JP2006268652A - Autonomous traveling body system - Google Patents

Autonomous traveling body system Download PDF

Info

Publication number
JP2006268652A
JP2006268652A JP2005088431A JP2005088431A JP2006268652A JP 2006268652 A JP2006268652 A JP 2006268652A JP 2005088431 A JP2005088431 A JP 2005088431A JP 2005088431 A JP2005088431 A JP 2005088431A JP 2006268652 A JP2006268652 A JP 2006268652A
Authority
JP
Japan
Prior art keywords
traveling body
distance
autonomous traveling
charging
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005088431A
Other languages
Japanese (ja)
Inventor
Osamu Tsuchiya
修 土屋
Hitoshi Iizaka
仁志 飯坂
Takashi Tomiyama
隆志 冨山
Masahito Sano
雅仁 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba TEC Corp
Original Assignee
Toshiba TEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba TEC Corp filed Critical Toshiba TEC Corp
Priority to JP2005088431A priority Critical patent/JP2006268652A/en
Publication of JP2006268652A publication Critical patent/JP2006268652A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To calibrate a plurality of distance sensors in a short time without changing the direction of an autonomous traveling body. <P>SOLUTION: The autonomous traveling body system is composed of: an approximately elliptic autonomous traveling body 1 provoded with a battery and a power receiving terminal 10a for charging the battery; a power feeding terminal 37a for charging which is in contact with the power receiving terminal of the autonomous traveling body; and a battery charger 31 for charging the battery by feeding power from the power feeding terminal. The battery charger is provided with: a side-wall body 36, in which a front portion is approximately semicircular; and recessed portions 35a and 36b, which positions driving wheels 3a and 3b so as to be away from the wall surface of the side-wall body just for a predetermined distance required for calibration. The autonomous traveling body 1 is provided with: a plurality of ultrasonic wave transmitting sections 5a-9a; a plurality of ultrasonic wave receiving sections 5b-9b; a first time counting means 53 for counting the time from the reflection, on the sidewall body, of ultrasonic pulses from the transmitting sections to the reception thereof in the ultrasonic wave receiving sections; and a first calibration means for calibrating the deviation between a distance x0 calculated based on time count information of said time counting means and a distance (x) being set. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自律走行体に設けた距離センサの校正を行う自律走行体システムに関する。   The present invention relates to an autonomous traveling body system that calibrates a distance sensor provided in an autonomous traveling body.

例えば、前方の障害物を検出する安全センサが搭載された自律走行体である無人台車の走行経路に校正ステーションを設け、この校正ステーションの所定位置に標準反射板を付設し、無人台車の通常走行に先立ってその無人台車を校正ステーションに予め移動させ、安全センサにより標準反射板を計測することにより得られた基準値をティーチングする。そして、無人台車の通常走行時、その無人台車が校正ステーションに到達する毎に、安全センサにより標準反射板を計測して得られた計測値を基準値と比較することにより安全センサのセンサ機能を校正するものが知られている(例えば、特許文献1参照)。
特開2004−3987
For example, a calibration station is provided on the travel route of an unmanned carriage that is an autonomous traveling body equipped with a safety sensor that detects an obstacle ahead, and a standard reflector is attached at a predetermined position of the calibration station, so that the normal travel of the unmanned carriage Prior to this, the unmanned carriage is moved to the calibration station in advance, and the reference value obtained by measuring the standard reflector with the safety sensor is taught. And, when the unmanned carriage normally travels, every time the unmanned carriage reaches the calibration station, the sensor function of the safety sensor is compared by comparing the measured value obtained by measuring the standard reflector with the safety sensor. What is calibrated is known (for example, refer to Patent Document 1).
JP 2004-3987

しかしながら、走行経路に設けた校正ステーションの所定位置に標準反射板を設けて安全センサの校正を行うものでは、安全センサが無人台車の前方に1つだけ設けている場合にはスムーズに校正できても、例えば、無人台車の前部が球形や楕円形、あるいはそれに類した形状で、その外周面に複数の安全センサを配置しているような場合には、無人台車を校正ステーションに一旦停止させた後、各安全センサを標準反射板で校正できるような位置に台車の向きを何回か変え無ければならず、校正に時間がかかるとともに無人台車に向きを変えるという無駄な動作を強いるという問題があった。   However, in the case where the standard reflector is provided at a predetermined position of the calibration station provided in the travel route and the safety sensor is calibrated, the calibration can be smoothly performed when only one safety sensor is provided in front of the unmanned carriage. However, for example, when the front part of the unmanned carriage is spherical, elliptical, or similar, and a plurality of safety sensors are arranged on its outer peripheral surface, the unmanned carriage is temporarily stopped at the calibration station. After that, the direction of the trolley must be changed several times to a position where each safety sensor can be calibrated with the standard reflector, and it takes time to calibrate and forces the useless operation of changing the direction to an unmanned trolley. was there.

本発明は、自律走行体の外周面に複数の距離センサを配置したものにおいて、各距離センサの校正を自律走行体の向きを変えずに短時間で行うことができ、しかも、校正する場所として既存の場所を有効に利用できる自律走行体システムを提供する。   In the present invention, in the case where a plurality of distance sensors are arranged on the outer peripheral surface of the autonomous traveling body, the calibration of each distance sensor can be performed in a short time without changing the orientation of the autonomous traveling body, and as a place to calibrate An autonomous vehicle system that can effectively use existing locations is provided.

