JP2006266400A - Clutch mechanism and powder conveyance device and sheet conveyance device using it - Google Patents

Clutch mechanism and powder conveyance device and sheet conveyance device using it Download PDF

Info

Publication number
JP2006266400A
JP2006266400A JP2005085619A JP2005085619A JP2006266400A JP 2006266400 A JP2006266400 A JP 2006266400A JP 2005085619 A JP2005085619 A JP 2005085619A JP 2005085619 A JP2005085619 A JP 2005085619A JP 2006266400 A JP2006266400 A JP 2006266400A
Authority
JP
Japan
Prior art keywords
gear
planetary gear
clutch mechanism
toothless
missing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005085619A
Other languages
Japanese (ja)
Inventor
Takashi Yano
崇史 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005085619A priority Critical patent/JP2006266400A/en
Publication of JP2006266400A publication Critical patent/JP2006266400A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a clutch mechanism having an inexpensive and simple configuration. <P>SOLUTION: This clutch mechanism has a chipped tooth gear connected with and driven to a driven side and having a chipped tooth region without tooth in at least one section of the outer periphery, a planetary gear movable in a predetermined area in substantially circumferential direction of the chipped tooth gear and capable of inputting drive into the chipped tooth gear by opposing to the chipped tooth gear, a driving means for rotating and driving the planetary gear, and a locking means for locking a position of the planetary gear. The planetary gear is energized in one direction by self-weight or an energizing means. The locking means can lock travel of the planetary gear in the direction of energization. As a result, the clutch mechanism having the inexpensive and simple configuration and the powder conveyance device and the sheet conveyance device using the clutch mechanism are provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、クラッチ機構とこれを用いた粉体搬送装置及びシート搬送装置に関する。   The present invention relates to a clutch mechanism, a powder conveying apparatus and a sheet conveying apparatus using the clutch mechanism.

本発明について、画像形成装置を例に、背景技術を説明する。画像形成装置を始めとするコンシューマ製品では、高品質な製品を低価格で提供するため、従来は高価な電磁クラッチや専用モータで回転制御していた駆動系を、欠歯ギアとソレノイドを組み合わせた安価なメカクラッチ機構で代用する方法が一般的に採用されている。   Regarding the present invention, the background art will be described using an image forming apparatus as an example. In consumer products such as image forming devices, in order to provide high-quality products at a low price, a drive system that was previously controlled by an expensive electromagnetic clutch or dedicated motor is combined with a toothless gear and a solenoid. A method of substituting an inexpensive mechanical clutch mechanism is generally employed.

代表的なメカクラッチ機構の一例を図7に示す。   An example of a typical mechanical clutch mechanism is shown in FIG.

要素を大きく分類すると、この機構は、駆動入力ギア36、制御ギア列30、被駆動ギア37、付勢手段34、ソレノイドSLから構成される。駆動入力ギア36は、モータと駆動連結されている。又、被駆動ギア37は、被駆動側と駆動連結されている。制御ギア列30は、駆動入力ギア36に対向する第1欠歯ギア31と、被駆動ギア37に対向する第2欠歯ギア32、そして、ソレノイドSLと係合するための爪形状33aと、付勢手段である板バネ34との当接で、制御ギア列30に回転付勢力を与えるためのカム形状33bとを一体で有するカム部33とから構成される。第1欠歯ギア31、第2欠歯ギア32、カム部33は、互いに位相関係が固定されており、一体として動作する。   When the elements are roughly classified, this mechanism is composed of a drive input gear 36, a control gear train 30, a driven gear 37, a biasing means 34, and a solenoid SL. The drive input gear 36 is drivingly connected to the motor. The driven gear 37 is drivingly connected to the driven side. The control gear train 30 includes a first toothless gear 31 facing the drive input gear 36, a second toothless gear 32 facing the driven gear 37, and a claw shape 33a for engaging with the solenoid SL, The cam portion 33 is integrally formed with a cam shape 33b for applying a rotational biasing force to the control gear train 30 by contact with the leaf spring 34 as the biasing means. The first segmented gear 31, the second segmented gear 32, and the cam portion 33 have a fixed phase relationship with each other and operate as a unit.

