JP2006268031A - Antireflection film, polarizing plate, and image display apparatus - Google Patents

Antireflection film, polarizing plate, and image display apparatus Download PDF

Info

Publication number
JP2006268031A
JP2006268031A JP2006047148A JP2006047148A JP2006268031A JP 2006268031 A JP2006268031 A JP 2006268031A JP 2006047148 A JP2006047148 A JP 2006047148A JP 2006047148 A JP2006047148 A JP 2006047148A JP 2006268031 A JP2006268031 A JP 2006268031A
Authority
JP
Japan
Prior art keywords
refractive index
group
film
layer
antireflection film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006047148A
Other languages
Japanese (ja)
Inventor
Kiyoshi Irita
潔 入田
Hiroyuki Yoneyama
博之 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2006047148A priority Critical patent/JP2006268031A/en
Publication of JP2006268031A publication Critical patent/JP2006268031A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antireflection film having low reflectance and excellent scratch resistance and contamination resistance, and to provide a polarizing plate and an image display apparatus using the film. <P>SOLUTION: The antireflection film has a low refractive index layer comprising a cured film of a fluoropolymer as the outermost layer on a transparent supporting body, wherein the fluoropolymer is a copolymer containing a polysiloxane structure in a main chain and comprising a repeating unit of a fluoro-vinyl monomer, a repeating unit having a (meth)acryloyl group, and a repeating unit having a hydroxyl group. The content of the repeating unit having a (meth)acryloyl group in the copolymer is 30 to 70 mol% of the whole repeating units except for a polysiloxane moiety. The content of the repeating unit having a hydroxyl group is 5 to 40 mol% of the whole repeating units except the polysiloxane moiety. The low refractive index layer contains inorganic fine particles having an average particle size of 30 to 100% of the layer thickness. A polarizing plate and an image display apparatus using the antireflection film are also provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、反射防止フィルム並びに該反射防止フィルムを用いた偏光板及び画像表示装置に関する。   The present invention relates to an antireflection film, a polarizing plate using the antireflection film, and an image display device.

反射防止フィルムは、一般に、陰極管表示装置(CRT)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や液晶表示装置(LCD)のようなディスプレイ装置において、外光の反射によるコントラスト低下や像の映り込みを防止するために、光学干渉の原理を用いて反射率を低減する様ディスプレイの最表面に配置される。   In general, the antireflection film is used in a display device such as a cathode ray tube display (CRT), a plasma display (PDP), an electroluminescence display (ELD), or a liquid crystal display (LCD), and a contrast reduction or image due to reflection of external light. In order to prevent reflection of light, it is arranged on the outermost surface of the display so as to reduce the reflectance by using the principle of optical interference.

このような反射防止フィルムは、一般的には、支持体上に適切な膜厚の、支持体より低屈折率の低屈折率層を形成することにより作製できる。低い反射率を実現するために低屈折率層にはできるだけ屈折率の低い材料が望まれる。また反射防止フィルムはディスプレイの最表面に用いられるため高い耐擦傷性が要求される。厚さ100nm前後の薄膜において、高い耐擦傷性を実現するためには、皮膜自体の強度、および下層への密着性が必要である。   Such an antireflection film can be generally produced by forming a low refractive index layer having an appropriate film thickness and a lower refractive index than the support on the support. In order to realize a low reflectance, a material having a refractive index as low as possible is desired for the low refractive index layer. Further, since the antireflection film is used on the outermost surface of the display, high scratch resistance is required. In order to realize high scratch resistance in a thin film having a thickness of about 100 nm, the strength of the coating itself and the adhesion to the lower layer are required.

材料の屈折率を下げるには、(1)フッ素原子を導入する、(2)密度を下げる(空隙を導入する)という手段があるがいずれも皮膜強度や界面の密着性が低下し、耐擦傷性が低下する方向であり、低い屈折率と高い耐傷性の両立は困難な課題であった。   To lower the refractive index of the material, there are means of (1) introducing fluorine atoms and (2) lowering the density (introducing voids). The low refractive index and high scratch resistance are both difficult problems.

ある程度の皮膜強度を高める方法として、特許文献1、2に記載されているようにフッ素含有ゾルゲル膜を用いる方法があるが、(1)硬化に長時間加熱を要し、製造の負荷が大きい、(2)鹸化液(アルカリ処理液)耐性が無く、トリアセチルセルロース(TAC)面を鹸化処理する場合に、反射防止フィルム製膜後にできない、などの大きな制約が発生してしまう。   As a method for increasing the film strength to some extent, there is a method using a fluorine-containing sol-gel film as described in Patent Documents 1 and 2, but (1) a long time is required for curing, and the production load is large. (2) There is no resistance to saponification liquid (alkali treatment liquid), and when the saponification treatment is performed on the triacetyl cellulose (TAC) surface, a great restriction such as being impossible after film formation of the antireflection film occurs.

一方、特許文献3〜5には、含フッ素ポリマー中にポリシロキサン構造を導入することにより皮膜表面の摩擦係数を下げ耐傷性を改良する手段が記載されている。該手段は耐傷性改良に対してある程度有効であるが、本質的な皮膜強度および界面密着性が不足している皮膜に対して該手法のみでは十分な耐傷性が得られない。   On the other hand, Patent Documents 3 to 5 describe means for reducing the coefficient of friction on the coating surface and improving the scratch resistance by introducing a polysiloxane structure into the fluorine-containing polymer. This means is effective to some extent for improving scratch resistance, but sufficient scratch resistance cannot be obtained only by this method for a film having an essential film strength and interfacial adhesion.

また、特許文献6には、含フッ素ポリマーと無機微粒子を併用することにより、長時間の熱硬化や鹸化処理の制約を受けることなく、皮膜強度及び、界面密着性を改良し、耐傷性を向上させる手段が記載されている。   In Patent Document 6, by using a fluorine-containing polymer and inorganic fine particles in combination, the film strength and interfacial adhesion are improved and scratch resistance is improved without being restricted by long-time thermal curing or saponification treatment. Means for making it described.

特開2002−265866号公報JP 2002-265866 A 特開2002−317152号公報JP 2002-317152 A 特開平11−189621号公報JP-A-11-189621 特開平11−228631号公報Japanese Patent Laid-Open No. 11-228631 特開2000−313709号公報JP 2000-313709 A 国際公開04/017105号パンフレットInternational Publication No. 04/017105 Pamphlet

しかし、上記特許文献6に記載の反射防止フィルムでは、無機微粒子が含フッ素ポリマーマトリックスに十分分散されず、皮膜中で無機微粒子の粗密が発生しヘイズの上昇が起
こる場合がある。この問題は、防眩性を有しない表面の平滑な低反射フィルムで特に問題となる。
本発明の目的は、十分な反射防止性を有しながら耐傷性の向上した反射防止フィルムを提供することである。更には、そのような反射防止フィルムを用いた偏光板やディスプレイ装置を提供することである。
However, in the antireflection film described in Patent Document 6, the inorganic fine particles are not sufficiently dispersed in the fluorine-containing polymer matrix, and there are cases where the inorganic fine particles are coarsely and densely formed in the film, resulting in an increase in haze. This problem is particularly problematic with a low reflection film having a smooth surface that does not have antiglare properties.
An object of the present invention is to provide an antireflection film having sufficient antireflection properties and improved scratch resistance. Furthermore, it is providing the polarizing plate and display apparatus using such an antireflection film.

本発明者は、鋭意検討の結果、無機微粒子を特定の構造を有する含フッ素ポリマーからなるバインダーに分散することにより、高い皮膜強度・界面密着性・耐傷性を保持しながら、小さいヘイズに維持できることを見出した。
本発明によれば、下記構成の反射防止フィルム、偏光板、及び画像表示装置が提供され、上記目的が達成される。
1. 透明支持体上に、含フッ素ポリマーの硬化皮膜からなる低屈折率層を最外層に有する反射防止フィルムであって、
該フッ素ポリマーが、主鎖にポリシロキサン構造を含み、かつ、含フッ素ビニルモノマーからなる繰返し単位と、側鎖に(メタ)アクリロイル基を有する繰返し単位と、
側鎖に水酸基を有する繰り返し単位と、を含んでなる共重合体であり、
該側鎖に(メタ)アクリロイル基を有する繰返し単位の共重合体における含有量が、ポリシロキサン部位以外の全繰返し単位のうちの30〜70mol%であり、
該側鎖に水酸基を有する繰り返し単位の共重合体における含有量が、ポリシロキサン部位以外の全繰り返し単位のうち5〜40mol%であり、
該低屈折率層中に、平均粒径が該低屈折率層の厚みの30%以上100%以下の範囲である無機微粒子を少なくとも一種を含有することを特徴とする反射防止フィルム。
2. 前記共重合体が下記一般式1で表される共重合体であることを特徴とする上記1に記載の反射防止フィルム。
As a result of intensive studies, the present inventor can maintain a small haze while maintaining high film strength, interfacial adhesion and scratch resistance by dispersing inorganic fine particles in a binder comprising a fluorine-containing polymer having a specific structure. I found.
According to the present invention, an antireflection film, a polarizing plate and an image display device having the following constitution are provided, and the above object is achieved.
1. An antireflection film having a low refractive index layer made of a cured film of a fluorine-containing polymer as an outermost layer on a transparent support,
The fluoropolymer has a polysiloxane structure in the main chain and a repeating unit composed of a fluorine-containing vinyl monomer, a repeating unit having a (meth) acryloyl group in the side chain,
A copolymer comprising a repeating unit having a hydroxyl group in the side chain,
The content of the repeating unit having a (meth) acryloyl group in the side chain in the copolymer is 30 to 70 mol% of all repeating units other than the polysiloxane moiety,
The content of the repeating unit having a hydroxyl group in the side chain in the copolymer is 5 to 40 mol% of all repeating units other than the polysiloxane moiety,
The antireflective film characterized in that the low refractive index layer contains at least one inorganic fine particle having an average particle size in the range of 30% to 100% of the thickness of the low refractive index layer.
2. 2. The antireflection film as described in 1 above, wherein the copolymer is a copolymer represented by the following general formula 1.

Figure 2006268031
Figure 2006268031

〔一般式1中、Lは炭素数1〜10の連結基を表し、mは0または1を表す。Xは水素原子またはメチル基を表す。Aは側鎖に水酸基を持つ繰り返し単位を表し、Bは任意のビニルモノマーからなる繰返し単位を表す。A及びBは、単一成分であっても複数の成分で構成されていてもよい。Yはポリシロキサン構造を主鎖に含む構成成分を表す。x, y, z1,Z2はY以外の全繰返し単位を基準とした場合のそれぞれの繰返し単位のモル%を表し、30≦x≦60、30≦y≦70、5≦z1≦40、0≦z2≦35を満たす値を表す。ただし、x+y+z1+Z2=100(モル%)。aは共重合体中の構成成分Yの質量%を表す。〕 [In General Formula 1, L represents a linking group having 1 to 10 carbon atoms, and m represents 0 or 1. X represents a hydrogen atom or a methyl group. A represents a repeating unit having a hydroxyl group in the side chain, and B represents a repeating unit composed of any vinyl monomer. A and B may be composed of a single component or a plurality of components. Y represents a constituent component containing a polysiloxane structure in the main chain. x, y, z1, and Z2 represent mol% of each repeating unit based on all repeating units other than Y, and 30 ≦ x ≦ 60, 30 ≦ y ≦ 70, 5 ≦ z1 ≦ 40, 0 ≦ A value satisfying z2 ≦ 35 is represented. However, x + y + z1 + Z2 = 100 (mol%). a represents mass% of the component Y in the copolymer. ]

3. 上記一般式1で表される共重合体が下記一般式2で表される共重合体であることを特徴とする上記2に記載の反射防止フィルム。 3. 3. The antireflection film as described in 2 above, wherein the copolymer represented by the general formula 1 is a copolymer represented by the following general formula 2.

Figure 2006268031
Figure 2006268031

一般式2中、X、Y、x、y、aはそれぞれ一般式1と同じ意味を表す。Bは任意のビニルモノマーからの繰返し単位を表し、単一成分であっても複数の成分で構成されていても良い。z1およびz2はY以外の全繰返し単位を基準とした場合のそれぞれの繰返し単位のモル%を表し、5≦z1≦40、0≦z2≦35を満たす値を表す。ただし、x+y+z1+z2=100(モル%)。nは2≦n≦10を満たす整数を表す。   In General Formula 2, X, Y, x, y, and a each have the same meaning as in General Formula 1. B represents a repeating unit from an arbitrary vinyl monomer, and may be composed of a single component or a plurality of components. z1 and z2 represent mol% of each repeating unit based on all repeating units other than Y, and represent values satisfying 5 ≦ z1 ≦ 40 and 0 ≦ z2 ≦ 35. However, x + y + z1 + z2 = 100 (mol%). n represents an integer satisfying 2 ≦ n ≦ 10.

4. 上記一般式2で表される共重合体が、40≦x≦60、40≦y≦60、5≦z1≦40、z2=0を満たすことを特徴とする上記3に記載の反射防止フィルム。 4). 4. The antireflection film as described in 3 above, wherein the copolymer represented by the general formula 2 satisfies 40 ≦ x ≦ 60, 40 ≦ y ≦ 60, 5 ≦ z1 ≦ 40, and z2 = 0.

5. 主鎖に含まれるポリシロキサン構造が下記一般式3で表される構造であることを特徴とする上記1〜4のいずれかに記載の反射防止フィルム。 5. 5. The antireflection film as described in any one of 1 to 4 above, wherein the polysiloxane structure contained in the main chain is a structure represented by the following general formula 3.

Figure 2006268031
Figure 2006268031

一般式3中、R、R、RおよびRはそれぞれ独立して水素原子、アルキル基、アリール基、アルコキシカルボニル基またはシアノ基を表し、R〜R10はそれぞれ独立して水素原子、アルキル基、ハロアルキル基またはフェニル基を表す。pおよびqはそれぞれ独立して1〜10の整数を表す。mおよびnはそれぞれ独立して0〜10の整数を表し、rは10〜1000の整数を表す。
6. 透明支持体と低屈折率層の間に、少なくとも一層のハードコート層を有することを特徴とする上記1〜5のいずれかに記載の反射防止フィルム。
7. 前期無機微粒子が、シリカ微粒子であることを特徴とする上記1〜6のいずれかに記載の反射防止フィルム。
8. 低屈折率層中に、さらに、低屈折率層の厚みの25%未満の粒径のシリカ微粒子が少なくとも1種含有されていることを特徴とする上記1〜7のいずれかに記載の反射防止フィルム。
9. 低屈折率層中に含有されているシリカ微粒子の少なくとも1種が、中空のシリカ微粒子であり、該シリカ微粒子の屈折率が1.17〜1.40であることを特徴とする上記7または8に記載の反射防止フィルム。
10. 少なくとも1層のハードコート層が光拡散層であり、かつ該光拡散層が、0.01〜0.2%の範囲に、ゴニオフォトメーターの散乱光プロファイルの出射角0°の光強度に対する30°の散乱光強度を有することを特徴とする上記6〜9のいずれかに記載の反射防止フィルム。
11. 透明支持体と低屈折率層の間に、少なくとも一層の高屈折率層を有し、該高屈折率層は二酸化チタンを主成分とし、かつコバルト、アルミニウム、及びジルコニウムから選ばれる少なくとも1つの元素を含有する無機微粒子を含む、屈折率が1.55〜2.40の構成層であることを特徴とする上記1〜10のいずれかに記載の反射防止フィルム。12. 偏光膜と、該偏光膜の両側に設けられた保護フィルムを有する偏光板において、該保護フィルムの少なくとも一方が、上記1〜11のいずれかに記載の反射防止フィルムである。
13. 前記保護フィルムのうち、反射防止フィルム以外のフィルムが、光学異方性層を有する光学補償フィルムであり、該光学異方性層がディスコティック構造単位を有する化合物からなる負の複屈折率を有する層であり、該ディスコティック構造単位の円盤面が該表面保護フィルム面に対して傾いており、かつ該ディスコティック構造単位の円盤面と該表面保護フィルム面とのなす角度が、光学異方性層の深さ方法において変化していることを特徴とする上記12に記載の偏光板。
14. 上記1〜11に記載の反射防止フィルム、又は、上記12もしくは13に記載の偏光板が、画像表示面に配置されていることを特徴とする画像表示装置。
15. 上記12または13に記載の偏光板を少なくとも1枚有するTN、STN、VA、IPS、またはOCBのモードの透過型、反射型、または半透過型の液晶表示装置。
In General Formula 3, R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, an alkyl group, an aryl group, an alkoxycarbonyl group or a cyano group, and R 5 to R 10 each independently represent hydrogen. Represents an atom, an alkyl group, a haloalkyl group or a phenyl group; p and q each independently represent an integer of 1 to 10. m and n each independently represents an integer of 0 to 10, and r represents an integer of 10 to 1000.
6). 6. The antireflection film as described in any one of 1 to 5 above, which has at least one hard coat layer between the transparent support and the low refractive index layer.
7). The antireflection film as described in any one of 1 to 6 above, wherein the inorganic fine particles are silica fine particles.
8). 8. The antireflection according to any one of 1 to 7, wherein the low refractive index layer further contains at least one silica fine particle having a particle diameter of less than 25% of the thickness of the low refractive index layer. the film.
9. 7 or 8 above, wherein at least one of the silica fine particles contained in the low refractive index layer is hollow silica fine particles, and the refractive index of the silica fine particles is 1.17 to 1.40. The antireflection film as described in 1.
10. At least one hard coat layer is a light diffusing layer, and the light diffusing layer is in the range of 0.01 to 0.2% with respect to the light intensity at an output angle of 0 ° of the scattered light profile of the goniophotometer. 10. The antireflection film as described in any one of 6 to 9 above, which has a scattered light intensity of 0 °.
11. There is at least one high refractive index layer between the transparent support and the low refractive index layer, and the high refractive index layer is mainly composed of titanium dioxide and at least one element selected from cobalt, aluminum, and zirconium. 11. The antireflection film as described in any one of 1 to 10 above, which is a constituent layer having a refractive index of 1.55 to 2.40, containing inorganic fine particles containing. 12 The polarizing plate which has a polarizing film and the protective film provided in the both sides of this polarizing film WHEREIN: At least one of this protective film is an antireflection film in any one of said 1-11.
13. Among the protective films, the film other than the antireflection film is an optical compensation film having an optically anisotropic layer, and the optically anisotropic layer has a negative birefringence composed of a compound having a discotic structural unit. The disc surface of the discotic structural unit is inclined with respect to the surface protective film surface, and the angle formed by the disc surface of the discotic structural unit and the surface protective film surface is optical anisotropy. 13. The polarizing plate as described in 12 above, wherein the polarizing plate changes in the layer depth method.
14 14. An image display device, wherein the antireflection film described in 1 to 11 or the polarizing plate described in 12 or 13 is disposed on an image display surface.
15. 14. A TN, STN, VA, IPS, or OCB mode transmissive, reflective, or transflective liquid crystal display device having at least one polarizing plate described in 12 or 13 above.

本発明の反射防止フィルムは、十分な反射防止性を有しながら耐傷性に優れている。更に、本発明の反射防止フィルムを備えたディスプレイ装置及び本発明の反射防止フィルムを用いた偏光板を備えたディスプレイ装置は、外光の映り込みや背景の映りこみが少なく、極めて視認性が高い。   The antireflection film of the present invention is excellent in scratch resistance while having sufficient antireflection properties. Further, the display device provided with the antireflection film of the present invention and the display device provided with the polarizing plate using the antireflection film of the present invention have little reflection of external light and reflection of the background, and extremely high visibility. .

本発明の実施の一形態として好適な反射防止フィルムの基本的な構成を図面を参照しながら説明する。
図1(a)に模式的に示される断面図は、本発明の反射防止フィルムの一例であり、反射防止フィルム1は、透明支持体2、ハードコート層3、高屈折層4、そして低屈折率層5の順序の層構成を有する。高屈折率層4の屈折率は1.50〜2.00の範囲にあることが好ましく、低屈折率層5の屈折率は1.35〜1.49の範囲にあることが好ましい。本発明においてハードコート層は、このように高屈折層とは別に設置されてもよいし、高屈折層の機能を併せ持つ高屈折率ハードコート層として設置されてもよい。また、ハードコート層は、1層でもよいし、複数層、例えば2層〜4層で構成されていてもよい。また、ハードコート層は無くてもよい。従って、図1に示したハードコート層は必須ではないが、フィルム強度付与のためにこれらのハードコート層のいずれかが塗設されることが好ましい。低屈折率層は最外層に塗設される。
A basic configuration of an antireflection film suitable as an embodiment of the present invention will be described with reference to the drawings.
The cross-sectional view schematically shown in FIG. 1 (a) is an example of the antireflection film of the present invention. The antireflection film 1 comprises a transparent support 2, a hard coat layer 3, a high refractive layer 4, and a low refractive index. It has a layer structure in the order of the rate layer 5. The refractive index of the high refractive index layer 4 is preferably in the range of 1.50 to 2.00, and the refractive index of the low refractive index layer 5 is preferably in the range of 1.35 to 1.49. In the present invention, the hard coat layer may be provided separately from the high refractive layer as described above, or may be provided as a high refractive index hard coat layer having the function of the high refractive layer. Further, the hard coat layer may be a single layer or may be composed of a plurality of layers, for example, 2 to 4 layers. Further, the hard coat layer may be omitted. Accordingly, the hard coat layer shown in FIG. 1 is not essential, but it is preferable that any of these hard coat layers is applied to impart film strength. The low refractive index layer is coated on the outermost layer.

図1(b)に模式的に示される断面図は、本発明の反射防止フィルムの一例であり、反射防止フィルム1は、透明支持体2、ハードコート層3、中屈折率7、高屈折率層8、低屈折率層(最外層)5の順序の層構成を有する。
透明支持体2、中屈折率層7、高屈折率層8および低屈折率層5は、以下の関係を満足する屈折率を有する。
高屈折率層の屈折率>中屈折率層の屈折率>透明支持体の屈折率>低屈折率層の屈折率 図1(b)のような層構成では、特開昭59−50401号公報に記載されているように、中屈折率層が下記数式(I)、高屈折率層が下記数式(II)、低屈折率層が下記数式
(III)をそれぞれ満足することがより優れた反射防止性能を有する反射防止フィルムを作製できる点で好ましい。
The cross-sectional view schematically shown in FIG. 1B is an example of the antireflection film of the present invention. The antireflection film 1 includes a transparent support 2, a hard coat layer 3, a medium refractive index 7, and a high refractive index. It has a layer structure in the order of the layer 8 and the low refractive index layer (outermost layer) 5.
The transparent support 2, the medium refractive index layer 7, the high refractive index layer 8, and the low refractive index layer 5 have refractive indexes that satisfy the following relationship.
Refractive index of high refractive index layer> refractive index of medium refractive index layer> refractive index of transparent support> refractive index of low refractive index layer In the layer structure as shown in FIG. As described above, the intermediate refractive index layer satisfies the following formula (I), the high refractive index layer satisfies the following formula (II), and the low refractive index layer satisfies the following formula (III). It is preferable at the point which can produce the antireflection film which has prevention performance.

数式(I)
(hλ/4)×0.7<n11<(hλ/4)×1.3
数式(I)中、hは正の整数(一般に1、2または3)であり、n1は中屈折率層の屈折率であり、そして、d1は中屈折率層の層厚(nm)である。λは可視光線の波長(nm)であり、380〜680nmの範囲の値である。
Formula (I)
(Hλ / 4) × 0.7 <n 1 d 1 <(hλ / 4) × 1.3
In the formula (I), h is a positive integer (generally 1, 2 or 3), n 1 is the refractive index of the medium refractive index layer, and d 1 is the layer thickness (nm) of the medium refractive index layer. It is. λ is the wavelength (nm) of visible light, and is a value in the range of 380 to 680 nm.

数式(II)
(iλ/4)×0.7<n22<(iλ/4)×1.3
数式(II)中、iは正の整数(一般に1、2または3)であり、n2は高屈折率層の屈折率であり、そして、d2は高屈折率層の層厚(nm)である。λは可視光線の波長(nm)であり、380〜680nmの範囲の値である。
Formula (II)
(Iλ / 4) × 0.7 <n 2 d 2 <(iλ / 4) × 1.3
In formula (II), i is a positive integer (generally 1, 2 or 3), n 2 is the refractive index of the high refractive index layer, and d 2 is the layer thickness (nm) of the high refractive index layer. It is. λ is the wavelength (nm) of visible light, and is a value in the range of 380 to 680 nm.

数式(III)
(jλ/4)×0.7<n33<(jλ/4)×1.3
数式(III)中、jは正の奇数(一般に1)であり、n3は低屈折率層の屈折率であり、そして、d3は低屈折率層の層厚(nm)である。λは可視光線の波長(nm)であり、380〜680nmの範囲の値である。
Formula (III)
(Jλ / 4) × 0.7 <n 3 d 3 <(jλ / 4) × 1.3
In formula (III), j is a positive odd number (generally 1), n 3 is the refractive index of the low refractive index layer, and d 3 is the layer thickness (nm) of the low refractive index layer. λ is the wavelength (nm) of visible light, and is a value in the range of 380 to 680 nm.

図1(b)のような層構成では、中屈折率層が下記数式(IV)、高屈折率層が下記数式(V)、低屈折率層が下記数式(VI)をそれぞれ満足することが、特に好ましい。
なお、下記数式において、λは500nm、hは1、iは2、jは1である。
数式(IV)
(hλ/4)×0.80<n11<(hλ/4)×1.00
数式(V)
(iλ/4)×0.75<n22<(iλ/4)×0.95
数式(VI)
(jλ/4)×0.95<n33<(jλ/4)×1.05
In the layer configuration as shown in FIG. 1B, the medium refractive index layer satisfies the following mathematical formula (IV), the high refractive index layer satisfies the following mathematical formula (V), and the low refractive index layer satisfies the following mathematical formula (VI). Is particularly preferred.
In the following formula, λ is 500 nm, h is 1, i is 2, and j is 1.
Formula (IV)
(Hλ / 4) × 0.80 <n 1 d 1 <(hλ / 4) × 1.00
Formula (V)
(Iλ / 4) × 0.75 <n 2 d 2 <(iλ / 4) × 0.95
Formula (VI)
(Jλ / 4) × 0.95 <n 3 d 3 <(jλ / 4) × 1.05

なお、ここで記載した高屈折率、中屈折率、低屈折率とは層相互の相対的な屈折率の高低をいう。また、図1(b)では、高屈折率層を光干渉層として用いており、極めて優れた反射防止性能を有する反射防止フィルムを作製できる。   The high refractive index, medium refractive index, and low refractive index described here refer to the relative refractive index between layers. Moreover, in FIG.1 (b), the high refractive index layer is used as a light interference layer, and the antireflection film which has the very outstanding antireflection performance can be produced.

[低屈折率層]
本発明の反射防止フィルムの低屈折率層の屈折率は、1.20〜1.49の範囲であることが好ましく、1.30〜1.44の範囲であることがより好ましい。
さらに、低屈折率層は下記数式(VII)を満たすことが低反射率化の点で好ましい。
数式(VII)
(mλ/4)×0.7<n33<(mλ/4)×1.3
式中、mは正の奇数であり、n3は低屈折率層の屈折率であり、そして、d3は低屈折率層の膜厚(nm)である。また、λは波長であり、500〜550nmの範囲の値である。
なお、上記数式(VII)を満たすとは、上記波長の範囲において数式(VII)を満たすm(正の奇数、通常1である)が存在することを意味している。
[Low refractive index layer]
The refractive index of the low refractive index layer of the antireflection film of the present invention is preferably in the range of 1.20 to 1.49, more preferably in the range of 1.30 to 1.44.
Further, the low refractive index layer preferably satisfies the following formula (VII) from the viewpoint of reducing the reflectance.
Formula (VII)
(Mλ / 4) × 0.7 <n 3 d 3 <(mλ / 4) × 1.3
In the formula, m is a positive odd number, n 3 is the refractive index of the low refractive index layer, and d 3 is the film thickness (nm) of the low refractive index layer. Further, λ is a wavelength, which is a value in the range of 500 to 550 nm.
In addition, satisfy | filling said numerical formula (VII) means that m (positive odd number, usually 1) which satisfy | fills numerical formula (VII) exists in the said wavelength range.

低屈折率層を形成する素材について以下に説明する。
低屈折率層には、低屈折率バインダーとして、含フッ素ポリマーを含む。該含フッ素ポリマーは主鎖にポリシロキサン構造を含み、含フッ素ビニルモノマーからなる繰返し単位と、側鎖に(メタ)アクリロイル基を有する繰返し単位と、側鎖に水酸基を有する繰り返し単位と、を必須の構成成分とする共重合体である。
また、該(メタ)アクリロイル基含有繰返し単位の共重合体における含有量は、ポリシロキサン部位以外の全繰返し単位の30〜70mo1%の範囲であり、該側鎖に水酸基を有する繰り返し単位の共重合体における含有量が、ポリシロキサン部位以外の全繰り返し単位のうち5〜40mol%の範囲である。
共重合体由来の成分は皮膜固形分の80質量%以上を占めることが好ましく、90質量%以上を占めることが特に好ましい。
The material for forming the low refractive index layer will be described below.
The low refractive index layer contains a fluorine-containing polymer as a low refractive index binder. The fluorine-containing polymer has a polysiloxane structure in the main chain, and must include a repeating unit composed of a fluorine-containing vinyl monomer, a repeating unit having a (meth) acryloyl group in the side chain, and a repeating unit having a hydroxyl group in the side chain. It is a copolymer as a constituent component.
The content of the (meth) acryloyl group-containing repeating unit in the copolymer is in the range of 30 to 70 mol% of all repeating units other than the polysiloxane moiety, and the copolymer weight of the repeating unit having a hydroxyl group in the side chain. Content in coalescence is the range of 5-40 mol% among all the repeating units other than a polysiloxane site | part.
The copolymer-derived component preferably occupies 80% by mass or more, and particularly preferably 90% by mass or more of the solid content of the film.

(ポリシロキサン構造を含む共重合体)
低屈折率層に用いられる共重合体には、主鎖にポリシロキサン構造が含まれる。主鎖へのポリシロキサン構造導入方法には特に制限はなく、例えば特開平6−93100号公報に記載のアゾ基含有ポリシロキサンアミド(市販のものではVPS-0501、1001(商品名;和光純薬工業(株)社製))等のポリマー型開始剤を用いる方法、重合開始剤、連鎖移動剤由来の反応性基(例えばメルカプト基、カルボキシル基、水酸基等)をポリマー末端に導入した後、片末端あるいは両末端反応性基(例えばエポキシ基、イソシアネート基等)含有ポリシロキサンと反応させる方法、ヘキサメチルシクロトリシロキサン等の環状シロキサンオリゴマーをアニオン開環重合にて共重合させる方法等が挙げられるが、中でもポリシロキサン構造を有する開始剤を利用する手法が容易であり好ましい。
(Copolymer containing polysiloxane structure)
The copolymer used for the low refractive index layer contains a polysiloxane structure in the main chain. There is no particular limitation on the method for introducing the polysiloxane structure into the main chain. A method using a polymer-type initiator such as Kogyo Co., Ltd.), a polymerization initiator, a reactive group derived from a chain transfer agent (for example, a mercapto group, a carboxyl group, a hydroxyl group, etc.) is introduced into the polymer end, Examples thereof include a method of reacting with terminal or both-terminal reactive group (eg, epoxy group, isocyanate group, etc.)-Containing polysiloxane, a method of copolymerizing a cyclic siloxane oligomer such as hexamethylcyclotrisiloxane by anionic ring-opening polymerization, and the like. Among them, a method using an initiator having a polysiloxane structure is easy and preferable.

本発明の共重合体に導入されるポリシロキサン構造として特に好ましくは、前記一般式3で表される構造である。
一般式3においてR、R、RおよびRはそれぞれ独立して水素原子、アルキル基(炭素数1〜5が好ましい。例としてメチル基、エチル基が挙げられる。)、アリール基(炭素数6〜10が好ましい。例としてフェニル基、ナフチル基が挙げられる。)、アルコキシカルボニル基(炭素数2〜5が好ましい。例としてメトキシカルボニル基、エトキシカルボニル基が挙げられる。)、またはシアノ基を表し、好ましくはアルキル基およびシアノ基であり、特に好ましくは、メチル基およびシアノ基である。
As the polysiloxane structure introduced into the copolymer of the present invention, the structure represented by the general formula 3 is particularly preferable.
In General Formula 3, R 1 , R 2 , R 3, and R 4 are each independently a hydrogen atom, an alkyl group (preferably having 1 to 5 carbon atoms. Examples include a methyl group and an ethyl group), an aryl group ( The number of carbon atoms is preferably 6 to 10. Examples include phenyl group and naphthyl group.), Alkoxycarbonyl group (preferably having 2 to 5 carbon atoms. Examples include methoxycarbonyl group and ethoxycarbonyl group), or cyano. Represents an alkyl group and a cyano group, and a methyl group and a cyano group are particularly preferable.

〜R10はそれぞれ独立して水素原子、アルキル基(炭素数1〜5が好ましい。例としてメチル基、エチル基が挙げられる。)、ハロアルキル基(炭素数1〜5のフッ素化アルキル基が好ましい。例としてトリフルオロメチル基、ペンタフルオロエチル基が挙げられる。)またはフェニル基を表し、好ましくはメチル基またはフェニル基であり、特に好ましくはメチル基である。 R 5 to R 10 are each independently a hydrogen atom, an alkyl group (preferably having a carbon number of 1 to 5. Examples include a methyl group and an ethyl group), and a haloalkyl group (a fluorinated alkyl group having 1 to 5 carbon atoms). (Examples include a trifluoromethyl group and a pentafluoroethyl group.) Or a phenyl group, preferably a methyl group or a phenyl group, and particularly preferably a methyl group.

pおよびqはそれぞれ独立して1〜10の整数を表し、好ましくは1〜6の整数であり、特に好ましくは2〜4の整数である。mおよびnはそれぞれ独立して0〜10の整数を表し、好ましくは1〜6の整数であり、特に好ましくは2〜4の整数である。rは10〜1000の整数を表し、好ましくは20〜500の整数であり、特に好ましくは50〜200の整数である。   p and q each independently represent an integer of 1 to 10, preferably an integer of 1 to 6, and particularly preferably an integer of 2 to 4. m and n each independently represents an integer of 0 to 10, preferably an integer of 1 to 6, and particularly preferably an integer of 2 to 4. r represents an integer of 10 to 1000, preferably an integer of 20 to 500, and particularly preferably an integer of 50 to 200.

該ポリシロキサン構造は本発明の共重合体中の0.01〜20質量%の範囲で導入されることが好ましく、より好ましくは0.05〜10質量%の範囲で導入される場合であり、特に好ましくは0.5〜5質量%の範囲で導入される場合である。   The polysiloxane structure is preferably introduced in the range of 0.01 to 20% by mass in the copolymer of the present invention, more preferably in the range of 0.05 to 10% by mass, Especially preferably, it is a case where it introduce | transduces in 0.5-5 mass%.

該ポリシロキサン構造の導入によって、皮膜に防汚性、防塵性が付与されると供に、皮膜表面に滑り性が付与され耐傷性にも有利である。   By introducing the polysiloxane structure, the film is imparted with antifouling property and dustproof property, and the film surface is provided with slipperiness, which is advantageous for scratch resistance.

含フッ素ビニルモノマーとしてはフルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えばビスコート6FM(商品名、大阪有機化学製)やM−2020(商品名、ダイキン製)等)、完全または部分フッ素化ビニルエーテル類等が挙げられるが、好ましくはパーフルオロオレフィン類であり、屈折率、溶解性、透明性、入手性等の観点から特に好ましくはヘキサフルオロプロピレンである。これらの含フッ素ビニルモノマーの組成比を上げれば屈折率を下げることができるが、皮膜強度は低下する。
共重合体のフッ素含率が20〜60質量%となるように含フッ素ビニルモノマーを導入することが好ましく、より好ましくは25〜55質量%の場合であり、特に好ましくは30〜50質量%の場合である。
Fluorine-containing vinyl monomers include fluoroolefins (eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, etc.), (meth) acrylic acid moieties or fully fluorinated alkyl ester derivatives (eg, biscoat) 6FM (trade name, manufactured by Osaka Organic Chemical Co., Ltd.), M-2020 (trade name, manufactured by Daikin), etc., and fully or partially fluorinated vinyl ethers, etc. are preferable, but perfluoroolefins are preferable, and refractive index, dissolution From the viewpoints of properties, transparency, availability, etc., hexafluoropropylene is particularly preferable. Increasing the composition ratio of these fluorine-containing vinyl monomers can lower the refractive index but lowers the film strength.
The fluorine-containing vinyl monomer is preferably introduced so that the fluorine content of the copolymer is 20 to 60% by mass, more preferably 25 to 55% by mass, and particularly preferably 30 to 50% by mass. Is the case.

低屈折率層に用いられる共重合体は側鎖に(メタ)アクリロイル基を有する繰返し単位を必須の構成成分として有する。共重合体への(メタ)アクリロイル基の導入法は特に限定されるものではないが、例えば、(1)水酸基、アミノ基等の求核基を有するポリマーを合成した後に、(メタ)アクリル酸クロリド、(メタ)アクリル酸無水物、(メタ)アクリル酸とメタンスルホン酸の混合酸無水物等を作用させる方法、(2)上記求核基を有するポリマーに、硫酸等の触媒存在下、(メタ)アクリル酸を作用させる方法、(3)上記求核基を有するポリマーにメタクリロイルオキシプロピルイソシアネート等のイソシアネート基と(メタ)アクリロイル基を併せ持つ化合物を作用させる方法、(4)エポキシ基を有するポリマーを合成した後に(メタ)アクリル酸を作用させる方法、(5)カルボキシル基を有するポリマーにグリシジルメタクリレート等のエポキシ基と(メタ)アクリロイル基を併せ持つ化合物を作用させる方法、(6)3−クロロプロピオン酸エステル部位を有するビニルモノマーを重合させた後で脱塩化水素を行う方法などが挙げられる。これらの中で本発明では特に水酸基を含有するポリマーに対して(1)または(2)の手法によって(メタ)アクリロイル基を導入することが好ましい。   The copolymer used for the low refractive index layer has a repeating unit having a (meth) acryloyl group in the side chain as an essential component. The method for introducing the (meth) acryloyl group into the copolymer is not particularly limited. For example, (1) after synthesizing a polymer having a nucleophilic group such as a hydroxyl group or an amino group, (meth) acrylic acid is used. A method in which chloride, (meth) acrylic anhydride, (meth) acrylic acid and methanesulfonic acid mixed acid anhydride, etc. are allowed to act; (2) the polymer having the nucleophilic group in the presence of a catalyst such as sulfuric acid ( (3) a method of allowing a methacrylic acid to act, (3) a method of causing a compound having both an isocyanate group such as methacryloyloxypropyl isocyanate and a (meth) acryloyl group to act on the polymer having the nucleophilic group, and (4) a polymer having an epoxy group. (5) A method in which (meth) acrylic acid is allowed to act after the synthesis of (5) a polymer having a carboxyl group, Method of reacting a compound having both a carboxy group and a (meth) acryloyl group, and a method of performing dehydrochlorination after obtained by polymerizing a vinyl monomer having a (6) 3-chloropropionic acid ester moiety. Among these, in the present invention, it is particularly preferable to introduce a (meth) acryloyl group by the method (1) or (2) for a polymer containing a hydroxyl group.

これらの(メタ)アクリロイル基含有繰返し単位の組成比を高めれば皮膜強度は向上するが屈折率も高くなる。本発明では、(メタ)アクリロイル基含有繰返し単位が30〜70mol%の範囲で導入されているものが有用であり、40〜60mol%を占めることが特に好ましい。   If the composition ratio of these (meth) acryloyl group-containing repeating units is increased, the film strength is improved, but the refractive index is also increased. In the present invention, those in which the (meth) acryloyl group-containing repeating unit is introduced in the range of 30 to 70 mol% are useful, and it is particularly preferable to occupy 40 to 60 mol%.

共重合体には、上記含フッ素ビニルモノマーからの繰返し単位および側鎖に(メタ)アクリロイル基を有する繰返し単位以外に、無機微粒子との親和性を持たせるために、側鎖に水酸基を有する繰り返し単位を含有することが必須である。該水酸基を有する繰り返し単位は、一種類でも、異なる2種以上の繰り返し単位であってもよく、合計で共重合単位の5〜40mol%の範囲で導入されているものが有用であり、5〜35mol%の範囲で導入されていることが好ましい。   In addition to the repeating unit from the above-mentioned fluorine-containing vinyl monomer and the repeating unit having a (meth) acryloyl group in the side chain, the copolymer has a repeating group having a hydroxyl group in the side chain in order to have affinity for inorganic fine particles. It is essential to contain units. The repeating unit having a hydroxyl group may be one type or two or more different repeating units, and those introduced in a range of 5 to 40 mol% of the copolymerized units in total are useful. It is preferably introduced in the range of 35 mol%.

共重合体に側鎖に水酸基を有する繰り返し単位を導入するには、側鎖に水酸基を有するモノマーを共重合させればよい。側鎖に水酸基を有するモノマーとしては、多くのモノマーが知られており特に限定されないが、例えば、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、6−ヒドロキシヘキシルビニルエーテル、8−ヒドロキシオクチルビニルエーテル、ジエチレングリコールビニルエーテル、トリエチレングリコールビニルエーテル、4−(ヒドロキシメチル)シクロヘキシルメチルビニルエーテル等が挙げられる。   In order to introduce a repeating unit having a hydroxyl group in the side chain into the copolymer, a monomer having a hydroxyl group in the side chain may be copolymerized. As the monomer having a hydroxyl group in the side chain, many monomers are known and are not particularly limited. For example, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, 6-hydroxyhexyl vinyl ether, 8-hydroxyoctyl vinyl ether, diethylene glycol vinyl ether, triethylene Examples include glycol vinyl ether and 4- (hydroxymethyl) cyclohexyl methyl vinyl ether.

低屈折率層に用いられる共重合体では、上記含フッ素ビニルモノマーからの繰返し単位、側鎖に(メタ)アクリロイル基を有する繰返し単位、及び側鎖に水酸基を有する繰り返し単位以外に、基材への密着性、ポリマーのTg(皮膜硬度に寄与する)、溶剤への溶解性、透明性、防塵・防汚性等種々の観点から適宜他のビニルモノマーを共重合することもできる。これらのビニルモノマーは目的に応じて複数を組み合わせてもよく、合計で共重合体中の0〜40mol%の範囲で導入されていることが好ましく、0〜30mol%の範囲であることがより好ましく、0〜20mol%の範囲であることが特に好ましい。
併用可能なビニルモノマー単位には特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2−ヒドロキシエチル等)、スチレン誘導体(スチレン、p−ヒドロキシメチルスチレン、p−メトキシスチレン等)、ビニルエーテル類(メチルビニルエーテル、エチルビニルエーテル、シクロヘキシルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、不飽和カルボン酸類(アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸等)、アクリルアミド類(N,N-ジメチルアクリルアミド、N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド等)、メタクリルアミド類(N,N-ジメチルメタクリルアミド)、アクリロニトリル等を挙げることができる。
In the copolymer used for the low refractive index layer, in addition to the repeating unit from the above fluorine-containing vinyl monomer, the repeating unit having a (meth) acryloyl group in the side chain, and the repeating unit having a hydroxyl group in the side chain, to the substrate Other vinyl monomers can be suitably copolymerized from various viewpoints such as adhesion of the polymer, Tg of the polymer (contributing to film hardness), solubility in a solvent, transparency, and dust / stain resistance. A plurality of these vinyl monomers may be combined depending on the purpose, and are preferably introduced in the range of 0 to 40 mol% in total in the copolymer, and more preferably in the range of 0 to 30 mol%. The range of 0 to 20 mol% is particularly preferable.
The vinyl monomer unit that can be used in combination is not particularly limited. For example, olefins (ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride, etc.), acrylic esters (methyl acrylate, methyl acrylate, ethyl acrylate, acrylic acid) 2-ethylhexyl, 2-hydroxyethyl acrylate), methacrylic acid esters (methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-hydroxyethyl methacrylate, etc.), styrene derivatives (styrene, p-hydroxymethylstyrene, p -Methoxystyrene, etc.), vinyl ethers (methyl vinyl ether, ethyl vinyl ether, cyclohexyl vinyl ether, etc.), vinyl esters (vinyl acetate, vinyl propionate, vinyl cinnamate, etc.), unsaturated carboxylic acids (acrylic) Acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, etc.), acrylamides (N, N-dimethylacrylamide, N-tertbutylacrylamide, N-cyclohexylacrylamide, etc.), methacrylamides (N, N-dimethylmethacrylic) Amide), acrylonitrile and the like.

本発明に用いられる共重合体の好ましい形態として前記一般式1が挙げられる。一般式1中、Lは炭素数1〜10の連結基を表し、より好ましくは炭素数1〜6の連結基であり、特に好ましくは2〜4の連結基であり、直鎖であっても分岐構造を有していてもよく、環構造を有していてもよく、O、N、Sから選ばれるヘテロ原子を有していても良い。
好ましい例としては、*-(CH2)2-O-**, *-(CH2)2-NH-**, *-(CH2)4-O-**, *-(CH2)6-O-**, *-(CH2)2-O-(CH2)2-O-**, -CONH-(CH2)3-O-**, *-CH2CH(OH)CH2-O-**, *-CH2CH2OCONH(CH2)3-O-**(*はポリマー主鎖側の連結部位を表し、**は(メタ)アクリロイル基側の連結部位を表す。)等が挙げられる。
mは、0または1を表す。
Xは、水素原子またはメチル基を表す。硬化反応性の観点から、より好ましくは水素原子である。
As a preferred form of the copolymer used in the present invention, the general formula 1 is mentioned. In General Formula 1, L represents a linking group having 1 to 10 carbon atoms, more preferably a linking group having 1 to 6 carbon atoms, particularly preferably a linking group having 2 to 4 carbon atoms, It may have a branched structure, may have a ring structure, and may have a heteroatom selected from O, N, and S.
Preferred examples include *-(CH 2 ) 2 -O-**, *-(CH 2 ) 2 -NH-**, *-(CH 2 ) 4 -O-**, *-(CH 2 ) 6 -O-**, *-(CH 2 ) 2 -O- (CH 2 ) 2 -O-**, -CONH- (CH 2 ) 3 -O-**, * -CH 2 CH (OH) CH 2 -O-**, * -CH 2 CH 2 OCONH (CH 2 ) 3 -O-** (* represents the connecting site on the polymer main chain side, and ** represents the connecting site on the (meth) acryloyl group side. And the like.
m represents 0 or 1.
X represents a hydrogen atom or a methyl group. From the viewpoint of curing reactivity, a hydrogen atom is more preferable.

一般式1中、Aは水酸基を含む繰り返し単位を表す。Bは任意のビニルモノマーのからの繰返し単位を表し、ヘキサフルオロプロピレンと共重合可能な単量体の構成成分であれば特に制限はなく、基材への密着性、ポリマーのTg(皮膜硬度に寄与する)、溶剤への溶解性、透明性、滑り性、防塵・防汚性等種々の観点から適宜選択することができ、目的に応じて単一あるいは複数のビニルモノマーによって構成されていても良い。   In general formula 1, A represents a repeating unit containing a hydroxyl group. B represents a repeating unit from any vinyl monomer, and is not particularly limited as long as it is a constituent component of a monomer copolymerizable with hexafluoropropylene. Adhesion to a substrate, Tg of a polymer (in terms of film hardness) Can be selected from various viewpoints such as solubility in solvents, transparency, slipperiness, dustproof / antifouling properties, etc., even if it is composed of one or more vinyl monomers depending on the purpose good.

Aの好ましい例としては、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、6−ヒドロキシヘキシルビニルエーテル、8−ヒドロキシオクチルビニルエーテル、ジエチレングリコールビニルエーテル、トリエチレングリコールビニルエーテル、4−(ヒドロキシメチル)シクロヘキシルメチルビニルエーテル等が挙げられる。
Bの好ましい例としては、メチルビニルエーテル、エチルビニルエーテル、t−ブチルビニルエーテル、シクロへキシルビニルエーテル、イソプロピルビニルエーテル、グリシジルビニルエーテル、アリルビニルエーテル等のビニルエーテル類、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル類、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、グリシジルメタアクリレート、アリル(メタ)アクリレート、(メタ)アクリロイルオキシプロピルトリメトキシシラン等の(メタ)アクリレート類、スチレン、p−ヒドロキシメチルスチレン等のスチレン誘導体、クロトン酸、マレイン酸、イタコン酸等の不飽和カルボン酸およびその誘導体等を例として挙げることができるが、好ましくはビニルエーテル誘導体、ビニルエステル誘導体であり、特に好ましくはビニルエーテル誘導体である。
Preferred examples of A include hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, 6-hydroxyhexyl vinyl ether, 8-hydroxyoctyl vinyl ether, diethylene glycol vinyl ether, triethylene glycol vinyl ether, 4- (hydroxymethyl) cyclohexyl methyl vinyl ether and the like.
Preferred examples of B include vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, t-butyl vinyl ether, cyclohexyl vinyl ether, isopropyl vinyl ether, glycidyl vinyl ether and allyl vinyl ether, and vinyl esters such as vinyl acetate, vinyl propionate and vinyl butyrate. , (Meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, hydroxyethyl (meth) acrylate, glycidyl methacrylate, allyl (meth) acrylate, (meth) acryloyloxypropyltrimethoxysilane, styrene, p Examples include styrene derivatives such as hydroxymethylstyrene, unsaturated carboxylic acids such as crotonic acid, maleic acid and itaconic acid, and derivatives thereof. Kill, but is preferably vinyl ether derivatives and vinyl ester derivatives, particularly preferably a vinyl ether derivative.

x、y、z1、z2はY以外の全繰返し単位を基準とした場合のそれぞれの繰返し単位のモル%を表し、30≦x≦60、30≦y≦70、5≦z1≦40、0≦z2≦35を満たす値を表す。好ましくは、35≦x≦55、30≦y≦60、5≦z1≦35、0≦z2≦35の場合であり、特に好ましくは40≦x≦55、40≦y≦55、5≦z1≦35、0≦z2≦35の場合である。   x, y, z1, and z2 represent mol% of each repeating unit based on all repeating units other than Y, and 30 ≦ x ≦ 60, 30 ≦ y ≦ 70, 5 ≦ z1 ≦ 40, 0 ≦ A value satisfying z2 ≦ 35 is represented. Preferably, 35≤x≤55, 30≤y≤60, 5≤z1≤35, 0≤z2≤35, particularly preferably 40≤x≤55, 40≤y≤55, 5≤z1≤. 35, 0 ≦ z2 ≦ 35.

Yはポリシロキサン成分を主鎖に含む構成成分を表し、好ましい例は前記したポリシロキサン構造含有開始剤由来の構造が挙げられる。   Y represents a constituent component containing a polysiloxane component in the main chain, and a preferable example includes a structure derived from the above-described polysiloxane structure-containing initiator.

aはY成分の質量%を表し、0.01≦a≦20であることが好ましく、より好ましくは0.05≦a≦10の場合であり、特に好ましくは0.5≦a≦5の場合である。   a represents mass% of the Y component, preferably 0.01 ≦ a ≦ 20, more preferably 0.05 ≦ a ≦ 10, and particularly preferably 0.5 ≦ a ≦ 5. It is.

本発明に用いられる共重合体の特に好ましい形態として前記一般式2が挙げられる。一般式2においてX、Y、Bは一般式1と同じ意味を表し、好ましい範囲も同じである。
nは2≦n≦10の整数を表し、2≦n≦6であることが好ましく、2≦n≦4であることが特に好ましい。
Bは任意のビニルモノマーからの繰返し単位を表し、単一組成であっても複数の組成によって構成されていても良い。例としては、前記一般式1において示した例として説明したものが当てはまる。
z1およびz2はY以外の全繰返し単位を基準とした場合のそれぞれの繰返し単位のモル%を表し、5≦z1≦40、0≦z2≦35を満たす値を表す。それぞれ5≦z1≦30、0≦z2≦10であることが好ましく、5≦z1≦10、0≦z2≦5であることが特に好ましい。好ましくは、40≦x≦60、40≦y≦60、5≦z1≦40、z2=0である。
As a particularly preferred form of the copolymer used in the present invention, the above general formula 2 can be mentioned. In the general formula 2, X, Y and B have the same meaning as in the general formula 1, and the preferred range is also the same.
n represents an integer of 2 ≦ n ≦ 10, preferably 2 ≦ n ≦ 6, and particularly preferably 2 ≦ n ≦ 4.
B represents a repeating unit from any vinyl monomer, and may be composed of a single composition or a plurality of compositions. As an example, what was demonstrated as an example shown in the said General formula 1 is applicable.
z1 and z2 represent the mol% of each repeating unit based on all repeating units other than Y, and represent values satisfying 5 ≦ z1 ≦ 40 and 0 ≦ z2 ≦ 35. It is preferable that 5 ≦ z1 ≦ 30 and 0 ≦ z2 ≦ 10 respectively, and it is particularly preferable that 5 ≦ z1 ≦ 10 and 0 ≦ z2 ≦ 5. Preferably, 40 ≦ x ≦ 60, 40 ≦ y ≦ 60, 5 ≦ z1 ≦ 40, and z2 = 0.

一般式1又は2で表わされる共重合体は、例えば、前記手法により合成した、主鎖にポリシロキサン構造を有するヘキサフルオロプロピレンとヒドロキシアルキルビニルエーテルの共重合体に、前記のいずれかの手法により(メタ)アクリロイル基を導入することにより合成できる。   For example, the copolymer represented by the general formula 1 or 2 is synthesized by the above-described method, into a copolymer of hexafluoropropylene and hydroxyalkyl vinyl ether having a polysiloxane structure in the main chain by any of the above-described methods ( It can be synthesized by introducing a (meth) acryloyl group.

また、一般式1又は2においては、特に断わらない限り共重合体の結合の態様(ブロック共重合体、ランダム共重合体、グラフト共重合体など)を、いずれかに限定することを意味するものではない。   In the general formula 1 or 2, it means that the mode of bonding of the copolymer (block copolymer, random copolymer, graft copolymer, etc.) is limited to any one unless otherwise specified. is not.

以下に本発明で有用な共重合体の好ましい例を示すが本発明はこれらに限定されるものではない。   Although the preferable example of the copolymer useful by this invention is shown below, this invention is not limited to these.

Figure 2006268031
Figure 2006268031

式中、50/y/zはモル比を示し、aは質量%を示し、VPS−1001は和光純薬工業社製ポリシロキサン含有マクロアゾ開始剤(VPS1001(商品名)由来の成分を表す(以下同様)。   In the formula, 50 / y / z represents a molar ratio, a represents mass%, and VPS-1001 represents a component derived from a polysiloxane-containing macroazo initiator (VPS1001 (trade name) manufactured by Wako Pure Chemical Industries, Ltd. The same).

Figure 2006268031
Figure 2006268031

式中、50/y/zはモル比を示し、aは質量%を示す。VPS−1001は和光純薬工業社製ポリシロキサン含有マクロアゾ開始剤(VPS1001(商品名)由来の成分を示す(以下同様)。   In the formula, 50 / y / z indicates a molar ratio, and a indicates mass%. VPS-1001 indicates a component derived from a polysiloxane-containing macroazo initiator (VPS1001 (trade name) manufactured by Wako Pure Chemical Industries, Ltd. (the same applies hereinafter).

Figure 2006268031
Figure 2006268031

式中、x/y/z2はモル比を示し、aは共重合体中の質量%を示す。VPS−0501は和光純薬工業社製ポリシロキサン含有マクロアゾ開始剤(VPS0501:商品名)由来の成分を示す。   In the formula, x / y / z2 represents a molar ratio, and a represents mass% in the copolymer. VPS-0501 represents a component derived from a polysiloxane-containing macroazo initiator (VPS0501: trade name) manufactured by Wako Pure Chemical Industries.

Figure 2006268031
Figure 2006268031

式中、x/y/z1/z2はそれぞれモル比を示し、aは質量%を示す。   In the formula, x / y / z1 / z2 each represents a molar ratio, and a represents mass%.

Figure 2006268031
Figure 2006268031

式中、x/y/z1はモル比を示し、aは質量%を示す。   In the formula, x / y / z1 represents a molar ratio, and a represents mass%.

Figure 2006268031
Figure 2006268031

式中、ビニルモノマーの成分の比(50/40/10)はモル比を示し、aは質量%を示し、rはジメチルシロキサンユニットの数を示す。   In the formula, the ratio of the components of the vinyl monomer (50/40/10) indicates a molar ratio, a indicates mass%, and r indicates the number of dimethylsiloxane units.

上記共重合体は、ゲルパーミッションクロマトグラフィーで測定したポリスチレン換算数平均分子量が5,000〜500,000の範囲であることが好ましく、更に好ましくは5,000〜300,000の範囲であることが好ましい。   The copolymer preferably has a polystyrene-equivalent number average molecular weight measured by gel permeation chromatography in the range of 5,000 to 500,000, and more preferably in the range of 5,000 to 300,000. preferable.

上記共重合体の合成は、種々の重合方法、例えば溶液重合、沈澱重合、懸濁重合、沈殿重合、塊状重合、乳化重合等によって水酸基含有重合体の前駆体を合成した後、前記高分子反応によって(メタ)アクリロイル基を導入することにより行なうことができる。重合反応は回分式、半連続式、連続式等の任意の操作で行なうことができる。   The copolymer is synthesized by synthesizing a precursor of a hydroxyl group-containing polymer by various polymerization methods, for example, solution polymerization, precipitation polymerization, suspension polymerization, precipitation polymerization, bulk polymerization, emulsion polymerization, and the like. Can be carried out by introducing a (meth) acryloyl group. The polymerization reaction can be carried out by any operation such as batch, semi-continuous or continuous.

重合の開始方法はラジカル開始剤を用いる方法、光または放射線を照射する方法等がある。これらの重合方法、重合の開始方法は、例えば鶴田禎二「高分子合成方法」改定版(日刊工業新聞社刊、1971)や大津隆行、木下雅悦共著「高分子合成の実験法」化学同人、昭和47年刊、124〜154頁に記載されている。   The polymerization initiation method includes a method using a radical initiator, a method of irradiating light or radiation, and the like. These polymerization methods and polymerization initiation methods are, for example, the revised version of Tsuruta Junji “Polymer Synthesis Method” (published by Nikkan Kogyo Shimbun, 1971), Takatsu Otsu, Masato Kinoshita, “Experimental Methods for Polymer Synthesis” It is described in pp. 47-154 published in 1972.

上記重合方法のうち、特にラジカル開始剤を用いた溶液重合法が好ましい。溶液重合法で用いられる溶剤は、例えば酢酸エチル、酢酸ブチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、テトラヒドロフラン、ジオキサン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ベンゼン、トルエン、アセトニトリル、塩化メチレン、クロロホルム、ジクロロエタン、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノールのような種々の有機溶剤の単独あるいは2種以上の混合物でも良いし、水との混合溶媒としても良い。   Among the above polymerization methods, a solution polymerization method using a radical initiator is particularly preferable. Solvents used in the solution polymerization method include, for example, ethyl acetate, butyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, tetrahydrofuran, dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, benzene, toluene, acetonitrile, A single organic solvent such as methylene chloride, chloroform, dichloroethane, methanol, ethanol, 1-propanol, 2-propanol, and 1-butanol, or a mixture of two or more thereof may be used, or a mixed solvent with water may be used.

重合温度は生成するポリマーの分子量、開始剤の種類などと関連して設定する必要があり0℃以下から100℃以上まで可能であるが、50〜100℃の範囲で重合を行なうことが好ましい。   The polymerization temperature needs to be set in relation to the molecular weight of the polymer to be produced, the type of initiator, etc., and can be from 0 ° C. or lower to 100 ° C. or higher, but it is preferable to carry out the polymerization in the range of 50 to 100 ° C.

反応圧力は、適宜選定可能であるが、通常は、1〜100kg/cm2、特に、1〜30kg/cm2程度が望ましい。反応時間は、5〜30時間程度である。 The reaction pressure can be selected as appropriate, but it is usually 1-100 kg / cm 2 , particularly about 1-30 kg / cm 2 . The reaction time is about 5 to 30 hours.

得られたポリマーの再沈殿溶媒としては、イソプロパノール、ヘキサン、メタノール等が好ましい。   As the reprecipitation solvent for the obtained polymer, isopropanol, hexane, methanol and the like are preferable.

(多官能電離放射線硬化性化合物)
本発明の低屈折率層には、本発明の含フッ素ポリマーに加えて、
電離放射線硬化性の多官能モノマーや多官能オリゴマーを使用することが好ましい。電離放射線硬化の官能基としては、光、電子線、放射線重合性のものが好ましく、中でも光重合性官能基が好ましい。
光重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の不飽和の重合性官能基等が挙げられ、中でも、(メタ)アクリロイル基が好ましい。特に好ましくは、下記の1分子内に2つ以上の(メタ)アクリロイル基を含有する化合物を用いることができる。
(Multifunctional ionizing radiation curable compound)
In the low refractive index layer of the present invention, in addition to the fluoropolymer of the present invention,
It is preferable to use an ionizing radiation curable polyfunctional monomer or polyfunctional oligomer. The functional group for ionizing radiation curing is preferably a light, electron beam, or radiation polymerizable group, and among them, a photopolymerizable functional group is preferable.
Examples of the photopolymerizable functional group include unsaturated polymerizable functional groups such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group. Among them, a (meth) acryloyl group is preferable. Particularly preferably, a compound containing two or more (meth) acryloyl groups in one molecule described below can be used.

光重合性官能基を有する光重合性多官能モノマーの具体例としては、
ネオペンチルグリコールアクリレート、1,6−ヘキサンジオール(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート等のアルキレングリコールの(メタ)アクリル酸ジエステル類;
トリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリオキシアルキレングリコールの(メタ)アクリル酸ジエステル類;
ペンタエリスリトールジ(メタ)アクリレート等の多価アルコールの(メタ)アクリル酸ジエステル類;
2,2−ビス{4−(アクリロキシ・ジエトキシ)フェニル}プロパン、2−2−ビス{4−(アクリロキシ・ポリプロポキシ)フェニル}プロパン等のエチレンオキシドあるいはプロピレンオキシド付加物の(メタ)アクリル酸ジエステル類;
等を挙げることができる。
As a specific example of a photopolymerizable polyfunctional monomer having a photopolymerizable functional group,
(Meth) acrylic acid diesters of alkylene glycol such as neopentyl glycol acrylate, 1,6-hexanediol (meth) acrylate, propylene glycol di (meth) acrylate;
(Meth) acrylic acid diesters of polyoxyalkylene glycols such as triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate;
(Meth) acrylic acid diesters of polyhydric alcohols such as pentaerythritol di (meth) acrylate;
(Meth) acrylic acid diesters of ethylene oxide or propylene oxide adducts such as 2,2-bis {4- (acryloxy · diethoxy) phenyl} propane and 2-bis {4- (acryloxy · polypropoxy) phenyl} propane ;
Etc.

さらにはエポキシ(メタ)アクリレート類、ウレタン(メタ)アクリレート類、ポリエステル(メタ)アクリレート類も、光重合性多官能モノマーとして、好ましく用いられる。   Furthermore, epoxy (meth) acrylates, urethane (meth) acrylates, and polyester (meth) acrylates are also preferably used as the photopolymerizable polyfunctional monomer.

中でも、多価アルコールと(メタ)アクリル酸とのエステル類が好ましい。さらに好ましくは、1分子中に3個以上の(メタ)アクリロイル基を有する多官能モノマーが好ましい。具体的には、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、1,2,4−シクロヘキサンテトラ(メタ)アクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、(ジ)ペンタエリスリトールトリアクリレート、(ジ)ペンタエリスリトールペンタアクリレート、(ジ)ペンタエリスリトールテトラ(メタ)アクリレート、(ジ)ペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールトリアクリレート、トリペンタエリスリトールヘキサトリアクリレート等が挙げられる。   Of these, esters of polyhydric alcohol and (meth) acrylic acid are preferred. More preferably, a polyfunctional monomer having 3 or more (meth) acryloyl groups in one molecule is preferable. Specifically, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, 1,2,4-cyclohexanetetra (meth) acrylate, pentaglycerol triacrylate, pentaerythritol tetra (meth) acrylate, penta Erythritol tri (meth) acrylate, (di) pentaerythritol triacrylate, (di) pentaerythritol pentaacrylate, (di) pentaerythritol tetra (meth) acrylate, (di) pentaerythritol hexa (meth) acrylate, tripentaerythritol triacrylate , Tripentaerythritol hexatriacrylate and the like.

また、低屈折率化の目的のためには、分子内にフッ素原子を含むモノマーを用いることが好ましく、具体的例としては、例えば特許公開公報 特開2005−248142号に記載の化合物を用いることができる。   For the purpose of lowering the refractive index, it is preferable to use a monomer containing a fluorine atom in the molecule. As a specific example, for example, a compound described in JP-A-2005-248142 is used. Can do.

(無機微粒子)
次に本発明の低屈折率層中に含有される無機微粒子について以下に記載する。
無機微粒子の平均粒径は、低屈折率層の厚みの30%以上100%以下の範囲であり、より好ましくは35%以上80%以下、更に好ましくは40%以上60%以下である。即ち、低屈折率層の厚みが100nmであれば、無機微粒子の粒径は30nm以上100nm以下が好ましく、より好ましくは35nm以上80nm以下、更に好ましくは、40nm以上60nm以下である。
無機微粒子の粒径が小さすぎると、耐擦傷性の改良効果が少なくなり、大きすぎると低屈折率層表面に微細な凹凸ができ、黒の締まりといった外観、積分反射率が悪化する。なお、無機微粒子の平均粒径はコールターカウンターにより測定することが可能である。
(Inorganic fine particles)
Next, the inorganic fine particles contained in the low refractive index layer of the present invention will be described below.
The average particle size of the inorganic fine particles is in the range of 30% to 100% of the thickness of the low refractive index layer, more preferably 35% to 80%, still more preferably 40% to 60%. That is, if the thickness of the low refractive index layer is 100 nm, the particle size of the inorganic fine particles is preferably 30 nm or more and 100 nm or less, more preferably 35 nm or more and 80 nm or less, and still more preferably 40 nm or more and 60 nm or less.
If the particle size of the inorganic fine particles is too small, the effect of improving the scratch resistance is reduced. If it is too large, fine irregularities are formed on the surface of the low refractive index layer, and the appearance such as black tightening and the integrated reflectance are deteriorated. The average particle size of the inorganic fine particles can be measured with a Coulter counter.

無機微粒子の塗設量は、1mg/m2〜100mg/m2が好ましく、より好ましくは5mg/m2〜80mg/m2、更に好ましくは10mg/m2〜60mg/m2である。少なすぎると、耐擦傷性の改良効果が減り、多すぎると、低屈折率層表面に微細な凹凸ができ、黒の締まりなどの外観や積分反射率が悪化する。 The coating amount of the inorganic fine particles is preferably 1mg / m 2 ~100mg / m 2 , more preferably 5mg / m 2 ~80mg / m 2 , more preferably from 10mg / m 2 ~60mg / m 2 . If the amount is too small, the effect of improving the scratch resistance is reduced. If the amount is too large, fine irregularities are formed on the surface of the low refractive index layer, and the appearance such as black tightening and the integrated reflectance are deteriorated.

無機微粒子は、低屈折率層に含有させることから、低屈折率であることが望ましい。例えば、フッ化マグネシウムやシリカの微粒子が挙げられる。特に、屈折率、分散安定性、コストの点で、シリカ微粒子が好ましい。
シリカ微粒子は、結晶質でも、アモルファスのいずれでも良く、また単分散粒子でも、所定の粒径を満たすならば凝集粒子でも構わない。形状は、球径が最も好ましいが、不定形であっても問題無い。以上シリカ微粒子について述べたことは、他の無機粒子についても適用される。
Since the inorganic fine particles are contained in the low refractive index layer, a low refractive index is desirable. Examples thereof include fine particles of magnesium fluoride and silica. In particular, silica fine particles are preferable in terms of refractive index, dispersion stability, and cost.
The silica fine particles may be either crystalline or amorphous, and may be monodispersed particles or aggregated particles as long as a predetermined particle size is satisfied. The shape is most preferably a spherical diameter, but there is no problem even if the shape is indefinite. What has been described above for silica fine particles also applies to other inorganic particles.

粒子の低屈折率化には、粒子の表面又は内部に空孔を導入することができる。多孔質の粒子や中空の粒子を使用することができる。低屈折率層の屈折率上昇をより一層少なくするために、中空のシリカ微粒子を用いることが好ましく、該中空シリカ微粒子は屈折率が1.17〜1.40が好ましく、より好ましくは1.17〜1.35、さらに好ましくは1.17〜1.30である。ここでの屈折率は粒子全体として屈折率を表し、中空シリカ粒子を形成している外殻のシリカのみの屈折率を表すものではない。この時、粒子内の空腔の半径をa、粒子外殻の半径をbとすると、下記数式(VIII)で表される空隙率xは、好ましくは10〜60%、さらに好ましくは20〜60%、最も好ましくは30〜60%である。
(数式VIII)
x=(4πa3/3)/(4πb3/3)×100
中空のシリカ粒子をより低屈折率に、より空隙率を大きくしようとすると、外殻の厚みが薄くなり、粒子の強度としては弱くなるため、耐擦傷性の観点から1.17未満の低屈折率の粒子は成り立たない。
なお、これら中空シリカ粒子の屈折率はアッベ屈折率計(アタゴ(株)製)にて測定可能である。
In order to reduce the refractive index of the particles, pores can be introduced on the surface or inside of the particles. Porous particles and hollow particles can be used. In order to further reduce the increase in the refractive index of the low refractive index layer, it is preferable to use hollow silica fine particles, and the hollow silica fine particles preferably have a refractive index of 1.17 to 1.40, more preferably 1.17. -1.35, more preferably 1.17-1.30. The refractive index here represents the refractive index of the entire particle, and does not represent the refractive index of only the outer shell silica forming the hollow silica particles. At this time, when the radius of the cavity in the particle is a and the radius of the particle outer shell is b, the porosity x represented by the following formula (VIII) is preferably 10 to 60%, more preferably 20 to 60. %, Most preferably 30-60%.
(Formula VIII)
x = (4πa 3/3) / (4πb 3/3) × 100
If hollow silica particles are made to have a lower refractive index and a higher porosity, the thickness of the outer shell becomes thinner and the strength of the particles becomes weaker. From the viewpoint of scratch resistance, the low refractive index is less than 1.17. Rate particles do not hold.
The refractive index of these hollow silica particles can be measured with an Abbe refractometer (manufactured by Atago Co., Ltd.).