本発明は、車輪を駆動する走行駆動源等に電源を供給するバッテリーを設けるとともにこのバッテリーの充電用受電端子を外周面に設けた自律走行体と、この自律走行体を載せた状態で受電端子と接触する充電用送電端子を設け、この送電端子から受電端子を介してバッテリーを充電する充電台とからなる自律走行体システムにおいて、充電台は、自律走行体の外周面に合わせた形状の壁面を有する側壁体と、自律走行体の外周面が側壁体の壁面から校正に必要な所定距離だけ離れるように車輪の位置決めを行う凹部とを設け、自律走行体は、外周面に配置した、周囲との距離を測定するための複数の距離センサと、車輪が凹部に位置決めされた状態で校正のために各距離センサを駆動して側壁の壁面との距離を測定する距離測定手段と、この距離測定手段が測定した距離を予め設定した基準値と比較して各距離センサの校正を行う校正手段とを設けたことにある。   The present invention provides a battery for supplying power to a traveling drive source for driving a wheel and the like, and an autonomous traveling body having a charging power receiving terminal for the battery provided on an outer peripheral surface, and a power receiving terminal in a state where the autonomous traveling body is mounted. In the autonomous traveling body system comprising a charging power transmission terminal in contact with the charging base and a charging base for charging the battery from the power transmission terminal via the power receiving terminal, the charging base is a wall surface shaped to match the outer peripheral surface of the autonomous traveling body And a recess for positioning the wheel so that the outer peripheral surface of the autonomous traveling body is separated from the wall surface of the autonomous traveling body by a predetermined distance necessary for calibration, and the autonomous traveling body is disposed on the outer peripheral surface. A plurality of distance sensors for measuring the distance to the side wall, distance measuring means for measuring the distance from the wall surface of the side wall by driving each distance sensor for calibration with the wheel positioned in the recess, and Distance measuring means in that provided with calibration means for comparing the reference value preset distance measured to calibrate the respective distance sensors.

本発明によれば、自律走行体の外周面に複数の距離センサを配置したものにおいて、各距離センサの校正を自律走行体の向きを変えずに短時間で行うことができ、しかも、校正する場所として既存の場所を有効に利用できる。   According to the present invention, in the case where a plurality of distance sensors are arranged on the outer peripheral surface of the autonomous traveling body, each distance sensor can be calibrated in a short time without changing the orientation of the autonomous traveling body, and further calibrated. Existing locations can be used effectively as locations.

以下、本発明の実施の形態を、図面を参照して説明する。
(第1の実施の形態)
図1及び図2は自律走行体1の外観構成を示す図で、上方から見て略円形で、側面から見て長方形の筐体2の、底部中央の左右両側に走行用の駆動輪3a,3bを設けている。前記筐体2の底部後端部に向きが自由に変わる従動輪4を設けている。前記自律走行体1は駆動輪3a,3bを図中点線の矢印方向に回転することで実線の矢印方向に前進し、点線の矢印方向とは逆に回転することで後進するようになっている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 and FIG. 2 are diagrams showing an external configuration of the autonomous traveling body 1. Driving wheels 3 a for traveling are provided on the left and right sides of the center of the bottom of a casing 2 that is substantially circular when viewed from above and rectangular when viewed from the side. 3b is provided. A driven wheel 4 whose direction freely changes is provided at the bottom rear end of the housing 2. The autonomous traveling body 1 moves forward in the direction indicated by the solid line by rotating the drive wheels 3a and 3b in the direction indicated by the dotted line in the figure, and moves backward by rotating in the direction opposite to the direction indicated by the dotted line. .

前記筐体2の外周面の前側半分に、周囲障害物との距離を計測する超音波送信部と超音波受信部を対とした距離センサを所定に角度で複数配置している。すなわち、前進方向に向かって左側90°の位置を中心にして超音波送信部5aと超音波受信部5bを所定の角度で配置し、左側45°の位置を中心にして超音波送信部6aと超音波受信部6bを所定の角度で配置し、前方0°の位置を中心にして超音波送信部7aと超音波受信部7bを所定の角度で配置し、右側45°の位置を中心にして超音波送信部8aと超音波受信部8bを所定の角度で配置し、右側90°の位置を中心にして超音波送信部9aと超音波受信部9bを所定の角度で配置している。   In the front half of the outer peripheral surface of the casing 2, a plurality of distance sensors each having a pair of an ultrasonic transmission unit and an ultrasonic reception unit that measure the distance to a surrounding obstacle are arranged at a predetermined angle. That is, the ultrasonic transmission unit 5a and the ultrasonic reception unit 5b are arranged at a predetermined angle centering on the left side 90 ° toward the forward direction, and the ultrasonic transmission unit 6a is centered on the left side 45 ° position. The ultrasonic receiving unit 6b is arranged at a predetermined angle, the ultrasonic transmitting unit 7a and the ultrasonic receiving unit 7b are arranged at a predetermined angle centering on the position of 0 ° forward, and the position of 45 ° on the right side is centered. The ultrasonic transmission unit 8a and the ultrasonic reception unit 8b are arranged at a predetermined angle, and the ultrasonic transmission unit 9a and the ultrasonic reception unit 9b are arranged at a predetermined angle around the position of 90 ° on the right side.

前記筐体2の外周面の前方0°の位置に充電用受電端子10a,10bを設けている。前記筐体2の天部後方に各種キーやランプやディスプレイを設けたユーザインターフェース部11を備えている。前記駆動輪3a,3bの近傍に、それぞれ車輪モータ12a,12b及び車輪回転角度エンコーダ13a,13bを配置している。前記車輪モータ12aは回転を駆動輪3aに伝達し、その回転を車輪回転角度エンコーダ13aで検出し、前記車輪モータ12bは回転を駆動輪3bに伝達し、その回転を車輪回転角度エンコーダ13bで検出している。   Charging power receiving terminals 10a and 10b are provided at 0 ° forward of the outer peripheral surface of the housing 2. A user interface unit 11 provided with various keys, lamps, and a display is provided behind the top of the housing 2. Wheel motors 12a and 12b and wheel rotation angle encoders 13a and 13b are arranged in the vicinity of the drive wheels 3a and 3b, respectively. The wheel motor 12a transmits the rotation to the drive wheel 3a, and the rotation is detected by the wheel rotation angle encoder 13a. The wheel motor 12b transmits the rotation to the drive wheel 3b, and the rotation is detected by the wheel rotation angle encoder 13b. is doing.

