JP2006269629A - Heat pipe type cooler - Google Patents

Heat pipe type cooler Download PDF

Info

Publication number
JP2006269629A
JP2006269629A JP2005083869A JP2005083869A JP2006269629A JP 2006269629 A JP2006269629 A JP 2006269629A JP 2005083869 A JP2005083869 A JP 2005083869A JP 2005083869 A JP2005083869 A JP 2005083869A JP 2006269629 A JP2006269629 A JP 2006269629A
Authority
JP
Japan
Prior art keywords
heat
heat pipe
type cooler
heat pipes
pipe type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005083869A
Other languages
Japanese (ja)
Inventor
Kimiharu Arimatsu
公治 有松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2005083869A priority Critical patent/JP2006269629A/en
Publication of JP2006269629A publication Critical patent/JP2006269629A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pipe type cooler for securing desired cooling performance when the width of a use environment condition such as ambient temperature is wide. <P>SOLUTION: A heat pipe type cooler 1 is configured by attaching a plurality of heat pipes 3a and 3b in which cooling media are sealed on a heat receiving block 2. The plurality of heat pipes 3a and 3b are configured of two types of heat pipes 3a and 3b in which cooling media with different operation regions such as demineralized water and an antifreeze solution are sealed. Those two types of heat pipes 3a and 3b may be alternately arranged side by side, or the plurality of sets of the two types of heat pipes 3a and 3b which are adhered to each other may be prepared, and arranged at intervals between each set. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、半導体素子などの機器を冷却するヒートパイプ式冷却器に関するものである。   The present invention relates to a heat pipe type cooler that cools devices such as semiconductor elements.

近年、電力変換装置では、半導体素子の大容量化、高速化に伴い発熱損失の増大が問題となっている。このため電力用半導体素子用冷却器の冷却効率の向上を図り、発熱損失の増大に対応して装置の大型化を避けることが重要な課題となっている。電力変換装置における電力用半導体素子としては、ダイオード、サイリスタ、GTO、IGBT等が用いられ、その冷却器としてはヒートパイプ式冷却器が使用されている。   In recent years, in power converters, an increase in heat generation loss has become a problem as the capacity and speed of semiconductor elements increase. For this reason, it is an important issue to improve the cooling efficiency of the cooler for power semiconductor elements and to avoid the enlargement of the apparatus in response to the increase in heat loss. Diodes, thyristors, GTOs, IGBTs, and the like are used as power semiconductor elements in the power converter, and heat pipe coolers are used as the coolers.

ヒートパイプ式冷却器は、直方体形状の受熱ブロックと、この受熱ブロックに取り付けられ、それぞれ受熱部および放熱部を有し、放熱部には多数の放熱フィンが取り付けられた複数本のヒートパイプとを備えている。ヒートパイプは、その内部に封入される冷媒(熱移送媒体)として、例えば特許文献1に記載されているように、一般に純水が使用されている。冷媒に純水を使用している理由は、熱伝達特性や熱容量などの特性が半導体素子の冷却に適してことから、ヒートパイプ式冷却器の小型化を図ることができるとともに環境汚染の問題も生じることがないからである。
特開2003−148883号公報 特開平5−248778号公報
A heat pipe type cooler includes a rectangular parallelepiped heat receiving block and a plurality of heat pipes attached to the heat receiving block, each having a heat receiving portion and a heat radiating portion, and a plurality of heat radiating fins attached to the heat radiating portion. I have. As described in Patent Document 1, for example, pure water is generally used as a refrigerant (heat transfer medium) enclosed in the heat pipe. The reason why pure water is used as a refrigerant is that heat transfer characteristics and heat capacity are suitable for cooling semiconductor elements, so it is possible to reduce the size of the heat pipe cooler and to prevent environmental pollution. It is because it does not occur.
Japanese Patent Laid-Open No. 2003-148883 JP-A-5-248778