また、平均粒径が低屈折率層の厚みの25%未満であるシリカ微粒子(「小サイズ粒径のシリカ微粒子」と称す)の少なくとも1種を上記の粒径のシリカ微粒子(「大サイズ粒径のシリカ微粒子」と称す)と併用することが好ましい。
小サイズ粒径のシリカ微粒子は、大サイズ粒径のシリカ微粒子同士の隙間に存在することができるため、大サイズ粒径のシリカ微粒子の保持剤として寄与することができる。
小サイズ粒径のシリカ微粒子の平均粒径は、低屈折率層が100nmの場合、1nm以上20nm以下が好ましく、5nm以上15nm以下が更に好ましく、10nm以上15nm以下が特に好ましい。このようなシリカ微粒子を用いると、原料コストおよび保持剤効果の点で好ましい。
Further, at least one kind of silica fine particles having an average particle size of less than 25% of the thickness of the low refractive index layer (referred to as “small size particle size silica particles”) is used as silica fine particles having the above particle size (“large size particles”). It is preferably used in combination with “silica fine particles having a diameter”.
Since the fine silica particles having a small particle size can exist in the gaps between the fine silica particles having a large particle size, they can contribute as a retaining agent for the fine silica particles having a large particle size.
When the low refractive index layer is 100 nm, the average particle size of the silica fine particles having a small size is preferably from 1 nm to 20 nm, more preferably from 5 nm to 15 nm, and particularly preferably from 10 nm to 15 nm. Use of such silica fine particles is preferable in terms of raw material costs and a retaining agent effect.

中空微粒子の製造方法としては、例えば特開2001−233611号公報に記載されている。また、多孔質粒子の製造方法は、例えば特開2003−327424号、同2003−335515号、同2003−226516号、同2003−238140号等の各公報に記載されている。   A method for producing hollow fine particles is described, for example, in JP-A-2001-233611. Moreover, the manufacturing method of porous particle | grains is described in each gazette, such as Unexamined-Japanese-Patent No. 2003-327424, 2003-335515, 2003-226516, 2003-238140, etc., for example.

シリカ微粒子は、分散液中あるいは塗布液中で、分散安定化を図るために、あるいはバインダー成分との親和性、結合性を高めるために、プラズマ放電処理やコロナ放電処理のような物理的表面処理、界面活性剤やカップリング剤等による化学的表面処理がなされていても良い。カップリング剤の使用が特に好ましい。カップリング剤としては、アルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。なかでも、シランカップリング処理が特に有効である。
上記カップリング剤は、低屈折率層の無機フィラーの表面処理剤として該層塗布液調製以前にあらかじめ表面処理を施すために用いられるが、該層塗布液調製時にさらに添加剤として添加して該層に含有させることが好ましい。
シリカ微粒子は、表面処理前に、媒体中に予め分散されていることが、表面処理の負荷軽減のために好ましい。
Silica fine particles are treated with a physical surface treatment such as plasma discharge treatment or corona discharge treatment in order to stabilize dispersion in the dispersion or coating solution, or to increase the affinity and binding to the binder component. Chemical surface treatment with a surfactant, a coupling agent, or the like may be performed. The use of a coupling agent is particularly preferred. As the coupling agent, an alkoxy metal compound (eg, titanium coupling agent, silane coupling agent) is preferably used. Of these, silane coupling treatment is particularly effective.
The above coupling agent is used as a surface treatment agent for the inorganic filler of the low refractive index layer in advance for surface treatment prior to the preparation of the layer coating solution. It is preferable to contain in a layer.
The silica fine particles are preferably dispersed in the medium in advance before the surface treatment in order to reduce the load of the surface treatment.

表面処理は、無機化合物または有機化合物の表面処理剤を用いて実施することができる。表面処理に用いる無機化合物の例には、コバルトを含有する無機化合物(CoO,Co,Coなど)、アルミニウムを含有する無機化合物(Al,Al(OH)など)、ジルコニウムを含有する無機化合物(ZrO,Zr(OH)など)、ケイ素を含有する無機化合物(SiOなど)、鉄を含有する無機化合物(Feなど)などが含まれる。
コバルトを含有する無機化合物、アルミニウムを含有する無機化合物、ジルコニウムを含有する無機化合物が特に好ましく、コバルトを含有する無機化合物、Al(OH)、Zr(OH)が最も好ましい。
表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤およびチタネートカップリング剤が含まれる。シランカップリング剤が最も好ましい。特にシランカップリング剤(オルガノシラン化合物)、その部分加水分解物、およびその縮合物の少なくとも一種で表面処理されていることが好ましい。
The surface treatment can be performed using a surface treatment agent of an inorganic compound or an organic compound. Examples of inorganic compounds used for the surface treatment include inorganic compounds containing cobalt (CoO 2 , Co 2 O 3 , Co 3 O 4, etc.) and inorganic compounds containing aluminum (Al 2 O 3 , Al (OH) 3 Etc.), inorganic compounds containing zirconium (ZrO 2 , Zr (OH) 4 etc.), inorganic compounds containing silicon (SiO 2 etc.), inorganic compounds containing iron (Fe 2 O 3 etc.), etc. .
An inorganic compound containing cobalt, an inorganic compound containing aluminum, and an inorganic compound containing zirconium are particularly preferable, and an inorganic compound containing cobalt, Al (OH) 3 , and Zr (OH) 4 are most preferable.
Examples of organic compounds used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Silane coupling agents are most preferred. In particular, the surface treatment is preferably performed with at least one of a silane coupling agent (organosilane compound), a partial hydrolyzate thereof, and a condensate thereof.

チタネートカップリング剤としては、例えば、テトラメトキシチタン、テトラエトキシチタン、テトライソプロポキシチタンなどの金属アルコキシド、プレンアクト(KR−TTS、KR−46B、KR−55、KR−41Bなど;味の素(株)製)などが挙げられる。
表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、その他アニオン性基を有する有機化合物などが好ましく、特に好ましいのは、カルボキシル基、スルホン酸基、又は、リン酸基を有する有機化合物である。ステアリン酸、ラウリン酸、オレイン酸、リノール酸、リノレイン酸などが好ましく用いることができる。
表面処理に用いる有機化合物は、さらに、架橋又は重合性官能基を有することが好ましい。架橋、又は、重合性官能基としては、ラジカル種による付加反応・重合反応が可能なエチレン性不飽和基(例えば(メタ)アクリル基、アリル基、スチリル基、ビニルオキシ基等)、カチオン重合性基(エポキシ基、オキサタニル基、ビニルオキシ基等)、重縮合反応性基(加水分解性シリル基等、N−メチロール基)等が挙げられ、好ましくはエチレン性不飽和基を有する基である。また、含フッ素ポリマー中での分散安定性を向上させる観点からは、フッ素原子を含む表面処理剤が好ましい。
Examples of titanate coupling agents include metal alkoxides such as tetramethoxy titanium, tetraethoxy titanium, tetraisopropoxy titanium, and preneact (KR-TTS, KR-46B, KR-55, KR-41B, etc .; manufactured by Ajinomoto Co., Inc.) ) And the like.
Examples of the organic compound used for the surface treatment include polyols, alkanolamines, and other organic compounds having an anionic group, and particularly preferable are organic compounds having a carboxyl group, a sulfonic acid group, or a phosphoric acid group. is there. Stearic acid, lauric acid, oleic acid, linoleic acid, linolenic acid and the like can be preferably used.
The organic compound used for the surface treatment preferably further has a crosslinked or polymerizable functional group. Crosslinkable or polymerizable functional groups include ethylenically unsaturated groups (for example, (meth) acrylic groups, allyl groups, styryl groups, vinyloxy groups, etc.) that can undergo addition reactions and polymerization reactions with radical species, cationic polymerizable groups (Epoxy groups, oxatanyl groups, vinyloxy groups, etc.), polycondensation reactive groups (hydrolyzable silyl groups, etc., N-methylol groups) and the like can be mentioned, and groups having an ethylenically unsaturated group are preferred. Further, from the viewpoint of improving the dispersion stability in the fluoropolymer, a surface treating agent containing a fluorine atom is preferable.

これらの表面処理は、2種類以上を併用することもでき、アルミニウムを含有する無機化合物とジルコニウムを含有する無機化合物を併用することが、特に好ましい。   Two or more kinds of these surface treatments can be used in combination, and it is particularly preferable to use an inorganic compound containing aluminum and an inorganic compound containing zirconium.

無機粒子がシリカである場合、カップリング剤の使用が特に好ましい。カップリング剤としては、アルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。なかでも、シランカップリング処理が特に有効である。
これら表面処理剤の使用量に特制限はないが、無機粒子に対して1〜100質量部が好ましく、更に好ましくは1〜50質量部、最も好ましくは2〜30質量部である。
本発明に好ましく用いることのできる表面処理剤および表面処理用の触媒の具体的化合物は、例えば、WO2004/017105号に記載のオルガノシラン化合物および触媒を挙げることができる。
When the inorganic particles are silica, the use of a coupling agent is particularly preferred. As the coupling agent, an alkoxy metal compound (eg, titanium coupling agent, silane coupling agent) is preferably used. Of these, silane coupling treatment is particularly effective.
Although there is no special restriction | limiting in the usage-amount of these surface treating agents, 1-100 mass parts is preferable with respect to an inorganic particle, More preferably, it is 1-50 mass parts, Most preferably, it is 2-30 mass parts.
Specific examples of the surface treatment agent and the surface treatment catalyst that can be preferably used in the present invention include organosilane compounds and catalysts described in WO2004 / 017105.

(オルガノシラン化合物)
本発明の反射防止フィルムを構成するハードコート層と低屈折率層のうちの少なくとも1層は、その層を形成する塗布液中にオルガノシラン化合物、その加水分解物及び部分縮合物の少なくともいずれかを含む成分、いわゆるゾル成分(以降このように称する)を含有することが耐擦傷性の点で好ましい。ゾル成分は、オルガノシラン化合物、その加水分解物及び部分縮合物のうち2種以上の混合物であってもよい。
特に低屈折率層は反射防止能と耐擦傷性を両立させるために、当該ゾル成分を含有することが好ましく、ハードコート層は、自層及びまたは他の隣接している層に分散させた無機酸化物粒子と界面結合させることにより、系の皮膜強度をあげ、その結果耐擦傷性を向上させる目的で、当該ゾル成分を含有することが望ましい。このゾル成分は、塗布液を塗布後、乾燥、加熱工程で縮合して硬化物を形成し上記層のバインダーとなる。また、該硬化物が重合性不飽和結合を有する場合、活性光線の照射により3次元構造を有するバインダーが形成される。
(Organosilane compound)
At least one of the hard coat layer and the low refractive index layer constituting the antireflection film of the present invention is at least one of an organosilane compound, a hydrolyzate thereof, and a partial condensate in the coating solution forming the layer. It is preferable from the viewpoint of scratch resistance that it contains a so-called sol component (hereinafter referred to as such). The sol component may be a mixture of two or more of an organosilane compound, a hydrolyzate thereof, and a partial condensate.
In particular, the low refractive index layer preferably contains the sol component in order to achieve both antireflection performance and scratch resistance, and the hard coat layer is an inorganic material dispersed in the self-layer and / or other adjacent layers. It is desirable to contain the sol component for the purpose of increasing the film strength of the system by interfacial bonding with oxide particles and thereby improving the scratch resistance. This sol component is condensed by a drying and heating process after coating the coating solution to form a cured product, which becomes a binder for the layer. Moreover, when this hardened | cured material has a polymerizable unsaturated bond, the binder which has a three-dimensional structure is formed by irradiation of actinic light.

オルガノシラン化合物は、下記一般式4で表されるものが好ましい。
一般式4:(R10m−Si(X)4-m
上記一般式4において、R10は置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基を表す。アルキル基として好ましくは炭素数1〜30、より好ましくは炭素数1〜16、特に好ましくは1〜6のものであり、具体的には、メチル、エチル、プロピル、イソプロピル、ヘキシル、デシル、ヘキサデシル等が挙げられる。アリール基としてはフェニル、ナフチル等が挙げられ、好ましくはフェニル基である。
Xは、水酸基または加水分解可能な基を表し、例えばアルコキシ基(炭素数1〜5のアルコキシ基が好ましい。例えばメトキシ基、エトキシ基等が挙げられる)、ハロゲン原子(例えばCl、Br、I等)、及びR2COO(R2は水素原子または炭素数1〜5のアルキル基が好ましい。例えばCH3COO、C25COO等が挙げられる)で表される基が挙げられ、好ましくはアルコキシ基であり、特に好ましくはメトキシ基またはエトキシ基である。
mは1〜3の整数を表し、好ましくは1または2であり、特に好ましくは1である。
The organosilane compound is preferably one represented by the following general formula 4.
Formula 4: (R 10) m -Si (X) 4-m
In the above general formula 4, R 10 represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. The alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 6 carbon atoms. Specifically, methyl, ethyl, propyl, isopropyl, hexyl, decyl, hexadecyl, etc. Is mentioned. Examples of the aryl group include phenyl and naphthyl, and a phenyl group is preferable.
X represents a hydroxyl group or a hydrolyzable group, for example, an alkoxy group (preferably an alkoxy group having 1 to 5 carbon atoms, such as a methoxy group or an ethoxy group), a halogen atom (for example, Cl, Br, I or the like). ), And R 2 COO (R 2 is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, such as CH 3 COO, C 2 H 5 COO, etc.), preferably An alkoxy group, particularly preferably a methoxy group or an ethoxy group.
m represents an integer of 1 to 3, preferably 1 or 2, and particularly preferably 1.

10あるいはXが複数存在するとき、複数のR10あるいはXはそれぞれ同じであっても異なっていても良い。
10に含まれる置換基としては特に制限はないが、ハロゲン原子(フッ素、塩素、臭素等)、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基(メチル、エチル、i−プロピル、プロピル、t−ブチル等)、アリール基(フェニル、ナフチル等)、芳香族ヘテロ環基(フリル、ピラゾリル、ピリジル等)、アルコキシ基(メトキシ、エトキシ、i−プロポキシ、ヘキシルオキシ等)、アリールオキシ(フェノキシ等)、アルキルチオ基(メチルチオ、エチルチオ等)、アリールチオ基(フェニルチオ等)、アルケニル基(ビニル、1−プロペニル等)、アシルオキシ基(アセトキシ、アクリロイルオキシ、メタクリロイルオキシ等)、アルコキシカルボニル基(メトキシカルボニル、エトキシカルボニル等)、アリールオキシカルボニル基(フェノキシカルボニル等)、カルバモイル基(カルバモイル、N−メチルカルバモイル、N,N−ジメチルカルバモイル、N−メチル−N−オクチルカルバモイル等)、アシルアミノ基(アセチルアミノ、ベンゾイルアミノ、アクリルアミノ、メタクリルアミノ等)等が挙げられ、これら置換基は更に置換されていても良い。
When R 10 or X there are a plurality, a plurality of R 10 or X groups may be different, even the same, respectively.
The substituent contained in R 10 is not particularly limited, but a halogen atom (fluorine, chlorine, bromine, etc.), hydroxyl group, mercapto group, carboxyl group, epoxy group, alkyl group (methyl, ethyl, i-propyl, propyl, t-butyl etc.), aryl groups (phenyl, naphthyl etc.), aromatic heterocyclic groups (furyl, pyrazolyl, pyridyl etc.), alkoxy groups (methoxy, ethoxy, i-propoxy, hexyloxy etc.), aryloxy (phenoxy etc.) ), Alkylthio groups (methylthio, ethylthio, etc.), arylthio groups (phenylthio, etc.), alkenyl groups (vinyl, 1-propenyl, etc.), acyloxy groups (acetoxy, acryloyloxy, methacryloyloxy, etc.), alkoxycarbonyl groups (methoxycarbonyl, ethoxy) Carbonyl, etc.), aryloxy Carbonyl groups (phenoxycarbonyl, etc.), carbamoyl groups (carbamoyl, N-methylcarbamoyl, N, N-dimethylcarbamoyl, N-methyl-N-octylcarbamoyl, etc.), acylamino groups (acetylamino, benzoylamino, acrylicamino, methacrylamino) Etc.), and these substituents may be further substituted.

10が複数ある場合は、少なくとも一つが置換アルキル基もしくは置換アリール基であることが好ましく、中でも、下記一般式5で表されるビニル重合性の置換基を有するオルガノシラン化合物が好ましい。 When there are a plurality of R 10 , at least one is preferably a substituted alkyl group or a substituted aryl group, and among them, an organosilane compound having a vinyl polymerizable substituent represented by the following general formula 5 is preferable.

Figure 2006268031
Figure 2006268031

上記一般式5において、R1は水素原子、メチル基、メトキシ基、アルコキシカルボニル基、シアノ基、フッ素原子、または塩素原子を表す。アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基などが挙げられる。水素原子、メチル基、メトキシ基、メトキシカルボニル基、シアノ基、フッ素原子、および塩素原子が好ましく、水素原子、メチル基、メトキシカルボニル基、フッ素原子、および塩素原子が更に好ましく、水素原子およびメチル基が特に好ましい。
Yは単結合もしくは*-COO-**、*-CONH-**又は*-O-**を表し、単結合、*-COO-**および*-CONH-**が好ましく、単結合および*-COO-**が更に好ましく、*-COO-**が特に好ましい。*は=C(R1)−に結合する位置を、**はLに結合する位置を表す。
In the general formula 5, R 1 represents a hydrogen atom, a methyl group, a methoxy group, an alkoxycarbonyl group, a cyano group, a fluorine atom, or a chlorine atom. Examples of the alkoxycarbonyl group include a methoxycarbonyl group and an ethoxycarbonyl group. A hydrogen atom, a methyl group, a methoxy group, a methoxycarbonyl group, a cyano group, a fluorine atom and a chlorine atom are preferred, a hydrogen atom, a methyl group, a methoxycarbonyl group, a fluorine atom and a chlorine atom are more preferred, and a hydrogen atom and a methyl group Is particularly preferred.
Y represents a single bond or * -COO-**, * -CONH-** or * -O-**, preferably a single bond, * -COO-** or * -CONH-**, * -COO-** is more preferred, and * -COO-** is particularly preferred. * Represents a position bonded to ═C (R 1 ) —, and ** represents a position bonded to L.

Lは2価の連結鎖を表す。具体的には、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、内部に連結基(例えば、エーテル、エステル、アミドなど)を有する置換もしくは無置換のアルキレン基、内部に連結基を有する置換もしくは無置換のアリーレン基が挙げられ、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、内部に連結基を有するアルキレン基が好ましく、無置換のアルキレン基、無置換のアリーレン基、内部にエーテルあるいはエステル連結基を有するアルキレン基が更に好ましく、無置換のアルキレン基、内部にエーテルあるいはエステル連結基を有するアルキレン基が特に好ましい。置換基は、ハロゲン、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基、アリール基等が挙げられ、これら置換基は更に置換されていても良い。   L represents a divalent linking chain. Specifically, a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted alkylene group having a linking group (for example, ether, ester, amide, etc.) inside, and a linking group inside. A substituted or unsubstituted arylene group, a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, an alkylene group having a linking group therein is preferred, an unsubstituted alkylene group, an unsubstituted arylene group Further, an alkylene group having an ether or ester linking group inside is more preferable, an unsubstituted alkylene group, and an alkylene group having an ether or ester linking group inside is particularly preferable. Examples of the substituent include a halogen, a hydroxyl group, a mercapto group, a carboxyl group, an epoxy group, an alkyl group, and an aryl group, and these substituents may be further substituted.

nは0または1を表す。Xが複数存在するとき、複数のXはそれぞれ同じであっても異なっていても良い。nとして好ましくは0である。
10は一般式4と同義であり、置換もしくは無置換のアルキル基、無置換のアリール基が好ましく、無置換のアルキル基、無置換のアリール基が更に好ましい。
Xは一般式4と同義であり、ハロゲン原子、水酸基、無置換のアルコキシ基が好ましく、塩素原子、水酸基、無置換の炭素数1〜6のアルコキシ基が更に好ましく、水酸基、炭素数1〜3のアルコキシ基が更に好ましく、メトキシ基が特に好ましい。
n represents 0 or 1. When there are a plurality of Xs, the plurality of Xs may be the same or different. n is preferably 0.
R 10 has the same meaning as in formula 4, and is preferably a substituted or unsubstituted alkyl group or an unsubstituted aryl group, more preferably an unsubstituted alkyl group or an unsubstituted aryl group.
X has the same meaning as in formula 4, preferably a halogen atom, a hydroxyl group, or an unsubstituted alkoxy group, more preferably a chlorine atom, a hydroxyl group, or an unsubstituted alkoxy group having 1 to 6 carbon atoms, a hydroxyl group, or 1 to 3 carbon atoms. Are more preferable, and a methoxy group is particularly preferable.

一般式4、一般式5の化合物は2種類以上を併用しても良い。以下に一般式4、一般式5で表される化合物の具体例を示すが、これに限定されるものではない。   Two or more compounds of the general formulas 4 and 5 may be used in combination. Specific examples of the compounds represented by the general formulas 4 and 5 are shown below, but are not limited thereto.

Figure 2006268031
Figure 2006268031

Figure 2006268031
Figure 2006268031

これらのうち、(M−1)、(M−2)、および(M−5)が特に好ましい。   Of these, (M-1), (M-2), and (M-5) are particularly preferable.

オルガノシランの加水分解反応および/または縮合反応は、一般に触媒の存在下で行われる。触媒としては、塩酸、硫酸、硝酸等の無機酸類;シュウ酸、酢酸、ギ酸、メタンスルホン酸、トルエンスルホン酸等の有機酸類;水酸化ナトリウム、水酸化カリウム、アンモニア等の無機塩基類;トリエチルアミン、ピリジン等の有機塩基類;トリイソプロポキシアルミニウム、テトラブトキシジルコニウム等の金属アルコキシド類;Zr、Ti又はAlなどの金属を中心金属とする金属キレート化合物等が挙げられる。無機酸では塩酸、硫酸、有機酸では、水中での酸解離定数(pKa値(25℃))が4.5以下のものが好ましく、塩酸、硫酸、水中での酸解離定数が3.0以下の有機酸がより好ましく、塩酸、硫酸、水中での酸解離定数が2.5以下の有機酸が更に好ましく、水中での酸解離定数が2.5以下の有機酸が更に好ましく、メタンスルホン酸、シュウ酸、フタル酸、マロン酸が更に好ましく、シュウ酸が特に好ましい。   The hydrolysis reaction and / or condensation reaction of organosilane is generally performed in the presence of a catalyst. Catalysts include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid; organic acids such as oxalic acid, acetic acid, formic acid, methanesulfonic acid and toluenesulfonic acid; inorganic bases such as sodium hydroxide, potassium hydroxide and ammonia; triethylamine, Examples thereof include organic bases such as pyridine; metal alkoxides such as triisopropoxyaluminum and tetrabutoxyzirconium; metal chelate compounds having a metal such as Zr, Ti or Al as a central metal. Among inorganic acids, hydrochloric acid, sulfuric acid, and organic acids preferably have an acid dissociation constant (pKa value (25 ° C.)) of 4.5 or less in water, and an acid dissociation constant in hydrochloric acid, sulfuric acid, or water of 3.0 or less. More preferred is an organic acid, hydrochloric acid, sulfuric acid, an organic acid having an acid dissociation constant of 2.5 or less in water is more preferred, an organic acid having an acid dissociation constant in water of 2.5 or less is more preferred, and methanesulfonic acid Further, oxalic acid, phthalic acid, and malonic acid are more preferable, and oxalic acid is particularly preferable.

オルガノシランの加水分解・縮合反応は、無溶媒でも、溶媒中でも行うことができるが成分を均一に混合するために有機溶媒を用いることが好ましく、例えばアルコール類、芳香族炭化水素類、エーテル類、ケトン類、エステル類などが好適である。
溶媒はオルガノシランと触媒を溶解させるものが好ましい。また、有機溶媒が塗布液あるいは塗布液の一部として用いることが工程上好ましく、含フッ素ポリマーなどのその他の素材と混合した場合に、溶解性あるいは分散性を損なわないものが好ましい。
The organosilane hydrolysis / condensation reaction can be carried out in the absence of a solvent or in a solvent, but an organic solvent is preferably used in order to mix the components uniformly. For example, alcohols, aromatic hydrocarbons, ethers, Ketones and esters are preferred.
The solvent preferably dissolves the organosilane and the catalyst. In addition, it is preferable in the process that an organic solvent is used as a coating solution or a part of the coating solution, and those that do not impair the solubility or dispersibility when mixed with other materials such as a fluorine-containing polymer are preferable.

このうち、アルコール類としては、例えば1価アルコールまたは2価アルコールを挙げることができ、このうち1価アルコールとしては炭素数1〜8の飽和脂肪族アルコールが好ましい。
これらのアルコール類の具体例としては、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブチルアルコール、sec −ブチルアルコール、tert−ブチルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、エチレングリコールモノブチルエーテル、酢酸エチレングリコールモノエチルエーテルなどを挙げることができる。
Among these, examples of alcohols include monohydric alcohols and dihydric alcohols, and among these, monohydric alcohols are preferably saturated aliphatic alcohols having 1 to 8 carbon atoms.
Specific examples of these alcohols include methanol, ethanol, n-propyl alcohol, i-propyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, ethylene glycol, diethylene glycol, triethylene glycol, ethylene glycol. Examples thereof include monobutyl ether and ethylene glycol monoethyl ether acetate.

また、芳香族炭化水素類の具体例としては、ベンゼン、トルエン、キシレンなどを、エーテル類の具体例としては、テトラヒドロフラン、ジオキサンなど、ケトン類の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトンなどを、エステル類の具体例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、炭酸プロピレンなどを挙げることができる。
これらの有機溶媒は、1種単独であるいは2種以上を混合して使用することもできる。該反応における固形分の濃度は特に限定されるものではないが通常1%〜90%の範囲であり、好ましくは20%〜70%の範囲である。
Specific examples of aromatic hydrocarbons include benzene, toluene, xylene and the like. Specific examples of ethers include tetrahydrofuran and dioxane. Specific examples of ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, Specific examples of esters such as diisobutyl ketone include ethyl acetate, propyl acetate, butyl acetate, and propylene carbonate.
These organic solvents can be used alone or in combination of two or more. The concentration of the solid content in the reaction is not particularly limited, but is usually in the range of 1% to 90%, preferably in the range of 20% to 70%.

オルガノシランの加水分解性基1モルに対して0.3〜2モル、好ましくは0.5〜1モルの水を添加し、上記溶媒の存在下あるいは非存在下に、そして触媒の存在下に、25〜100℃で、撹拌することにより行われる。
加水分解・縮合反応は、一般式R3OH(式中、R3は炭素数1〜10のアルキル基を示す)で表されるアルコールと一般式R4COCH2COR5(式中、R4は炭素数1〜10のアルキル基、R5は炭素数1〜10のアルキル基または炭素数1〜10のアルコキシ基を示す)で表される化合物とを配位子とした、Zr、Ti又はAlから選ばれる金属を中心金属とする少なくとも1種の金属キレート化合物の存在下で、25〜100℃で撹拌することにより行うことが好ましい。
0.3 to 2 mol, preferably 0.5 to 1 mol of water is added to 1 mol of the hydrolyzable group of the organosilane, in the presence or absence of the above solvent, and in the presence of a catalyst. It is carried out by stirring at 25 to 100 ° C.
The hydrolysis / condensation reaction is carried out by using an alcohol represented by the general formula R 3 OH (wherein R 3 represents an alkyl group having 1 to 10 carbon atoms) and a general formula R 4 COCH 2 COR 5 (wherein R 4 Is an alkyl group having 1 to 10 carbon atoms, R 5 is an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms), and a compound represented by Zr, Ti or It is preferably carried out by stirring at 25 to 100 ° C. in the presence of at least one metal chelate compound having a metal selected from Al as a central metal.

金属キレート化合物は、一般式R3 OH(式中、R3は炭素数1〜10のアルキル基を示す)で表されるアルコールとR4COCH2COR5 (式中、R4は炭素数1〜10のアルキル基、R5は炭素数1〜10のアルキル基または炭素数1〜10のアルコキシ基を示す)で表される化合物とを配位子とした、Zr、Ti、Alから選ばれる金属を中心金属とするものであれば特に制限なく好適に用いることができる。この範疇であれば、2種以上の金属キレート化合物を併用しても良い。金属キレート化合物は、一般式:Zr(OR3p1(R4COCHCOR5p2、Ti(OR3q1(R4COCHCOR5q2、およびAl(OR3r1(R4COCHCOR5r2で表される化合物群から選ばれるものが好ましく、前記オルガノシラン化合物の加水分解物および/または部分縮合物の縮合反応を促進する作用をなす。
金属キレート化合物中のR3およびR4は、同一または異なってもよく炭素数1〜10のアルキル基、具体的にはエチル基、n−プロピル基、i−プロピル基、n−ブチル基、sec −ブチル基、t−ブチル基、n−ペンチル基、フェニル基などである。また、R5は、前記と同様の炭素数1〜10のアルキル基のほか、炭素数1〜10のアルコキシ基、例えばメトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、sec −ブトキシ基、t−ブトキシ基などである。また、金属キレート化合物中のp1、p2、q1、q2、r1、およびr2は、それぞれp1+p2=4、q1+q2=4、r1+r2=3となる様に決定される整数を表す。
The metal chelate compound includes an alcohol represented by a general formula R 3 OH (wherein R 3 represents an alkyl group having 1 to 10 carbon atoms) and R 4 COCH 2 COR 5 (wherein R 4 is 1 carbon atom). -10 alkyl group, R 5 is an alkyl group having 1 to 10 carbon atoms or a compound represented by an alkoxy group having 1 to 10 carbon atoms) and is selected from Zr, Ti and Al. Any metal having a metal as a central metal can be suitably used without particular limitation. Within this category, two or more metal chelate compounds may be used in combination. The metal chelate compound has the general formula: Zr (OR 3 ) p1 (R 4 COCHCOR 5 ) p2 , Ti (OR 3 ) q1 (R 4 COCHCOR 5 ) q2 , and Al (OR 3 ) r1 (R 4 COCHCOR 5 ) r2 Are preferably selected from the group of compounds represented by the formula (1), which promote the condensation reaction of the hydrolyzate and / or partial condensate of the organosilane compound.
R 3 and R 4 in the metal chelate compound may be the same or different and each has an alkyl group having 1 to 10 carbon atoms, specifically, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, sec -Butyl group, t-butyl group, n-pentyl group, phenyl group and the like. R 5 represents an alkyl group having 1 to 10 carbon atoms as described above, or an alkoxy group having 1 to 10 carbon atoms such as a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, and n-butoxy. Group, sec-butoxy group, t-butoxy group and the like. Moreover, p1, p2, q1, q2, r1, and r2 in the metal chelate compound represent integers determined so as to be p1 + p2 = 4, q1 + q2 = 4, and r1 + r2 = 3, respectively.

これらの金属キレート化合物の具体例としては、トリ−n−ブトキシエチルアセトアセテートジルコニウム、ジ−n−ブトキシビス(エチルアセトアセテート)ジルコニウム、n−ブトキシトリス(エチルアセトアセテート)ジルコニウム、テトラキス(n−プロピルアセトアセテート)ジルコニウム、テトラキス(アセチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウムなどのジルコニウムキレート化合物;ジイソプロポキシ・ビス(エチルアセトアセテート)チタニウム、ジイソプロポキシ・ビス(アセチルアセテート)チタニウム、ジイソプロポキシ・ビス(アセチルアセトン)チタニウムなどのチタニウムキレート化合物;ジイソプロポキシエチルアセトアセテートアルミニウム、ジイソプロポキシアセチルアセトナートアルミニウム、イソプロポキシビス(エチルアセトアセテート)アルミニウム、イソプロポキシビス(アセチルアセトナート)アルミニウム、トリス(エチルアセトアセテート)アルミニウム、トリス(アセチルアセトナート)アルミニウム、モノアセチル アセトナート・ビス(エチルアセトアセテート)アルミニウムなどのアルミニウムキレート化合物などが挙げられる。
これらの金属キレート化合物のうち好ましいものは、トリ−n−ブトキシエチルアセトアセテートジルコニウム、ジイソプロポキシビス(アセチルアセトナート)チタニウム、ジイソプロポキシエチルアセトアセテートアルミニウム、トリス(エチルアセトアセテート)アルミニウムである。これらの金属キレート化合物は、1種単独であるいは2種以上混合して使用することができる。また、これらの金属キレート化合物の部分加水分解物を使用することもできる。
Specific examples of these metal chelate compounds include tri-n-butoxyethylacetoacetate zirconium, di-n-butoxybis (ethylacetoacetate) zirconium, n-butoxytris (ethylacetoacetate) zirconium, tetrakis (n-propylacetate). Zirconium chelate compounds such as acetate) zirconium, tetrakis (acetylacetoacetate) zirconium, tetrakis (ethylacetoacetate) zirconium; diisopropoxy bis (ethylacetoacetate) titanium, diisopropoxy bis (acetylacetate) titanium, diiso Titanium chelate compounds such as propoxy bis (acetylacetone) titanium; diisopropoxyethyl acetoacetate aluminum, diisopropyl Poxyacetylacetonate aluminum, isopropoxybis (ethylacetoacetate) aluminum, isopropoxybis (acetylacetonate) aluminum, tris (ethylacetoacetate) aluminum, tris (acetylacetonato) aluminum, monoacetylacetonate bis (ethylacetate) And aluminum chelate compounds such as acetate) aluminum.
Among these metal chelate compounds, tri-n-butoxyethyl acetoacetate zirconium, diisopropoxybis (acetylacetonate) titanium, diisopropoxyethyl acetoacetate aluminum, and tris (ethyl acetoacetate) aluminum are preferable. These metal chelate compounds can be used individually by 1 type or in mixture of 2 or more types. Moreover, the partial hydrolyzate of these metal chelate compounds can also be used.

金属キレート化合物は、前記オルガノシラン化合物に対し、好ましく0.01〜50質量%、より好ましくは0.1〜50質量%、さらに好ましくは0.5〜10質量%の割合で用いられる。0.01質量%未満では、オルガノシラン化合物の縮合反応が遅く、塗膜の耐久性が悪化するおそれがあり、一方50質量%を超えると、オルガノシラン化合物の加水分解物および/または部分縮合物と金属キレート化合物を含有してなる組成物の保存安定性が悪化するおそれがあり好ましくない。   The metal chelate compound is preferably used in a proportion of 0.01 to 50% by mass, more preferably 0.1 to 50% by mass, and still more preferably 0.5 to 10% by mass with respect to the organosilane compound. If it is less than 0.01% by mass, the condensation reaction of the organosilane compound is slow, and the durability of the coating film may be deteriorated. On the other hand, if it exceeds 50% by mass, the hydrolyzate and / or partial condensate of the organosilane compound And the storage stability of the composition containing the metal chelate compound may be deteriorated, which is not preferable.