前記筐体2の底部先端を斜面形状に形成し、その斜面部14に走行面との距離を測定する光距離センサ15を設け、また、底部の平面部16に走行面に垂直な直線を軸とした回転角度を検出するジャイロセンサ17を設けている。   The bottom end of the housing 2 is formed into a slope shape, and an optical distance sensor 15 for measuring the distance to the running surface is provided on the sloped portion 14, and a straight line perpendicular to the running surface is provided as an axis on the flat surface portion 16 of the bottom portion. A gyro sensor 17 for detecting the rotation angle is provided.

図3は自律走行体1の要部回路構成を示すブロック図で、マイクロプロセッサ等からなる制御部21を設け、この制御部21に、前記各超音波送信部5a,6a,7a,8a,9a、各超音波受信部5b,6b,7b,8b,9b、ユーザインターフェース部11、車輪モータ12a,12b、車輪回転角度エンコーダ13a,13b、光距離センサ15及びジャイロセンサ17を接続している。また、前記制御部21に、メモリ22を接続している。   FIG. 3 is a block diagram showing a main circuit configuration of the autonomous vehicle 1, and a control unit 21 including a microprocessor or the like is provided, and the ultrasonic transmission units 5a, 6a, 7a, 8a, 9a are provided in the control unit 21. The ultrasonic receiving units 5b, 6b, 7b, 8b, 9b, the user interface unit 11, the wheel motors 12a, 12b, the wheel rotation angle encoders 13a, 13b, the optical distance sensor 15, and the gyro sensor 17 are connected. A memory 22 is connected to the control unit 21.

前記自律走行体1は、筐体2内に前記車輪モータ12a,12bの駆動部、ユーザインターフェース部11、制御部21を始め各部に電力を供給するバッテリー23を設けている。そして、このバッテリー23の充放電をバッテリー充放電管理部24で管理するようにしている。このバッテリー充放電管理部24は前記制御部21に接続している。前記バッテリー23は前記充電用受電端子10a,10bに接続し、この受電端子10a,10bを介して充電されるようになっている。   The autonomous traveling body 1 is provided with a battery 23 for supplying electric power to each part including a driving unit for the wheel motors 12 a and 12 b, a user interface unit 11, and a control unit 21 in a housing 2. The battery charge / discharge management unit 24 manages the charge / discharge of the battery 23. The battery charge / discharge management unit 24 is connected to the control unit 21. The battery 23 is connected to the charging power receiving terminals 10a and 10b, and is charged through the power receiving terminals 10a and 10b.

図4は前記自律走行体1のバッテリー23を充電する充電台31の平面図、図5は図4のA−A断面図で、自律走行体1が載る平面部32及びこの平面部32に連絡する斜面部33に自律走行体1の駆動輪3a,3bを案内する溝34a,34bを設け、自律走行体1はこの溝34a,34bに沿って斜面部33を上り、平面部32上で停止するようになっている。前記平面部32には凹部35a,35bが形成され、駆動輪3a,3bがこの凹部35a,35bに位置したとき自律走行体1が所定位置に位置決めされるようになっている。駆動輪3a,3bが凹部35a,35bに位置したことは、駆動輪3a,3bのサスペンションの上下動から検出するようになっている。   4 is a plan view of the charging base 31 for charging the battery 23 of the autonomous traveling body 1, and FIG. 5 is a cross-sectional view taken along the line AA of FIG. Grooves 34a and 34b for guiding the drive wheels 3a and 3b of the autonomous traveling body 1 are provided in the slope section 33 to be moved, and the autonomous traveling body 1 ascends the slope section 33 along the grooves 34a and 34b and stops on the plane section 32. It is supposed to be. Concave portions 35a and 35b are formed in the flat portion 32, and the autonomous traveling body 1 is positioned at a predetermined position when the driving wheels 3a and 3b are positioned in the concave portions 35a and 35b. The fact that the drive wheels 3a and 3b are positioned in the recesses 35a and 35b is detected from the vertical movement of the suspension of the drive wheels 3a and 3b.

前記充電台31は平面部32の前部を略半円形に形成し、この平面部32の縁に沿って側壁体36を形成している。そして、前記平面部32の先端に位置する側壁体36の中央部に前記自律走行体1の充電用受電端子10a,10bと接続する充電用送電端子37a,37bを配置している。   The charging stand 31 has a front portion of the flat portion 32 formed in a substantially semicircular shape, and a side wall 36 is formed along the edge of the flat portion 32. Charging power transmission terminals 37 a and 37 b connected to the charging power receiving terminals 10 a and 10 b of the autonomous traveling body 1 are arranged at the central part of the side wall body 36 located at the tip of the flat part 32.

前記充電台31の先端部に充電器38を収納した充電ボックス39を形成し、前記充電器38の出力端子に前記充電用送電端子37a,37bを接続し、この充電器38の入力端子に商用交流電源に接続するプラグ40からのコード41を接続している。   A charging box 39 containing a charger 38 is formed at the tip of the charging base 31, the charging power transmission terminals 37 a and 37 b are connected to the output terminal of the charger 38, and the commercial terminal is connected to the input terminal of the charger 38. A cord 41 from a plug 40 connected to an AC power source is connected.

前記自律走行体1は、充電時には充電台31の溝34a,34bに沿って斜面部33を上り、さらに平面部32を走行し、凹部35a,35bを一旦通過して充電用受電端子10a,10bを充電用送電端子37a,37bに接続して停止する。この状態でバッテリー23に対する充電を行う。   When the autonomous traveling body 1 is charged, the autonomous traveling body 1 goes up the slope portion 33 along the grooves 34a and 34b of the charging base 31, further travels on the flat portion 32, and once passes through the recess portions 35a and 35b, thereby receiving the charging terminals 10a and 10b. Is connected to the charging power transmission terminals 37a and 37b and stopped. In this state, the battery 23 is charged.