ところで、冷媒として純水を封入したヒートパイプを使用したヒートパイプ式冷却器においては、周囲温度などの使用環境条件の幅が広い場合には、氷点下で使用される場合があり、0℃以下になると冷媒である純水が凍結する。純水が凍結した場合、冷媒としての機能が喪失するためにヒートパイプ式冷却器は、受熱ブロックの時定数だけで得られる冷却効果となり、冷却性能が大きく低下することになる。このため半導体素子の発生する熱量によっては、ヒートパイプ式冷却器の許容接合温度を逸脱し、最悪の場合には破損を生じる恐れがあった。   By the way, in a heat pipe type cooler using a heat pipe filled with pure water as a refrigerant, it may be used below freezing point when the range of environmental conditions such as ambient temperature is wide, and it may be used below 0 ° C. Then, pure water as a refrigerant freezes. When pure water freezes, the function as a refrigerant is lost, so the heat pipe type cooler has a cooling effect obtained only by the time constant of the heat receiving block, and the cooling performance is greatly reduced. For this reason, depending on the amount of heat generated by the semiconductor element, the allowable joining temperature of the heat pipe type cooler deviates, and in the worst case, there is a risk of damage.

一方、アンモニアなどの不凍液を封入したヒートパイプを使用することも考えられるが、このような冷媒を封入したヒートパイプを用いてヒートパイプ式冷却器を構成すると、凍結していない状態での冷却性能が純水入りヒートパイプのみで構成したヒートパイプ式冷却器に比べて冷却性能の劣るものとなる。   On the other hand, it is conceivable to use a heat pipe enclosing an antifreeze such as ammonia, but if a heat pipe type cooler is configured using a heat pipe enclosing such a refrigerant, the cooling performance in a state where it is not frozen However, the cooling performance is inferior to that of a heat pipe type cooler configured only with a heat pipe containing pure water.

このような冷媒の凍結を考慮したときの使用環境温度範囲を拡大するための技術として、特許文献2には、二種類の冷媒を用いた複合ヒートパイプが開示されている。しかし、ここに開示されているのは2本のヒートパイプを平行に並べた例だけであって、3本以上のヒートパイプをどのように並べたらよいかについては開示がない。   Patent Document 2 discloses a composite heat pipe using two types of refrigerants as a technique for expanding the use environment temperature range in consideration of such refrigerant freezing. However, what is disclosed here is only an example in which two heat pipes are arranged in parallel, and there is no disclosure on how to arrange three or more heat pipes.

この発明は、上記の問題を解決するためになされたものであり、3本以上のヒートパイプを用いて、周囲温度などの使用環境条件の幅が広い場合においても、冷媒が機能的に作動して所望の冷却性能を確保することのできるヒートパイプ式冷却器を提供することを目的とする。   The present invention has been made to solve the above-described problem, and the refrigerant operates functionally even when there are a wide range of environmental conditions such as ambient temperature using three or more heat pipes. It is an object of the present invention to provide a heat pipe type cooler that can ensure desired cooling performance.

上記の課題を解決するため、本発明は、それぞれ内部に冷媒を封入した3本以上のヒートパイプを受熱ブロックに取り付けてなるヒートパイプ式冷却器において、前記ヒートパイプを、作動領域の異なる冷媒を封入した二種類のヒートパイプにより構成し、これら二種類のヒートパイプを並置方向に交互に配置したことを特徴とする。   In order to solve the above-mentioned problems, the present invention provides a heat pipe type cooler in which three or more heat pipes each enclosing a refrigerant are attached to a heat receiving block. It is constituted by two kinds of enclosed heat pipes, and these two kinds of heat pipes are alternately arranged in the juxtaposition direction.

また、他の態様では、本発明は、それぞれ内部に冷媒を封入した4本以上のヒートパイプを受熱ブロックに取り付けてなるヒートパイプ式冷却器において、前記ヒートパイプを、作動領域の異なる冷媒を封入した二種類のヒートパイプにより構成し、これら二種類のヒートパイプを相互に密着させた組を複数組作り、各組同士の間隔をおいて配置したことを特徴とする。   In another aspect, the present invention provides a heat pipe type cooler in which four or more heat pipes each enclosing a refrigerant are attached to a heat receiving block, and the heat pipe is enclosed with a refrigerant having a different operating region. It is characterized by comprising two sets of heat pipes, a plurality of sets in which these two types of heat pipes are brought into close contact with each other, and arranged with an interval between each set.