ハードコート層乃至低屈折率層の塗布液には上記オルガノシラン化合物の加水分解物および/または部分縮合物および金属キレート化合物を含む組成物に加えて、β−ジケトン化合物および/またはβ−ケトエステル化合物が添加されることが好ましい。以下にさらに説明する。   In addition to the composition containing the hydrolyzate and / or partial condensate of the organosilane compound and the metal chelate compound in the coating solution for the hard coat layer to the low refractive index layer, a β-diketone compound and / or a β-ketoester compound Is preferably added. This will be further described below.

β−ジケトン化合物および/またはβ−ケトエステル化合物としては、一般式R4 COCH2COR5で表されるβ−ジケトン化合物および/またはβ−ケトエステル化合物を用いることが好ましく、これらは、各層を形成する組成物の安定性向上剤として作用し得る。すなわち、前記金属キレート化合物(ジルコニウム、チタニウムおよび/またはアルミニウム化合物)中の金属原子に配位することにより、これらの金属キレート化合物によるオルガノシラン化合物の加水分解物および/または部分縮合物の縮合反応を促進する作用を抑制し、得られる組成物の保存安定性を向上させる作用をなすものと考えられる。
β−ジケトン化合物および/またはβ−ケトエステル化合物を構成するR4およびR5は、前記金属キレート化合物を構成するR4およびR5と同様である。
As the β-diketone compound and / or β-ketoester compound, it is preferable to use a β-diketone compound and / or a β-ketoester compound represented by the general formula R 4 COCH 2 COR 5 , which form each layer. It can act as a stability improver for the composition. That is, by coordinating with a metal atom in the metal chelate compound (zirconium, titanium and / or aluminum compound), the condensation reaction of the hydrolyzate and / or partial condensate of the organosilane compound by these metal chelate compounds is performed. It is considered that the promoting action is suppressed and the storage stability of the resulting composition is improved.
R 4 and R 5 constituting the β- diketone compound and / or β- ketoester compound are the same as R 4 and R 5 constituting the metal chelate compound.

このβ−ジケトン化合物および/またはβ−ケトエステル化合物の具体例としては、アセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸−n−プロピル、アセト酢酸−i−プロピル、アセト酢酸−n−ブチル、アセト酢酸−sec-ブチル、アセト酢酸−t−ブチル、2,4−ヘキサン−ジオン、2,4−ヘプタン−ジオン、3,5−ヘプタン−ジオン、2,4−オクタン−ジオン、2,4−ノナン−ジオン、5−メチル−ヘキサン−ジオンなどを挙げることができる。これらのうち、アセト酢酸エチルおよびアセチルアセトンが好ましく、特にアセチルアセトンが好ましい。これらのβ−ジケトン化合物および/またはβ−ケトエステル化合物は、1種単独でまたは2種以上を混合して使用することもできる。本発明においてβ−ジケトン化合物および/またはβ−ケトエステル化合物は、金属キレート化合物1モルに対し好ましくは2モル以上、より好ましくは3〜20モル用いられる。2モル未満では得られる組成物の保存安定性に劣るおそれがあり好ましいものではない。   Specific examples of the β-diketone compound and / or β-ketoester compound include acetylacetone, methyl acetoacetate, ethyl acetoacetate, acetoacetate-n-propyl, acetoacetate-i-propyl, acetoacetate-n-butyl, acetoacetate. Acetic acid-sec-butyl, acetoacetic acid-t-butyl, 2,4-hexane-dione, 2,4-heptane-dione, 3,5-heptane-dione, 2,4-octane-dione, 2,4-nonane -Dione, 5-methyl-hexane-dione and the like can be mentioned. Of these, ethyl acetoacetate and acetylacetone are preferred, and acetylacetone is particularly preferred. These β-diketone compounds and / or β-ketoester compounds may be used alone or in combination of two or more. In the present invention, the β-diketone compound and / or β-ketoester compound is preferably used in an amount of 2 mol or more, more preferably 3 to 20 mol, per 1 mol of the metal chelate compound. If it is less than 2 mol, the storage stability of the resulting composition may be inferior, which is not preferable.

上記オルガノシラン化合物の加水分解物および/または部分縮合物の含有量は、比較的薄膜である表面層の場合は少なく、厚膜である下層の場合は多いことが好ましい。低屈折率層のような表面層の場合は含有層(添加層)の全固形分の0.1〜50質量%が好ましく、0.5〜20質量%がより好ましく、1〜10質量%が最も好ましい。
低屈折率層以外の層への添加量は、含有層(添加層)の全固形分の0.001〜50質量%が好ましく、0.01〜20質量%がより好ましく、0.05〜10質量%が更に好ましく、0.1〜5質量%が特に好ましい。
本発明においてはまず前記オルガノシラン化合物の加水分解物および/または部分縮合物および金属キレート化合物を含有する組成物を調製し、これにβ−ジケトン化合物および/またはβ−ケトエステル化合物を添加した液をハードコート層もしくは低屈折率層の少なくとも1層の塗布液に含有せしめて塗設することが好ましい。
The content of the hydrolyzate and / or partial condensate of the organosilane compound is preferably small for a surface layer that is a relatively thin film and large for a lower layer that is a thick film. In the case of a surface layer such as a low refractive index layer, 0.1 to 50% by mass of the total solid content of the containing layer (addition layer) is preferable, 0.5 to 20% by mass is more preferable, and 1 to 10% by mass is preferable. Most preferred.
The amount added to the layers other than the low refractive index layer is preferably 0.001 to 50 mass%, more preferably 0.01 to 20 mass%, and more preferably 0.05 to 10 mass% of the total solid content of the containing layer (addition layer). More preferably, it is 0.1 to 5% by mass.
In the present invention, first, a composition containing a hydrolyzate and / or partial condensate of the organosilane compound and a metal chelate compound is prepared, and a liquid in which a β-diketone compound and / or a β-ketoester compound is added thereto is prepared. It is preferable to coat by coating it in at least one coating solution of a hard coat layer or a low refractive index layer.

低屈折率層における、含フッ素ポリマーに対するオルガノシランのゾル成分の使用量は、5〜100質量%が好ましく、5〜40質量%がより好ましく、8〜35質量%が更に好ましく、10〜30質量%が特に好ましい。使用量が少ないと本発明の効果が得にくく、使用量が多すぎると屈折率が増加したり、膜の形状・面状が悪化したりするので好ましくない。   5-100 mass% is preferable, the usage-amount of the sol component of the organosilane with respect to a fluorine-containing polymer in a low refractive index layer has more preferable 5-40 mass%, 8-35 mass% is still more preferable, 10-30 mass % Is particularly preferred. If the amount used is small, it is difficult to obtain the effect of the present invention, and if the amount used is too large, the refractive index increases or the shape / surface shape of the film deteriorates.

(無機フィラー)
本発明の反射防止フィルムは、透明支持体上の各層に無機フィラーを添加することが好ましい。各層に添加する無機フィラーはそれぞれ同じでも異なっていても良く、各層の屈折率、膜強度、膜厚、塗布性などの必要性能に応じて、種類、添加量、は適宜調節されることが好ましい。
既に述べたように、低屈折率層に用いる無機フィラーには、シリカ微粒子が含まれていることが好ましい。
(Inorganic filler)
In the antireflection film of the present invention, an inorganic filler is preferably added to each layer on the transparent support. The inorganic filler added to each layer may be the same or different, and the type and amount added are preferably adjusted appropriately according to the required performance of each layer, such as refractive index, film strength, film thickness, and coatability. .
As already described, the inorganic filler used in the low refractive index layer preferably contains silica fine particles.

本発明に使用する上記無機フィラーの形状は、特に制限されるものではなく、例えば、球状、板状、繊維状、棒状、不定形、中空等のいずれも好ましく用いられるが、球状であると分散性がよく、より好ましい。また、上記無機フィラーの種類についても特に制限されるものではないが、非晶質のものが好ましく用いられ、金属の酸化物、窒化物、硫化物またはハロゲン化物からなるものが好ましく、金属酸化物が特に好ましい。金属原子としては、Na、K、Mg、Ca、Ba、Al、Zn、Fe、Cu、Ti、Sn、In、W、Y、Sb、Mn、Ga、V、Nb、Ta、Ag、Si、B、Bi、Mo、Ce、Cd、Be、Pb、ZrおよびNi等が挙げられる。無機フィラーの平均粒子径は、透明な硬化膜を得るためには、0.001〜0.2μmの範囲内の値とするのが好ましく、より好ましくは0.001〜0.1μm、さらに好ましくは0.001〜0.06μmである。ここで、粒子の平均粒径はコールターカウンターにより測定される。
本発明における無機フィラーの使用方法は特に制限されるものではないが、例えば、乾燥状態で使用することができるし、あるいは水もしくは有機溶媒に分散した状態で使用することもできる。
The shape of the inorganic filler used in the present invention is not particularly limited, and for example, any of a spherical shape, a plate shape, a fiber shape, a rod shape, an indeterminate shape, a hollow shape, and the like are preferably used. Good and more preferable. Further, the kind of the inorganic filler is not particularly limited, but an amorphous one is preferably used, and a metal oxide, nitride, sulfide or halide is preferably used. Is particularly preferred. As metal atoms, Na, K, Mg, Ca, Ba, Al, Zn, Fe, Cu, Ti, Sn, In, W, Y, Sb, Mn, Ga, V, Nb, Ta, Ag, Si, B Bi, Mo, Ce, Cd, Be, Pb, Zr, Ni and the like. In order to obtain a transparent cured film, the average particle diameter of the inorganic filler is preferably set to a value within the range of 0.001 to 0.2 μm, more preferably 0.001 to 0.1 μm, and still more preferably. 0.001 to 0.06 μm. Here, the average particle diameter of the particles is measured by a Coulter counter.
Although the usage method of the inorganic filler in this invention is not restrict | limited in particular, For example, it can use in a dry state or can also be used in the state disperse | distributed to water or the organic solvent.

本発明において、無機フィラーの凝集、沈降を抑制する目的で、各層を形成するための塗布液に分散安定化剤を併用することも好ましい。分散安定化剤としては、ポリビニルアルコール、ポリビニルピロリドン、セルロース誘導体、ポリアミド、リン酸エステル、ポリエーテル、界面活性剤および、シランカップリング剤、チタンカップリング剤等を使用することができる。特にシランカップリング剤が硬化後の皮膜が強いため好ましい。分散安定化剤としてのシランカップリング剤の添加量は特に制限されるものではないが、例えば、無機フィラー100質量部に対して、1質量部以上の値とするのが好ましい。また、分散安定化剤の添加方法も特に制限されるものではないが、予め加水分解したものを添加することもできるし、あるいは、分散安定化剤であるシランカップリング剤と無機フィラーとを混合後、さらに加水分解および縮合する方法を採ることができるが、後者の方がより好ましい。
他の層に適する無機フィラーについてはそれぞれ後述する。
In the present invention, for the purpose of suppressing aggregation and sedimentation of the inorganic filler, it is also preferable to use a dispersion stabilizer in combination with the coating solution for forming each layer. As the dispersion stabilizer, polyvinyl alcohol, polyvinyl pyrrolidone, cellulose derivative, polyamide, phosphate ester, polyether, surfactant, silane coupling agent, titanium coupling agent and the like can be used. In particular, a silane coupling agent is preferable because the film after curing is strong. Although the addition amount of the silane coupling agent as a dispersion stabilizer is not particularly limited, for example, the value is preferably 1 part by mass or more with respect to 100 parts by mass of the inorganic filler. Also, the method of adding the dispersion stabilizer is not particularly limited, but a hydrolyzed one can be added, or a dispersion stabilizer silane coupling agent and an inorganic filler are mixed. Later, a method of further hydrolysis and condensation can be employed, but the latter is more preferred.
Inorganic fillers suitable for other layers will be described later.

(添加剤等)
前記したとおり、低屈折率層の皮膜硬度の観点からは硬化剤等の添加剤を添加することは必ずしも有利ではないが、高屈折率層との界面密着性等の観点から、多官能(メタ)アクリレート化合物、多官能エポキシ化合物、ポリイソシアネート化合物、アミノプラスト、多塩基酸またはその無水物等の硬化剤、あるいはシリカ等の無機微粒子を少量添加することもできる。これらを添加する場合には低屈折率層皮膜の全固形分に対して0〜30質量%の範囲であることが好ましく、0〜20質量%の範囲であることがより好ましく、0〜10質量%の範囲であることが特に好ましい。
(Additives, etc.)
As described above, it is not always advantageous to add an additive such as a curing agent from the viewpoint of the film hardness of the low refractive index layer. ) A curing agent such as an acrylate compound, a polyfunctional epoxy compound, a polyisocyanate compound, an aminoplast, a polybasic acid or an anhydride thereof, or a small amount of inorganic fine particles such as silica can be added. When adding these, it is preferable that it is the range of 0-30 mass% with respect to the total solid of a low refractive index layer film | membrane, It is more preferable that it is the range of 0-20 mass%, 0-10 mass % Is particularly preferable.

防汚性、耐水性、耐薬品性、滑り性等の特性を付与する目的で、公知のシリコーン系あるいはフッ素系の防汚剤、滑り剤等を適宜添加することもできる。これらの添加剤を添加する場合には低n層全固形分の0.01〜20質量%の範囲で添加されることが好ましく、より好ましくは0.05〜10質量%の範囲で添加される場合であり、特に好ましくは0.1〜5質量%の場合である。   For the purpose of imparting properties such as antifouling properties, water resistance, chemical resistance, and slipping properties, known silicone-based or fluorine-based antifouling agents, slipping agents, and the like can be appropriately added. When these additives are added, it is preferably added in the range of 0.01 to 20% by mass, more preferably in the range of 0.05 to 10% by mass of the total solid content of the low n layer. Particularly preferably 0.1 to 5% by mass.

シリコーン系化合物の好ましい例としてはジメチルシリルオキシ単位を繰り返し単位として複数個含む化合物鎖の末端および/または側鎖に置換基を有するものが挙げられる。ジメチルシリルオキシを繰り返し単位として含む化合物鎖中にはジメチルシリルオキシ以外の構造単位を含んでもよい。置換基は同一であっても異なっていても良く、複数個あることが好ましい。好ましい置換基の例としてはアクリロイル基、メタクリロイル基、ビニル基、アリール基、シンナモイル基、エポキシ基、オキセタニル基、水酸基、フルオロアルキル基、ポリオキシアルキレン基、カルボキシル基、アミノ基などを含む基が挙げられる。分子量に特に制限はないが、10万以下であることが好ましく、5万以下であることが特に好ましく、3000〜30000であることが最も好ましい。シリコーン系化合物のシリコーン原子含有量には特に制限はないが18.0質量%以上であることが好ましく、25.0〜37.8質量%であることが特に好ましく、30.0〜37.0質量%であることが最も好ましい。好ましいシリコーン系化合物の例としては信越化学(株)製、X-22-174DX、X-22-2426、X-22-164B、X22-164C、X-22-170DX、X-22-176D、X-22-1821(以上商品名)やチッソ(株)製、FM-0725、FM-7725、DMS-U22、RMS-033、RMS-083、UMS-182(以上商品名)などが挙げられるがこれらに限定されるものではない。   Preferable examples of the silicone compound include those having a substituent at the terminal and / or side chain of a compound chain containing a plurality of dimethylsilyloxy units as repeating units. The compound chain containing dimethylsilyloxy as a repeating unit may contain a structural unit other than dimethylsilyloxy. The substituents may be the same or different, and a plurality of substituents are preferable. Examples of preferred substituents include acryloyl group, methacryloyl group, vinyl group, aryl group, cinnamoyl group, epoxy group, oxetanyl group, hydroxyl group, fluoroalkyl group, polyoxyalkylene group, carboxyl group, amino group and the like. It is done. Although there is no restriction | limiting in particular in molecular weight, It is preferable that it is 100,000 or less, It is especially preferable that it is 50,000 or less, It is most preferable that it is 3000-30000. Although there is no restriction | limiting in particular in silicone atom content of a silicone type compound, it is preferable that it is 18.0 mass% or more, it is especially preferable that it is 25.0-37.8 mass%, and 30.0-37.0. Most preferably, it is mass%. Examples of preferable silicone compounds include X-22-174DX, X-22-2426, X-22-164B, X22-164C, X-22-170DX, X-22-176D, X, manufactured by Shin-Etsu Chemical Co., Ltd. -22-1821 (named above), Chisso Corporation, FM-0725, FM-7725, DMS-U22, RMS-033, RMS-083, UMS-182 (named above), etc. It is not limited to.

フッ素系化合物としては、フルオロアルキル基を有する化合物が好ましい。該フルオロアルキル基は炭素数1〜20であることが好ましく、より好ましくは1〜10であり、直鎖(例えば-CF2CF3,-CH2(CF2)4H, -CH2(CF2)8CF3,-CH2CH2(CF2)4H等)であっても、分岐構造(例えばCH(CF3)2,CH2CF(CF3)2, CH(CH3)CF2CF3,CH(CH3)(CF2)5CF2H等)であっても、脂環式構造(好ましくは5員環または6員環、例えばパーフルオロシクロへキシル基、パーフルオロシクロペンチル基またはこれらで置換されたアルキル基等)であっても良く、エーテル結合を有していても良い(例えばCH2OCH2CF2CF3,CH2CH2OCH2C4F8H, CH2CH2OCH2CH2C8F17,CH2CH2OCF2CF2OCF2CF2H等)。該フルオロアルキル基は同一分子中に複数含まれていてもよい。 As the fluorine compound, a compound having a fluoroalkyl group is preferable. The fluoroalkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and a straight chain (for example, —CF 2 CF 3 , —CH 2 (CF 2 ) 4 H, —CH 2 (CF 2 ) 8 CF 3 , -CH 2 CH 2 (CF 2 ) 4 H, etc.), for example, CH (CF 3 ) 2 , CH 2 CF (CF 3 ) 2 , CH (CH 3 ) CF 2 CF 3 , CH (CH 3 ) (CF 2 ) 5 CF 2 H, etc.), but alicyclic structures (preferably 5-membered or 6-membered rings such as perfluorocyclohexyl groups, perfluorocyclopentyl, etc. Group or an alkyl group substituted with these, and may have an ether bond (for example, CH 2 OCH 2 CF 2 CF 3 , CH 2 CH 2 OCH 2 C 4 F 8 H, CH 2 CH 2 OCH 2 CH 2 C 8 F 17 , CH 2 CH 2 OCF 2 CF 2 OCF 2 CF 2 H, etc.). A plurality of the fluoroalkyl groups may be contained in the same molecule.

フッ素系化合物は、さらに低屈折率層皮膜との結合形成あるいは相溶性に寄与する置換基を有していることが好ましい。該置換基は同一であっても異なっていても良く、複数個あることが好ましい。好ましい置換基の例としてはアクリロイル基、メタクリロイル基、ビニル基、アリール基、シンナモイル基、エポキシ基、オキセタニル基、水酸基、ポリオキシアルキレン基、カルボキシル基、アミノ基などが挙げられる。フッ素系化合物はフッ素原子を含まない化合物とのポリマーであってもオリゴマーであってもよく、分子量に特に制限はない。フッ素系化合物のフッ素原子含有量には特に制限は無いが20質量%以上であることが好ましく、30〜70質量%であることが特に好ましく、40〜70質量%であることが最も好ましい。好ましいフッ素系化合物の例としてはダイキン化学工業(株)製、R-2020、M-2020、R-3833、M-3833(以上商品名)、大日本インキ(株)製、メガファックF-171、F-172、F-179A、ディフェンサMCF-300(以上商品名)などが挙げられるがこれらに限定されるものではない。   It is preferable that the fluorine-based compound further has a substituent that contributes to bond formation or compatibility with the low refractive index layer film. The substituents may be the same or different, and a plurality of substituents are preferable. Examples of preferred substituents include acryloyl group, methacryloyl group, vinyl group, aryl group, cinnamoyl group, epoxy group, oxetanyl group, hydroxyl group, polyoxyalkylene group, carboxyl group, amino group and the like. The fluorine-based compound may be a polymer or an oligomer with a compound not containing a fluorine atom, and the molecular weight is not particularly limited. Although there is no restriction | limiting in particular in fluorine atom content of a fluorine-type compound, It is preferable that it is 20 mass% or more, It is especially preferable that it is 30-70 mass%, It is most preferable that it is 40-70 mass%. Examples of preferred fluorine-based compounds include Daikin Chemical Industries, R-2020, M-2020, R-3833, M-3833 (named above), Dainippon Ink, Megafac F-171. , F-172, F-179A, Defender MCF-300 (named above), but not limited thereto.

防塵性、帯電防止等の特性を付与する目的で、公知のカチオン系界面活性剤あるいはポリオキシアルキレン系化合物のような防塵剤、帯電防止剤等を適宜添加することもできる。これら防塵剤、帯電防止剤は前述したシリコーン系化合物やフッ素系化合物にその構造単位が機能の一部として含まれていてもよい。これらを添加剤として添加する場合には低屈折率層全固形分の0.01〜20質量%の範囲で添加されることが好ましく、より好ましくは0.05〜10質量%の範囲で添加される場合であり、特に好ましくは0.1〜5質量%の場合である。好ましい化合物の例としては大日本インキ(株)製、メガファックF-150(商品名)、東レダウコーニング(株)製、SH-3748(商品名)などが挙げられるが、これらに限定されるわけではない。   For the purpose of imparting properties such as dust resistance and antistatic properties, a known cationic surfactant or a dustproof agent such as a polyoxyalkylene compound, an antistatic agent, or the like can be appropriately added. These dustproofing agent and antistatic agent may contain the structural unit as a part of the function in the above-mentioned silicone compound or fluorine compound. When these are added as additives, it is preferably added in the range of 0.01 to 20% by mass, more preferably in the range of 0.05 to 10% by mass of the total solid content of the low refractive index layer. Particularly preferred is 0.1 to 5% by mass. Examples of preferable compounds include, but are not limited to, Dainippon Ink Co., Ltd., MegaFuck F-150 (trade name), Toray Dow Corning Co., Ltd., SH-3748 (trade name), and the like. Do not mean.

本発明に用いられる低屈折率層形成組成物は、通常、液の形態をとり前記含フッ素共重合体、無機微粒子を構成成分とし、必要に応じて各種添加剤および重合開始剤を適当な溶剤に溶解して作製される。この際固形分の濃度は、用途に応じて適宜選択されるが一般的には0.01〜60質量%程度であり、好ましくは0.5〜50質量%、特に好ましくは1%〜20質量%程度である。   The composition for forming a low refractive index layer used in the present invention usually takes the form of a liquid and contains the above-mentioned fluorine-containing copolymer and inorganic fine particles as constituent components, and various additives and a polymerization initiator as appropriate in accordance with necessity. It is prepared by dissolving in At this time, the concentration of the solid content is appropriately selected according to the use, but is generally about 0.01 to 60% by mass, preferably 0.5 to 50% by mass, particularly preferably 1% to 20% by mass. %.

重合開始剤は、硬化反応性基の種類に併せて適宜選択される。
例えば含フッ素共重合体がラジカル重合可能な不飽和2重結合(アクリロイル基、メタクリロイル基等)を有する場合にはラジカル重合開始剤を添加することが好ましい。
ラジカル重合開始剤としては熱の作用によりラジカルを発生するもの、あるいは光の作用によりラジカルを発生するもののいずれの形態も可能である。
熱の作用によりラジカル重合を開始する化合物としては、有機あるいは無機過酸化物、有機アゾ及びジアゾ化合物等を用いることができる。
具体的には、有機過酸化物として過酸化ベンゾイル、過酸化ハロゲンベンゾイル、過酸化ラウロイル、過酸化アセチル、過酸化ジブチル、クメンヒドロぺルオキシド、ブチルヒドロぺルオキシド、無機過酸化物として、過酸化水素、過硫酸アンモニウム、過硫酸カリウム等、アゾ化合物として2−アゾ−ビス−イソブチロニトリル、2−アゾ−ビス−プロピオニトリル、2−アゾ−ビス−シクロヘキサンジニトリル等、ジアゾ化合物としてジアゾアミノベンゼン、p−ニトロベンゼンジアゾニウム等を挙げることができる。
The polymerization initiator is appropriately selected according to the type of the curing reactive group.
For example, when the fluorine-containing copolymer has an unsaturated double bond (acryloyl group, methacryloyl group, etc.) capable of radical polymerization, it is preferable to add a radical polymerization initiator.
The radical polymerization initiator may be in any form of generating radicals by the action of heat or generating radicals by the action of light.
As the compound that initiates radical polymerization by the action of heat, organic or inorganic peroxides, organic azo, diazo compounds, and the like can be used.
Specifically, benzoyl peroxide, halogen benzoyl peroxide, lauroyl peroxide, acetyl peroxide, dibutyl peroxide, cumene hydroperoxide, butyl hydroperoxide as organic peroxides, hydrogen peroxide, peroxides as inorganic peroxides. Ammonium sulfate, potassium persulfate, etc., 2-azo-bis-isobutyronitrile, 2-azo-bis-propionitrile, 2-azo-bis-cyclohexanedinitrile, etc. as diazo compounds, diazoaminobenzene, p -Nitrobenzenediazonium etc. can be mentioned.

光の作用によりラジカル重合を開始する化合物を使用する場合は、活性エネルギー線の照射によって皮膜の硬化が行われる。
このような光ラジカル重合開始剤の例としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類や芳香族スルホニウム類、ロフィンダイマー類、オニウム塩類、ボレート塩類、活性エステル類、活性ハロゲン類、無機錯体、クマリン類がある。アセトフェノン類の例には、2,2−ジエトキシアセトフェノン、2,2−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、1−ヒドロキシジメチルフェニルケトン、1−ヒドロキシ−ジメチル−p−イソプロピルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルフォリノプロピオフェノンおよび2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン、4−フェノキシジクロロアセトフェノン、4−t−ブチル−ジクロロアセトフェノンが含まれる。ベンゾイン類の例には、ベンゾインベンゼンスルホン酸エステル、ベンゾイントルエンスルホン酸エステル、ベンゾインメチルエーテル、ベンゾインエチルエーテルおよびベンゾインイソプロピルエーテルが含まれる。ベンゾフェノン類の例には、ベンゾフェノン、2,4−ジクロロベンゾフェノン、4,4−ジクロロベンゾフェノンおよびp−クロロベンゾフェノンが含まれる。ホスフィンオキシド類の例には、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシドが含まれる。これらの光ラジカル重合開始剤と併用して増感色素も好ましく用いることができる。
When a compound that initiates radical polymerization by the action of light is used, the coating is cured by irradiation with active energy rays.
Examples of such radical photopolymerization initiators include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds , Disulfide compounds, fluoroamine compounds, aromatic sulfoniums, lophine dimers, onium salts, borate salts, active esters, active halogens, inorganic complexes, and coumarins. Examples of acetophenones include 2,2-diethoxyacetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxydimethylphenyl ketone, 1-hydroxy-dimethyl-p-isopropylphenyl ketone, 1-hydroxy Cyclohexyl phenyl ketone, 2-methyl-4-methylthio-2-morpholinopropiophenone and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone, 4-phenoxydichloroacetophenone, 4-t- Butyl-dichloroacetophenone is included. Examples of benzoins include benzoin benzene sulfonate, benzoin toluene sulfonate, benzoin methyl ether, benzoin ethyl ether and benzoin isopropyl ether. Examples of the benzophenones include benzophenone, 2,4-dichlorobenzophenone, 4,4-dichlorobenzophenone and p-chlorobenzophenone. Examples of phosphine oxides include 2,4,6-trimethylbenzoyldiphenylphosphine oxide. Sensitizing dyes can also be preferably used in combination with these photoradical polymerization initiators.

ボレート塩としては、例えば、特許第2764769号、特開2002−116539号等の各公報、および、Kunz,Martin“Rad Tech’98.Proceeding April 19〜22頁,1998年,Chicago”等に記載される有機ホウ酸塩記載される化合物があげられる。例えば、前記特開2002−116539号明細書の段落番号[0022]〜[0027]記載の化合物が挙げられる。またその他の有機ホウ素化合物としては、特開平6−348011号公報、特開平7−128785号公報、特開平7−140589号公報、特開平7−306527号公報、特開平7−292014号公報等の有機ホウ素遷移金属配位錯体等が具体例として挙げられ、具体例にはカチオン性色素とのイオンコンプレックス類が挙げられる。   Examples of the borate salt are described in Japanese Patent Nos. 2764769 and 2002-116539, and in Kunz, Martin “Rad Tech '98. Proceeding April 19-22, 1998, Chicago”. And the organic borate compounds described. For example, the compounds described in JP-A-2002-116539, paragraph numbers [0022] to [0027] can be mentioned. Examples of other organic boron compounds include JP-A-6-348011, JP-A-7-128785, JP-A-7-140589, JP-A-7-306527, and JP-A-7-292014. Specific examples include organoboron transition metal coordination complexes and the like, and specific examples include ion complexes with cationic dyes.

活性エステル類の例には1、2−オクタンジオン、1−[4−(フェニルチオ)−,2−(O−ベンゾイルオキシム)]、スルホン酸エステル類、環状活性エステル化合物などが含まれる。
具体的には特開2000−80068記載の実施例記載化合物1〜21が特に好ましい。オニウム塩類の例には、芳香族ジアゾニウム塩、芳香族ヨードニウム塩、芳香族スルホニウム塩が挙げられる。
Examples of active esters include 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], sulfonic acid esters, cyclic active ester compounds, and the like.
Specifically, Examples 1 to 21 described in JP 2000-80068 are particularly preferable. Examples of the onium salts include aromatic diazonium salts, aromatic iodonium salts, and aromatic sulfonium salts.

活性ハロゲン類としては、具体的には、若林 等の“Bull Chem.Soc Japan゛42巻、2924頁(1969年)、米国特許第3,905,815号明細書、特開平5−27830号、M.P.Hutt゛Jurnal of Heterocyclic Chemistry”1巻(3号),(1970年)等に記載の化合物が挙げられ、特に、トリハロメチル基が置換したオキサゾール化合物:s−トリアジン化合物が挙げられる。より好適には、少なくとも一つのモノ、ジまたはトリハロゲン置換メチル基がs−トリアジン環に結合したs−トリアジン誘導体が挙げられる。具体的な例にはS−トリアジンやオキサチアゾール化合物が知られており、2−(p−メトキシフェニル)−4,6−ビス(トリクロルメチル)−s−トリアジン、2−(p−スチリルフェニル)−4,6−ビス(トリクロルメチル)−s−トリアジン、2−(3−Br−4−ジ(エチル酢酸エステル)アミノ)フェニル)−4,6−ビス(トリクロルメチル)−s−トリアジン、2−トリハロメチル−5−(p−メトキシフェニル)−1,3,4−オキサジアゾールが含まれる。具体的には特開昭58−15503のp14〜p30、特開昭55−77742のp6〜p10、特公昭60−27673のp287記載のNo.1〜No.8、特開昭60−239736のp443〜p444のNo.1〜No.17、US−4701399のNo.1〜19などの化合物が特に好ましい。
無機錯体の例にはビス(η−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフルオロ−3−(1H−ピロール−1−イル)−フェニル)チタニウムが挙げられる。
クマリン類の例には3−ケトクマリンが挙げられる。
Specific examples of the active halogens include Wakabayashi et al. “Bull Chem. Soc Japan Vol. 42, 2924 (1969), US Pat. No. 3,905,815, JP-A-5-27830, M. P. Hutto “Journal of Heterocyclic Chemistry”, Vol. More preferred are s-triazine derivatives in which at least one mono-, di- or trihalogen-substituted methyl group is bonded to the s-triazine ring. Specific examples include S-triazine and oxathiazole compounds such as 2- (p-methoxyphenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (p-styrylphenyl). -4,6-bis (trichloromethyl) -s-triazine, 2- (3-Br-4-di (ethyl acetate) amino) phenyl) -4,6-bis (trichloromethyl) -s-triazine, 2 -Trihalomethyl-5- (p-methoxyphenyl) -1,3,4-oxadiazole. Specifically, p.14 to p30 in JP-A-58-15503, p6-p10 in JP-A-55-77742, and p287 in JP-B-60-27673. 1-No. 8, p443-p444 No. of JP-A-60-239736 1-No. 17, No. 4,701,399. Compounds such as 1-19 are particularly preferred.
Examples of inorganic complexes include bis (η 5 -2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium.
Examples of coumarins include 3-ketocoumarin.

これらの開始剤は単独でも混合して用いても良い。
「最新UV硬化技術」,(株)技術情報協会,1991年,p.159、及び、「紫外線硬化システム」 加藤清視著、平成元年、総合技術センター発行、p.65〜148にも種々の例が記載されており本発明に有用である。
These initiators may be used alone or in combination.
“Latest UV Curing Technology”, Technical Information Association, 1991, p. 159, and “UV curing system” written by Kayo Kiyomi, 1989, General Technology Center, p. Various examples are also described in 65-148 and are useful in the present invention.

市販の光ラジカル重合開始剤としては、日本化薬(株)製のKAYACURE(DETX−S,BP−100,BDMK,CTX,BMS,2−EAQ,ABQ,CPTX,EPD,ITX,QTX,BTC,MCAなど)、チバ・スペシャルティ・ケミカルズ(株)製のイルガキュア(651,184,500,819,907,369,1173,1870,2959,4265,4263など)、サートマー社製のEsacure(KIP100F,KB1,EB3,BP,X33,KT046,KT37,KIP150,TZT)等およびそれらの組み合わせが好ましい例として挙げられる。   Commercially available photo radical polymerization initiators include KAYACURE (DETX-S, BP-100, BDKM, CTX, BMS, 2-EAQ, ABQ, CPTX, EPD, ITX, QTX, BTC, manufactured by Nippon Kayaku Co., Ltd. MCA, etc.), Irgacure (651, 184, 500, 819, 907, 369, 1173, 1870, 2959, 4265, 4263, etc.) manufactured by Ciba Specialty Chemicals, Ltd., Esacure (KIP100F, KB1, manufactured by Sartomer) EB3, BP, X33, KT046, KT37, KIP150, TZT) and the like and combinations thereof are preferred examples.

本発明において、低屈折率層の硬化を進めるためには、分子量が高く塗膜から揮散しにくい化合物が好ましく、例えばオリゴマー型の重合開始剤が好ましい。オリゴマー型放射線重合開始剤としては、放射線照射により光ラジカルを発生する部位を有するものであれば、特に制限はない。揮散抑制のために、重合開始剤の分子量は250以上10,000以下が好ましく、更に好ましくは300以上10,000以下である。より好ましくは、その質量平均分子量が400〜10,000である。質量平均分子量が400以上であれば、揮散性が小さいので好ましく、10,000以下であれば、得られる硬化塗膜の硬度が十分なものとなるので好ましい。オリゴマー型放射線重合開始剤の具体例としては、下記一般式(6)に示すオリゴ[2−ヒドロキシ−2−メチル−1−{4−(1−メチルビニル)フェニル}プロパノン]を挙げることができる。
一般式(6):
In the present invention, in order to advance the curing of the low refractive index layer, a compound having a high molecular weight and hardly volatilizing from the coating film is preferable, and for example, an oligomer type polymerization initiator is preferable. The oligomer type radiation polymerization initiator is not particularly limited as long as it has a site that generates a photo radical upon irradiation. In order to suppress volatilization, the molecular weight of the polymerization initiator is preferably 250 or more and 10,000 or less, more preferably 300 or more and 10,000 or less. More preferably, the mass average molecular weight is 400 to 10,000. A mass average molecular weight of 400 or more is preferable because of low volatility, and 10,000 or less is preferable because the resulting cured coating film has sufficient hardness. Specific examples of the oligomer type radiation polymerization initiator include oligo [2-hydroxy-2-methyl-1- {4- (1-methylvinyl) phenyl} propanone] represented by the following general formula (6). .
General formula (6):

Figure 2006268031
Figure 2006268031

上記一般式()中、R51は、一価の基、好ましくは一価の有機基、qは2〜45の整数をそれぞれ示す。 In the general formula ( 6 ), R 51 represents a monovalent group, preferably a monovalent organic group, and q represents an integer of 2 to 45.