そして、自律走行体1が充電位置で停止している状態でユーザインターフェース部11から走行開始のコマンドを受けると、充電台31から離れて走行を開始するが、その前に若干バックして駆動輪3a,3bを凹部35a,35bに位置させる。すなわち、図6及び図7に示すように、駆動輪3a,3bが凹部35a,35bに位置した状態で自律走行体1を停止させる。このとき、前記各超音波送信部5a,6a,7a,8a,9a及び各超音波受信部5b,6b,7b,8b,9bと側壁体36の壁面との間隔が一定の距離になる。この状態で各超音波送信部5a,6a,7a,8a,9aから順次超音波を送信し、これを各超音波受信部5b,6b,7b,8b,9bで順次受信してそれぞれのセンサの校正を行う。   When the autonomous traveling body 1 is stopped at the charging position and receives a command to start traveling from the user interface unit 11, it starts traveling away from the charging stand 31, but before that, it is slightly backed to drive wheels. 3a and 3b are positioned in the recesses 35a and 35b. That is, as shown in FIGS. 6 and 7, the autonomous traveling body 1 is stopped in a state where the drive wheels 3a and 3b are positioned in the recesses 35a and 35b. At this time, the intervals between the ultrasonic transmitters 5a, 6a, 7a, 8a, and 9a and the ultrasonic receivers 5b, 6b, 7b, 8b, and 9b and the wall surface of the side wall body 36 are constant. In this state, ultrasonic waves are sequentially transmitted from the ultrasonic wave transmitting units 5a, 6a, 7a, 8a, and 9a, and are sequentially received by the ultrasonic wave receiving units 5b, 6b, 7b, 8b, and 9b, and the respective sensors. Perform calibration.

すなわち、前記制御部21は、図8に示すように、制御手段51を、この制御手段51に制御されて前記超音波送信部5a(6a,7a,8a,9a)を駆動する超音波駆動手段52、制御手段51に制御されて計時動作を行う第1の計時手段53、制御手段51に制御されて第1の計時手段53からの計時情報に基づいて距離を測定する第1の距離測定手段54、測定した距離に基づいてセンサの校正を行う第1の校正手段55、制御手段51に制御されて前記光距離センサ15を駆動するセンサ駆動手段56、制御手段51に制御されて計時動作を行う第2の計時手段57、制御手段51に制御されて第2の計時手段53からの計時情報に基づいて距離を測定する第2の距離測定手段58、制御手段51に制御されてセンサの校正を行う第2の校正手段59を備えている。   That is, as shown in FIG. 8, the control unit 21 controls the control unit 51 to control the ultrasonic transmission unit 5a (6a, 7a, 8a, 9a) under the control of the control unit 51. 52, a first time measuring means 53 controlled by the control means 51 to perform a time measuring operation, and a first distance measuring means controlled by the control means 51 to measure a distance based on time measuring information from the first time measuring means 53 54, a first calibration means 55 for calibrating the sensor based on the measured distance, a sensor driving means 56 for driving the optical distance sensor 15 under the control of the control means 51, and a timing operation under the control of the control means 51. The second time measuring means 57 and the control means 51 to be controlled are controlled by the second distance measuring means 58 and the control means 51 for measuring the distance based on the time measuring information from the second time measuring means 53, and the sensor is calibrated. I do And a second calibration unit 59.

制御部21は、先ず、第1の計時手段53をクリアして計時を開始させると同時に超音波駆動手段52を制御して超音波送信部5aから超音波パルスを放射する。超音波パルスは側壁体36の壁面に反射する。これを超音波受信部5bが受信する。超音波受信部5bが超音波パルスを受信すると、第1の計時手段53は計時動作を停止する。第1の計時手段53が計時した時間は第1の距離測定手段54に供給される。   First, the control unit 21 clears the first timing unit 53 to start timing, and simultaneously controls the ultrasonic driving unit 52 to emit an ultrasonic pulse from the ultrasonic transmission unit 5a. The ultrasonic pulse is reflected on the wall surface of the side wall body 36. This is received by the ultrasonic receiver 5b. When the ultrasonic receiver 5b receives the ultrasonic pulse, the first time measuring unit 53 stops the time measuring operation. The time measured by the first time measuring means 53 is supplied to the first distance measuring means 54.

第1の距離測定手段54は第1の計時手段53が計時した時間から、距離x0を求める。すなわち、x0=α×計時時間+βの計算式で求める。一方、超音波送信部5aと壁面及び超音波受信部5bと壁面との距離は決まっているので、超音波送信部5aからの超音波パルスが壁面で反射して超音波受信部5bに到達するまでの距離xは決まっている。すなわち、距離xは基準距離としてメモリ22に予め設定されている。   The first distance measuring means 54 obtains the distance x0 from the time measured by the first time measuring means 53. That is, it is obtained by a calculation formula of x0 = α × timed time + β. On the other hand, since the distance between the ultrasonic transmitter 5a and the wall surface and the ultrasonic receiver 5b and the wall surface is determined, the ultrasonic pulse from the ultrasonic transmitter 5a is reflected by the wall surface and reaches the ultrasonic receiver 5b. The distance x is determined. That is, the distance x is preset in the memory 22 as a reference distance.

第1の校正手段55は、第1の距離測定手段54が算出した距離x0と予め設定された基準距離xとを比較し、x0=xになるように調整する。すなわち、α×計時時間+βの計算式において、αは定数で決まっているので、x=x0となるようにβを調整して校正する。   The first calibration means 55 compares the distance x0 calculated by the first distance measurement means 54 with a preset reference distance x and adjusts so that x0 = x. That is, in the formula of α × time keeping time + β, α is determined by a constant, so that β is adjusted and adjusted so that x = x0.

