明したが、N型の半導体基板としても良い。その場合、半導体基板の第二主面側から加えるドーパントも同一導電型のN型とする。   In the embodiment of the present manufacturing method, a P-type Si substrate is used as the semiconductor substrate. However, an N-type semiconductor substrate may be used. In that case, the dopant added from the second main surface side of the semiconductor substrate is also the N type of the same conductivity type.

高出力の半導体装置として有用であり、特に半導体素子が小型で且つ高出力を求められる半導体装置に適している。   It is useful as a high output semiconductor device, and is particularly suitable for a semiconductor device in which a semiconductor element is small and high output is required.

本発明の実施の形態における半導体装置の上面及び側方断面図Top and side sectional views of a semiconductor device in an embodiment of the present invention 本発明の実施の形態における半導体装置の製造方法のフローに沿った断面図Sectional drawing along the flow of the manufacturing method of the semiconductor device in embodiment of this invention 本発明の実施の形態における半導体装置の製造方法に用いるSiO2皮膜のパターンを示す図Shows the pattern of the SiO 2 film used in the production method of the semiconductor device in the embodiment of the present invention 従来の半導体装置を示す図The figure which shows the conventional semiconductor device

符号の説明Explanation of symbols

1 P型Si基板
2、102 拡散層
3、103 絶縁皮膜
4、104 電極
5、105 メタル層
6、106 フレーム
7 SiO2皮膜
10、100 半導体素子
101 半導体基板
101a 半導体基板とメタル層との共晶層
106a フレームとメタル層との共晶域
1 eutectic between the P-type Si substrate 2,102 diffusion layers 3,103 insulating coating 4,104 electrode 5 and 105 metal layers 6,106 frames 7 SiO 2 film 10, 100 semiconductor devices 101 a semiconductor substrate 101a semiconductor substrate and the metal layer Layer 106a Eutectic zone between frame and metal layer

Claims (9)

第一導電型半導体基板の第二主面表層に、該半導体基板と同一導電型で且つ、前記半導体基板の前記第二主面中央が高濃度で周辺にかけて濃度が下がるドーパントの分布を有し、
前記半導体基板の第二主面とフレームとをメタル層を介して共晶接合させる際の、加熱による前記メタル層の熔融と、該メタル層と前記第一導電型半導体基板及び前記フレームとの共晶接合が、前記第一導電型半導体基板の第二主面中央部相当位置より始まって順次周辺へ拡がっていく事を特徴とする半導体装置。
The second conductive surface layer of the first conductivity type semiconductor substrate has a dopant distribution that is of the same conductivity type as the semiconductor substrate and has a high concentration at the center of the second main surface of the semiconductor substrate and a decrease in concentration toward the periphery.
When the second main surface of the semiconductor substrate and the frame are eutectic-bonded via a metal layer, the metal layer is melted by heating, and the metal layer, the first conductive semiconductor substrate and the frame are coupled together. A semiconductor device characterized in that crystal bonding starts from a position corresponding to the center portion of the second main surface of the first conductivity type semiconductor substrate and gradually extends to the periphery.
第一導電型半導体基板の第二主面を研削研磨して厚み調整の後に熱酸化法によって該半導体基板の第二主面上に酸化皮膜を形成させる酸化工程と、
前記酸化工程終了後の前記酸化皮膜にフォトリソグラフィーを用いた選択的エッチング除去にて該酸化皮膜にパターニングを施すパターニング工程と、
前記パターニング工程終了後の前記第一導電型半導体基板の第二主面側に、パターニングされた前記酸化皮膜をマスクとして前記第一導電型半導体基板と同一導電型のドーパントを該半導体基板の第二主面に蒸着させる蒸着工程と、
前記蒸着工程終了後の前記第一導電型半導体基板の第二主面に形成された前記酸化皮膜をエッチングで全面除去するエッチング工程と、
前記エッチング工程終了後の前記第一導電型半導体基板の第二主面にメタル層を形成するメタライズ工程と、を含む事を特徴とする半導体装置の製造方法。
An oxidation step of grinding and polishing the second main surface of the first conductivity type semiconductor substrate to form an oxide film on the second main surface of the semiconductor substrate by thermal oxidation after thickness adjustment;
A patterning step of patterning the oxide film by selective etching removal using photolithography on the oxide film after completion of the oxidation step;
A dopant having the same conductivity type as that of the first conductivity type semiconductor substrate is applied to the second main surface side of the first conductivity type semiconductor substrate after the patterning step by using the patterned oxide film as a mask. A vapor deposition process for vapor deposition on the main surface;
An etching step of removing the entire surface of the oxide film formed on the second main surface of the first conductive type semiconductor substrate after the vapor deposition step by etching;
And a metallization step of forming a metal layer on the second main surface of the first conductivity type semiconductor substrate after completion of the etching step.
前記パターニング工程で、前記酸化皮膜の前記第一導電型半導体基板の第二主面中央に位置する部分を円面に選択的エッチング除去して第一のパターンを得る事を特徴とする請求項2に記載の半導体装置の製造方法。 The first pattern is obtained by selectively etching and removing a portion of the oxide film located at the center of the second main surface of the first conductive type semiconductor substrate in a circular plane in the patterning step. The manufacturing method of the semiconductor device as described in any one of Claims 1-3. 前記パターニング工程で、前記酸化皮膜に点在するホールを選択的エッチング除去にて形成し、前記ホールの数密度は前記第一導電型半導体基板の第二主面中央に位置する部分が高くて、周辺になるほど低い第二のパターンを得る事を特徴とする請求項2に記載の半導体装置の製造方法。 In the patterning step, holes scattered in the oxide film are formed by selective etching removal, and the number density of the holes is high at a portion located at the center of the second main surface of the first conductivity type semiconductor substrate, 3. The method of manufacturing a semiconductor device according to claim 2, wherein a second pattern that is lower toward the periphery is obtained. 前記パターニング工程で、前記酸化皮膜の前記第一導電型半導体基板の第二主面の対角線に位置する部分を選択的エッチング除去して十字型の第三のパターンを得る事を特徴とする請求項2に記載の半導体装置の製造方法。 The cross-shaped third pattern is obtained by selectively etching away a portion of the oxide film located on a diagonal line of the second main surface of the first conductive type semiconductor substrate in the patterning step. 3. A method for manufacturing a semiconductor device according to 2. 前記第三のパターンの線幅は、中央が最も広くて先端になる程先細りする形状である事を特徴とする請求項5に記載の半導体装置の製造方法。 6. The method of manufacturing a semiconductor device according to claim 5, wherein the line width of the third pattern has a shape in which the center is widest and tapers toward the tip. 前記パターニング工程で、前記第一のパターンから前記第三のパターンまで全てを含むパターンを得る事を特徴とする請求項2及び6に記載の半導体装置の製造方法。 7. The method of manufacturing a semiconductor device according to claim 2, wherein a pattern including all of the first pattern to the third pattern is obtained in the patterning step. 前記パターニング工程で、第一のパターンから第三のパターンの内何れか一つまたは二つを含むパターンを得る事を特徴とする請求項2に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 2, wherein in the patterning step, a pattern including any one or two of the third pattern is obtained from the first pattern. 前記パターニング工程で、第一のパターンから第三のパターンの内何れか一つまたは二つを含むパターンを得る事を特徴とする請求項2及び6に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 2, wherein a pattern including any one or two of the third patterns is obtained from the first pattern in the patterning step.
JP2005085512A 2005-03-24 2005-03-24 Semiconductor device and its manufacturing method Pending JP2006269728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005085512A JP2006269728A (en) 2005-03-24 2005-03-24 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005085512A JP2006269728A (en) 2005-03-24 2005-03-24 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006269728A true JP2006269728A (en) 2006-10-05