上記一般式()に示すオリゴ[2−ヒドロキシ−2−メチル−1−{4−(1−メチルビニル)フェニル}プロパノン]の市販品としては、フラテツリ・ランベルティ社製商品名「エザキュアKIP150」(CAS−No.163702−01−0、q=4〜6)、「エザキュアKIP65LT」(「エザキュアKIP150」とトリプロピレングリコールジアクリレートの混合物)、「エザキュアKIP100F」(「エザキュアKIP150」と2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オンの混合物)、「エザキュアKT37」、「エザキュアKT55」(以上、「エザキュアKIP150」とメチルベンゾフェノン誘導体の混合物)、「エザキュアKTO46」(「エザキュアKIP150」、メチルベンゾフェノン誘導体、及び2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシドの混合物)、「エザキュアKIP75/B」(「エザキュアKIP150」と2,2−ジメトキシ−1,2−ジフェニルエタン−1オンの混合物)等を挙げることができる。 As a commercially available product of the oligo [2-hydroxy-2-methyl-1- {4- (1-methylvinyl) phenyl} propanone] represented by the general formula ( 6 ), trade name “Ezacure KIP150” manufactured by Fratelli Lamberti Co., Ltd. (CAS-No. 163702-01-0, q = 4-6), “Ezacure KIP65LT” (a mixture of “Ezacure KIP150” and tripropylene glycol diacrylate), “Ezacure KIP100F” (“Ezacure KIP150” and 2- Hydroxy-2-methyl-1-phenylpropan-1-one), “Ezacure KT37”, “Ezacure KT55” (above, “Ezacure KIP150” and a mixture of methylbenzophenone derivatives), “Ezacure KTO46” (“Ezacure KIP150”) ”, Methylbenzo A mixture of an enone derivative and 2,4,6-trimethylbenzoyldiphenylphosphine oxide), “Ezacure KIP75 / B” (a mixture of “Ezacure KIP150” and 2,2-dimethoxy-1,2-diphenylethane-1-one), etc. Can be mentioned.

光重合開始剤は、多官能モノマー100質量部に対して、0.1〜15質量部の範囲で使用することが好ましく、より好ましくは1〜10質量部の範囲である。   It is preferable to use a photoinitiator in the range of 0.1-15 mass parts with respect to 100 mass parts of polyfunctional monomers, More preferably, it is the range of 1-10 mass parts.

<光増感剤>
光重合開始剤に加えて、光増感剤を用いてもよい。光増感剤の具体例として、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン、ミヒラーケトンおよびチオキサントン、などを挙げることができる。
更にアジド化合物、チオ尿素化合物、メルカプト化合物などの助剤を1種以上組み合わせて用いてもよい。
市販の光増感剤としては、日本化薬(株)製のKAYACURE(DMBI,EPA)などが挙げられる。
<Photosensitizer>
In addition to the photopolymerization initiator, a photosensitizer may be used. Specific examples of the photosensitizer include n-butylamine, triethylamine, tri-n-butylphosphine, Michler's ketone and thioxanthone.
Further, one or more auxiliary agents such as an azide compound, a thiourea compound, and a mercapto compound may be used in combination.
Examples of commercially available photosensitizers include KAYACURE (DMBI, EPA) manufactured by Nippon Kayaku Co., Ltd.

熱または光の作用によってラジカル重合を開始する化合物の添加量としては、炭素-炭素二重結合の重合を開始できる量であれば良いが、一般的には低屈折率層形成組成物中の全固形分に対して0.1〜15質量%が好ましく、より好ましくは0.5〜10質量%であり、特に好ましくは2〜5質量%の場合である。   The amount of the compound that initiates radical polymerization by the action of heat or light may be any amount that can initiate the polymerization of the carbon-carbon double bond, but generally the total amount in the low refractive index layer forming composition is not limited. 0.1-15 mass% is preferable with respect to solid content, More preferably, it is 0.5-10 mass%, Most preferably, it is a case of 2-5 mass%.

ポリマーの架橋反応性部位がカチオン重合可能な基(エポキシ基、オキセタニル基、オキサゾリル基、ビニルオキシ基等)を有する場合、光で酸触媒を発生する重合開始剤を添加することが好ましい。   When the cross-linking reactive site of the polymer has a group capable of cationic polymerization (epoxy group, oxetanyl group, oxazolyl group, vinyloxy group, etc.), it is preferable to add a polymerization initiator that generates an acid catalyst by light.

光の作用により酸を発生する化合物としては、例えば有機エレクトロニクス材料研究会(ぶんしん出版)編「イメージング用有機材料」p187〜198、特開平10−282644号等に種々の例が記載されておりこれら公知の化合物を使用することができる。具体的には、RSO (Rはアルキル基、アリール基を表す)、AsF6 、SbF6 、PF6 、BF 等をカウンターイオンとするジアゾニウム塩、アンモニウム塩、ホスホニウム塩、ヨードニウム塩、スルホニウム塩、セレノニウム塩、アルソニウム塩等の各種オニウム塩、トリハロメチル基が置換したオキサジアゾール誘導体やS−トリアジン誘導体等の有機ハロゲン化物、有機酸のo−ニトロベンジルエステル、ベンゾインエステル、イミノエステル、ジスルホン化合物等が挙げられ、好ましくは、オニウム塩類、特に好ましくはスルホニウム塩、ヨードニウム塩類である。 Various examples of compounds that generate an acid by the action of light are described in, for example, “Organic Materials for Imaging” p187-198, JP-A-10-282644, edited by the Society for Organic Electronics Materials (Bunshin Publishing). These known compounds can be used. Specifically, RSO 3 - (R is an alkyl group, an aryl group), AsF 6 -, SbF 6 -, PF 6 -, BF 4 - diazonium salt and the counter ion or the like, ammonium salts, phosphonium salts, Various onium salts such as iodonium salts, sulfonium salts, selenonium salts, arsonium salts, organic halides such as oxadiazole derivatives and S-triazine derivatives substituted with trihalomethyl groups, o-nitrobenzyl esters of organic acids, benzoin esters, Examples thereof include iminoesters and disulfone compounds, preferably onium salts, particularly preferably sulfonium salts and iodonium salts.

上記の光の作用により酸を発生する化合物と併用して増感色素も好ましく用いることができる。本発明において光の作用によって硬化反応を促進する化合物の添加量としては、低屈折率層形成組成物中の全固形分に対して0.1〜15質量%が好ましく、より好ましくは0.5〜10質量%であり、特に好ましくは2〜5質量%である。   A sensitizing dye can also be preferably used in combination with a compound that generates an acid by the action of light. In the present invention, the addition amount of the compound that accelerates the curing reaction by the action of light is preferably 0.1 to 15% by mass, more preferably 0.5%, based on the total solid content in the low refractive index layer forming composition. -10 mass%, particularly preferably 2-5 mass%.

本発明の反射防止フィルムの好ましい層構成の例を下記に示す。下記構成において基材フィルムは、支持体として機能している。
・基材フィルム/低屈折率層、
・基材フィルム/帯電防止層/低屈折率層、
・基材フィルム/ハードコート層/高屈折率層/低屈折率層、
・基材フィルム/ハードコート層/帯電防止層/高屈折率層/低屈折率層、
・基材フィルム/ハードコート層/中屈折率層/高屈折率層/低屈折率層、
・基材フィルム/帯電防止層/ハードコート層/中屈折率層/高屈折率層/低屈折率層、
・帯電防止層/基材フィルム/ハードコート層/中屈折率層/高屈折率層/低屈折率層、
光学干渉により反射率を低減できるものであれば、特にこれらの層構成のみに限定されるものではない。
また、帯電防止層は導電性ポリマー粒子または金属酸化物微粒子(例えば、ATO、ITO)を含む層であることが好ましく、塗布または大気圧プラズマ処理等によって設けることができる。
上記の例は、いわゆる防眩性の無い反射防止フィルムの構成例を示したが、防眩性の反射防止フィルムにも適用することができる。この場合、上記のどの層にも、防眩性を付与することは可能である。
The example of the preferable layer structure of the antireflection film of this invention is shown below. In the following configuration, the base film functions as a support.
・ Base film / low refractive index layer,
・ Base film / Antistatic layer / Low refractive index layer,
・ Base film / hard coat layer / high refractive index layer / low refractive index layer,
・ Base film / hard coat layer / antistatic layer / high refractive index layer / low refractive index layer,
Base film / hard coat layer / medium refractive index layer / high refractive index layer / low refractive index layer,
Base film / antistatic layer / hard coat layer / medium refractive index layer / high refractive index layer / low refractive index layer,
Antistatic layer / base film / hard coat layer / medium refractive index layer / high refractive index layer / low refractive index layer,
As long as the reflectance can be reduced by optical interference, it is not limited to these layer configurations.
The antistatic layer is preferably a layer containing conductive polymer particles or metal oxide fine particles (for example, ATO, ITO), and can be provided by coating or atmospheric pressure plasma treatment.
Although the above example shows a configuration example of a so-called anti-glare film having no anti-glare property, it can also be applied to an anti-glare anti-reflection film. In this case, it is possible to impart antiglare properties to any of the above layers.

[高・中屈折率層]
次に、高・中屈折率層・ハードコート層を形成する素材について以下に説明する。
高・中屈折率層の屈折率は、1.50〜2.40の範囲にあることが好ましく、さらに好ましくは1.50〜1.80の範囲にある。高・中屈折層には、皮膜形成バインダーを少なくとも含み、更に層の屈折率を高めるため、および硬化収縮を低減するために無機フィラーを含有することができる。
[High / Medium Refractive Index Layer]
Next, materials for forming the high / medium refractive index layer / hard coat layer will be described below.
The refractive index of the high / medium refractive index layer is preferably in the range of 1.50 to 2.40, more preferably in the range of 1.50 to 1.80. The high / medium refractive layer contains at least a film-forming binder, and can further contain an inorganic filler in order to increase the refractive index of the layer and to reduce curing shrinkage.

本発明の高・中屈折率層を形成する素材について以下に説明する。
(皮膜形成バインダー)
本発明において、高・中屈折率層等の各層を形成するための皮膜形成組成物の主たる皮膜形成バインダー成分として、エチレン性不飽和基を有する化合物を用いることが、皮膜強度、塗布液の安定性、塗膜の生産性、などの点で好ましい。主たる皮膜形成バインダーとは、無機微粒子を除く皮膜形成成分のうち10質量%以上をしめるものをいう。好ましくは、20質量%以上100質量%以下、更に好ましくは30質量%以上95質量%以下である。
飽和炭化水素鎖またはポリエーテル鎖を主鎖として有するポリマーであることが好ましく、飽和炭化水素鎖を主鎖として有するポリマーであることがさらに好ましい。飽和炭化水素鎖を主鎖として有し、かつ架橋構造を有するバインダーポリマーとしては、二個以上のエチレン性不飽和基を有するモノマーの(共)重合体が好ましい。
高屈折率にするには、このモノマーの構造中に芳香族環や、フッ素以外のハロゲン原子、硫黄原子、リン原子、及び窒素原子から選ばれた少なくとも1種の原子を含むことが好ましい。
The material for forming the high / medium refractive index layer of the present invention will be described below.
(Film-forming binder)
In the present invention, it is possible to use a compound having an ethylenically unsaturated group as a main film-forming binder component of a film-forming composition for forming each layer such as a high / medium refractive index layer. Is preferable in terms of productivity and coating film productivity. The main film-forming binder refers to one that accounts for 10% by mass or more of the film-forming components excluding inorganic fine particles. Preferably, they are 20 mass% or more and 100 mass% or less, More preferably, they are 30 mass% or more and 95 mass% or less.
A polymer having a saturated hydrocarbon chain or a polyether chain as a main chain is preferable, and a polymer having a saturated hydrocarbon chain as a main chain is more preferable. As the binder polymer having a saturated hydrocarbon chain as the main chain and having a crosslinked structure, a (co) polymer of monomers having two or more ethylenically unsaturated groups is preferable.
In order to obtain a high refractive index, the monomer structure preferably contains an aromatic ring or at least one atom selected from a halogen atom other than fluorine, a sulfur atom, a phosphorus atom, and a nitrogen atom.

二個以上のエチレン性不飽和基を有するモノマーとしては、多価アルコールと(メタ)アクリル酸とのエステル(例、エチレングリコールジ(メタ)アクリレート、1,4−シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート)、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼンおよびその誘導体(例、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)およびメタクリルアミドが挙げられる。上記モノマーは2種以上併用してもよい。尚、本明細書においては、「(メタ)アクリレート」は「アクリレート又はメタクリレート」を表す。   Examples of the monomer having two or more ethylenically unsaturated groups include esters of polyhydric alcohol and (meth) acrylic acid (eg, ethylene glycol di (meth) acrylate, 1,4-cyclohexanediacrylate, pentaerythritol tetra ( (Meth) acrylate), pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, di Pentaerythritol hexa (meth) acrylate, pentaerythritol hexa (meth) acrylate, 1,2,3-cyclohexanetetramethacrylate, polyurethane polyacrylate, polyester polymer Acrylate), vinylbenzene and its derivatives (eg, 1,4-divinylbenzene, 4-vinylbenzoic acid-2-acryloylethyl ester, 1,4-divinylcyclohexanone), vinylsulfone (eg, divinylsulfone), acrylamide (eg, , Methylenebisacrylamide) and methacrylamide. Two or more of these monomers may be used in combination. In the present specification, “(meth) acrylate” represents “acrylate or methacrylate”.

高屈折率モノマーの具体例としては、ビス(4−メタクリロイルチオフェニル)スルフィド、ビニルナフタレン、ビニルフェニルスルフィド、4−メタクリロキシフェニル−4'−メトキシフェニルチオエーテル等が挙げられる。これらのモノマーも2種以上併用してもよい。   Specific examples of the high refractive index monomer include bis (4-methacryloylthiophenyl) sulfide, vinyl naphthalene, vinyl phenyl sulfide, 4-methacryloxyphenyl-4′-methoxyphenyl thioether, and the like. Two or more of these monomers may be used in combination.

これらのエチレン性不飽和基を有するモノマーの重合は、光ラジカル開始剤あるいは熱ラジカル開始剤の存在下、電離放射線の照射または加熱により行うことができる。
光ラジカル重合開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類や芳香族スルホニウム類が挙げられる。アセトフェノン類の例には、2,2−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、1−ヒドロキシジメチルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルフォリノプロピオフェノンおよび2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノンが含まれる。ベンゾイン類の例には、ベンゾインベンゼンスルホン酸エステル、ベンゾイントルエンスルホン酸エステル、ベンゾインメチルエーテル、ベンゾインエチルエーテルおよびベンゾインイソプロピルエーテルが含まれる。ベンゾフェノン類の例には、ベンゾフェノン、2,4−ジクロロベンゾフェノン、4,4−ジクロロベンゾフェノンおよびp−クロロベンゾフェノンが含まれる。ホスフィンオキシド類の例には、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシドが含まれる。
また、最新UV硬化技術(P-359,発行人;高薄一弘,発行所;(株)技術情報協会,1991年発行)にも種々の例が記載されており本発明に有用である。
Polymerization of the monomer having an ethylenically unsaturated group can be performed by irradiation with ionizing radiation or heating in the presence of a photo radical initiator or a thermal radical initiator.
Photo radical polymerization initiators include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds , Fluoroamine compounds and aromatic sulfoniums. Examples of acetophenones include 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxydimethylphenyl ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-4-methylthio-2-morpholinopropiophenone and 2 -Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone is included. Examples of benzoins include benzoin benzene sulfonate, benzoin toluene sulfonate, benzoin methyl ether, benzoin ethyl ether and benzoin isopropyl ether. Examples of the benzophenones include benzophenone, 2,4-dichlorobenzophenone, 4,4-dichlorobenzophenone and p-chlorobenzophenone. Examples of phosphine oxides include 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
Various examples are also described in the latest UV curing technology (P-359, publisher: Kazuhiro Takasagi, publisher; Technical Information Association, Inc., published in 1991), which is useful for the present invention.

市販の光開裂型の光ラジカル重合開始剤としては、日本チバガイギー(株)製のイルガキュア(651,184,907)等が好ましい例として挙げられる。
光重合開始剤は、多官能モノマー100質量部に対して、0.1〜15質量部の範囲で使用することが好ましく、より好ましくは1〜10質量部の範囲である。
光重合開始剤に加えて、光増感剤を用いてもよい。光増感剤の具体例として、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン、ミヒラーのケトンおよびチオキサントンを挙げることができる。
Preferable examples of commercially available photocleavable photoradical polymerization initiators include Irgacure (651, 184, 907) manufactured by Nippon Ciba-Geigy Co., Ltd.
It is preferable to use a photoinitiator in the range of 0.1-15 mass parts with respect to 100 mass parts of polyfunctional monomers, More preferably, it is the range of 1-10 mass parts.
In addition to the photopolymerization initiator, a photosensitizer may be used. Specific examples of the photosensitizer include n-butylamine, triethylamine, tri-n-butylphosphine, Michler's ketone and thioxanthone.

熱ラジカル開始剤としては、有機あるいは無機過酸化物、有機アゾ及びジアゾ化合物等を用いることができる。
具体的には、有機過酸化物として過酸化ベンゾイル、過酸化ハロゲンベンゾイル、過酸化ラウロイル、過酸化アセチル、過酸化ジブチル、クメンヒドロぺルオキシド、ブチルヒドロぺルオキシド、無機過酸化物として、過酸化水素、過硫酸アンモニウム、過硫酸カリウム等、アゾ化合物として2,2’−アゾビス(イソブチロニトリル)、2,2’−アゾビス(プロピオニトリル)、1,1’−アゾビス(シクロヘキサンカルボニトリル)等、ジアゾ化合物としてジアゾアミノベンゼン、p−ニトロベンゼンジアゾニウム等が挙げられる。
As the thermal radical initiator, organic or inorganic peroxides, organic azo, diazo compounds, and the like can be used.
Specifically, benzoyl peroxide, halogen benzoyl peroxide, lauroyl peroxide, acetyl peroxide, dibutyl peroxide, cumene hydroperoxide, butyl hydroperoxide as organic peroxides, hydrogen peroxide, peroxides as inorganic peroxides. Diazo compounds such as ammonium sulfate, potassium persulfate and the like, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (propionitrile), 1,1′-azobis (cyclohexanecarbonitrile), etc. And diazoaminobenzene, p-nitrobenzenediazonium and the like.

本発明においてはポリエーテルを主鎖として有するポリマーを使用することもできる。多官能エポキシ化合物の開環重合体が好ましい。多官能エポキシ化合物の開環重合は、光酸発生剤あるいは熱酸発生剤の存在下、電離放射線の照射または加熱により行うことができる。
二個以上のエチレン性不飽和基を有するモノマーの代わりにまたはそれに加えて、架橋性官能基を有するモノマーを用いてポリマー中に架橋性官能基を導入し、この架橋性官能基の反応により、架橋構造をバインダーポリマーに導入してもよい。
架橋性官能基の例には、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基および活性メチレン基が含まれる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステルおよびウレタン、テトラメトキシシランのような金属アルコキシドも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。すなわち、本発明において架橋性官能基は、すぐには反応を示すものではなくとも、分解した結果反応性を示すものであってもよい。
これら架橋性官能基を有するバインダーポリマーは塗布後、加熱することによって架橋構造を形成することができる。
In the present invention, a polymer having a polyether as a main chain can also be used. A ring-opening polymer of a polyfunctional epoxy compound is preferred. The ring-opening polymerization of the polyfunctional epoxy compound can be performed by irradiation with ionizing radiation or heating in the presence of a photoacid generator or a thermal acid generator.
Instead of or in addition to a monomer having two or more ethylenically unsaturated groups, a monomer having a crosslinkable functional group is used to introduce a crosslinkable functional group into the polymer, and by reaction of this crosslinkable functional group, A crosslinked structure may be introduced into the binder polymer.
Examples of the crosslinkable functional group include isocyanate group, epoxy group, aziridine group, oxazoline group, aldehyde group, carbonyl group, hydrazine group, carboxyl group, methylol group and active methylene group. Vinylsulfonic acid, acid anhydride, cyanoacrylate derivative, melamine, etherified methylol, ester and urethane, and metal alkoxide such as tetramethoxysilane can also be used as a monomer for introducing a crosslinked structure. A functional group that exhibits crosslinkability as a result of the decomposition reaction, such as a block isocyanate group, may be used. That is, in the present invention, the crosslinkable functional group may not react immediately but may exhibit reactivity as a result of decomposition.
These binder polymers having a crosslinkable functional group can form a crosslinked structure by heating after coating.

(高・中屈折率層用無機フィラー)
高屈折率層には、層の屈折率を高めるため、および硬化収縮を低減するために、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、錫、アンチモンのうちより選ばれる少なくとも1種の金属の酸化物からなり、平均粒径が0.2μm以下、好ましくは0.1μm以下、より好ましくは0.06μm以下である無機フィラーが含有されることが好ましい。
高屈折率層に用いられる無機フィラーの具体例としては、TiO、ZrO、Al、In、ZnO、SnO、Sb3、ITOとSiO等が挙げられる。
TiOおよびZrOが高屈折率化の点で特に好ましい。該無機フィラーは表面をシランカップリング処理又はチタンカップリング処理されることも好ましく、フィラー表面にバインダー種と反応できる官能基を有する表面処理剤が好ましく用いられる。
これらの無機フィラーの添加量は、高屈折率層の全質量の10〜90%であることが好ましく、より好ましくは20〜80%であり、特に好ましくは30〜70%である。
なお、このようなフィラーは、粒径が光の波長よりも十分小さいために散乱が生じず、バインダーポリマーに該フィラーが分散した分散体は光学的に均一な物質として振舞う。
(Inorganic filler for high and medium refractive index layers)
The high refractive index layer includes an oxide of at least one metal selected from titanium, zirconium, aluminum, indium, zinc, tin, and antimony in order to increase the refractive index of the layer and to reduce cure shrinkage. It is preferable that an inorganic filler having an average particle size of 0.2 μm or less, preferably 0.1 μm or less, more preferably 0.06 μm or less is contained.
Specific examples of the inorganic filler used for the high refractive index layer include TiO 2 , ZrO 2 , Al 2 O 3 , In 2 O 3 , ZnO, SnO 2 , Sb 2 O 3 , ITO and SiO 2 .
TiO 2 and ZrO 2 are particularly preferable in terms of increasing the refractive index. The surface of the inorganic filler is preferably subjected to a silane coupling treatment or a titanium coupling treatment, and a surface treatment agent having a functional group capable of reacting with a binder species on the filler surface is preferably used.
The amount of these inorganic fillers added is preferably 10 to 90% of the total mass of the high refractive index layer, more preferably 20 to 80%, and particularly preferably 30 to 70%.
In addition, since such a filler has a particle size sufficiently smaller than the wavelength of light, scattering does not occur, and a dispersion in which the filler is dispersed in a binder polymer behaves as an optically uniform substance.

高屈折率層のバインダーおよび無機フィラーの混合物のバルクの屈折率は、1.48〜2.00であることが好ましく、より好ましくは1.50〜1.80である。屈折率を上記範囲とするには、バインダー及び無機フィラーの種類及び量割合を適宜選択すればよい。どのように選択するかは、予め実験的に容易に知ることができる。   The bulk refractive index of the mixture of the binder and inorganic filler of the high refractive index layer is preferably 1.48 to 2.00, more preferably 1.50 to 1.80. In order to make the refractive index within the above range, the kind and amount ratio of the binder and the inorganic filler may be appropriately selected. How to select can be easily known experimentally in advance.

反射防止フィルムには、高屈折率層よりも屈折率が低く、支持体より屈折率が高い、中屈折率層を設けることも好ましく、中屈折率層は高屈折率層に用いられる高屈折率フィラーや高屈折率モノマーの使用量を調節することにより、高屈折率層と同様に形成することができる。   The antireflective film is preferably provided with a medium refractive index layer having a refractive index lower than that of the high refractive index layer and higher than that of the support. The medium refractive index layer is a high refractive index used for the high refractive index layer. It can be formed in the same manner as the high refractive index layer by adjusting the amount of the filler and the high refractive index monomer used.

(光拡散層)
光拡散層は、内部散乱による光散乱、又は表面散乱による光散乱と防眩性と、好ましくはフィルムの耐擦傷性を向上するためのハードコート性をフィルムに寄与する目的で形成される。
(Light diffusion layer)
The light diffusing layer is formed for the purpose of contributing to the film light scattering due to internal scattering, or light scattering due to surface scattering and antiglare properties, and preferably hard coat properties for improving the scratch resistance of the film.

光拡散性を形成する方法としては、特開平6−16851号記載のような表面に微細な凹凸を有するマット状の賦型フィルムをラミネートして形成する方法、特開2000−206317号記載のように電離放射線照射量の差による電離放射線硬化型樹脂の硬化収縮により形成する方法、特開2000−338310号記載のように乾燥にて透光性樹脂に対する良溶媒の重量比が減少することにより透光性微粒子および透光性樹脂とをゲル化させつつ固化させて塗膜表面に凹凸を形成する方法、特開2000−275404号記載のように外部からの圧力により表面凹凸を付与する方法などが知られており、これら公知の方法を利用することができる。
本発明で用いることができる光拡散層は好ましくはハードコート性を付与することのできるバインダー、光拡散性を付与するための透光性粒子、および溶媒を必須成分として含有し、透光性粒子自体の突起あるいは複数の粒子の集合体で形成される突起によって表面の凹凸を形成されるものであることが好ましい。
マット粒子の分散によって形成される光拡散層は、バインダーとバインダー中に分散された透光性粒子とからなる。防眩性を有する光拡散層は、防眩性とハードコート性を兼ね備えていることが好ましい。
As a method for forming light diffusibility, a method of laminating a mat-shaped shaping film having fine irregularities on the surface as described in JP-A-6-16851, as described in JP-A-2000-206317, etc. A method of forming by curing shrinkage of an ionizing radiation curable resin due to a difference in the amount of ionizing radiation, and as described in JP-A No. 2000-338310, when the weight ratio of a good solvent to a translucent resin decreases by drying. A method of solidifying the light-sensitive fine particles and the translucent resin while gelling to form unevenness on the coating film surface, a method of imparting surface unevenness by external pressure as described in JP-A-2000-275404, etc. These known methods can be used.
The light diffusing layer that can be used in the present invention preferably contains a binder capable of imparting hard coat properties, translucent particles for imparting light diffusibility, and a solvent as essential components. It is preferable that irregularities on the surface be formed by the protrusions of the protrusions themselves or protrusions formed by an aggregate of a plurality of particles.
The light diffusion layer formed by the dispersion of the matte particles is composed of a binder and light-transmitting particles dispersed in the binder. The light diffusion layer having antiglare properties preferably has both antiglare properties and hard coat properties.

上記マット粒子の具体例としては、例えばシリカ粒子、TiO粒子等の無機化合物の粒子;アクリル粒子、架橋アクリル粒子、ポリスチレン粒子、架橋スチレン粒子、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子等の樹脂粒子が好ましく挙げられる。なかでも架橋スチレン粒子、架橋アクリル粒子、シリカ粒子が好ましい。
マット粒子の形状は、球形あるいは不定形のいずれも使用できる。
As specific examples of the mat particles, inorganic particles such as silica particles and TiO 2 particles; resin particles such as acrylic particles, crosslinked acrylic particles, polystyrene particles, crosslinked styrene particles, melamine resin particles, and benzoguanamine resin particles are preferable. Can be mentioned. Of these, crosslinked styrene particles, crosslinked acrylic particles, and silica particles are preferred.
The shape of the mat particles can be either spherical or irregular.

マット粒子の粒度分布はコールターカウンター法により測定し、測定された分布を粒子数分布に換算する。   The particle size distribution of the matte particles is measured by a Coulter counter method, and the measured distribution is converted into a particle number distribution.

これらの粒子の中から選ばれた各透光性粒子の屈折率にあわせて透光性樹脂の屈折率を調整することにより、本発明の内部ヘイズ、表面ヘイズを達成することができる。具体的には、本発明の光拡散層に好ましく用いられる3官能以上の(メタ)アクリレートモノマーを主成分としてなる透光性樹脂(硬化後の屈折率が1.55〜1.70)と、スチレン含率50〜100質量%である架橋ポリ(メタ)アクリレート重合体からなる透光性粒子および/またはベンゾグアナミン粒子との組合せが好ましく、特に前記透光性樹脂とスチレン含率50〜100質量%である架橋ポリ(スチレン−アクリレート)共重合体からなる透光性粒子(屈折率が1.54〜1.59)との組合せが特に好ましい。   The internal haze and surface haze of the present invention can be achieved by adjusting the refractive index of the translucent resin in accordance with the refractive index of each translucent particle selected from these particles. Specifically, a translucent resin (having a refractive index after curing of 1.55 to 1.70) mainly composed of a tri- or higher functional (meth) acrylate monomer preferably used in the light diffusion layer of the present invention, A combination of translucent particles and / or benzoguanamine particles composed of a crosslinked poly (meth) acrylate polymer having a styrene content of 50 to 100% by mass is preferred, and in particular, the translucent resin and styrene content of 50 to 100% by mass. A combination with translucent particles (having a refractive index of 1.54 to 1.59) made of a crosslinked poly (styrene-acrylate) copolymer is particularly preferred.

透光性粒子は、形成された光拡散層中に、光拡散層全固形分中に3〜30質量%含有されるように配合されることが好ましい。より好ましくは5〜20質量%である。3質量%未満であると、防眩性が不足し、30質量%を超えると、画像ボケや表面の白濁やギラツキ等の問題が生じる。
また、透光性粒子の密度は、好ましくは10〜1000mg/m2、より好ましくは100〜700mg/m2である。
The translucent particles are preferably blended in the formed light diffusion layer so as to be contained in an amount of 3 to 30% by mass in the total solid content of the light diffusion layer. More preferably, it is 5-20 mass%. When it is less than 3% by mass, the antiglare property is insufficient, and when it exceeds 30% by mass, problems such as image blur, surface turbidity and glare occur.
Moreover, the density of the translucent particles is preferably 10 to 1000 mg / m 2 , more preferably 100 to 700 mg / m 2 .

また、透光性樹脂の屈折率と透光性粒子の屈折率の差の絶対値が0.04以下が好ましい。透光性樹脂の屈折率と透光性粒子の屈折率の差の絶対値は好ましくは0.001〜0.030であり、より好ましくは0.001〜0.020、更に好ましくは0.001〜0.015である。この差が0.040を超えると、フィルム文字ボケ、暗室コントラストの低下、表面の白濁等の問題が生じる。
ここで、前記透光性樹脂の屈折率は、アッベ屈折計で直接測定するか、分光反射スペクトルや分光エリプソメトリーを測定するなどして定量評価できる。前記透光性粒子の屈折率は、屈折率の異なる2種類の溶媒の混合比を変化させて屈折率を変化させた溶媒中に透光性粒子を等量分散して濁度を測定し、濁度が極小になった時の溶媒の屈折率をアッベ屈折計で測定することで測定される。
Further, the absolute value of the difference between the refractive index of the translucent resin and the refractive index of the translucent particles is preferably 0.04 or less. The absolute value of the difference between the refractive index of the translucent resin and the refractive index of the translucent particles is preferably 0.001 to 0.030, more preferably 0.001 to 0.020, and still more preferably 0.001. ~ 0.015. When this difference exceeds 0.040, problems such as film character blur, a decrease in dark room contrast, and white turbidity of the surface occur.
Here, the refractive index of the translucent resin can be quantitatively evaluated by directly measuring the refractive index with an Abbe refractometer or by measuring a spectral reflection spectrum or a spectral ellipsometry. The refractive index of the light-transmitting particles is measured by measuring the turbidity by equally dispersing the light-transmitting particles in the solvent in which the refractive index is changed by changing the mixing ratio of two kinds of solvents having different refractive indexes. It is measured by measuring the refractive index of the solvent when the turbidity is minimized with an Abbe refractometer.

また、粒子径の異なる2種以上のマット粒子を併用して用いてもよい。より大きな粒子径のマット粒子で防眩性を付与し、より小さな粒子径のマット粒子で別の光学特性を付与することが可能である。例えば、133ppi以上の高精細ディスプレイに防眩性反射防止フィルムを貼り付けた場合に、「ギラツキ」と呼ばれる表示画像品位上の不具合が発生する場合がある。「ギラツキ」は、防眩性反射防止防止フィルム表面に存在する凹凸により、画素が拡大もしくは縮小され、輝度の均一性を失うことに由来するが、防眩性を付与するマット粒子よりも小さな粒子径で、バインダーの屈折率と異なるマット粒子を併用することにより大きく改善することができる。   Two or more kinds of mat particles having different particle diameters may be used in combination. It is possible to impart anti-glare properties with mat particles having a larger particle size and to impart other optical characteristics with mat particles having a smaller particle size. For example, when an anti-glare antireflection film is attached to a high-definition display of 133 ppi or higher, a problem in display image quality called “glare” may occur. “Glitter” is derived from the fact that pixels are enlarged or reduced due to unevenness present on the surface of the antiglare and antireflection antireflection film, resulting in loss of luminance uniformity, but particles smaller than mat particles that impart antiglare properties. It can be greatly improved by using mat particles having a diameter different from that of the binder.

光拡散層の膜厚は、1〜10μmが好ましく、1.2〜8μmがより好ましい。薄すぎるとハード性が不足し、厚すぎるとカールや脆性が悪化して加工適性が低下する場合があるので、前記範囲内とするのが好ましい。   The film thickness of the light diffusion layer is preferably 1 to 10 μm, more preferably 1.2 to 8 μm. If it is too thin, the hard property is insufficient, and if it is too thick, curling and brittleness may be deteriorated and workability may be lowered.

一方、光拡散層の中心線平均粗さ(Ra)を0.05〜0.40μmの範囲が好ましい。0.40μmを超えると、ギラツキや外光が反射した際の表面の白化等の問題が発生する。また、透過画像鮮明度の値は、5〜60%とするのが好ましい。   On the other hand, the center line average roughness (Ra) of the light diffusion layer is preferably in the range of 0.05 to 0.40 μm. If it exceeds 0.40 μm, problems such as glare and whitening of the surface when external light is reflected occur. Further, it is preferable that the value of the transmitted image definition is 5 to 60%.

光拡散層の強度は、鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。   The strength of the light diffusion layer is preferably H or higher, more preferably 2H or higher, and most preferably 3H or higher in the pencil hardness test.