さらに他の態様では、本発明は、それぞれ内部に冷媒を封入した4本以上のヒートパイプを受熱ブロックに取り付けてなるヒートパイプ式冷却器において、前記ヒートパイプを、作動領域の異なる冷媒を封入した複数種類のヒートパイプにより構成し、冷媒の異なる複数種類のヒートパイプを冷媒の異なる種類毎に分離し、それぞれの種類毎に分離した放熱フィンを設けたことを特徴とする。   In still another aspect, the present invention relates to a heat pipe type cooler in which four or more heat pipes each enclosing a refrigerant are attached to a heat receiving block, and the heat pipe is encapsulated with a refrigerant having a different operation region. It is configured by a plurality of types of heat pipes, and a plurality of types of heat pipes having different refrigerants are separated for different types of refrigerants, and heat radiation fins separated for each type are provided.

本発明のヒートパイプ式冷却器によれば、ヒートパイプ冷却器全体の作動温度領域が広く、周囲温度が大きく変動しても、その温度変化に対応して冷媒が機能的に作動し、所望の冷却性能を確保することができる。   According to the heat pipe type cooler of the present invention, the operating temperature range of the entire heat pipe cooler is wide, and even if the ambient temperature fluctuates greatly, the refrigerant operates functionally in response to the temperature change, Cooling performance can be ensured.

以下本発明の実施の形態について図面を参照して説明する。図1(a)および(b)はそれぞれ、本発明のヒートパイプ式冷却器における第1の実施の形態を示す正面図および側面図である。図1において、ヒートパイプ式冷却器1は、直方体形状の受熱ブロック2と、この受熱ブロック2に取り付けられた8本のヒートパイプ3a,3bを備えている。ヒートパイプ3a,3bは、アルミニウムや銅等の熱伝導性の良好な材料で形成した金属管の内部に熱移送媒体としての冷媒を封入して構成したもので、半導体素子が発生した熱を、受熱ブロック2を介して受熱部で吸収し、内部の冷媒を蒸発させて放熱部に移送し、放熱部を介して外部に放出するものである。またヒートパイプ3a,3bの放熱部には、それぞれヒートパイプ3a,3bと直交する方向に、熱伝導性の良好な材料で形成した多数の放熱フィン4が取り付けられている。   Embodiments of the present invention will be described below with reference to the drawings. FIGS. 1A and 1B are a front view and a side view, respectively, showing a first embodiment of the heat pipe type cooler of the present invention. In FIG. 1, a heat pipe cooler 1 includes a rectangular parallelepiped heat receiving block 2 and eight heat pipes 3 a and 3 b attached to the heat receiving block 2. The heat pipes 3a and 3b are configured by encapsulating a refrigerant as a heat transfer medium inside a metal tube formed of a material having good thermal conductivity such as aluminum or copper, and the heat generated by the semiconductor element, It is absorbed by the heat receiving section through the heat receiving block 2, evaporates the internal refrigerant, transfers it to the heat radiating section, and releases it to the outside through the heat radiating section. A large number of heat radiation fins 4 made of a material having good thermal conductivity are attached to the heat radiation portions of the heat pipes 3a and 3b in directions orthogonal to the heat pipes 3a and 3b, respectively.

ここで、本実施の形態においては、二列に配設した計8本のヒートパイプ3a,3bのうち、並置方向の両端角部に位置する2本ずつ計4本のヒートパイプ3aについては、その内部に純水(作動領域30℃〜200℃)を冷媒として封入して構成したものであり、他方、並置方向の中間部に位置する計4本のヒートパイプ3bについては、その内部に不凍液であるアンモニア(作動領域−60℃〜100℃)を冷媒として封入して構成したものである。   Here, in the present embodiment, out of a total of eight heat pipes 3a and 3b arranged in two rows, two heat pipes 3a each located at both end corners in the juxtaposition direction, Pure water (operating region 30 ° C. to 200 ° C.) is enclosed as a refrigerant in the interior, and on the other hand, a total of four heat pipes 3b located in the middle portion in the juxtaposition direction are filled with antifreeze liquid. The ammonia (operating region −60 ° C. to 100 ° C.) is enclosed as a refrigerant.