ソレノイドSLがONしてフラッパ35と爪形状33aの係合が外れると、制御ギア列30の係止は解除され、付勢板バネ34の作用により制御ギア列30は回転する。第1欠歯ギア31の最初の歯31aが駆動入力ギア36と噛み合うと、制御ギア列30は駆動入力ギア36の駆動供給による回転を開始し、次に第2欠歯ギア32が被駆動ギア37と噛み合う。第2欠歯ギア32は、被駆動ギア37に駆動を伝達し、やがて再び欠歯部が駆動入力ギア36と対向する位置に戻ってくると、被駆動ギア37に対する駆動伝達は切断される。その後、第1欠歯ギア31の欠歯部も駆動入力ギア36の対向位置に戻って来るため、第1欠歯ギア31と駆動入力ギア36の駆動連結も切断され、制御ギア列30は、付勢板バネ34の作用でソレノイドSLのフラッパ35と係合するスタンバイ位相に復帰する。   When the solenoid SL is turned on and the engagement between the flapper 35 and the claw shape 33a is released, the control gear train 30 is unlocked and the control gear train 30 is rotated by the action of the biasing plate spring 34. When the first tooth 31a of the first toothless gear 31 meshes with the drive input gear 36, the control gear train 30 starts rotating by the drive supply of the drive input gear 36, and then the second toothless gear 32 is driven. Engage with 37. The second toothless gear 32 transmits the drive to the driven gear 37, and when the missing tooth portion returns to the position facing the drive input gear 36 again, the drive transmission to the driven gear 37 is cut off. Thereafter, the tooth missing portion of the first toothless gear 31 also returns to the position opposed to the drive input gear 36, so the drive connection between the first tooth missing gear 31 and the drive input gear 36 is also cut off, and the control gear train 30 is The biasing plate spring 34 returns to the standby phase that engages with the flapper 35 of the solenoid SL.

画像形成装置では、特に給紙装置においてこの機構が広く採用されており、そこでは被駆動ギア37が給紙ローラやピックアップローラに駆動連結されている。又、制御ギア列30上に、シート積載トレイ上に積載されたシート材の表面にピックアップローラを当接・離間させるための制御カムが一体で設けられていることが多い。制御ギア列30上の欠歯ギアやカムは、ソレノイドONをトリガとする1回転周期制御によって、毎回同じ制御プロフィールで被駆動側を駆動できるため、給紙動作のような複雑な動きであっても、安定的に制御することができる。又、第1欠歯ギア31の回転開始及び回転終了のタイミングでは、被駆動側との駆動接続は切断されているため、制御動作自体は駆動負荷の影響を受けず、動作マージンが確保されている。   In an image forming apparatus, this mechanism is widely employed particularly in a paper feeding device, in which a driven gear 37 is drivingly connected to a paper feeding roller or a pickup roller. Further, in many cases, a control cam for bringing the pickup roller into and out of contact with the surface of the sheet material stacked on the sheet stacking tray is integrally provided on the control gear train 30. The toothless gears and cams on the control gear train 30 can be driven with the same control profile every time by one rotation cycle control with the solenoid ON as a trigger. Can be controlled stably. Further, since the drive connection with the driven side is disconnected at the timing of the rotation start and rotation end of the first partial gear 31, the control operation itself is not affected by the drive load, and an operation margin is secured. Yes.