(ハードコート層)
本発明のフィルムには、フィルムの物理的強度を付与するために、防眩層に加えてハードコート層を設けることができる。
好ましくは、その上に低屈折率層が設けられ、更に好ましくはハードコート層と低屈折率層の間に中屈折率層、高屈折率層が設けられ、反射防止フィルムを構成する。
ハードコート層は、二層以上の積層から構成されてもよい。
(Hard coat layer)
The film of the present invention can be provided with a hard coat layer in addition to the antiglare layer in order to impart the physical strength of the film.
Preferably, a low refractive index layer is provided thereon, and more preferably, an intermediate refractive index layer and a high refractive index layer are provided between the hard coat layer and the low refractive index layer to constitute an antireflection film.
The hard coat layer may be composed of two or more layers.

本発明におけるハードコート層の屈折率は、反射防止性のフィルムを得るための光学設計から、屈折率が1.48〜2.00の範囲にあることが好ましく、より好ましくは1.52〜1.90であり、更に好ましくは1.55〜1.80である。本発明では、ハードコート層の上に低屈折率層が少なくとも1層あるので、屈折率がこの範囲より小さ過ぎると反射防止性が低下し、大き過ぎると反射光の色味が強くなる傾向がある。   The refractive index of the hard coat layer in the present invention is preferably in the range of 1.48 to 2.00, more preferably 1.52 to 1, from the optical design for obtaining an antireflection film. .90, more preferably 1.55 to 1.80. In the present invention, since there is at least one low refractive index layer on the hard coat layer, if the refractive index is too small, the antireflection property is lowered, and if it is too large, the color of the reflected light tends to be strong. is there.

ハードコート層の膜厚は、フィルムに充分な耐久性、耐衝撃性を付与する観点から、ハードコート層の厚さは通常0.5μm〜50μm程度とし、好ましくは1μm〜20μm、さらに好ましくは2μm〜10μm、最も好ましくは3μm〜7μmである。
また、JIS K5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。
From the viewpoint of imparting sufficient durability and impact resistance to the film, the thickness of the hard coat layer is usually about 0.5 μm to 50 μm, preferably 1 μm to 20 μm, more preferably 2 μm. 10 μm, most preferably 3 μm to 7 μm.
Further, in the Taber test according to JIS K5400, the smaller the wear amount of the test piece before and after the test, the better.

ハードコート層は、電離放射線硬化性化合物の架橋反応、又は、重合反応により形成されることが好ましい。例えば、電離放射線硬化性の多官能モノマーや多官能オリゴマーを含む塗布組成物を透明支持体上に塗布し、多官能モノマーや多官能オリゴマーを架橋反応、又は、重合反応させることにより形成することができる。
電離放射線硬化性の多官能モノマーや多官能オリゴマーの官能基としては、光、電子線、放射線重合性のものが好ましく、中でも光重合性官能基が好ましい。
光重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の不飽和の重合性官能基等が挙げられ、中でも、(メタ)アクリロイル基が好ましい。
The hard coat layer is preferably formed by a crosslinking reaction or a polymerization reaction of an ionizing radiation curable compound. For example, it may be formed by applying a coating composition containing an ionizing radiation-curable polyfunctional monomer or polyfunctional oligomer on a transparent support and subjecting the polyfunctional monomer or polyfunctional oligomer to a crosslinking reaction or a polymerization reaction. it can.
The functional group of the ionizing radiation-curable polyfunctional monomer or polyfunctional oligomer is preferably a light, electron beam, or radiation polymerizable group, and among them, a photopolymerizable functional group is preferable.
Examples of the photopolymerizable functional group include unsaturated polymerizable functional groups such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group. Among them, a (meth) acryloyl group is preferable.

ハードコート層には、内部散乱性付与の目的で、平均粒径が1.0〜10.0μm、好ましくは1.5〜7.0μmのマット粒子、例えば無機化合物の粒子または樹脂粒子を含有してもよい。   The hard coat layer contains matte particles having an average particle diameter of 1.0 to 10.0 μm, preferably 1.5 to 7.0 μm, such as inorganic compound particles or resin particles, for the purpose of imparting internal scattering properties. May be.

ハードコート層のバインダーには、ハードコート層の屈折率を制御する目的で、高屈折率モノマーまたは無機粒子、或いは両者を加えることができる。無機粒子には屈折率を制御する効果に加えて、架橋反応による硬化収縮を抑える効果もある。本発明では、ハードコート層形成後において、前記多官能モノマーおよび/又は高屈折率モノマー等が重合して生成した重合体、その中に分散された無機粒子を含んでバインダーと称する。   For the purpose of controlling the refractive index of the hard coat layer, a high refractive index monomer, inorganic particles, or both can be added to the binder of the hard coat layer. In addition to the effect of controlling the refractive index, the inorganic particles also have the effect of suppressing cure shrinkage due to the crosslinking reaction. In the present invention, a polymer formed by polymerizing the polyfunctional monomer and / or the high refractive index monomer after the hard coat layer is formed, and the inorganic particles dispersed therein are referred to as a binder.

画像の鮮明性を維持する目的では、表面の凹凸形状を調整することに加えて、透過画像鮮明度を調整することが好ましい。クリアな反射防止フィルムの透過画像鮮明度は60%以上が好ましい。透過画像鮮明度は、一般にフィルムを透過して映す画像の呆け具合を示す指標であり、この値が大きい程、フィルムを通して見る画像が鮮明で良好であることを示す。透過画像鮮明度は好ましくは70%以上であり、更に好ましくは80%以上である。   In order to maintain the sharpness of the image, it is preferable to adjust the clarity of the transmitted image in addition to adjusting the uneven shape of the surface. The clearness of the transmitted image of the clear antireflection film is preferably 60% or more. The transmitted image clarity is generally an index indicating the degree of blurring of an image reflected through a film, and the larger this value, the clearer and better the image viewed through the film. The transmitted image definition is preferably 70% or more, and more preferably 80% or more.

視野角拡大機能を付与する為に、光拡散層のゴニオフォトメータで測定される散乱光の強度分布(散乱光プロファイル)を調整することが重要である。例えば、液晶ディスプレイの場合、バックライトから出射された光が視認側の偏光板表面に設置された反射防止フィルムで拡散されればされるほど視野角特性が良くなる。しかし、あまり拡散されすぎると、後方散乱が大きくなり、正面輝度が減少する、あるいは、散乱が大きすぎて画像鮮明性が劣化する等の問題が生じる。従って、ハードコート層の散乱光強度分布をある範囲に制御することが必要となる。所望の視認特性を達成するには、散乱光プロファイルの出射角0°の光強度に対して、特に視野角改良効果と相関ある出射角30°の散乱光強度が0.01%〜0.2%であることが好ましく、0.02%〜0.15%が更に好ましく、0.02%〜0.1%が最も好ましい。
散乱光プロファイルは、ハードコート層を設けた反射防止フィルムについて、(株)村上色彩技術研究所製の自動変角光度計GP−5型を用いて測定できる。
In order to provide the viewing angle expansion function, it is important to adjust the intensity distribution (scattered light profile) of the scattered light measured by the goniophotometer of the light diffusion layer. For example, in the case of a liquid crystal display, the viewing angle characteristics are improved as the light emitted from the backlight is diffused by the antireflection film installed on the surface of the polarizing plate on the viewing side. However, if it is diffused too much, backscattering will increase and the front luminance will decrease, or the scattering will be too great and the image clarity will deteriorate. Therefore, it is necessary to control the scattered light intensity distribution of the hard coat layer within a certain range. In order to achieve the desired visual characteristics, the scattered light intensity at an output angle of 30 °, which correlates with the effect of improving the viewing angle in particular, is 0.01% to 0.2% with respect to the light intensity at the output angle of 0 ° of the scattered light profile. %, 0.02% to 0.15% is more preferable, and 0.02% to 0.1% is most preferable.
The scattered light profile can be measured using an automatic goniophotometer GP-5 manufactured by Murakami Color Research Laboratory Co., Ltd. for an antireflection film provided with a hard coat layer.

ハードコート層に内部散乱性を付与する方法、あるいは所望の散乱プロファイルを付与する方法としては、バインダー(屈折率を調整しうる上記無機粒子などを含む)中に、バインダーと屈折率の異なる透光性粒子を含有させることが好ましい。バインダーと透光性粒子との屈折率差としては、0.02〜0.20であることが好ましい。上記範囲の屈折率の差は、適度な光拡散効果が生じると共に、過度な光拡散効果によりフィルム全体が白化する心配もない。なお、前記屈折率差は、0.03〜0.15がより好ましく、0.04〜0.13が最も好ましい。
バインダーと透光性粒子の組み合わせは、上記屈折率差を調整する目的で、適宜選択できる。
As a method of imparting internal scattering properties to the hard coat layer or a method of imparting a desired scattering profile, a light transmitting material having a refractive index different from that of the binder in a binder (including the above-described inorganic particles capable of adjusting the refractive index) is used. It is preferable to contain conductive particles. The refractive index difference between the binder and the translucent particles is preferably 0.02 to 0.20. The difference in refractive index within the above range causes an appropriate light diffusion effect and does not cause the entire film to be whitened due to an excessive light diffusion effect. The refractive index difference is more preferably 0.03 to 0.15, and most preferably 0.04 to 0.13.
The combination of the binder and the translucent particles can be appropriately selected for the purpose of adjusting the refractive index difference.

透光性粒子の粒子径は、0.5μm〜5μmであることが好ましい。粒径が上記範囲であれば、光拡散効果が適度であり、後方散乱が小さく光の利用効率が十分となると共に、表面の凹凸が小さく白呆けやギラツキ現象が殆ど発生しない。なお、前記透光性粒子の粒径は、0.7μm〜4.5μmが好ましく、1.0μm〜4.0μmが最も好ましい。   The particle diameter of the translucent particles is preferably 0.5 μm to 5 μm. If the particle size is in the above range, the light diffusion effect is moderate, the backscattering is small, the light utilization efficiency is sufficient, the surface irregularities are small, and white blurring and glare phenomenon hardly occur. The particle size of the translucent particles is preferably 0.7 μm to 4.5 μm, and most preferably 1.0 μm to 4.0 μm.

透光性粒子は有機粒子であっても、無機粒子であってもよい。粒径にばらつきがないほど、散乱特性にばらつきが少なくなり、ヘイズ値の設計が容易となる。透光性微粒子としては、プラスチックビーズが好適であり、特に透明度が高く、バインダーとの屈折率差が前述のような数値になるものが好ましい。
有機粒子としては、ポリメチルメタクリレートビーズ(屈折率1.49)、アクリル−スチレン共重合体ビーズ(屈折率1.54)、メラミンビーズ(屈折率1.57)、ポリカーボネートビーズ(屈折率1.57)、スチレンビーズ(屈折率1.60)、架橋ポリスチレンビーズ(屈折率1.61)、ポリ塩化ビニルビーズ(屈折率1.60)、ベンゾグアナミン−メラミンホルムアルデヒドビーズ(屈折率1.68)等が用いられる。
無機粒子としては、シリカビーズ(屈折率1.44)、アルミナビーズ(屈折率1.63)等が用いられる。
The translucent particles may be organic particles or inorganic particles. As the particle size is not more varied, the scattering characteristics are less varied and the design of the haze value is facilitated. As the translucent fine particles, plastic beads are preferable, and those having particularly high transparency and a difference in refractive index from the binder as described above are preferable.
Organic particles include polymethyl methacrylate beads (refractive index 1.49), acrylic-styrene copolymer beads (refractive index 1.54), melamine beads (refractive index 1.57), polycarbonate beads (refractive index 1.57). ), Styrene beads (refractive index 1.60), cross-linked polystyrene beads (refractive index 1.61), polyvinyl chloride beads (refractive index 1.60), benzoguanamine-melamine formaldehyde beads (refractive index 1.68), etc. It is done.
As the inorganic particles, silica beads (refractive index 1.44), alumina beads (refractive index 1.63), and the like are used.

透光性粒子の粒径は、前述のように0.5〜5μmのものを適宜選択して用いるとよく、2種類以上混合して用いてもよく、バインダー100質量部に対して5〜30質量部含有させるとよい。   As described above, the particle size of the translucent particles may be appropriately selected from 0.5 to 5 μm, and may be used by mixing two or more kinds. It is good to contain a mass part.

上記のような透光性粒子の場合には、バインダー中で透光性粒子が沈降し易いので、沈降防止のためにシリカ等の無機フィラーを添加してもよい。なお、無機フィラーは添加量が増す程、透光性微粒子の沈降防止に有効であるが、塗膜の透明性に悪影響を与える。従って、好ましくは、粒径0.5μm以下の無機フィラーを、バインダーに対して塗膜の透明性を損なわない程度に、0.1質量%未満程度含有させるとよい。   In the case of the above translucent particles, the translucent particles easily settle in the binder, and therefore an inorganic filler such as silica may be added to prevent sedimentation. As the amount of the inorganic filler added increases, it is more effective in preventing the sedimentation of the translucent fine particles, but adversely affects the transparency of the coating film. Therefore, preferably, an inorganic filler having a particle size of 0.5 μm or less is contained in an amount of less than 0.1% by mass so as not to impair the transparency of the coating film with respect to the binder.

[その他の層]
反射防止フィルムには、さらに、ハードコート層、防湿層、帯電防止層、下塗り層や保護層を設けてもよい。ハードコート層は、透明支持体に耐傷性を付与するために設ける。ハードコート層は、透明支持体とその上の層との接着を強化する機能も有する。ハードコート層は、アクリル系ポリマー、ウレタン系ポリマー、エポキシ系ポリマー、シリコン系ポリマーやシリカ系化合物を用いて形成することができる。顔料をハードコート層に添加してよい。アクリル系ポリマーは、多官能アクリレートモノマー(例、ポリオールアクリレート、ポリエステルアクリレート、ウレタンアクリレート、エポキシアクリレート)の重合反応により合成することが好ましい。ウレタン系ポリマーの例には、メラミンポリウレタンが含まれる。シリコン系ポリマーとしては、シラン化合物(例、テトラアルコキシシラン、アルキルトリアルコキシシラン)と反応性基(例、エポキシ、メタクリル)を有するシランカップリング剤との共加水分解物が好ましく用いられる。二種類以上のポリマーを組み合わせて用いてもよい。シリカ系化合物としては、コロイダルシリカが好ましく用いられる。ハードコート層の強度は、1kg荷重の鉛筆硬度で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。透明支持体の上には、ハードコート層に加えて、接着層、シールド層、滑り層や帯電防止層を設けてもよい。シールド層は、電磁波や赤外線を遮蔽するために設けられる。
[Other layers]
The antireflection film may further be provided with a hard coat layer, a moisture proof layer, an antistatic layer, an undercoat layer or a protective layer. The hard coat layer is provided for imparting scratch resistance to the transparent support. The hard coat layer also has a function of strengthening the adhesion between the transparent support and the layer thereon. The hard coat layer can be formed using an acrylic polymer, a urethane polymer, an epoxy polymer, a silicon polymer, or a silica compound. A pigment may be added to the hard coat layer. The acrylic polymer is preferably synthesized by a polymerization reaction of a polyfunctional acrylate monomer (eg, polyol acrylate, polyester acrylate, urethane acrylate, epoxy acrylate). Examples of the urethane polymer include melamine polyurethane. As the silicon-based polymer, a cohydrolyzate of a silane compound (eg, tetraalkoxysilane, alkyltrialkoxysilane) and a silane coupling agent having a reactive group (eg, epoxy, methacryl) is preferably used. Two or more kinds of polymers may be used in combination. As the silica compound, colloidal silica is preferably used. The strength of the hard coat layer is preferably a pencil hardness of 1 kg load, preferably H or higher, more preferably 2H or higher, and most preferably 3H or higher. On the transparent support, in addition to the hard coat layer, an adhesive layer, a shield layer, a sliding layer and an antistatic layer may be provided. The shield layer is provided to shield electromagnetic waves and infrared rays.

[支持体]
本発明の反射防止フィルムに用いられる透明支持体としては、プラスチックフィルムを用いることが好ましい。プラスチックフィルムを形成するポリマーとしては、セルロースエステル(例、トリアセチルセルロース、ジアセチルセルロース、代表的には富士写真フイルム社製TAC−TD80U,TD80UFなど)、ポリアミド、ポリカーボネート、ポリエステル(例、ポリエチレンテレフタレート、ポリエチレンナフタレート)、ポリスチレン、ポリオレフィン、ノルボルネン系樹脂(アートン:商品名、JSR社製)、非晶質ポリオレフィン(ゼオネックス:商品名、日本ゼオン社製)、などが挙げられる。このうちトリアセチルセルロース、ポリエチレンテレフタレート、ポリエチレンナフタレート、が好ましく、特にトリアセチルセルロースが好ましい。また、ジクロロメタン等のハロゲン化炭化水素を実質的に含まないセルロースアシレートフィルムおよびその製造法については発明協会公開技報(公技番号2001−1745、2001年3月15日発行、以下公開技報2001−1745号と略す)に記載されており、ここに記載されたセルロースアシレートも本発明に好ましく用いることができる。
[Support]
As the transparent support used in the antireflection film of the present invention, it is preferable to use a plastic film. Examples of polymers forming the plastic film include cellulose esters (eg, triacetyl cellulose, diacetyl cellulose, typically TAC-TD80U, TD80UF, etc. manufactured by Fuji Photo Film), polyamides, polycarbonates, polyesters (eg, polyethylene terephthalate, polyethylene). Naphthalate), polystyrene, polyolefin, norbornene-based resin (Arton: trade name, manufactured by JSR Corporation), amorphous polyolefin (ZEONEX: trade name, manufactured by Nippon Zeon Corporation), and the like. Of these, triacetyl cellulose, polyethylene terephthalate, and polyethylene naphthalate are preferable, and triacetyl cellulose is particularly preferable. In addition, the cellulose acylate film substantially free of halogenated hydrocarbons such as dichloromethane and the process for producing the same are disclosed in the JIII Journal of Technical Disclosure (Publication No. 2001-1745, published on March 15, 2001; The cellulose acylate described herein can also be preferably used in the present invention.

[塗膜形成方法]
本発明の反射防止フィルムは以下の方法で形成することができるが、この方法に制限されない。
まず、各層を形成するための成分を含有した塗布液が調製される。塗布液を、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やエクストルージョンコート法(米国特許2681294号明細書参照)により透明支持体上に塗布し、加熱・乾燥する。これらの塗布方式のうち、グラビアコート法で塗布すると低屈折率層の各層のような塗布量の少ない塗布液を膜厚均一性高く塗布することができ、好ましい。グラビアコート法の中でもマイクログラビア法は膜厚均一性が高く、より好ましい。
また、ダイコート法を用いても塗布量の少ない塗布液を膜厚均一性高く塗布することができ、さらにダイコート法は前計量方式のため膜厚制御が比較的容易であり、さらに塗布部における溶剤の蒸散が少ないため、好ましい。湿潤膜厚が数十ミクロン以下の薄層塗布液を、例えばプラスチックフィルムに特定のスロットダイや塗布方法を用いて塗布する方法として、特開2003−200097号、同2003−211052号、同2003−230862号、同2003−236434号、同2003−236451号、同2003−245595号、同2003−251260号、同2003−260400号、同2003−260402号、同2003−275652号、同2004−141806号等の各公報に記載された方法も好ましい。二層以上を同時に塗布してもよい。同時塗布の方法については、米国特許2761791号、同2941898号、同3508947号、同3526528号の各明細書および原崎勇次著、コーティング工学、253頁、朝倉書店(1973)に記載がある。
[Coating film forming method]
The antireflection film of the present invention can be formed by the following method, but is not limited to this method.
First, a coating solution containing components for forming each layer is prepared. The coating solution is applied onto a transparent support by dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating or extrusion coating (see US Pat. No. 2,681,294). Heat and dry. Of these coating methods, a gravure coating method is preferable because a coating solution with a small coating amount such as each layer of the low refractive index layer can be applied with high film thickness uniformity. Among the gravure coating methods, the micro gravure method has a high film thickness uniformity and is more preferable.
In addition, a coating solution with a small coating amount can be applied with high film thickness uniformity even by using a die coating method. Further, since the die coating method is a pre-measuring method, film thickness control is relatively easy, and the solvent in the coating part Is preferred because of less transpiration. As a method for applying a thin layer coating solution having a wet film thickness of several tens of microns or less to a plastic film using a specific slot die or a coating method, for example, Japanese Patent Application Laid-Open Nos. 2003-200097, 2003-211052, and 2003 No. 230862, No. 2003-236434, No. 2003-236451, No. 2003-245595, No. 2003-251260, No. 2003-260400, No. 2003-260402, No. 2003-275562, No. 2004-141806 The methods described in the above publications are also preferable. Two or more layers may be applied simultaneously. The method of simultaneous application is described in US Pat. Nos. 2,761,791, 2,941,898, 3,508,947, and 3,526,528 and Yuji Harasaki, Coating Engineering, page 253, Asakura Shoten (1973).

上記のようにして形成された反射防止フィルムは、ヘイズ値が10%以下であることが好ましく、より好ましくは5%以下で、更に好ましくは3%以下であり、そして450nmから650nmの平均反射率が3.0%以下であることが好ましく、より好ましくは2.5%以下である。反射防止フィルムが上記範囲のヘイズ値及び平均反射率であることにより、透過画像の劣化を伴なわずに、反射防止性が得られる。   The antireflection film formed as described above preferably has a haze value of 10% or less, more preferably 5% or less, still more preferably 3% or less, and an average reflectance of 450 nm to 650 nm. Is preferably 3.0% or less, more preferably 2.5% or less. When the antireflection film has a haze value and an average reflectance in the above range, antireflection properties can be obtained without accompanying deterioration of the transmission image.

[鹸化処理]
反射防止フィルムを液晶表示装置に用いる場合、片面に粘着層を設ける等してディスプレイの最表面に配置する。反射防止フィルムの透明支持体がトリアセチルセルロースの場合は、偏光板の偏光層を保護する保護フィルムとしてトリアセチルセルロースが用いられるため、反射防止フィルムをそのまま保護フィルムに用いることがコストの上では好ましい。
[Saponification]
When the antireflection film is used in a liquid crystal display device, it is disposed on the outermost surface of the display by providing an adhesive layer on one side. When the transparent support of the antireflection film is triacetylcellulose, since triacetylcellulose is used as a protective film for protecting the polarizing layer of the polarizing plate, it is preferable in terms of cost to use the antireflection film as it is for the protective film. .

反射防止フィルムを片面に粘着層を設ける等してディスプレイの最表面に配置したり、そのまま偏光板用保護フィルムとして使用される場合には、十分に接着させるためには透明支持体上に含フッ素ポリマーを主体とする最外層を形成した後、鹸化処理を実施することが好ましい。鹸化処理は、公知の手法、例えば、アルカリ液の中に該フィルムを適切な時間浸漬して実施される。アルカリ液に浸漬した後は、該フィルムの中にアルカリ成分が残留しないように、水で十分に水洗したり、希薄な酸に浸漬してアルカリ成分を中和することが好ましい。
鹸化処理することにより、最外層を有する側とは反対側の透明支持体の表面が親水化される。
親水化された表面は、ポリビニルアルコールを主成分とする偏光膜との接着性を改良するのに特に有効である。また、親水化された表面は、空気中の塵埃が付着しにくくなるため、偏光膜と接着させる際に偏光膜と反射防止フィルムの間に塵埃が入りにくく、塵埃による点欠陥を防止するのに有効である。
鹸化処理は、最外層を有する側とは反対側の透明支持体の表面の水に対する接触角が40゜以下になるように実施することが好ましい。更に好ましくは30゜以下、特に好ましくは20゜以下である。
When an anti-reflection film is placed on the outermost surface of the display by providing an adhesive layer on one side, or when used as it is as a protective film for a polarizing plate, a fluorine-containing film is used on the transparent support to ensure sufficient adhesion. It is preferable to perform a saponification treatment after forming the outermost layer mainly composed of a polymer. The saponification treatment is performed by a known method, for example, by immersing the film in an alkali solution for an appropriate time. After being immersed in the alkaline solution, it is preferable to sufficiently wash with water or neutralize the alkaline component by dipping in a dilute acid so that the alkaline component does not remain in the film.
By saponification treatment, the surface of the transparent support opposite to the side having the outermost layer is hydrophilized.
The hydrophilized surface is particularly effective for improving the adhesion with a polarizing film containing polyvinyl alcohol as a main component. In addition, the hydrophilic surface makes it difficult for dust in the air to adhere to it, so that it is difficult for dust to enter between the polarizing film and the antireflection film when adhered to the polarizing film, and this prevents point defects caused by dust. It is valid.
The saponification treatment is preferably carried out so that the contact angle of water on the surface of the transparent support opposite to the side having the outermost layer is 40 ° or less. More preferably, it is 30 ° or less, particularly preferably 20 ° or less.

アルカリ鹸化処理の具体的手段としては、以下の(1)及び(2)の2つの手段から選択することができる。汎用のトリアセチルセルロースフィルムと同一の工程で処理できる点で(1)が優れているが、低屈折率層面まで鹸化処理されるため、表面がアルカリ加水分解されて膜が劣化する点、鹸化処理液が残ると汚れになる点が問題になり得る。その場合には、特別な工程となるが、(2)が優れる。
(1)透明支持体上に低屈折率層を形成後に、アルカリ液中に少なくとも1回浸漬することで、該フィルムの裏面を鹸化処理する。
(2)透明支持体上に低屈折率層を形成する前または後に、アルカリ液を該反射防止フィルムの低屈折率層を形成する面とは反対側の面に塗布し、加熱、水洗および/または中和することで、該フィルムの裏面だけを鹸化処理する。
Specific means for the alkali saponification treatment can be selected from the following two means (1) and (2). (1) is superior in that it can be processed in the same process as a general-purpose triacetylcellulose film, but since the saponification treatment is performed up to the surface of the low refractive index layer, the surface is alkali-hydrolyzed and the film deteriorates. The point that it becomes dirty when the liquid remains can be a problem. In that case, although it becomes a special process, (2) is excellent.
(1) After forming the low refractive index layer on the transparent support, the back surface of the film is saponified by immersing it in an alkaline solution at least once.
(2) Before or after the formation of the low refractive index layer on the transparent support, an alkaline liquid is applied to the surface of the antireflection film opposite to the surface on which the low refractive index layer is formed, followed by heating, washing with water and / or Alternatively, only the back surface of the film is saponified by neutralization.

本発明においては、以下に述べる条件を標準の鹸化条件とするが、偏光板製造工程において一般的に連続処理で鹸化され偏光板に加工された状態の偏光板も本発明の「鹸化後の反射防止フィルムを有する偏光板」と定義する。
鹸化標準条件
反射防止フィルムを以下の工程で処理・乾燥したものとする。
(1)アルカリ浴
1.5mol/L 水酸化ナトリウム水溶液
55℃−120秒
(2)第1水洗浴
水道水
60秒
(3)中和浴
0.05mol/L 硫酸
30℃−20秒
(4)第2水洗浴
水道水
60秒
(5)乾燥
120℃
60秒
In the present invention, the conditions described below are standard saponification conditions. In general, a polarizing plate in a state of being saponified and processed into a polarizing plate by a continuous treatment in the polarizing plate manufacturing process is also referred to as “reflection after saponification” of the present invention. It is defined as “a polarizing plate having a prevention film”.
Saponification standard conditions It is assumed that the antireflection film is treated and dried in the following steps.
(1) Alkaline bath 1.5 mol / L sodium hydroxide aqueous solution 55 ° C.-120 seconds (2) First washing bath Tap water 60 seconds (3) Neutralization bath 0.05 mol / L sulfuric acid 30 ° C.-20 seconds (4) Second washing bath Tap water 60 seconds (5) Dry 120 ° C
60 seconds

[偏光板]
偏光板は、偏光膜を両面から挟む2枚の保護フィルムで主に構成される。本発明の反射防止フィルムは、偏光膜を両面から挟む2枚の保護フィルムのうち少なくとも1枚に用いられることが好ましい。本発明の反射防止フィルムが保護フィルムを兼ねることで、偏光板の製造コストを低減できる。また、本発明の反射防止フィルムを最表層に使用することにより、外光の映り込み等が防止され、耐傷性、防汚性等も優れた偏光板とすることができる。
偏光膜としては公知の偏光膜や、偏光膜の吸収軸が長手方向に平行でも垂直でもない長尺の偏光膜から切り出された偏光膜を用いてもよい。偏光膜の吸収軸が長手方向に平行でも垂直でもない長尺の偏光膜は以下の方法により作成される。
即ち、連続的に供給されるポリマーフィルムの両端を保持手段により保持しつつ張力を付与して延伸した偏光膜で、少なくともフィルム幅方向に1.1〜20.0倍に延伸し、フィルム両端の保持装置の長手方向進行速度差が3%以内であり、フィルム両端を保持する工程の出口におけるフィルムの進行方向と、フィルムの実質延伸方向のなす角が、20〜70度傾斜するようにフィルム進行方向を、フィルム両端を保持させた状態で屈曲させてなる延伸方法によって製造することができる。特に45度傾斜させたものが生産性の観点から好ましく用いられる。
[Polarizer]
The polarizing plate is mainly composed of two protective films that sandwich the polarizing film from both sides. The antireflection film of the present invention is preferably used for at least one of the two protective films sandwiching the polarizing film from both sides. Since the antireflection film of the present invention also serves as a protective film, the production cost of the polarizing plate can be reduced. Further, by using the antireflection film of the present invention as the outermost layer, reflection of external light and the like can be prevented, and a polarizing plate having excellent scratch resistance, antifouling property and the like can be obtained.
As the polarizing film, a known polarizing film or a polarizing film cut out from a long polarizing film whose absorption axis is neither parallel nor perpendicular to the longitudinal direction may be used. A long polarizing film whose absorption axis is neither parallel nor perpendicular to the longitudinal direction is produced by the following method.
That is, with a polarizing film stretched by applying tension while holding both ends of a continuously supplied polymer film by a holding means, stretched at least 1.1 to 20.0 times in the film width direction, The progress of the film is such that the difference between the moving speeds in the longitudinal direction of the holding device is within 3%, and the angle formed by the moving direction of the film at the exit of the step of holding both ends of the film and the substantial stretching direction of the film is inclined by 20 to 70 degrees. It can be produced by a stretching method in which the direction is bent while holding both ends of the film. In particular, those inclined by 45 degrees are preferably used from the viewpoint of productivity.

ポリマーフィルムの延伸方法については、特開2002−86554号公報の段落0020〜0030に詳しい記載がある。   The method for stretching the polymer film is described in detail in paragraphs 0020 to 0030 of JP-A-2002-86554.

[光学補償フィルム]
また、本発明の偏光板は、保護フィルムの一方を本発明の反射防止フィルムとし、他方を光学異方性層を有する光学補償フィルムとする形態も好ましい。
光学異方性層は、液晶表示装置の黒表示における液晶セル中の液晶化合物分子を補償するように設計することが好ましい。黒表示における液晶セル中の液晶化合物分子の配向状態は、液晶表示装置のモードにより異なる。この液晶セル中の液晶化合物分子の配向状態に関しては、IDW’00、FMC7−2、p.411〜414に記載されている。
光学異方性層の厚さは、0.1乃至10μmであることが好ましく、0.5乃至5μmであることがさらに好ましく、0.7乃至5μmであることが最も好ましい。ただし、液晶セルのモードによっては、高い光学的異方性を得るために、厚く(3乃至10μm)する場合がある。
[Optical compensation film]
In addition, the polarizing plate of the present invention preferably has a form in which one of the protective films is the antireflection film of the present invention and the other is an optical compensation film having an optically anisotropic layer.
The optically anisotropic layer is preferably designed so as to compensate for the liquid crystal compound molecules in the liquid crystal cell in the black display of the liquid crystal display device. The alignment state of the liquid crystal compound molecules in the liquid crystal cell in black display varies depending on the mode of the liquid crystal display device. Regarding the alignment state of the liquid crystal compound molecules in this liquid crystal cell, IDW'00, FMC7-2, p. 411-414.
The thickness of the optically anisotropic layer is preferably 0.1 to 10 μm, more preferably 0.5 to 5 μm, and most preferably 0.7 to 5 μm. However, depending on the mode of the liquid crystal cell, it may be thick (3 to 10 μm) in order to obtain high optical anisotropy.

(液晶性化合物)
光学異方性層に用いられる液晶化合物は、棒状液晶でも、ディスコティック液晶でも良く、またそれらが高分子液晶、もしくは低分子液晶、さらには、低分子液晶が架橋され液晶性を示さなくなったものも含む。最も好ましいのは、ディスコティック液晶である。
(Liquid crystal compound)
The liquid crystal compound used in the optically anisotropic layer may be a rod-like liquid crystal or a discotic liquid crystal, and these are high molecular liquid crystals or low molecular liquid crystals, and those in which low molecular liquid crystals are crosslinked and no longer exhibit liquid crystallinity. Including. Most preferred is a discotic liquid crystal.

棒状液晶の好ましい例としては、特開2000−304932号公報に記載のものがあげられる。
ディスコティック液晶(ディスコティック構造単位を有する化合物)の例としては、C.Destradeらの研究報告、Mol.Cryst.71巻、111頁(1981年)に記載されているベンゼン誘導体、C.Destradeらの研究報告、Mol.Cryst.122巻、141頁(1985年)、Physicslett,A,78巻、82頁(1990)に記載されているトルキセン誘導体、B.Kohneらの研究報告、Angew.Chem.96巻、70頁(1984年)に記載されたシクロヘキサン誘導体及びJ.M.Lehnらの研究報告、J.Chem.Commun.,1794頁(1985年)、J.Zhangらの研究報告、J.Am.Chem.Soc.116巻、2655頁(1994年)に記載されているアザクラウン系やフェニルアセチレン系マクロサイクルなどを挙げることができる。上記ディスコティック液晶は、一般的にこれらを分子中心の母核とし、直鎖のアルキル基やアルコキシ基、置換ベンゾイルオキシ基等がその直鎖として放射線状に置換された構造であり、液晶性を示す。ただし、分子自身が負の一軸
性を有し、一定の配向を付与できるものであれば上記記載に限定されるものではない。また、本発明において、円盤状化合物から形成したとは、最終的にできた物質が前記化合物である必要はなく、例えば、低分子ディスコティック液晶が熱、光等で反応する基を有しており、結果的に熱、光等で反応により重合または架橋し、高分子量化し液晶性を失ったものも含まれる。上記ディスコティック液晶の好ましい例は特開平8−50206号公報に記載のものが挙げられる。
Preferable examples of the rod-like liquid crystal include those described in JP 2000-304932A.
Examples of discotic liquid crystals (compounds having a discotic structural unit) include C.I. Destrade et al., Mol. Cryst. 71, 111 (1981), benzene derivatives described in C.I. Destrade et al., Mol. Cryst. 122, 141 (1985), Physicslett, A, 78, 82 (1990); Kohne et al., Angew. Chem. 96, page 70 (1984) and the cyclohexane derivatives described in J. Am. M.M. Lehn et al. Chem. Commun. , 1794 (1985), J. Am. Zhang et al., J. Am. Chem. Soc. 116, 2655 (1994), and azacrown and phenylacetylene macrocycles. The discotic liquid crystal generally has a structure in which these are used as a mother nucleus at the center of a molecule, and a linear alkyl group, an alkoxy group, a substituted benzoyloxy group, etc. are radially substituted as the linear chain. Show. However, the molecule itself is not limited to the above description as long as the molecule itself has negative uniaxiality and can give a certain orientation. Further, in the present invention, the term “formed from a discotic compound” does not require that the final substance is the above-mentioned compound. For example, a low molecular discotic liquid crystal has a group that reacts with heat, light, or the like. As a result, it may be polymerized or cross-linked by reaction with heat, light, etc., resulting in high molecular weight and loss of liquid crystallinity. Preferred examples of the discotic liquid crystal include those described in JP-A-8-50206.