このように構成したヒートパイプ式冷却器1によれば、周囲温度が氷点下に至らないような温度の場合には、冷却効率の良い純水入りヒートパイプ3aと、純水入りヒートパイプ3aよりも冷却能力が劣る不凍液入りヒートパイプ3bとの両方が作動して冷却が行なわれる。また、周囲温度が氷点下になり、純水が凍結する温度になったときには、不凍液入りヒートパイプ3bのみが作動して冷却が行われることになる。したがってヒートパイプ式冷却器1の作動領域が広がり、純水が凍結する周囲温度になったときでも冷却機能が完全に失われることがなくなる。   According to the heat pipe type cooler 1 configured as described above, when the ambient temperature is a temperature that does not reach below the freezing point, the heat pipe 3a with pure water and the heat pipe 3a with pure water with better cooling efficiency are used. Both the anti-freeze-containing heat pipe 3b with inferior cooling capacity operate to perform cooling. Further, when the ambient temperature becomes below freezing point and the temperature at which pure water freezes, only the heat pipe 3b containing antifreeze liquid is operated to perform cooling. Accordingly, the operating region of the heat pipe cooler 1 is expanded, and the cooling function is not completely lost even when the pure water reaches an ambient temperature where it freezes.

図2は、本発明のヒートパイプ式冷却器における第2の実施の形態を示す上面図である。本実施の形態が上記第1の実施の形態と異なる点は、純水入りヒートパイプ3aと不凍液入りヒートパイプ3bを並置方向に2本ずつ交互に配置したところにある。本実施の形態によれば、受熱ブロックに対する8本のヒートパイプ3a,3bの冷却能力が平準化され、受熱ブロックを幅広く均一に冷却することができる。   FIG. 2 is a top view showing a second embodiment of the heat pipe type cooler of the present invention. This embodiment is different from the first embodiment in that two heat pipes 3a containing pure water and two heat pipes containing antifreeze liquid are alternately arranged in the juxtaposition direction. According to the present embodiment, the cooling capacity of the eight heat pipes 3a, 3b with respect to the heat receiving block is leveled, and the heat receiving block can be cooled widely and uniformly.

図3は、本発明のヒートパイプ式冷却器における第3の実施の形態を示す上面図である。本実施の形態が上記第1の実施の形態と異なる点は、純水入りヒートパイプ3aと不凍液入りヒートパイプ3bを密着させて配置したところにある。本実施の形態によれば、純水入りヒートパイプ3aの純水が凍結する周囲温度になっても、作動している不凍液入りヒートパイプ3bの熱が純水入りヒートパイプ3aに伝導して内部の純水を暖めるように作用するので、純水の凍結を回避して純水入りヒートパイプ3bの冷却機能を確保することができる。   FIG. 3 is a top view showing a third embodiment of the heat pipe type cooler of the present invention. This embodiment is different from the first embodiment in that the heat pipe 3a containing pure water and the heat pipe 3b containing antifreeze liquid are arranged in close contact with each other. According to the present embodiment, even when the pure water of the heat pipe 3a containing pure water reaches an ambient temperature at which the pure water freezes, the heat of the heat pipe 3b containing the antifreeze liquid that is operating is conducted to the heat pipe 3a containing pure water and the inside. Therefore, it is possible to avoid the freezing of pure water and to ensure the cooling function of the heat pipe 3b containing pure water.

図4は、本発明のヒートパイプ式冷却器における第4の実施の形態を示す正面図および側面図である。本実施の形態が上記第1の実施の形態と異なる点は、純水入りヒートパイプ3aと不凍液入りヒートパイプ3bを並置方向に二群に分けて配置し、各群のヒートパイプ3a,3bにそれぞれ分離した放熱フィン4a,4bを個別に取り付けたところにある。   FIG. 4 is a front view and a side view showing a fourth embodiment of the heat pipe type cooler of the present invention. The difference between this embodiment and the first embodiment is that the heat pipe 3a containing pure water and the heat pipe 3b containing antifreeze liquid are arranged in two groups in the juxtaposition direction, and the heat pipes 3a and 3b of each group are arranged. The heat dissipating fins 4a and 4b that are separated from each other are individually attached.