このような校正を、超音波送信部6aと超音波受信部6bとの組み合わせ、超音波送信部7aと超音波受信部7bとの組み合わせ、超音波送信部8aと超音波受信部8bとの組み合わせ、超音波送信部9aと超音波受信部9bとの組み合わせについても同様に行う。   Such calibration is performed by combining the ultrasonic transmitter 6a and the ultrasonic receiver 6b, combining the ultrasonic transmitter 7a and the ultrasonic receiver 7b, and combining the ultrasonic transmitter 8a and the ultrasonic receiver 8b. The same applies to the combination of the ultrasonic transmitter 9a and the ultrasonic receiver 9b.

こうして、超音波送信部5a,6a,7a,8a,9aと超音波受信部5b,6b,7b,8b,9bとの組み合わせセンサの校正が終了すると、続いて、制御部21は、第2の計時手段57をクリアして計時を開始させると同時にセンサ駆動手段56を制御して光距離センサ15から光パルスを放射する。そして、光距離センサ15は平面部32からの反射光を受光し受光信号を第2の計時手段57に供給する。これにより、第2の計時手段57は計時動作を停止する。第2の計時手段57が計時した時間は第2の距離測定手段58に供給される。   Thus, when the calibration of the combination sensor of the ultrasonic transmitters 5a, 6a, 7a, 8a, and 9a and the ultrasonic receivers 5b, 6b, 7b, 8b, and 9b is completed, the control unit 21 continues to the second The timing means 57 is cleared to start timing, and at the same time, the sensor driving means 56 is controlled to emit a light pulse from the optical distance sensor 15. The optical distance sensor 15 receives the reflected light from the flat portion 32 and supplies the received light signal to the second time measuring means 57. As a result, the second time measuring means 57 stops the time measuring operation. The time measured by the second time measuring means 57 is supplied to the second distance measuring means 58.

第1の距離測定手段58は、第2の計時手段57が計時した時間から、光距離センサ15と平面部32との距離を測定し、第2の校正手段59は測定した距離と予めメモリ22に設定されている光距離センサ15と平面部32との基準距離とを比較し、一致するように校正を行う。   The first distance measuring means 58 measures the distance between the optical distance sensor 15 and the flat portion 32 from the time counted by the second time measuring means 57, and the second calibration means 59 preliminarily stores the measured distance and the memory 22 in advance. Is compared with the reference distance between the optical distance sensor 15 and the flat portion 32, and calibration is performed so as to match.

充電台31において、充電が完了し、かつ、センサ部の校正を終えた自律走行体1は、充電台31から離れて走行空間61を走行するようになる。例えば、図9に示すようにジグザグ走行する場合は、最初に境界壁62、63、64、65、66、67に沿って壁の右側を周回走行する。この周回走行によって走行空間61の大きさと形状を把握しメモリ22に記憶する。そして、記憶した情報を基に地図によるジグザク走行経路68を決定し、ジグザグ走行を開始する。   In the charging stand 31, the autonomous traveling body 1 that has been charged and that has finished calibration of the sensor unit moves away from the charging stand 31 and travels in the traveling space 61. For example, as shown in FIG. 9, when zigzag traveling is performed, the vehicle first travels around the right side of the wall along the boundary walls 62, 63, 64, 65, 66, and 67. The size and shape of the traveling space 61 are grasped by the circular traveling and stored in the memory 22. Then, the zigzag travel route 68 based on the map is determined based on the stored information, and the zigzag travel is started.

ジグザグ走行が最後まで行われると、自律走行体1は再び充電台31に戻り、充電用受電端子10a,10bを充電用送電端子37a,37bに接続してバッテリー23への充電を行う。   When the zigzag traveling is performed to the end, the autonomous traveling body 1 returns to the charging stand 31 again, and the charging power receiving terminals 10a and 10b are connected to the charging power transmitting terminals 37a and 37b to charge the battery 23.

このように、自律走行体1は充電台31において、充電用受電端子10a,10bを充電用送電端子37a,37bに接続してバッテリー23への充電を行っている状態でユーザインターフェース部11から走行開始のコマンドを受けると、充電台31から離れて走行を開始するようになるが、その前に若干バックして駆動輪3a,3bを凹部35a,35bに位置させて一旦停止する。   As described above, the autonomous traveling body 1 travels from the user interface unit 11 while charging the battery 23 by connecting the charging power receiving terminals 10a and 10b to the charging power transmitting terminals 37a and 37b on the charging stand 31. When the start command is received, the vehicle starts to travel away from the charging stand 31, but before that, the vehicle is slightly backed and the drive wheels 3a, 3b are positioned in the recesses 35a, 35b and temporarily stopped.

駆動輪3a,3bが凹部35a,35bに位置したとき自律走行体1は所定の位置に有り、各超音波送信部5a,6a,7a,8a,9a及び各超音波受信部5b,6b,7b,8b,9bと側壁体36の壁面との間隔が一定になっている。この状態で各超音波送信部5a,6a,7a,8a,9aから順次超音波を送信し、これを各超音波受信部5b,6b,7b,8b,9bで順次受信してそれぞれのセンサの校正を行う。   When the driving wheels 3a, 3b are positioned in the recesses 35a, 35b, the autonomous traveling body 1 is in a predetermined position, and each ultrasonic transmission unit 5a, 6a, 7a, 8a, 9a and each ultrasonic reception unit 5b, 6b, 7b. , 8b, 9b and the wall surface of the side wall body 36 are constant. In this state, ultrasonic waves are sequentially transmitted from the ultrasonic wave transmitting units 5a, 6a, 7a, 8a, and 9a, and are sequentially received by the ultrasonic wave receiving units 5b, 6b, 7b, 8b, and 9b, and the respective sensors. Perform calibration.