上記光学異方性層は、一般にディスコティック化合物及び他の化合物(例、可塑剤、界面活性剤、ポリマー等)を溶剤に溶解した溶液を配向膜上に塗布し、乾燥し、次いでディスコティックネマチック相形成温度まで加熱し、その後配向状態(ディスコティックネマチック相)を維持して冷却することにより得られる。あるいは、上記光学異方性層は、ディスコティック化合物及び他の化合物(更に、例えば重合性モノマー、光重合開始剤)を溶剤に溶解した溶液を配向膜上に塗布し、乾燥し、次いでディスコティックネマチック相形成温度まで加熱したのち重合させ(UV光の照射等により)、さらに冷却することにより得られる。   The optically anisotropic layer is generally formed by applying a solution obtained by dissolving a discotic compound and other compounds (eg, plasticizer, surfactant, polymer, etc.) in a solvent onto the alignment film, drying, and then discotic nematic. It is obtained by heating to the phase formation temperature and then cooling while maintaining the orientation state (discotic nematic phase). Alternatively, the optically anisotropic layer is formed by applying a solution obtained by dissolving a discotic compound and another compound (for example, a polymerizable monomer, a photopolymerization initiator) in a solvent onto the alignment film, drying, and then discotic It is obtained by heating to the nematic phase formation temperature, polymerizing (by irradiation with UV light or the like), and further cooling.

(配向膜)
配向膜は、液晶分子の配向方向を規定する機能を有する為に通常用いられるが、液晶性化合物を配向後にその配向状態を固定してしまえば、配向膜はその役割を果たしているために、本発明の構成要素として必ずしも必須のものではない。例えば、配向状態が固定された配向膜上の光学異方性層のみを偏光子上に転写して本発明の偏光板を作製することも可能である。
(Alignment film)
The alignment film is usually used because it has the function of defining the alignment direction of the liquid crystal molecules. However, if the alignment state is fixed after aligning the liquid crystalline compound, the alignment film plays its role. It is not necessarily essential as a component of the invention. For example, it is possible to produce the polarizing plate of the present invention by transferring only the optically anisotropic layer on the alignment film in which the alignment state is fixed onto the polarizer.

配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュア・ブロジェット法(LB膜)による有機化合物(例、ω−トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で設けることができる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。   The alignment film is an organic compound (eg, ω-tricosanoic acid) formed by rubbing treatment of an organic compound (preferably a polymer), oblique deposition of an inorganic compound, formation of a layer having a microgroove, or Langmuir-Blodgett method (LB film). , Dioctadecylmethylammonium chloride, methyl stearylate). Furthermore, an alignment film in which an alignment function is generated by application of an electric field, application of a magnetic field, or light irradiation is also known.

配向膜は、ポリマーのラビング処理により形成することが好ましい。配向膜に使用するポリマーは、原則として、液晶分子を配向させる機能のある分子構造を有する。
本発明では、液晶分子を配向させる機能に加えて、架橋性官能基(例、二重結合)を有する側鎖を主鎖に結合させるか、あるいは、液晶分子を配向させる機能を有する架橋性官能基を側鎖に導入することが好ましい。
配向膜に使用されるポリマーは、それ自体架橋可能なポリマーあるいは架橋剤により架橋されるポリマーのいずれも使用することができし、これらの組み合わせを複数使用することができる。
The alignment film is preferably formed by polymer rubbing treatment. In principle, the polymer used for the alignment film has a molecular structure having a function of aligning liquid crystal molecules.
In the present invention, in addition to the function of aligning liquid crystal molecules, a crosslinkable function having a function of aligning a side chain having a crosslinkable functional group (eg, a double bond) to the main chain or aligning liquid crystal molecules. It is preferred to introduce the group into the side chain.
As the polymer used for the alignment film, either a polymer that can be crosslinked by itself or a polymer that is crosslinked by a crosslinking agent can be used, and a plurality of combinations thereof can be used.

ポリマーの例としては、例えば特開平8−338913号公報、段落番号[0022]記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコールおよび変性ポリビニルアルコール、ポリ(N−メチロールアクリルアミド)、ポリエステル、ポリイミド、酢酸ビニル共重合体、カルボキシメチルセルロース、ポリカーボネート等が挙げられる。ポリビニルアルコールおよび変性ポリビニルアルコールが最も好ましい。
これらの変性ポリビニルアルコール化合物及び架橋剤等の配向膜形成用組成物の具体例として、例えば特開2000−155216号公報、同2002−62426号公報等に記載のもの等が挙げられる。
配向膜の膜厚は、0.1乃至10μmの範囲にあることが好ましい。
Examples of the polymer include, for example, a methacrylate copolymer, a styrene copolymer, a polyolefin, a polyvinyl alcohol and a modified polyvinyl alcohol described in JP-A-8-338913, paragraph [0022], and poly (N-methylolacrylamide). , Polyester, polyimide, vinyl acetate copolymer, carboxymethyl cellulose, polycarbonate and the like. Most preferred are polyvinyl alcohol and modified polyvinyl alcohol.
Specific examples of the alignment film forming composition such as the modified polyvinyl alcohol compound and the crosslinking agent include those described in JP-A Nos. 2000-155216 and 2002-62426.
The thickness of the alignment film is preferably in the range of 0.1 to 10 μm.

[画像表示装置]
本発明の画像表示装置は、以上述べた本発明の反射防止フィルム又は反射防止フィルムを保護膜に有する偏光板が画像表示面に配置されていることを特徴とする。このように、本発明の反射防止フィルム又は反射防止フィルムを保護膜に有する偏光板は、液晶表示装置(LCD)、有機ELディスプレイのような画像表示装置に適用することができる。そして、本発明の画像表示装置は、TN、STN、IPS、VA及びOCBのいずれかのモードの透過型、反射型又は半透過型の液晶表示装置に適用するのが好ましい。以下、さらに説明する。
液晶表示装置としては、従来公知の何れも用いることができる。例えば、内田龍雄監修「反射型カラーLCD総合技術」[(株)シーエムシー、1999年刊]、「フラットパネルディスプレイの新展開」[(株)東レリサーチセンター調査部門、1996年刊]、「液晶関連市場の現状と将来展望(上巻)、(下巻)」[富士キメラ総研(株)、2003年刊]等に記載されているものが挙げられる。
[Image display device]
The image display device of the present invention is characterized in that the antireflection film of the present invention described above or a polarizing plate having the antireflection film as a protective film is disposed on the image display surface. Thus, the antireflection film of the present invention or the polarizing plate having the antireflection film as a protective film can be applied to an image display device such as a liquid crystal display device (LCD) or an organic EL display. The image display device of the present invention is preferably applied to a transmissive, reflective, or transflective liquid crystal display device in any one of TN, STN, IPS, VA, and OCB modes. This will be further described below.
Any conventionally known liquid crystal display device can be used. For example, Tatsuo Uchida, “Reflective Color LCD General Technology” [CMC, 1999], “New Development of Flat Panel Display” [Toray Research Center, Research Division, 1996], “Liquid Crystal Related Markets” And the future prospects (first volume), (second volume) "[Fuji Chimera Research Institute, Inc., published in 2003], and the like.

具体的には、例えばツイステッドネマチック(TN)、スーパーツイステッドネマチック(STN)、バーティカルアライメント(VA)、インプレインスイッチング(IPS)、オプティカリーコンペンセイテットベンドセル(OCB)等のモードの透過型、反射型、又は半透過型の液晶表示装置に好ましく用いることができる。   Specifically, for example, a transmissive type or a reflective type such as twisted nematic (TN), super twisted nematic (STN), vertical alignment (VA), in-plane switching (IPS), optically compensated bend cell (OCB), etc. It can be preferably used for a liquid crystal display device of a type or a transflective type.

また、本発明の反射防止フィルムは、付設する液晶表示装置表示画像の大きさが17インチ以上であっても、コントラストが良好で広い視野角を有し、且つ色相変化及び外光の移りこみ防止を実現でき、好ましい。   In addition, the antireflection film of the present invention has a good contrast and a wide viewing angle even when the size of the attached display image of the liquid crystal display device is 17 inches or more, and prevents hue change and transfer of external light. Is preferable.

[TNモード液晶表示装置]
TNモードの液晶セルは、カラーTFT液晶表示装置として最も多く利用されており、多数の文献の記載が挙げられる。TNモードの黒表示における液晶セル中の配向状態は、セル中央部で棒状液晶性分子が立ち上がり、セルの基板近傍では棒状液晶性分子が寝た配向状態にある。
[TN mode liquid crystal display]
The TN mode liquid crystal cell is most frequently used as a color TFT liquid crystal display device, and many publications are cited. The alignment state in the liquid crystal cell in the TN mode black display is an alignment state in which the rod-like liquid crystalline molecules rise at the center of the cell and the rod-like liquid crystalline molecules lie in the vicinity of the cell substrate.

[OCBモード液晶表示装置]
OCBモードの液晶セルは、棒状液晶性分子を液晶セルの上部と下部とで実質的に逆の方向に(対称的に)配向させるベンド配向モードの液晶セルである。ベンド配向モードの液晶セルを用いた液晶表示装置は、米国特許4583825号、同5410422号の各明細書に開示されている装置が液晶セルの上部と下部とで対称的に配向しているため、ベンド配向モードの液晶セルは、自己光学補償機能を有する。そのため、この液晶モードは、OCB(Optically Compensatory Bend)液晶モードとも呼ばれる。
OCBモードの液晶セルもTNモード同様、黒表示においては、液晶セル中の配向状態は、セル中央部で棒状液晶性分子が立ち上がり、セルの基板近傍では棒状液晶性分子が寝た配向状態にある。
[OCB mode liquid crystal display]
The OCB mode liquid crystal cell is a bend alignment mode liquid crystal cell in which rod-like liquid crystalline molecules are aligned in a substantially opposite direction (symmetrically) between an upper portion and a lower portion of the liquid crystal cell. Since the liquid crystal display device using the bend alignment mode liquid crystal cell is aligned symmetrically between the upper part and the lower part of the liquid crystal cell, the devices disclosed in the specifications of US Pat. Nos. 4,583,825 and 5,410,422 are provided. The bend alignment mode liquid crystal cell has a self-optical compensation function. For this reason, this liquid crystal mode is also called an OCB (Optically Compensatory Bend) liquid crystal mode.
Similarly to the TN mode, the liquid crystal cell in the OCB mode is in a black display, and the alignment state in the liquid crystal cell is such that the rod-like liquid crystal molecules rise in the center of the cell and the rod-like liquid crystal molecules lie in the vicinity of the cell substrate. .

[VAモード液晶表示装置]
VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。
VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2−176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモード)の液晶セル[SID97、Digest of Tech. Papers(予稿集)28(1997)845記載]、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n−ASMモード)の液晶セル[日本液晶討論会の予稿集58〜59(1998)記載]及び(4)SURVAIVALモードの液晶セル(LCDインターナショナル98で発表)が挙げられる。
[VA mode liquid crystal display]
In a VA mode liquid crystal cell, rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied.
The VA mode liquid crystal cell includes (1) a narrowly defined VA mode liquid crystal cell in which rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied, and substantially horizontally when a voltage is applied (Japanese Patent Laid-Open No. Hei 2-). (2) In addition to the liquid crystal cell [SID97, Digest of Tech. Papers 28 (1997) 845], (3) Liquid crystal cell in a mode (n-ASM mode) in which rod-like liquid crystalline molecules are substantially vertically aligned when no voltage is applied and twisted multi-domain alignment is applied when a voltage is applied. [Preliminary collections 58-59 (1998) of the Japanese Liquid Crystal Discussion Group] and (4) SURVAVAL mode liquid crystal cells (presented at LCD International 98).

[IPSモード液晶表示装置]
IPSモードの液晶セルでは、液晶分子を基板に対して常に水平面内で回転させるモードで、電界無印加時には電極の長手方向に対して若干の角度を持つように配向されている電界を印加すると電界方向に液晶分子は向きを変える。液晶セルを挟持する偏光板を所定角度に配置することで光透過率を変えることが可能となる。液晶分子としては、誘電率異方性Δεが正のネマチック液晶を用いる。液晶層の厚み(ギャップ)は、2.8μm超4.5μm未満とする。これは、レターデーションΔn・dが0.25μm超0.32μm未満の時、可視光の範囲内で波長依存性が殆どない透過率特性が得られる。偏光板の組み合わせにより、液晶分子がラビング方向から電界方向に45°回転したとき最大透過率を得ることができる。なお液晶層の厚み(ギャップ)はポリマビーズで制御している。もちろんガラスビーズヤファイバー、樹脂製の柱状スペーサでも同様のギャップを得ることができる。また液晶分子は、ネマチック液晶であれば、特に限定したものではない。誘電率異方性Δεは、その値が大きいほうが、駆動電圧が低減でき、屈折率異方性Δnは小さいほうが液晶層の厚み(ギャップ)を厚くでき、液晶の封入時間が短縮され、且つギャップばらつきを少なくすることができる。
[IPS mode liquid crystal display]
In the IPS mode liquid crystal cell, the liquid crystal molecules are always rotated in a horizontal plane with respect to the substrate. In the direction the liquid crystal molecules change direction. The light transmittance can be changed by arranging the polarizing plates sandwiching the liquid crystal cell at a predetermined angle. As the liquid crystal molecules, nematic liquid crystal having a positive dielectric anisotropy Δε is used. The thickness (gap) of the liquid crystal layer is more than 2.8 μm and less than 4.5 μm. This is because when the retardation Δn · d is more than 0.25 μm and less than 0.32 μm, a transmittance characteristic having almost no wavelength dependency within the visible light range can be obtained. By combining the polarizing plates, the maximum transmittance can be obtained when the liquid crystal molecules are rotated 45 ° from the rubbing direction to the electric field direction. The thickness (gap) of the liquid crystal layer is controlled by polymer beads. Of course, the same gap can be obtained with glass bead fiber or resin columnar spacers. The liquid crystal molecules are not particularly limited as long as they are nematic liquid crystals. When the value of the dielectric anisotropy Δε is large, the driving voltage can be reduced, and when the refractive index anisotropy Δn is small, the thickness (gap) of the liquid crystal layer can be increased, the liquid crystal sealing time is shortened, and the gap Variation can be reduced.

[その他液晶モード]
STNモードの液晶表示装置に対しては、上記と同様の考え方で本発明の偏光板を供することができる。ECBモードにも同様に適用することができる。
[Other LCD mode]
The STN mode liquid crystal display device can be provided with the polarizing plate of the present invention in the same manner as described above. The same applies to the ECB mode.

また、λ/4板と組み合わせることで、反射型液晶用の偏光板や、有機ELディスプレイ用表面保護板として表面及び内部からの反射光を低減するのに用いることができる。   Further, by combining with a λ / 4 plate, it can be used to reduce the reflected light from the surface and inside as a polarizing plate for reflective liquid crystal or a surface protective plate for organic EL display.

以下に実施例に基づき本発明についてさらに詳細に説明するが本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

〔実施例1〕
[含フッ素共重合体(P-3)の合成]
内容量100mlのステンレス製撹拌機付オートクレーブに酢酸エチル40ml、ヒドロキシエチルビニルエーテル14.7g、過酸化ジラウロイル0.49g、およびポリシロキサン構造含有マクロアゾ開始剤(VPS-1001(商品名)和光純薬工業(株)社製)0.98gを仕込み、系内を脱気して窒素ガスで置換した。さらにヘキサフルオロプロピレン(HFP)25gをオートクレーブ中に導入して65℃まで昇温した。オートクレーブ内の温度が65℃に達した時点の圧力は8.6kg/cmであった。該温度を保持し8時間反応を続け、圧力が3.9kg/cmに達した時点で加熱をやめ放冷した。室温まで内温が下がった時点で未反応のモノマーを追い出し、オートクレーブを開放して反応液を取り出した。得られた反応液を大過剰のヘキサンに投入し、デカンテーションにより溶剤を除去することにより沈殿したポリマーを取り出した。さらにこのポリマーを少量の酢酸エチルに溶解してヘキサンを用いて2回再沈殿を行うことによって残存モノマーを完全に除去した。乾燥後主鎖にポリジメチルシロキサン構造が2.3質量%導入されたヘキサフルオロプロピレン/ヒドロキシエチルビニルエーテルの1/1(モル比)の下記共重合体(a−1)の35gを得た。得られたポリマーの屈折率は1.407であった。
次に、該ポリマーの20gをN,N-ジメチルアセトアミド100mlに溶解、氷冷下アクリル酸クロライド11.4gを滴下した後、室温で10時間攪拌した。反応液に酢酸エチルを加え水洗、有機層を抽出後濃縮し、得られたポリマーをヘキサンで再沈殿させることにより含フッ素共重合体(P-3)を19g得た。得られたポリマーの数平均分子量は3.5万であり、屈折率は1.422であった。
[Example 1]
[Synthesis of fluorinated copolymer (P-3)]
In an autoclave with a stirrer made of stainless steel with an internal volume of 100 ml, ethyl acetate 40 ml, hydroxyethyl vinyl ether 14.7 g, dilauroyl peroxide 0.49 g, and polysiloxane structure-containing macroazo initiator (VPS-1001 (trade name) Wako Pure Chemical Industries, Ltd.) 0.98 g) was charged, and the system was degassed and replaced with nitrogen gas. Further, 25 g of hexafluoropropylene (HFP) was introduced into the autoclave and the temperature was raised to 65 ° C. The pressure when the temperature in the autoclave reached 65 ° C. was 8.6 kg / cm 2 . The reaction was continued for 8 hours while maintaining the temperature, and when the pressure reached 3.9 kg / cm 2 , the heating was stopped and the mixture was allowed to cool. When the internal temperature dropped to room temperature, unreacted monomers were driven out, the autoclave was opened, and the reaction solution was taken out. The obtained reaction solution was poured into a large excess of hexane, and the polymer was precipitated by removing the solvent by decantation. Further, this polymer was dissolved in a small amount of ethyl acetate and reprecipitated twice with hexane to completely remove the residual monomer. After drying, 35 g of the following copolymer (a-1) of 1/1 (molar ratio) of hexafluoropropylene / hydroxyethyl vinyl ether having 2.3% by mass of polydimethylsiloxane structure introduced into the main chain was obtained. The obtained polymer had a refractive index of 1.407.
Next, 20 g of the polymer was dissolved in 100 ml of N, N-dimethylacetamide, and 11.4 g of acrylic acid chloride was added dropwise under ice cooling, followed by stirring at room temperature for 10 hours. Ethyl acetate was added to the reaction solution, washed with water, the organic layer was extracted and concentrated, and the resulting polymer was reprecipitated with hexane to obtain 19 g of a fluorinated copolymer (P-3). The number average molecular weight of the obtained polymer was 35,000, and the refractive index was 1.422.

Figure 2006268031
Figure 2006268031

なお、本明細書で例示した他の含フッ素共重合体も同様にして合成できる。   Other fluorine-containing copolymers exemplified in this specification can be synthesized in the same manner.

[比較化合物a−2の合成]
内容量100mlのステンレス製撹拌機付オートクレーブに酢酸エチル40ml、ヒドロキシエチルビニルエーテル3.7g、エチルビニルエーテル12.0gおよび過酸化ジラウロイル0.49g、ポリシロキサン構造含有マクロアゾ開始剤(VPS-1001(商品名)和光純薬工業(株)社製)0.98gを仕込み、ドライアイス-メタノールにて冷却下、系内を脱気して窒素ガスで置換した。さらにヘキサフルオロプロピレン(HFP)25gをオートクレーブ中に導入して65℃まで昇温した。オートクレーブ内の温度が65℃に達した時点の圧力は5.1kg/cmであった。該温度を保持し8時間反応を続け、圧力が2.9kg/cmに達した時点で加熱をやめ放冷した。室温まで内温が下がった時点で未反応のモノマーを追い出し、オートクレーブを開放して反応液を取り出した。得られた反応液を大過剰のメタノールに投入し、デカンテーションにより溶剤を除去することにより沈殿したポリマーを取り出した。さらにこのポリマーを少量の酢酸エチルに溶解してメタノールから2回再沈殿を行うことによって残存モノマーを完全に除去した。乾燥後、ポリジメチルシロキサン構造が2.3質量%導入されたヘキサフルオロプロピレン/エチルビニルエーテル/ヒドロキシエチルビニルエーテルの50/40/10(モル比)の共重合体の35gを得た。得られたポリマーの屈折率は1.387であった。さらに該共重合体に対してP-3の合成と同様にして、アクリル酸クロライドを作用させることにより比較化合物a-2を合成した。得られたポリマーの屈折率は1.415であった。
[Synthesis of Comparative Compound a-2]
Into an autoclave with a stirrer made of stainless steel with a capacity of 100 ml, ethyl acetate 40 ml, hydroxyethyl vinyl ether 3.7 g, ethyl vinyl ether 12.0 g and dilauroyl peroxide 0.49 g, polysiloxane structure-containing macroazo initiator (VPS-1001 (trade name) 0.98 g (manufactured by Wako Pure Chemical Industries, Ltd.) was charged, and the system was deaerated while being cooled with dry ice-methanol and replaced with nitrogen gas. Further, 25 g of hexafluoropropylene (HFP) was introduced into the autoclave and the temperature was raised to 65 ° C. The pressure when the temperature in the autoclave reached 65 ° C. was 5.1 kg / cm 2 . The reaction was continued for 8 hours while maintaining the temperature, and when the pressure reached 2.9 kg / cm 2 , the heating was stopped and the mixture was allowed to cool. When the internal temperature dropped to room temperature, unreacted monomers were driven out, the autoclave was opened, and the reaction solution was taken out. The obtained reaction solution was poured into a large excess of methanol, and the polymer was precipitated by removing the solvent by decantation. Further, this polymer was dissolved in a small amount of ethyl acetate and reprecipitated twice from methanol to completely remove residual monomers. After drying, 35 g of a 50/40/10 (molar ratio) copolymer of hexafluoropropylene / ethyl vinyl ether / hydroxyethyl vinyl ether into which 2.3% by mass of the polydimethylsiloxane structure had been introduced was obtained. The obtained polymer had a refractive index of 1.387. Further, Comparative Compound a-2 was synthesized by allowing acrylic acid chloride to act on the copolymer in the same manner as in the synthesis of P-3. The refractive index of the obtained polymer was 1.415.

Figure 2006268031
Figure 2006268031

[比較化合物a−3の合成]
ポリシロキサン含有マクロアゾ開始剤を添加せず、過酸化ジラウロイルを0.55g添加したこと以外はP-3の合成と同様にして、下記比較化合物a-3を合成した。ポリマーの屈折率は1.421であった。
[Synthesis of Comparative Compound a-3]
The following comparative compound a-3 was synthesized in the same manner as the synthesis of P-3 except that no polysiloxane-containing macroazo initiator was added and 0.55 g of dilauroyl peroxide was added. The refractive index of the polymer was 1.421.

Figure 2006268031
Figure 2006268031

[無機微粒子(C−1)の調製]
テトラエトキシシラン(TEOS、SiO2濃度28質量%)360gとメタノール530gを混合し、この混合液に25℃において、イオン交換水100gとアンモニア水(28%アンモニア含有)をそれぞれ滴下し、24時間攪拌し熟成した。オートクレーブで180℃、4時間加熱処理し、限外濾過膜を用いて溶媒をエタノールに置換して固形分濃度20質量%の無機微粒子の分散液を調製した。透過電子顕微鏡観察により多孔質の粒子であることが確認された。
このようにして得た多孔質の粒子の分散液100.0gに対してイオン交換水を900g及びエタノール800gを加えた混合液を30℃に加温した後、テトラエトキシシラン(SiO2濃度28質量%)360gと28%アンモニア水626gを添加し、粒子表面にテトラエトキシシランの加水分解重縮合物でシリカ外殻層を形成した。次いで、エバポレーターで固形分濃度5重量%まで濃縮した後、濃度15質量%のアンモニア水を加えてpH10とし、オートクレーブで180℃、4時間加熱処理し、限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%の無機微粒子(C−1)の分散液を調製した。
[Preparation of inorganic fine particles (C-1)]
360 g of tetraethoxysilane (TEOS, SiO 2 concentration 28% by mass) and 530 g of methanol are mixed, and 100 g of ion-exchanged water and ammonia water (containing 28% ammonia) are added dropwise to the mixture at 25 ° C., followed by stirring for 24 hours. And matured. Heat treatment was performed at 180 ° C. for 4 hours in an autoclave, and the solvent was replaced with ethanol using an ultrafiltration membrane to prepare a dispersion of inorganic fine particles having a solid content concentration of 20% by mass. It was confirmed to be porous particles by observation with a transmission electron microscope.
A mixture obtained by adding 900 g of ion exchange water and 800 g of ethanol to 100.0 g of the porous particle dispersion thus obtained was heated to 30 ° C., and then tetraethoxysilane (SiO 2 concentration: 28 mass). %) 360 g and 28% ammonia water 626 g were added, and a silica shell layer was formed on the particle surface with a hydrolyzed polycondensate of tetraethoxysilane. Next, after concentration with an evaporator to a solid content concentration of 5% by weight, ammonia water with a concentration of 15% by mass was added to adjust the pH to 10, followed by heat treatment at 180 ° C. for 4 hours in an autoclave, and the solvent was changed to ethanol using an ultrafiltration membrane. A dispersion of substituted inorganic fine particles (C-1) having a solid content concentration of 20% by mass was prepared.

得られた分散液から、下記方法にて、無機微粒子の粒子サイズ・屈折率を算出した結果、平均粒径40nm、屈折率1.28であった。
(粒子サイズ測定)
得られた分散液を希釈してグリッド上にすくい取り透過型電子顕微鏡で観察した。1000個の粒子の平均から、平均粒子サイズを求めた。
(屈折率の測定)
特開2002−79616号公報に記載の方法に準じて、得られた無機微粒子を適当なバインダーに混合比を変化させて分散して作成した膜の屈折率を測定した。これらの測定結果から、無機粒子100%に外挿して無機粒子の屈折率を算出した。
As a result of calculating the particle size and refractive index of the inorganic fine particles from the obtained dispersion by the following method, the average particle size was 40 nm and the refractive index was 1.28.
(Particle size measurement)
The obtained dispersion was diluted and skimmed on a grid and observed with a transmission electron microscope. From the average of 1000 particles, the average particle size was determined.
(Measurement of refractive index)
According to the method described in JP-A-2002-79616, the refractive index of a film prepared by dispersing the obtained inorganic fine particles in an appropriate binder while changing the mixing ratio was measured. From these measurement results, the refractive index of the inorganic particles was calculated by extrapolating to 100% of the inorganic particles.

[無機微粒子(C−2)の調製]
平均粒径5nm、SiO2濃度20質量%のシリカゾル90gとイオン交換水1710gとを混合して反応母液を調製し、95℃に加温した。この反応母液のpHは10.5であり、同母液にSiO2として1.5質量%のケイ酸ナトリウム水溶液24,900gと、Al23として0.5質量%のアルミン酸ナトリウム水溶液36,800gとを同時に添加した。その間、反応液の温度を91℃に保持した。添加終了後、反応液を室温まで冷却し、限外濾過膜で洗浄して固形分濃度20質量%のSiO2・Al23コア粒子の分散液(A)を調製した。(第1調製工程)
次いで、このコア粒子の分散液(A)500gを採取し、イオン交換水1,700gを加えて98℃に加温し、この温度を保持しながら、ケイ酸ナトリウム水溶液を陽イオン交換樹脂で脱アルカリして得られたケイ酸液(SiO2濃度3.5質量%)2,100gを添加してコア粒子表面にシリカ保護膜を形成した。得られたシリカ保護膜を有するコア粒子の分散液を、限外濾過膜で洗浄して固形分濃度13質量%に調整したのち、コア粒子の分散液500gにイオン交換水1,125gを加え、さらに濃塩酸(35.5%)を滴下してpH1.0とし、脱アルミニウム処理を行ったのち、pH3の塩酸水溶液10Lとイオン交換水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離し、粒子前駆体分散液を調製した。(第2調製工程)
上記粒子前駆体分散液1500gと、イオン交換水500gおよびエタノール1,750gとの混合液を30℃に加温した後、テトラエトキシシラン(SiO228質量%)70gと28%アンモニア水626gを速度を制御しながら添加し、粒子前駆体表面にテトラエトキシシランの加水分解重縮合物でシリカ外殻層を形成することによって、外殻層内部に空洞を有する粒子を作製した。次いで、エバポレーターで固形分濃度5質量%まで濃縮した後、濃度15質量%のアンモニア水を加えてpH10とし、オートクレーブで180℃、4時間加熱処理し、限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%の中空シリカ微粒子ゾル(空孔含有無機微粒子)(C−2)の分散液を調製した。(第3調製工程)
得られた分散液から、前述の方法にて、無機微粒子の粒子サイズ・屈折率を算出した結果、平均粒径51nm、屈折率1.28であった。
[Preparation of inorganic fine particles (C-2)]
A reaction mother liquor was prepared by mixing 90 g of silica sol having an average particle diameter of 5 nm and a SiO 2 concentration of 20% by mass with 1710 g of ion-exchanged water, and heated to 95 ° C. The pH of this reaction mother liquor is 10.5. In the mother liquor, 24,900 g of 1.5% by mass sodium silicate aqueous solution as SiO 2 and 0.5% by mass sodium aluminate aqueous solution 36, Al 2 O 3 , 800 g was added simultaneously. Meanwhile, the temperature of the reaction solution was maintained at 91 ° C. After completion of the addition, the reaction solution was cooled to room temperature and washed with an ultrafiltration membrane to prepare a dispersion (A) of SiO 2 · Al 2 O 3 core particles having a solid content concentration of 20% by mass. (First preparation step)
Next, 500 g of the core particle dispersion (A) is collected, 1,700 g of ion exchange water is added and heated to 98 ° C., and the sodium silicate aqueous solution is removed with a cation exchange resin while maintaining this temperature. A silica protective film was formed on the surface of the core particles by adding 2,100 g of a silicic acid solution (SiO 2 concentration 3.5 mass%) obtained by alkali. The obtained dispersion of core particles having a silica protective film was washed with an ultrafiltration membrane to adjust the solid content concentration to 13% by mass, and then 1,125 g of ion-exchanged water was added to 500 g of the dispersion of core particles. Concentrated hydrochloric acid (35.5%) was added dropwise to adjust the pH to 1.0, and after dealumination treatment, the aluminum salt dissolved in the ultrafiltration membrane was separated while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of ion-exchanged water. Then, a particle precursor dispersion was prepared. (Second preparation step)
A mixture of 1500 g of the particle precursor dispersion, 500 g of ion-exchanged water and 1,750 g of ethanol is heated to 30 ° C., and then 70 g of tetraethoxysilane (SiO 2 28% by mass) and 626 g of 28% ammonia water are added at a speed. Was added while controlling, and a silica outer shell layer was formed on the surface of the particle precursor with a hydrolyzed polycondensate of tetraethoxysilane to prepare particles having cavities inside the outer shell layer. Next, after concentration with an evaporator to a solid content concentration of 5% by mass, ammonia water with a concentration of 15% by mass was added to adjust the pH to 10, followed by heat treatment at 180 ° C. for 4 hours in an autoclave, and the solvent was changed to ethanol using an ultrafiltration membrane. A dispersion of substituted hollow silica fine particle sol (hole-containing inorganic fine particles) (C-2) having a solid content concentration of 20% by mass was prepared. (Third preparation step)
As a result of calculating the particle size and refractive index of the inorganic fine particles from the obtained dispersion by the method described above, the average particle size was 51 nm and the refractive index was 1.28.

[無機酸化物粒子(C−3)の調製]
多孔質でないシリカ粒子として市販の平均粒子径50nmのシリカ粒子分散物(IPA−ST−L 日産化学(株)製、シリカ固形分濃度30質量%、溶媒イソプロピルアルコール)を、シリカ固形分濃度が20質量%になるようにイソプロピルアルコールで希釈した。このシリカ微粒子の屈折率は、前述の方法にて算出した結果、1.46であった。
[Preparation of inorganic oxide particles (C-3)]
A commercially available silica particle dispersion (IPA-ST-L, manufactured by Nissan Chemical Co., Ltd., silica solid content concentration of 30% by mass, solvent isopropyl alcohol) having a silica solid content concentration of 20 as a non-porous silica particle. Dilution with isopropyl alcohol was carried out so that it might become mass%. The refractive index of the silica fine particles was 1.46 as a result of calculation by the method described above.

[分散液(A−2)の調製]
中空シリカ微粒子ゾル(C−2)の500部(シリカ濃度20質量%、エタノール分散液)に対して、ほぼシリカの含量が一定となるようにイソプロピルアルコールを添加しながら、圧力20kPaで減圧蒸留による溶媒置換を行った。このようにして得られたシリカ分散液(シリカ濃度20%)500部に、アクリロイルオキシプロピルトリメトキシシラン(KBM−5103、信越化学工業(株)製)30部、およびジイソプロポキシアルミニウムエチルアセテート(商品名、ケロープEP-32、ホープ製薬(株)製)1.5部加え混合した後に、イオン交換水を9部を加えた。60℃で8時間反応させた後に室温まで冷却し、アセチルアセトン1.8部を添加した。この分散液500gにほぼシリカの含量一定となるようにシクロヘキサノンを添加しながら、圧力20kPaで減圧蒸留による溶媒置換を行った。分散液に異物の発生はなく、固形分濃度をシクロヘキサノンで調整し20質量%にしたときの粘度は25℃で5mPa・sであった。得られた分散液(A−6)のイソプロピルアルコールの残存量をガスクロマトグラフィーで分析したところ、1.5%であった。
他の無機微粒子(C−1)、(C−3)について、分散液(A−2)の調製に準じて処理を行い、対応する分散液(A−1)、(A−3)を調製した。
[Preparation of dispersion (A-2)]
By vacuum distillation at a pressure of 20 kPa while adding isopropyl alcohol to 500 parts of the hollow silica fine particle sol (C-2) (silica concentration: 20% by mass, ethanol dispersion) so that the silica content is substantially constant. Solvent replacement was performed. 500 parts of the silica dispersion (silica concentration 20%) thus obtained was added to 30 parts of acryloyloxypropyltrimethoxysilane (KBM-5103, manufactured by Shin-Etsu Chemical Co., Ltd.) and diisopropoxyaluminum ethyl acetate ( After adding 1.5 parts of a trade name, Kerope EP-32, manufactured by Hope Pharmaceutical Co., Ltd. and mixing, 9 parts of ion-exchanged water was added. After reacting at 60 ° C. for 8 hours, the mixture was cooled to room temperature, and 1.8 parts of acetylacetone was added. While adding cyclohexanone to 500 g of this dispersion so that the silica content was almost constant, solvent substitution was performed by distillation under reduced pressure at a pressure of 20 kPa. There was no generation of foreign matter in the dispersion, and the viscosity when the solid content concentration was adjusted to 20% by mass with cyclohexanone was 5 mPa · s at 25 ° C. When the residual amount of isopropyl alcohol in the obtained dispersion (A-6) was analyzed by gas chromatography, it was 1.5%.
The other inorganic fine particles (C-1) and (C-3) are treated according to the preparation of the dispersion (A-2) to prepare the corresponding dispersions (A-1) and (A-3). did.