本実施の形態によれば、冷却特性の異なるヒートパイプ3a,3b毎に最適化された放熱フィン4a,4bを取り付けることが可能となり、ヒートパイプ式冷却器の小型化を図ることができる。   According to the present embodiment, it is possible to attach the heat radiation fins 4a and 4b optimized for the heat pipes 3a and 3b having different cooling characteristics, and the heat pipe cooler can be downsized.

図5は本発明のヒートパイプ式冷却器における第5の実施の形態を示す正面図および側面図である。本実施の形態が上記第4の実施の形態と異なる点は、純水入りヒートパイプ3aと不凍液入りヒートパイプ3bを二列に分けて配置し、各列のヒートパイプ3a,3bにそれぞれ放熱フィン4a,4bを個別に取り付けたところにある。本実施の形態においても第4の実施の形態と同様に、冷却特性の異なるヒートパイプ3a,3b毎に最適化された放熱フィン4a,4bを取り付けることが可能となり、ヒートパイプ式冷却器の小型化を図ることができる。   FIG. 5 is a front view and a side view showing a fifth embodiment of the heat pipe type cooler of the present invention. This embodiment is different from the fourth embodiment in that the heat pipe 3a containing pure water and the heat pipe 3b containing antifreeze liquid are arranged in two rows, and the heat pipes 3a and 3b in each row are radiating fins, respectively. 4a and 4b are installed separately. In the present embodiment, similarly to the fourth embodiment, it is possible to attach the radiation fins 4a and 4b optimized for the heat pipes 3a and 3b having different cooling characteristics, and the heat pipe cooler can be reduced in size. Can be achieved.

なお、上記各実施の形態では、8本のヒートパイプを用いた場合について説明したが、2本以上のヒートパイプを用いた場合であれば、同様に実施できるものである。また不凍液としてアンモニアを例にとり説明したが、エチレングリコールやアルコールなどの他の不凍液を使用することもできる。さらに不凍液単独を冷媒として用いる場合に限らず、純水に混入した水溶液を使用することもできる。また純水入りヒートパイプと不凍液入りヒートパイプの本数を同数で構成した場合について説明したが、使用環境条件によっては、異なる本数で構成することができる。さらに複数本のヒートパイプにおける作動領域の異なる冷媒として、純水と不凍液の組み合わせに限らず、純水以外の作動領域の異なる二種類以上の冷媒を組み合わせて使用することもできる。   In each of the above embodiments, the case where eight heat pipes are used has been described. However, the case where two or more heat pipes are used can be similarly implemented. In addition, although ammonia has been described as an example of the antifreeze liquid, other antifreeze liquids such as ethylene glycol and alcohol can also be used. Furthermore, not only when using antifreeze liquid alone as a refrigerant, it is also possible to use an aqueous solution mixed in pure water. Moreover, although the case where the number of heat pipes containing pure water and the number of heat pipes containing antifreeze was configured in the same number has been described, it can be configured with different numbers depending on the use environment conditions. Furthermore, the refrigerant having different operation areas in the plurality of heat pipes is not limited to the combination of pure water and antifreeze liquid, and two or more kinds of refrigerants having different operation areas other than pure water can be used in combination.

(a)および(b)はそれぞれ、本発明のヒートパイプ式冷却器における第1の実施の形態を示す正面図および側面図である。(A) And (b) is the front view and side view which respectively show 1st Embodiment in the heat pipe type cooler of this invention. 本発明のヒートパイプ式冷却器における第2の実施の形態を示す上面図である。It is a top view which shows 2nd Embodiment in the heat pipe type cooler of this invention. 本発明のヒートパイプ式冷却器における第3の実施の形態を示す上面図である。It is a top view which shows 3rd Embodiment in the heat pipe type cooler of this invention. (a)および(b)はそれぞれ、本発明のヒートパイプ式冷却器における第4の実施の形態を示す正面図および側面図である。(A) And (b) is the front view and side view which respectively show 4th Embodiment in the heat pipe type cooler of this invention. (a)および(b)はそれぞれ、本発明のヒートパイプ式冷却器における第5の実施の形態を示す正面図および側面図である。(A) And (b) is the front view and side view which respectively show 5th Embodiment in the heat pipe type cooler of this invention.