このように、自律走行体1を停止させた状態で、超音波送信部5aと超音波受信部5bとの組み合わせ、超音波送信部6aと超音波受信部6bとの組み合わせ、超音波送信部7aと超音波受信部7bとの組み合わせ、超音波送信部8aと超音波受信部8bとの組み合わせ、超音波送信部9aと超音波受信部9bとの組み合わせからなる各距離センサの校正ができる。また、光距離センサ15の校正もできる。すなわち、自律走行体1の向きを変えることなく各距離センサの校正ができる。従って、各距離センサの校正を短時間で行うことができる。   Thus, in a state where the autonomous traveling body 1 is stopped, the combination of the ultrasonic transmission unit 5a and the ultrasonic reception unit 5b, the combination of the ultrasonic transmission unit 6a and the ultrasonic reception unit 6b, and the ultrasonic transmission unit 7a. Can be calibrated for each distance sensor including a combination of the ultrasonic transmitter 8a and the ultrasonic receiver 8b, a combination of the ultrasonic transmitter 8a and the ultrasonic receiver 8b, and a combination of the ultrasonic transmitter 9a and the ultrasonic receiver 9b. Further, the optical distance sensor 15 can be calibrated. That is, each distance sensor can be calibrated without changing the orientation of the autonomous vehicle 1. Therefore, each distance sensor can be calibrated in a short time.

しかも、各距離センサの校正を、別途装置を使用せずに、自律走行体1のバッテリー23を充電する既存の充電台31を利用し、この充電台31に側壁体36を形成して行っている。このように既存の場所を有効に利用することができる。   In addition, calibration of each distance sensor is performed by using the existing charging base 31 that charges the battery 23 of the autonomous traveling body 1 without using a separate device, and forming the side wall body 36 on the charging base 31. Yes. Thus, the existing place can be used effectively.

(第2の実施の形態)
この実施の形態は、充電台31の変形例を示すもので、図10に示すように、平面部32に凹部を形成せずに、溝34a,34bのみ形成し、また、平面部32の先端に位置する側壁体36の中央部に所定の長さだけ突出させた充電用送電端子71a,71bを配置している。
(Second Embodiment)
This embodiment shows a modification of the charging base 31, and as shown in FIG. 10, only the grooves 34a and 34b are formed without forming the concave portion in the flat portion 32, and the tip of the flat portion 32 is formed. Charging power transmission terminals 71a and 71b that are protruded by a predetermined length are arranged in the central portion of the side wall body 36 located at the position.

充電用送電端子71a,71bが突出する長さは、この充電用送電端子71a,71bに自律走行体1の充電用受電端子10a,10bを接続したとき、自律走行体1は所定の位置にあって、各超音波送信部5a,6a,7a,8a,9a及び各超音波受信部5b,6b,7b,8b,9bと側壁体36の壁面との間隔が一定になる長さになっている。   The length of the charging power transmission terminals 71a and 71b protruding is such that when the charging power receiving terminals 10a and 10b of the autonomous vehicle 1 are connected to the charging power transmission terminals 71a and 71b, the autonomous vehicle 1 is in a predetermined position. Thus, the distance between the ultrasonic transmitters 5a, 6a, 7a, 8a, 9a and the ultrasonic receivers 5b, 6b, 7b, 8b, 9b and the wall surface of the side wall body 36 is constant. .

従って、この場合は、自律走行体1の充電用受電端子10a,10bが充電台31の充電用送電端子71a,71bに接続してバッテリー23の充電を行っている最中に、各超音波送信部5a,6a,7a,8a,9aから順次超音波を送信し、これを各超音波受信部5b,6b,7b,8b,9bで順次受信してそれぞれのセンサの校正を行うことができる。   Therefore, in this case, each ultrasonic transmission is performed while the charging power receiving terminals 10a and 10b of the autonomous traveling body 1 are connected to the charging power transmission terminals 71a and 71b of the charging base 31 to charge the battery 23. The ultrasonic waves are sequentially transmitted from the units 5a, 6a, 7a, 8a, and 9a, and the ultrasonic reception units 5b, 6b, 7b, 8b, and 9b are sequentially received to calibrate the respective sensors.

このように充電台31の充電用送電端子71a,71bが自律走行体1の校正のための位置決めを兼ねている。これにより、構成がより簡単になる。また、バッテリー23の充電を行っている最中に各距離センサの校正ができるので、校正のために別途時間を設ける必要が無く、充電を完了した自律走行体1を直ちに走行開始させることができる。   In this way, the charging power transmission terminals 71 a and 71 b of the charging stand 31 also serve as positioning for calibration of the autonomous traveling body 1. This makes the configuration easier. In addition, since the distance sensors can be calibrated while the battery 23 is being charged, it is not necessary to provide additional time for calibration, and the autonomously traveling body 1 that has been charged can immediately start traveling. .

なお、前述した各実施の形態では、自律走行体1として上から見た筐体2の形状が略円形のものを使用し、充電台31に形成した側壁体36を、各超音波送信部5a,6a,7a,8a,9a、各超音波受信部5b,6b,7b,8b,9bを配置している筐体2の外周面形状に合わせて前部が略半円形に形成したが、側壁体36の形状は各超音波送信部、各超音波受信部を配置している筐体2の外周面形状が異なれば、それに合わせて異なるものである。   In each of the above-described embodiments, as the autonomous traveling body 1, the casing 2 viewed from above has a substantially circular shape, and the side wall body 36 formed on the charging base 31 is replaced with each ultrasonic transmission unit 5a. , 6a, 7a, 8a, 9a and the ultrasonic wave receiving parts 5b, 6b, 7b, 8b, 9b, the front part is formed in a substantially semicircular shape in accordance with the shape of the outer peripheral surface of the housing 2. If the shape of the outer peripheral surface of the housing | casing 2 which has arrange | positioned each ultrasonic transmission part and each ultrasonic receiving part differs, the shape of the body 36 will differ according to it.