[ゾル液aの調製]
攪拌機、還流冷却器を備えた反応器、メチルエチルケトン120部、アクリロイルオキシプロピルトリメトキシシラン(KBM−5103、信越化学工業(株)製)100部、ジイソプロポキシアルミニウムエチルアセトアセテート(商品名、ケロープEP-32、ホープ製薬(株)製)3部を加え混合したのち、イオン交換水30部を加え、60℃で4時間反応させたのち、室温まで冷却し、ゾル液aを得た。質量平均分子量は1600であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は100%であった。また、ガスクロマトグラフィー分析から、原料のアクリロイルオキシプロピルトリメトキシシランは全く残存していなかった。固形分の濃度が29%になるようにメチルエチルケトンで調節してゾル液aとした。
[Preparation of sol solution a]
A stirrer, a reactor equipped with a reflux condenser, 120 parts of methyl ethyl ketone, 100 parts of acryloyloxypropyltrimethoxysilane (KBM-5103, manufactured by Shin-Etsu Chemical Co., Ltd.), diisopropoxyaluminum ethyl acetoacetate (trade name, Kellop EP -32, manufactured by Hope Pharmaceutical Co., Ltd.) and mixing, 30 parts of ion-exchanged water was added, and the mixture was reacted at 60 ° C. for 4 hours, and then cooled to room temperature to obtain sol solution a. The mass average molecular weight was 1600, and among the components higher than the oligomer component, the component having a molecular weight of 1000 to 20000 was 100%. Further, from the gas chromatography analysis, the raw material acryloyloxypropyltrimethoxysilane did not remain at all. Sol solution a was adjusted with methyl ethyl ketone so that the solid content was 29%.

[低屈折率層用塗布液(L−1〜24)の調製]
下記表1に示す各成分を混合し、塗布液全体の固形分濃度が5質量%になり、シクロヘキサンとメチルエチルケトンの比率が10対90になるようにシクロヘキサン、メチルエチルケトンで希釈して塗布液(L−1〜24)を調製した。
表中、( )内は各成分の固形分の質量部を表わす。IRG907はチバガイギー(株)製光ラジカル重合開始剤イルガキュア907(商品名)を表す。
[Preparation of coating solution for low refractive index layer (L-1 to 24)]
Each component shown in the following Table 1 is mixed, diluted with cyclohexane and methyl ethyl ketone so that the solid content concentration of the entire coating solution becomes 5 mass%, and the ratio of cyclohexane and methyl ethyl ketone is 10:90. 1-24) were prepared.
In the table, () represents the mass part of the solid content of each component. IRG907 represents Irgacure 907 (trade name) manufactured by Ciba Geigy Co., Ltd.

Figure 2006268031
Figure 2006268031

[ハードコート層用塗布液Aの調製]
デソライトZ7404(ジルコニア微粒子含有ハードコート組成液、JSR(株)製)100質量部、DPHA(UV硬化性樹脂:日本化薬(株)製)31質量部、KBM−5103(シランカップリング剤:信越化学工業(株)製)10質量部、メチルエチルケトン29質量部、メチルイソブチルケトン13質量部、シクロヘキサノン5質量部をミキシングタンクに投入し攪拌してハードコート層塗布液Aとした。
[Preparation of coating liquid A for hard coat layer]
Desolite Z7404 (zirconia fine particle-containing hard coat composition, manufactured by JSR Corporation) 100 parts by mass, DPHA (UV curable resin: manufactured by Nippon Kayaku Co., Ltd.) 31 parts by mass, KBM-5103 (silane coupling agent: Shin-Etsu) (Chemical Industry Co., Ltd.) 10 parts by mass, 29 parts by mass of methyl ethyl ketone, 13 parts by mass of methyl isobutyl ketone, and 5 parts by mass of cyclohexanone were put into a mixing tank and stirred to obtain a hard coat layer coating solution A.

[反射防止フィルム(207)の作製]
支持体としてトリアセチルセルロースフィルム(TD80U、富士写真フイルム(株)製)をロール形態で巻き出して、上記のハードコート層用塗布液Aを線数135本/インチ、深度60μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、搬送速度10m/分の条件で塗布し、60℃で150秒乾燥の後、さらに窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm、照射量100mJ/cmの紫外線を照射して塗布層を硬化させ、ハードコート層を形成し、巻き取った。硬化後のハードコート層の厚さが4.0μmとなるようにグラビアロール回転数を調整してハードコートフィルム(207)を作製した。硬化後のハードコート層の屈折率は、1.61であった。
このようにして得られたハードコートフィルム(207)の上に、上記低屈折率層用塗布液(L−7)を用いて低屈折率層膜厚が90nmになるように調節して反射防止フィルム(207)を作製した。低屈折率層の乾燥条件は60℃、1分とし、紫外線硬化条件は酸素濃度が0.01体積%以下の雰囲気になるように窒素パージしながら240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度300mW/cm2、照射量240mJ/cm2の照射量とした。硬化後の低屈折率層の屈折率は1.45であった。
[Preparation of antireflection film (207)]
As a support, a triacetyl cellulose film (TD80U, manufactured by Fuji Photo Film Co., Ltd.) is unwound in a roll form, and the above coating liquid A for hard coat layer has a gravure pattern of 135 lines / inch and a depth of 60 μm. Using a micro gravure roll with a diameter of 50 mm and a doctor blade, the coating was carried out at a conveyance speed of 10 m / min, dried at 60 ° C. for 150 seconds, and then air-cooled metal halide lamp (Igraphics (160)) under a nitrogen purge. Co., Ltd.) was used to cure the coating layer by irradiating with ultraviolet rays having an illuminance of 400 mW / cm 2 and an irradiation amount of 100 mJ / cm 2 to form a hard coat layer and wound it. The hard coat film (207) was produced by adjusting the rotation speed of the gravure roll so that the thickness of the hard coat layer after curing was 4.0 μm. The refractive index of the hard coat layer after curing was 1.61.
On the hard coat film (207) thus obtained, the low refractive index layer coating solution (L-7) is used to adjust the thickness of the low refractive index layer to 90 nm to prevent reflection. A film (207) was produced. The low refractive index layer was dried at 60 ° C. for 1 minute, and the ultraviolet curing condition was 240 W / cm air-cooled metal halide lamp (eye graphics) while purging with nitrogen so that the atmosphere had an oxygen concentration of 0.01% by volume or less. ), And the irradiation dose was 300 mW / cm 2 and the irradiation dose was 240 mJ / cm 2 . The refractive index of the low refractive index layer after curing was 1.45.

[反射防止フィルム(201)〜(206)、(208)〜(224)の作製]
反射防止フィルム(207)の作製において、低屈折率層用塗布液(L−7)を(L−1)〜(L−6)、(L−8)〜(L−24)に変えたことだけが異なる以外は、反射防止フィルム(207)と同様にして、反射防止フィルム(201)〜(206)、(208)〜(224)を作製した。
[Preparation of antireflection films (201) to (206) and (208) to (224)]
In the production of the antireflection film (207), the coating solution for low refractive index layer (L-7) was changed to (L-1) to (L-6), (L-8) to (L-24). Antireflection films (201) to (206) and (208) to (224) were produced in the same manner as the antireflection film (207) except that only the difference was observed.

[反射防止フィルムの鹸化処理]
得られた反射防止フィルムは以下の鹸化標準条件で処理・乾燥した。
(1)アルカリ浴
1.5mol/L 水酸化ナトリウム水溶液
55℃−120秒
(2)第1水洗浴
水道水
60秒
(3)中和浴
0.05mol/L 硫酸
30℃−20秒
(4)第2水洗浴
水道水
60秒
(5)乾燥
120℃
60秒
[Saponification treatment of antireflection film]
The obtained antireflection film was treated and dried under the following saponification standard conditions.
(1) Alkaline bath 1.5 mol / L sodium hydroxide aqueous solution 55 ° C.-120 seconds (2) First washing bath Tap water 60 seconds (3) Neutralization bath 0.05 mol / L sulfuric acid 30 ° C.-20 seconds (4) Second washing bath Tap water 60 seconds (5) Dry 120 ° C
60 seconds

[塗設フィルムの性能評価]
こうして得られた反射防止フィルム試料(201)〜(224)について、下記性能評価を実施した。
[Performance evaluation of coated film]
The following performance evaluation was implemented about the antireflection film sample (201)-(224) obtained in this way.

(1)平均反射率
分光光度計(日本分光(株)製)を用いて、380〜780nmの波長領域において、入射角5°における分光反射率を測定した。結果には450〜650nmの鏡面平均反射率を用いた。
(1) Average reflectance Using a spectrophotometer (manufactured by JASCO Corporation), the spectral reflectance at an incident angle of 5 ° was measured in a wavelength region of 380 to 780 nm. The mirror surface average reflectance of 450-650 nm was used for the result.

(2)鉛筆硬度評価
反射防止フィルムを温度25℃、湿度60%RHで2時間調湿した後、JIS K 5400に記載の鉛筆硬度評価を行った。
(2) Pencil Hardness Evaluation After the antireflection film was conditioned at a temperature of 25 ° C. and a humidity of 60% RH for 2 hours, a pencil hardness evaluation described in JIS K 5400 was performed.

(3)耐傷性試験
膜表面をスチールウール#0000を用いて、200gの荷重下で10回擦った後に、傷のつくレベルを確認した。判定は次の基準に従った。
全く傷がつかない :◎
わずかに傷がつく :○
細かい傷が目立つ :△
傷が著しい :×
(3) Scratch resistance test The film surface was rubbed 10 times under a load of 200 g using steel wool # 0000, and then the level of scratching was confirmed. The determination was in accordance with the following criteria.
Not scratched at all: ◎
Slightly scratched: ○
Fine scratches stand out: △
Scratch is remarkable: ×

(4)指紋およびマジック付着性評価
表面の耐汚染性の指標として、光学材料を温度25℃、湿度60%RHで2時間調湿した後、サンプル表面に指紋を付着させてから、それをクリーニングクロスで拭き取ったときの状態を観察して、以下のように指紋およびマジック付着性を評価した。
指紋が完全に拭き取れる :◎
指紋がやや見える :○
指紋がほとんど拭き取れない :×
得られた結果を表2に示す。
(4) Fingerprint and magic adhesion evaluation As an index of surface contamination resistance, the optical material was conditioned for 2 hours at a temperature of 25 ° C. and a humidity of 60% RH, and then the fingerprint was attached to the sample surface and then cleaned. The state when wiped with a cloth was observed, and the fingerprint and magic adhesion were evaluated as follows.
Fingerprints can be wiped off completely: ◎
Some fingerprints are visible: ○
Fingerprints can hardly be wiped off: ×
The obtained results are shown in Table 2.

(5)白モヤの評価
低屈折層の無機微粒子の粗密のムラを評価する指標として、サンプルを黒紙の上に置き、サンプル直上50cmから拡散白色光をあてて、そのサンプルの散乱のムラの状態を観察して、以下のように評価した。
ムラが無く一様に観察される :○
白色の散乱ムラがサンプルの一部に観察される:△
白色の散乱ムラがサンプルの一面に観察される:×
(5) Evaluation of white haze As an index for evaluating the uneven density of the inorganic fine particles in the low refractive layer, the sample is placed on a black paper, and diffused white light is applied from 50 cm directly above the sample. The state was observed and evaluated as follows.
Uniform observation without unevenness: ○
White scattering unevenness is observed in a part of the sample: Δ
White scattering unevenness is observed on one side of the sample: ×

Figure 2006268031
Figure 2006268031

本実施例から明らかなように、本発明の反射防止フィルム試料(207)〜(209)、(213)〜(215)、(219)〜(221)は、本発明の要件を満たしていない比較例(201)〜(206)、(210)〜(212)、(216)〜(218)、(222)〜(224)と比較して、耐傷性が優れ、白モヤが発生せず、防汚性に優れ、且つ反射防止フィルムとして適性な反射防止性能を有することがわかる。特に中空シリカ微粒子、多孔質シリカ微粒子を用いた(207)〜(209)、(213)〜(215)は反射率がより低く優れていることがわかる。   As is clear from this example, the antireflection film samples (207) to (209), (213) to (215), and (219) to (221) of the present invention do not satisfy the requirements of the present invention. Compared with examples (201) to (206), (210) to (212), (216) to (218), and (222) to (224), scratch resistance is excellent, and no white haze is generated. It can be seen that the film has excellent antifouling properties and suitable antireflection performance as an antireflection film. In particular, it can be seen that (207) to (209) and (213) to (215) using hollow silica fine particles and porous silica fine particles have lower reflectance and are excellent.

〔実施例2〕
[分散液(A−4)の調製]
分散液(A−2)の調製において、アクリロイルオキシプロピルトリメトキシシラン30部の代わりにトリメチルメトキシシラン10部を用い、加熱温度を50℃24時間に変更した以外は、分散液(A−2)と同様にして分散液(A−4)を調製した。
[Example 2]
[Preparation of dispersion (A-4)]
Dispersion (A-2) was prepared except that 10 parts of trimethylmethoxysilane was used instead of 30 parts of acryloyloxypropyltrimethoxysilane and the heating temperature was changed to 50 ° C. for 24 hours. A dispersion (A-4) was prepared in the same manner as described above.

[分散液(A−5)の調製]
分散液(A−2)の調製において、アクリロイルオキシプロピルトリメトキシシラン30部のうち15部をトリデカフルオロオクチルトリメトキシシランに変更した以外は、分散液(A−2)と同様にして分散液(A−5)を調製した。
[Preparation of Dispersion (A-5)]
In the preparation of the dispersion liquid (A-2), the dispersion liquid was the same as the dispersion liquid (A-2) except that 15 parts of 30 parts of acryloyloxypropyltrimethoxysilane were changed to tridecafluorooctyltrimethoxysilane. (A-5) was prepared.

[ハードコート層用塗布液Bの調製]
“PET−30” 50.0g
「イルガキュア184」 2.0g
“SX−350”(30%) 1.2g
架橋アクリル−スチレン粒子(30%) 10.0g
“KBM−5103” 10.0g
フッ素系面状改良剤(FP−1) 0.075g
トルエン 38.5g
シクロヘキサノン 5.0g
[Preparation of coating liquid B for hard coat layer]
"PET-30" 50.0g
"Irgacure 184" 2.0g
"SX-350" (30%) 1.2g
Crosslinked acrylic-styrene particles (30%) 10.0 g
"KBM-5103" 10.0g
Fluorine-based surface conditioner (FP-1) 0.075 g
Toluene 38.5g
Cyclohexanone 5.0g

上記混合液を、孔径30μmのポリプロピレン製フィルターで濾過してハードコート層の塗布液Bを調製した。   The mixed solution was filtered through a polypropylene filter having a pore size of 30 μm to prepare a hard coat layer coating solution B.

それぞれ使用した化合物を以下に示す。
“PET−30”:ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物{日本化薬(株)製}
「イルガキュア184」:重合開始剤{チバ・スペシャルティ・ケミカルズ(株)製}
“SX−350”:平均粒径3.5μm架橋ポリスチレン粒子{屈折率1.60、綜研化学(株)製、30%トルエン分散液。ポリトロン分散機にて10000rpmで20分分散後使用}。
架橋アクリル−スチレン粒子:平均粒径3.5μm{屈折率1.55、綜研化学(株)製、30%トルエン分散液。ポリトロン分散機にて10000rpmで20分分散後使用}。
“KBM−5103”:アクリロイルオキシプロピルトリメトキシシラン{信越化学工業(株)製}。
The compounds used are shown below.
“PET-30”: a mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate {manufactured by Nippon Kayaku Co., Ltd.}
“Irgacure 184”: Polymerization initiator {Ciba Specialty Chemicals Co., Ltd.}
“SX-350”: Cross-linked polystyrene particles having an average particle size of 3.5 μm {refractive index 1.60, manufactured by Soken Chemical Co., Ltd., 30% toluene dispersion. Use after dispersion for 20 minutes at 10,000 rpm in a Polytron disperser}.
Cross-linked acrylic-styrene particles: average particle size 3.5 μm {refractive index 1.55, manufactured by Soken Chemical Co., Ltd., 30% toluene dispersion. Use after dispersion for 20 minutes at 10,000 rpm in a Polytron disperser}.
“KBM-5103”: acryloyloxypropyltrimethoxysilane {manufactured by Shin-Etsu Chemical Co., Ltd.}.

フッ素系面状改良剤(FP−1)   Fluorine-based surface improver (FP-1)

Figure 2006268031
Figure 2006268031

[低屈折率層用塗布液(L−301〜310)の調製]
下記表3に示す各成分を混合し、塗布液全体の固形分濃度が10%になり、シクロヘキサノンとメチルエチルケトンの比率が10対90になるようにシクロヘキサノンとメチルエチルケトンで希釈して塗布液(L−301〜310)を調製した。
[Preparation of coating solution for low refractive index layer (L-301 to 310)]
Each component shown in the following Table 3 is mixed, diluted with cyclohexanone and methyl ethyl ketone so that the solid content concentration of the entire coating solution becomes 10%, and the ratio of cyclohexanone and methyl ethyl ketone becomes 10:90, and the coating solution (L-301 -310) were prepared.

Figure 2006268031
Figure 2006268031

表中、( )内は各成分の固形分の質量部を表す。
使用した化合物を以下に示す。
重合開始剤:IRG184(イルガキュア184(チバ・スペシャルティ・ケミカルズ(株)製、分子量204))、IRG907(イルガキュア907(チバ・スペシャルティ・ケミカルズ(株)製、分子量279))、IRG369(イルガキュア369(チバ・スペシャルティ・ケミカルズ(株)製、分子量367))、IRGOXE01(イルガキュアOXE01(チバ・スペシャルティ・ケミカルズ(株)製、分子量451))、KIP150(エザキュアKIP150、フラテツリ ランベルティ(株)製、オリゴ(2−ヒドロキシー2−メチル−1−(4−(1−メチルビニル)フェニル)プロパノン)n=4〜6、平均分子量約1000)
RMS−33(光硬化性シリコーン (Gelest(株)製))
DPHA(ジペンタエリスリトールヘキサアクリレートとジペンタエリスリトールペンタアクリレートの混合物{日本化薬(株)製})
In the table, () represents the mass part of the solid content of each component.
The compounds used are shown below.
Polymerization initiators: IRG184 (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd., molecular weight 204)), IRG907 (Irgacure 907 (Ciba Specialty Chemicals Co., Ltd., molecular weight 279)), IRG369 (Irgacure 369 (Ciba)・ Specialty Chemicals Co., Ltd., molecular weight 367)), IRGOXE01 (Irgacure OXE01 (Ciba Specialty Chemicals Co., Ltd., molecular weight 451)), KIP150 (Ezacure KIP150, Fratelli Lamberti Co., Ltd., Oligo (2) -Hydroxy-2-methyl-1- (4- (1-methylvinyl) phenyl) propanone) n = 4-6, average molecular weight about 1000)
RMS-33 (photo-curing silicone (manufactured by Gelest Co., Ltd.))
DPHA (mixture of dipentaerythritol hexaacrylate and dipentaerythritol pentaacrylate {manufactured by Nippon Kayaku Co., Ltd.})

[反射防止フィルム試料301の作製]
80μmの厚さのトリアセチルセルロースフィルム“TAC−TD80U”{富士写真フイルム(株)製}をロール形態で巻き出して、直接、上記のハードコート層用塗布液Bを、線数180本/in、深度40μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、グラビアロール回転数30rpm、搬送速度30m/分の条件で塗布し、60℃で150秒乾燥の後、さらに窒素パージ下酸素濃度0.1体積%で160W/cmの「空冷メタルハライドランプ」{アイグラフィックス(株)製}を用いて、照度400mW/cm、照射量100mJ/cmの紫外線を照射して塗布層を硬化させ、厚さ6μmの層を形成し、巻き取った。このようにして作製して得られた光拡散層(HC−1)の表面粗さは、Ra=0.14μm、Rz=1.40μm、Sm=80μm、表面ヘイズは8%、内部ヘイズは14%であった。
[Preparation of Antireflection Film Sample 301]
An 80 μm-thick triacetyl cellulose film “TAC-TD80U” {manufactured by Fuji Photo Film Co., Ltd.} is unwound in a roll form, and the above hard coat layer coating solution B is directly applied to the number of lines 180 / in. Using a gravure pattern with a depth of 40 μm and a micro gravure roll with a diameter of 50 mm and a doctor blade, it was applied at a gravure roll rotation speed of 30 rpm and a conveyance speed of 30 m / min, dried at 60 ° C. for 150 seconds, and further purged with nitrogen Using an “air-cooled metal halide lamp” {manufactured by iGraphics Co., Ltd.} having a lower oxygen concentration of 0.1% by volume of 160 W / cm, it is applied by irradiating ultraviolet rays with an illuminance of 400 mW / cm 2 and an irradiation amount of 100 mJ / cm 2. The layer was cured to form a 6 μm thick layer and wound up. The surface roughness of the light diffusion layer (HC-1) thus obtained was Ra = 0.14 μm, Rz = 1.40 μm, Sm = 80 μm, the surface haze was 8%, and the internal haze was 14 %Met.

このようにして得られた光拡散層の上に、上記低屈折率層用塗布液L−301を用い、低屈折率層膜厚が95nmになるように調節して、反射防止フィルム試料301を作製した。塗布液は各成分を2時間混合後塗設し、低屈折率層の乾燥条件は110℃、10分とし、紫外線硬化条件は、酸素濃度が0.01体積%以下の雰囲気になるように窒素パージしながら、240W/cmの「空冷メタルハライドランプ」{アイグラフィックス(株)製}を用いて、照度120mW/cm、照射量120mJ/cmの照射量とした。 On the light diffusion layer thus obtained, the low refractive index layer coating liquid L-301 is used, and the low refractive index layer film thickness is adjusted to 95 nm, whereby the antireflection film sample 301 is prepared. Produced. The coating solution was applied after mixing each component for 2 hours. The low refractive index layer was dried at 110 ° C. for 10 minutes. While purging, a 240 W / cm “air-cooled metal halide lamp” {manufactured by Eye Graphics Co., Ltd.) was used to obtain an irradiation amount of 120 mW / cm 2 and an irradiation amount of 120 mJ / cm 2 .

[反射防止フィルム302〜311の作製]
反射防止フィルム(101)の作製において、低屈折率層用塗布液(L−301)を用いる代わりに、(L―302)〜(L−310)を用いること以外は反射防止フイルム301と同様にしてにより反射防止フィルム302〜310を作製した。
[Preparation of antireflection films 302 to 311]
In the production of the antireflection film (101), it is the same as the antireflection film 301 except that (L-302) to (L-310) are used instead of the low refractive index layer coating liquid (L-301). Thus, antireflection films 302 to 310 were produced.

[反射防止フィルムの評価]
このようにして得られた反射防止膜は実施例1と同様の鹸化処理を行い、実施例1に準じた評価を行った。塗布液の経時安定性評価を行うため、シロモヤの評価は、低屈折率層用塗布液調製後2時間後に塗設したものを基準(FR)とし、遮光密栓下25℃に2週間放置後に再度塗布を行い(2W)、比較した。
評価結果を表4に示す。
[Evaluation of antireflection film]
The antireflection film thus obtained was subjected to the same saponification treatment as in Example 1 and evaluated according to Example 1. In order to evaluate the stability of the coating solution over time, the evaluation of Shiromoya is based on the coating (FR) applied 2 hours after the preparation of the coating solution for the low refractive index layer. Application was performed (2 W) and compared.
The evaluation results are shown in Table 4.

Figure 2006268031
Figure 2006268031

本実施例から以下のことが分かる。
本発明の試料は低反射率で、鉛筆硬度、耐傷性に優れ、白モヤの発生(FR)がなく塗布面状に優れる。特に、重合開始剤の分子量が大きくなると耐傷性が改善され、かつ塗布液保存後の白モヤの発生が抑制される。また、光硬化性シリコーンを併用した試料では、耐傷性が改良されていることが分かる。
The following can be understood from this example.
The sample of the present invention has a low reflectivity, excellent pencil hardness and scratch resistance, and is free from white haze (FR) and excellent coated surface. In particular, when the molecular weight of the polymerization initiator is increased, scratch resistance is improved, and generation of white haze after storage of the coating solution is suppressed. Moreover, it turns out that the scratch resistance is improved in the sample which used photocurable silicone together.

〔実施例3〕
<反射防止フィルム付き偏光板の作製>
延伸したポリビニルアルコールフィルムに、ヨウ素を吸着させて偏光膜を作製した。実施例2の鹸化処理済みの反射防止フィルムに、ポリビニルアルコール系接着剤を用いて、該反射防止フィルムの支持体(トリアセチルセルロース)側が偏光膜側となるように偏光膜の片側に貼り付けた。光学異方性層を有する光学補償フィルムである視野角拡大フィルム「ワイドビューフィルムSA12B」{富士写真フイルム(株)製}を鹸化処理し、ポリビニルアルコール系接着剤を用いて、偏光膜のもう一方の側に貼り付けた。このようにして偏光板を作製した。この偏光板状態で実施例2に準じた評価を行った結果、本発明の低屈折率層を用いることにより同様の効果が得られた。本発明の反射防止フイルムは、ゴニオフォトメーターの散乱光プロファイルの出射角0°の光強度に対する30°の散乱光強度が0.013の光散乱性を有しており、視野角の拡大にも有効であった。
Example 3
<Preparation of polarizing plate with antireflection film>
A polarizing film was prepared by adsorbing iodine to a stretched polyvinyl alcohol film. A saponification-treated antireflection film of Example 2 was attached to one side of the polarizing film using a polyvinyl alcohol-based adhesive so that the support (triacetylcellulose) side of the antireflection film was the polarizing film side. . A viewing angle widening film “wide view film SA12B” {manufactured by Fuji Photo Film Co., Ltd.}, which is an optical compensation film having an optically anisotropic layer, is saponified, and the other side of the polarizing film using a polyvinyl alcohol-based adhesive. Pasted on the side. In this way, a polarizing plate was produced. As a result of performing the evaluation according to Example 2 in this polarizing plate state, the same effect was obtained by using the low refractive index layer of the present invention. The antireflection film of the present invention has a light scattering property of 0.013 with a scattered light intensity of 30 ° with respect to a light intensity of 0 ° of the outgoing angle of the scattered light profile of a goniophotometer. It was effective.

〔実施例4〕
作製した本発明の偏光板を装着したTN、IPS、VA、OCBのモードの透過型液晶表示装置の視認性、耐傷性、塗布面状が優れていることが確認できた。
Example 4
It was confirmed that the TN, IPS, VA, and OCB mode transmission type liquid crystal display devices equipped with the produced polarizing plate of the present invention were excellent in visibility, scratch resistance, and coated surface condition.

〔実施例5〕
実施例2の反射防止フィルム試料を、有機EL表示装置の表面のガラス板に粘着剤を介して貼り合わせたところ、ガラス表面での反射が抑えられ、視認性の高い表示装置が得られた。
Example 5
When the antireflection film sample of Example 2 was bonded to the glass plate on the surface of the organic EL display device via an adhesive, reflection on the glass surface was suppressed, and a display device with high visibility was obtained.

(a)及び(b)は、本実施形態に係る反射防止フィルムの層構成を示す断面模式図である。(A) And (b) is a cross-sectional schematic diagram which shows the laminated constitution of the antireflection film which concerns on this embodiment.

符号の説明Explanation of symbols

1 反射防止フィルム
2 透明支持体
3 ハードコート層
4,8 高屈折率層
5 低屈折率層
7 中屈折率層
DESCRIPTION OF SYMBOLS 1 Antireflection film 2 Transparent support 3 Hard coat layer 4,8 High refractive index layer 5 Low refractive index layer 7 Middle refractive index layer

Claims (4)

透明支持体上に、含フッ素ポリマーの硬化皮膜からなる低屈折率層を最外層に有する反射防止フィルムであって、
該フッ素ポリマーが、主鎖にポリシロキサン構造を含み、かつ、含フッ素ビニルモノマーからなる繰返し単位と、側鎖に(メタ)アクリロイル基を有する繰返し単位と、側鎖に水酸基を有する繰り返し単位と、を含んでなる共重合体であり、該側鎖に(メタ)アクリロイル基を有する繰返し単位の共重合体における含有量が、ポリシロキサン部位以外の全繰返し単位のうちの30〜70mol%であり、該側鎖に水酸基を有する繰り返し単位の共重合体における含有量が、ポリシロキサン部位以外の全繰り返し単位のうち5〜40mol%であり、かつ、
該低屈折率層中に、平均粒径が該低屈折率層の厚みの30%以上100%以下の範囲である無機微粒子を少なくとも一種を含有することを特徴とする反射防止フィルム。
An antireflection film having a low refractive index layer made of a cured film of a fluorine-containing polymer as an outermost layer on a transparent support,
The fluoropolymer includes a repeating unit comprising a polysiloxane structure in the main chain and comprising a fluorine-containing vinyl monomer, a repeating unit having a (meth) acryloyl group in the side chain, and a repeating unit having a hydroxyl group in the side chain; The content of the repeating unit having a (meth) acryloyl group in the side chain in the copolymer is 30 to 70 mol% of all repeating units other than the polysiloxane moiety, The content of the repeating unit having a hydroxyl group in the side chain in the copolymer is 5 to 40 mol% of all repeating units other than the polysiloxane moiety, and
The antireflective film characterized in that the low refractive index layer contains at least one inorganic fine particle having an average particle size in the range of 30% to 100% of the thickness of the low refractive index layer.
前記無機微粒子が中空のシリカ微粒子であり、該シリカ微粒子の屈折率が1.17〜1.40であることを特徴とする請求項1記載の反射防止フィルム。   2. The antireflection film according to claim 1, wherein the inorganic fine particles are hollow silica fine particles, and the refractive index of the silica fine particles is 1.17 to 1.40. 偏光膜と、該偏光膜の両側に設けられた保護フィルムを有する偏光板において、該保護フィルムの少なくとも一方が、請求項1又は2に記載の反射防止フィルムであることを特徴とする偏光板。   3. A polarizing plate comprising a polarizing film and protective films provided on both sides of the polarizing film, wherein at least one of the protective films is the antireflection film according to claim 1 or 2. 請求項1又は2に記載の反射防止フィルム、又は、請求項3に記載の偏光板が、画像表示面に配置されていることを特徴とする画像表示装置。   An image display device, wherein the antireflection film according to claim 1 or 2 or the polarizing plate according to claim 3 is disposed on an image display surface.
JP2006047148A 2005-02-28 2006-02-23 Antireflection film, polarizing plate, and image display apparatus Pending JP2006268031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006047148A JP2006268031A (en) 2005-02-28 2006-02-23 Antireflection film, polarizing plate, and image display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005053314 2005-02-28
JP2006047148A JP2006268031A (en) 2005-02-28 2006-02-23 Antireflection film, polarizing plate, and image display apparatus

Publications (1)

Publication Number Publication Date
JP2006268031A true JP2006268031A (en) 2006-10-05

Family

ID=37203999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006047148A Pending JP2006268031A (en) 2005-02-28 2006-02-23 Antireflection film, polarizing plate, and image display apparatus

Country Status (1)

Country Link
JP (1) JP2006268031A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056242A (en) * 2005-07-29 2007-03-08 Jsr Corp Ethylenically unsaturated group-containing fluorocopolymer having high fluorine content and method for producing the same
JP2007262124A (en) * 2006-03-27 2007-10-11 Jsr Corp Curable resin composition and antireflection film
JP2007277504A (en) * 2006-03-15 2007-10-25 Jsr Corp Curable resin composition and antireflection film
JP2008208299A (en) * 2007-02-28 2008-09-11 Konica Minolta Holdings Inc Composition, liquid and gel-forming method
JP2010044163A (en) * 2008-08-11 2010-02-25 Meihan Shinku Kogyo Kk Transparent multilayer sheet for display faceplate
JP2012103689A (en) * 2010-10-14 2012-05-31 Fujifilm Corp Optical film, polarizing plate and image display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056242A (en) * 2005-07-29 2007-03-08 Jsr Corp Ethylenically unsaturated group-containing fluorocopolymer having high fluorine content and method for producing the same
JP4661687B2 (en) * 2005-07-29 2011-03-30 Jsr株式会社 Highly fluorine-containing ethylenically unsaturated group-containing fluorine-containing copolymer and method for producing the same
JP2007277504A (en) * 2006-03-15 2007-10-25 Jsr Corp Curable resin composition and antireflection film
JP2007262124A (en) * 2006-03-27 2007-10-11 Jsr Corp Curable resin composition and antireflection film
JP2008208299A (en) * 2007-02-28 2008-09-11 Konica Minolta Holdings Inc Composition, liquid and gel-forming method
JP2010044163A (en) * 2008-08-11 2010-02-25 Meihan Shinku Kogyo Kk Transparent multilayer sheet for display faceplate
JP2012103689A (en) * 2010-10-14 2012-05-31 Fujifilm Corp Optical film, polarizing plate and image display device

Similar Documents

Publication Publication Date Title
JP5049628B2 (en) Coating composition, optical film, polarizing plate, image display device, and method for producing optical film
JP5114438B2 (en) Optical film, manufacturing method thereof, polarizing plate and image display device
JP5331919B2 (en) Antireflection film manufacturing method, antireflection film, polarizing plate, and image display device
JP4887013B2 (en) Antireflection film and display device using the same
JP4666983B2 (en) Method for producing optical functional film
JP5102958B2 (en) Method for producing antireflection film
JP5450708B2 (en) Optical film, polarizing plate, and image display device
JP2005186568A (en) Antireflection film, polarizing plate and liquid crystal display
JP2007045142A (en) Anti-glare and anti-reflection film, its manufacturing process, polarizing plate using the film and liquid crystal display device using the polarizing plate
JP2007108725A (en) Optical film, antireflection film, polarizing plate using the same and display device
JP2009098658A (en) Optical film, polarizing plate and image display device
JP4961238B2 (en) Optical film, polarizing plate and image display device
JP2006048025A (en) Antireflection film and manufacturing method thereof
JP2007256844A (en) Optical film, antireflection film, manufacturing method of optical film, and polarizing plate and display device using the same
JP4792305B2 (en) Antireflection film, polarizing plate, and image display device
JP2005234476A (en) Antireflection coating, antireflection film and image display apparatus
JP2007233375A (en) Antireflection film, polarizing plate using the same, and image display device
JP2007133162A (en) Antiglare film, its manufacturing method, polarizing plate and image display apparatus using the same
JP2010061044A (en) Anti-reflection film, polarizing plate, and image forming device
JP2006268031A (en) Antireflection film, polarizing plate, and image display apparatus
JP2007213045A (en) Antireflection film, polarizing plate, and display apparatus
JP2008106190A (en) Curable composition, optical film using the composition, polarizing plate or image display using the optical film
JP2007148398A (en) Optical film, anti-reflection film, polarizing plate and image display device
JP2007041495A (en) Anti-glare and anti-reflection film, polarizing plate using the anti-glare and anti-reflection film and liquid crystal display device using the polarizing plate
JP2006337663A (en) Antireflection film, polarizing plate and image display apparatus using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126