符号の説明Explanation of symbols

1…ヒートパイプ式冷却器
2…受熱ブロック
3a,3b…ヒートパイプ
4a,4b…放熱フィン
DESCRIPTION OF SYMBOLS 1 ... Heat pipe type cooler 2 ... Heat receiving block 3a, 3b ... Heat pipe 4a, 4b ... Radiation fin

Claims (4)

それぞれ内部に冷媒を封入した3本以上のヒートパイプを受熱ブロックに取り付けてなるヒートパイプ式冷却器において、前記ヒートパイプを、作動領域の異なる冷媒を封入した二種類のヒートパイプにより構成し、これら二種類のヒートパイプを並置方向に交互に配置したことを特徴とするヒートパイプ式冷却器。   In a heat pipe type cooler in which three or more heat pipes each enclosing a refrigerant are attached to a heat receiving block, the heat pipe is constituted by two types of heat pipes enclosing refrigerants having different operating regions, A heat pipe type cooler in which two types of heat pipes are alternately arranged in the juxtaposition direction. それぞれ内部に冷媒を封入した4本以上のヒートパイプを受熱ブロックに取り付けてなるヒートパイプ式冷却器において、前記ヒートパイプを、作動領域の異なる冷媒を封入した二種類のヒートパイプにより構成し、これら二種類のヒートパイプを相互に密着させた組を複数組作り、各組同士の間隔をおいて配置したことを特徴とするヒートパイプ式冷却器。   In a heat pipe type cooler in which four or more heat pipes each enclosing a refrigerant are attached to a heat receiving block, the heat pipe is constituted by two types of heat pipes enclosing refrigerants having different operating regions, A heat pipe type cooler characterized in that a plurality of sets in which two types of heat pipes are brought into close contact with each other are formed and arranged with an interval between each set. 前記ヒートパイプを、純水のみの冷媒を封入したヒートパイプと不凍液入り冷媒を封入したヒートパイプの二種類の組み合わせにより構成したことを特徴とする請求項1または2に記載のヒートパイプ式冷却器。   The heat pipe type cooler according to claim 1 or 2, wherein the heat pipe is constituted by a combination of two kinds of heat pipes in which a pure water refrigerant is enclosed and a heat pipe in which an antifreeze-containing refrigerant is enclosed. . それぞれ内部に冷媒を封入した4本以上のヒートパイプを受熱ブロックに取り付けてなるヒートパイプ式冷却器において、前記ヒートパイプを、作動領域の異なる冷媒を封入した複数種類のヒートパイプにより構成し、冷媒の異なる複数種類のヒートパイプを冷媒の異なる種類毎に分離し、それぞれの種類毎に分離した放熱フィンを設けたことを特徴とするヒートパイプ式冷却器。   In a heat pipe type cooler in which four or more heat pipes each enclosing a refrigerant are attached to a heat receiving block, the heat pipe is constituted by a plurality of types of heat pipes enclosing refrigerants having different operation regions, A heat pipe type cooler comprising a plurality of different types of heat pipes separated into different types of refrigerants and provided with heat radiation fins separated for each type.
JP2005083869A 2005-03-23 2005-03-23 Heat pipe type cooler Pending JP2006269629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005083869A JP2006269629A (en) 2005-03-23 2005-03-23 Heat pipe type cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005083869A JP2006269629A (en) 2005-03-23 2005-03-23 Heat pipe type cooler

Publications (1)

Publication Number Publication Date
JP2006269629A true JP2006269629A (en) 2006-10-05

Family

ID=37205290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005083869A Pending JP2006269629A (en) 2005-03-23 2005-03-23 Heat pipe type cooler

Country Status (1)