また、前述した各実施の形態では、充電台31に自律走行体1を案内する溝34a,34bを設けたがこれは無くても良い。
また、前述した各実施の形態では、周囲との距離を計測する距離センサとして、超音波送信部と超音波受信部を対とした距離センサを使用したがこれに限定するものではなく、光を使用した距離センサ、あるいはその他の距離センサであってもよい。
Moreover, in each embodiment mentioned above, although the groove | channels 34a and 34b which guide the autonomous traveling body 1 were provided in the charging stand 31, this may not be sufficient.
In each of the above-described embodiments, the distance sensor that measures the distance to the surroundings is a distance sensor that uses a pair of an ultrasonic transmission unit and an ultrasonic reception unit, but the present invention is not limited to this. The distance sensor used or other distance sensors may be used.

本発明の、第1の実施の形態に係る自律走行体の外観を示す側面図。The side view which shows the external appearance of the autonomous running body which concerns on 1st Embodiment of this invention. 同実施の形態に係る自律走行体の外観を示す平面図。The top view which shows the external appearance of the autonomous running body which concerns on the embodiment. 同実施の形態に係る自律走行体の制御構成を示すブロック図。The block diagram which shows the control structure of the autonomous traveling body which concerns on the embodiment. 同実施の形態に係る充電台の構成を示す平面図。The top view which shows the structure of the charging stand which concerns on the same embodiment. 図4のA−A線に沿った断面図。Sectional drawing along the AA line of FIG. 同実施の形態に係る自律走行体の充電台上での校正動作を説明するための部分断面図。The fragmentary sectional view for demonstrating the calibration operation | movement on the charging stand of the autonomous running body which concerns on the embodiment. 同実施の形態に係る自律走行体の充電台上での校正動作を説明するための要部平面図。The principal part top view for demonstrating the calibration operation | movement on the charging stand of the autonomous running body which concerns on the embodiment. 同実施の形態に係る自律走行体のセンサの校正制御を行う制御部の機能構成を示す機能ブロック図。The functional block diagram which shows the function structure of the control part which performs calibration control of the sensor of the autonomous running body which concerns on the embodiment. 同実施の形態に係る自律走行体の自律走行例を示す図。The figure which shows the autonomous running example of the autonomous running body which concerns on the embodiment. 本発明の、第2の実施の形態に係る自律走行体と充電台との関係を説明するための部分断面図。The fragmentary sectional view for demonstrating the relationship between the autonomous running body which concerns on 2nd Embodiment of this invention, and a charging stand.

符号の説明Explanation of symbols

1…自律走行体、2…筐体、3a,3b…駆動輪、5a,6a,7a,8a,9a…超音波送信部、5b,6b,7b,8b,9b…超音波受信部、10a,10b…充電用受電端子、21…制御部、23…バッテリー、31…充電台、35a,35b…凹部、36…側壁体、37a,37b…充電用送電端子、38…充電器、51…制御手段、53…第1の計時手段、54…第1の距離測定手段、55…第1の校正手段。   DESCRIPTION OF SYMBOLS 1 ... Autonomous traveling body, 2 ... Housing | casing, 3a, 3b ... Drive wheel, 5a, 6a, 7a, 8a, 9a ... Ultrasonic transmitter, 5b, 6b, 7b, 8b, 9b ... Ultrasonic receiver, 10a, DESCRIPTION OF SYMBOLS 10b ... Receiving terminal for charge, 21 ... Control part, 23 ... Battery, 31 ... Charging stand, 35a, 35b ... Recessed part, 36 ... Side wall body, 37a, 37b ... Power transmission terminal for charging, 38 ... Charger, 51 ... Control means 53... First time measuring means, 54... First distance measuring means, 55.

Claims (2)