Family

ID=37205374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005085512A Pending JP2006269728A (en) 2005-03-24 2005-03-24 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006269728A (en)

Similar Documents

Publication Publication Date Title
JP3816750B2 (en) Method for making a thermoelectric converter
TWI569388B (en) Chip level heat dissipation using silicon
TWI475720B (en) Manufacturing method of semiconductor light-emitting apparatus and semiconductor light-emitting apparatus
KR102239151B1 (en) Integrated heater and its manufacturing method
TWI636535B (en) Glass interposer with embedded thermoelectric devices
US20190159294A1 (en) Integrated heater and method of manufacture
CN101521251A (en) Manufacturing method of light-emitting diode (LED) with vertical structure
JP2000049415A (en) Nitride semiconductor laser element
JP3812549B2 (en) Semiconductor device
JP2007227931A (en) Method of manufacturing high-output array-type semiconductor laser device
JP2006269728A (en) Semiconductor device and its manufacturing method
JP7170151B2 (en) Integrated heater and manufacturing method thereof
JP5560468B2 (en) Thin film thermistor sensor and manufacturing method thereof
JP2002353523A (en) Thermoelectric conversion material, element thereof and manufacturing method therefor
KR101153720B1 (en) A thermoelectric Module and Method for fabricatingA thermoelectric Module and Method for fabricating thereof thereof
US9601678B2 (en) Thermoelectric device and method of manufacturing the same
KR102344913B1 (en) Method of manufacturing thermoelectric module and the thermoelectric module manufactured by the method
JP2003017763A (en) Substrate for thermo-electric module, method of fabricating the same module and thermo-electric module utilizing substrate for thermo-electric module
JP5404025B2 (en) Production method of thermoelectric conversion module
JP2004281930A (en) Method for producing thermoelectric conversion element
JP2001110953A (en) Semiconductor module substrate and manufacturing method thereof
TWI237884B (en) Microelectronic thermoelectric device and method of manufacture
JP4125858B2 (en) Light emitting diode and manufacturing method thereof
TW200901238A (en) Chip resistor and method for fabricating the same
JP2001119077A (en) Method of manufacturing thermoelectric element