Country Link
JP (1) JP2006269629A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100823989B1 (en) 2007-05-04 2008-04-22 빛샘전자주식회사 Cooling apparatus and train drived electric power including the same
JP2008311282A (en) * 2007-06-12 2008-12-25 Toshiba Mitsubishi-Electric Industrial System Corp Heat pipe-type cooler
JP2012114466A (en) * 2012-03-09 2012-06-14 Toshiba Mitsubishi-Electric Industrial System Corp Heat pipe type cooler
US8484845B2 (en) 2009-09-18 2013-07-16 Cpumate Inc. Method of manufacturing a heat conducting structure having a coplanar heated portion
TWI407897B (en) * 2009-07-29 2013-09-01 Golden Sun News Tech Co Ltd Method of thermo conductor having coplanar evaporator sections
JP2018035730A (en) * 2016-08-31 2018-03-08 マツダ株式会社 Exhaust heat recovery device for engine
WO2023155895A1 (en) * 2022-02-21 2023-08-24 华为技术有限公司 Heat pipe capable of preventing freezing and expanding

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100823989B1 (en) 2007-05-04 2008-04-22 빛샘전자주식회사 Cooling apparatus and train drived electric power including the same
JP2008311282A (en) * 2007-06-12 2008-12-25 Toshiba Mitsubishi-Electric Industrial System Corp Heat pipe-type cooler
TWI407897B (en) * 2009-07-29 2013-09-01 Golden Sun News Tech Co Ltd Method of thermo conductor having coplanar evaporator sections
US8484845B2 (en) 2009-09-18 2013-07-16 Cpumate Inc. Method of manufacturing a heat conducting structure having a coplanar heated portion
US8978742B2 (en) 2009-09-18 2015-03-17 Cpumate Inc. Heat conducting structure with coplanar heated portion, manufacturing method thereof, and heat sink therewith
JP2012114466A (en) * 2012-03-09 2012-06-14 Toshiba Mitsubishi-Electric Industrial System Corp Heat pipe type cooler
JP2018035730A (en) * 2016-08-31 2018-03-08 マツダ株式会社 Exhaust heat recovery device for engine
WO2023155895A1 (en) * 2022-02-21 2023-08-24 华为技术有限公司 Heat pipe capable of preventing freezing and expanding

Similar Documents

Publication Publication Date Title
JP4391366B2 (en) Heat sink with heat pipe and method of manufacturing the same
JP5131323B2 (en) Heat pipe type cooling device and vehicle control device using the same
US5309986A (en) Heat pipe
JP2006269629A (en) Heat pipe type cooler
KR20190082523A (en) Cooling device using thermo-electric module
JP4985382B2 (en) Semiconductor cooling structure
CN108336048B (en) Heat superconducting fin radiator with phase change heat storage function
JP2010060164A (en) Heat pipe type heat sink
JP6447275B2 (en) Radiation fins and heat sinks and modules equipped with them
JP5057838B2 (en) Power semiconductor element cooling device
CN115551302A (en) Heat dissipation system and electronic equipment
JP5148931B2 (en) Heat pipe cooler
US20120217630A1 (en) Heatsink, heatsink assembly, semiconductor module, and semiconductor device with cooling device
US20080078529A1 (en) Cooling of the power components of a frequency converter
US11094611B2 (en) Liquid cooled heat dissipation device
KR101260776B1 (en) Thermoelectric Power Generating Heat Exchanger
CN112584671A (en) Vapor chamber for cooling electronic components
JP2005214565A (en) Heat pipe type heat sink
CN103915986A (en) Coolant cooler for frequency conversion module
JP3850319B2 (en) Semiconductor cooling device for vehicle
JP2013537790A (en) Device for generating current and / or voltage based on a thermoelectric module disposed in a flowing fluid
CN108323099B (en) Fin type heat pipe coupling radiator
JP3364758B2 (en) Heat sink for flat heating element
JP2012114466A (en) Heat pipe type cooler
JP4485835B2 (en) Radiator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070926

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091001

A131 Notification of reasons for refusal

Effective date: 20091006

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100216

Free format text: JAPANESE INTERMEDIATE CODE: A02