車輪を駆動する走行駆動源等に電源を供給するバッテリーを設けるとともにこのバッテリーの充電用受電端子を外周面に設けた自律走行体と、この自律走行体を載せた状態で前記受電端子と接触する充電用送電端子を設け、この送電端子から前記受電端子を介して前記バッテリーを充電する充電台とからなる自律走行体システムにおいて、
前記充電台は、前記自律走行体の外周面に合わせた形状の壁面を有する側壁体と、前記自律走行体の外周面が前記側壁体の壁面から校正に必要な所定距離だけ離れるように車輪の位置決めを行う凹部とを設け、
前記自律走行体は、外周面に配置した、周囲との距離を測定するための複数の距離センサと、前記車輪が凹部に位置決めされた状態で校正のために前記各距離センサを駆動して前記側壁の壁面との距離を測定する距離測定手段と、この距離測定手段が測定した距離を予め設定した基準値と比較して前記各距離センサの校正を行う校正手段とを設けたことを特徴とする自律走行体システム。
Provided is a battery for supplying power to a traveling drive source for driving the wheel, and an autonomous traveling body having a charging power receiving terminal for the battery provided on the outer peripheral surface, and the power receiving terminal in contact with the autonomous traveling body. In an autonomous vehicle system comprising a charging terminal for charging, and a charging stand for charging the battery from the power transmitting terminal via the power receiving terminal,
The charging stand includes a side wall body having a wall surface shaped to match the outer peripheral surface of the autonomous traveling body, and an outer peripheral surface of the autonomous traveling body separated from a wall surface of the side wall body by a predetermined distance necessary for calibration. A recess for positioning,
The autonomous traveling body includes a plurality of distance sensors arranged on an outer peripheral surface for measuring a distance from the surroundings, and the distance sensors are driven for calibration in a state where the wheels are positioned in the recesses. A distance measuring means for measuring a distance between the side wall and a calibration means for calibrating each distance sensor by comparing the distance measured by the distance measuring means with a preset reference value; Autonomous traveling body system.
車輪を駆動する走行駆動源等に電源を供給するバッテリーを設けるとともにこのバッテリーの充電用受電端子を外周面に設けた自律走行体と、この自律走行体を載せた状態で前記受電端子と接触する充電用送電端子を設け、この送電端子から前記受電端子を介して前記バッテリーを充電する充電台とからなる自律走行体システムにおいて、
前記充電台は、前記自律走行体の外周面に合わせた形状の壁面を有する側壁体を設けるとともに、前記充電用送電端子を、この送電端子に前記自律走行体の受電端子が接触したとき前記自律走行体の外周面が前記側壁体の壁面から校正に必要な所定距離だけ離れるように所定の長さだけ突出させ
前記自律走行体は、外周面に配置した、周囲との距離を測定するための複数の距離センサと、前記自律走行体の受電端子が前記送電端子に接触した状態で校正のために前記各距離センサを駆動して前記側壁の壁面との距離を測定する距離測定手段と、この距離測定手段が測定した距離を予め設定した基準値と比較して前記各距離センサの校正を行う校正手段とを設けたことを特徴とする自律走行体システム。
Provided is a battery for supplying power to a traveling drive source for driving the wheel, and an autonomous traveling body having a charging power receiving terminal for the battery provided on the outer peripheral surface, and the power receiving terminal in contact with the autonomous traveling body. In an autonomous vehicle system comprising a charging terminal for charging, and a charging stand for charging the battery from the power transmitting terminal via the power receiving terminal,
The charging stand is provided with a side wall body having a wall surface shaped to match the outer peripheral surface of the autonomous traveling body, and the autonomously traveling body is connected to the power transmission terminal for charging when the power receiving terminal of the autonomous traveling body contacts the power transmission terminal. Protruding a predetermined length so that the outer peripheral surface of the traveling body is separated from the wall surface of the side wall body by a predetermined distance necessary for calibration.The autonomous traveling body is disposed on the outer peripheral surface for measuring the distance to the surroundings. A plurality of distance sensors, and distance measuring means for driving each distance sensor for calibration in a state where a power receiving terminal of the autonomous traveling body is in contact with the power transmitting terminal, and measuring a distance from the wall surface of the side wall; An autonomous traveling body system comprising calibration means for calibrating each distance sensor by comparing the distance measured by the distance measurement means with a preset reference value.
JP2005088431A 2005-03-25 2005-03-25 Autonomous traveling body system Pending JP2006268652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005088431A JP2006268652A (en) 2005-03-25 2005-03-25 Autonomous traveling body system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005088431A JP2006268652A (en) 2005-03-25 2005-03-25 Autonomous traveling body system

Publications (1)

Publication Number Publication Date
JP2006268652A true JP2006268652A (en) 2006-10-05

Family

ID=37204522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005088431A Pending JP2006268652A (en) 2005-03-25 2005-03-25 Autonomous traveling body system

Country Status (1)

Country Link
JP (1) JP2006268652A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2540816A (en) * 2015-07-30 2017-02-01 Guidance Automation Ltd Calibrating an automated guided vehicle
JP2017042895A (en) * 2015-08-28 2017-03-02 トヨタ自動車株式会社 Mobile robot and calibration method for the same
JP2018502296A (en) * 2014-12-23 2018-01-25 フスクバルナ アクティエボラーグ 3D map generation by robot tool
JPWO2021100113A1 (en) * 2019-11-19 2021-05-27

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018502296A (en) * 2014-12-23 2018-01-25 フスクバルナ アクティエボラーグ 3D map generation by robot tool
US10606279B2 (en) 2014-12-23 2020-03-31 Husqvarna Ab 3D map generation by a robotic work tool
GB2540816A (en) * 2015-07-30 2017-02-01 Guidance Automation Ltd Calibrating an automated guided vehicle
GB2540816B (en) * 2015-07-30 2021-10-27 Guidance Automation Ltd Calibrating an Automated Guided Vehicle
JP2017042895A (en) * 2015-08-28 2017-03-02 トヨタ自動車株式会社 Mobile robot and calibration method for the same
JPWO2021100113A1 (en) * 2019-11-19 2021-05-27
JP7487740B2 (en) 2019-11-19 2024-05-21 オムロン株式会社 Radar equipment calibration system

Similar Documents

Publication Publication Date Title
US20060080802A1 (en) Self-propelled cleaner charging-type travel system and charging-type travel system
JP4442517B2 (en) Non-contact power supply device and power supply system for autonomous mobile device
KR102001422B1 (en) Electrical vacuum cleaner
US20060212191A1 (en) Rechargeable traveling system
KR101771869B1 (en) Traveling body device
KR100468107B1 (en) Robot cleaner system having external charging apparatus and method for docking with the same apparatus
US9463706B2 (en) Infrared triangulation method for locating vehicles for hands-free electric vehicle charging
KR101939671B1 (en) Traveling body device
JP2007213180A (en) Movable body system
JPH0782385B2 (en) Mobile guidance device
CN105083046A (en) Ultrasonic location for electric vehicle charging system
US11294389B1 (en) Recharge station for mobile robot
CN110610620B (en) Mobile device, mobile control method, mobile control program, and recording medium
US20060217854A1 (en) Travel device and self-propelled cleaner
US20150336462A1 (en) Sonic triangulation method for locating vehicles for hands-free electric vehicle charging
JP2006268652A (en) Autonomous traveling body system
KR101344806B1 (en) Mobile phone case equipped with recognizing function surrounding objects
JP2006236109A (en) System for automatically charging robot
JP2017049933A (en) Autonomous travelling vehicle system
JP7289872B2 (en) Vehicle charging system
JP6636289B2 (en) Traveling device
CN216816942U (en) Ranging sensor from mobile equipment and self-mobile equipment
JP2007148591A (en) Self-propelled cleaner
EP3240137B1 (en) Automatic power supply system, automatic power supply device, and autonomous moving system
JP2014014202A (en) Power exchange system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070618