しかしながら、先に示した従来のクラッチ機構では、欠歯ギアで被駆動側のギアを駆動する構成であるが故に、第2欠歯ギア32の最初の歯32aが被駆動ギア37と噛み合う瞬間の両者の位相関係や、第2欠歯ギア32と被駆動ギア37の噛み合い時における、最初の歯32aの歯飛びの有無等により、被駆動ギア37の回転量が毎回ばらつく。   However, since the conventional clutch mechanism described above is configured to drive the driven gear with the missing gear, the moment when the first tooth 32a of the second missing gear 32 meshes with the driven gear 37. The amount of rotation of the driven gear 37 varies each time depending on the phase relationship between the two and the presence or absence of tooth skipping of the first teeth 32 a when the second missing gear 32 and the driven gear 37 are engaged.

又、このばらつきは動作を重ねるに従って累積するため、例えば、画像形成装置のトナー補給機構のように、ソレノイドをONする度にトナーカートリッジから画像形成部へ所定量のトナーを正確に補給したり、その補給動作の回数をモニターすることでトナーカートリッジのトナー残量を管理したりするような精度の高い制御には不向きであった(従来は、別途回転量検知センサを設ける等して、回転量をモニターする必要があった)。   In addition, since this variation accumulates as the operation is repeated, for example, like a toner replenishment mechanism of the image forming apparatus, every time the solenoid is turned on, a predetermined amount of toner is accurately replenished from the toner cartridge to the image forming unit. This method is not suitable for high-precision control such as managing the remaining amount of toner in the toner cartridge by monitoring the number of replenishment operations. Had to be monitored).

制御精度を上げることができるメカクラッチ機構としては、図8に示すような従来例が存在する。この構成では、制御ギア列40は、駆動入力ギア45と対向する欠歯ギア41と、ソレノイドSLのフラッパ44と係合するための爪形状42aと、付勢手段である板バネ43との当接で制御ギア列40に回転付勢力を与えるためのカム形状42bとを一体で有するカム部42とから構成され、被駆動側に常時駆動連結されている。   As a mechanical clutch mechanism capable of increasing the control accuracy, there is a conventional example as shown in FIG. In this configuration, the control gear train 40 is made up of a toothless gear 41 facing the drive input gear 45, a claw shape 42 a for engaging with the flapper 44 of the solenoid SL, and a leaf spring 43 as an urging means. The cam portion 42 is integrally formed with a cam shape 42b for applying a rotation biasing force to the control gear train 40, and is always driven and connected to the driven side.

先の従来例とは、被駆動側に直結された欠歯ギア41を駆動入力ギア45が駆動するという点が異なっており、1回転動作毎の回転量ばらつきはなく、累積回転量のばらつきも存在しない。   This is different from the prior art in that the drive input gear 45 drives the toothless gear 41 directly connected to the driven side, and there is no variation in the amount of rotation for each rotation operation, and there is also a variation in the accumulated amount of rotation. not exist.

しかしながら、この機構では、制御ギア列40が被駆動側の駆動負荷を常時背負った状態にある。それ故、付勢板バネ43による付勢力の設定を、駆動負荷に打ち勝って制御ギア40を回転させられる大きさ、且つ、ソレノイドSLの許容負荷以下に調整せねばならず、非常に動作マージンが少ないという欠点がある。   However, in this mechanism, the control gear train 40 is always carrying the driven load on the driven side. Therefore, the setting of the urging force by the urging plate spring 43 must be adjusted so that the control gear 40 can be rotated by overcoming the driving load and less than the allowable load of the solenoid SL. There is a disadvantage that there are few.

被駆動側の駆動負荷が状況によって変動する系では、特に動作マージンを超え易く、その結果、制御ギア列40がスタンバイ位置に復帰せずに欠歯ギアの最終歯41aと駆動入力ギア45が歯先当たりを繰り返すトラブルや、ソレノイドSLの吸引不良によって制御が開始できない致命的なトラブル等を生じ得る。先に例として挙げた画像形成装置のトナー補給装置の場合、トナーの流動性が良い時と、長期間放置後にトナーがブロッキングした時とでは、駆動系に掛かる負荷トルクが大きく異なるが、このような用途に対しては、上記問題点から採用が困難であった。   In a system in which the drive load on the driven side varies depending on the situation, it is particularly easy to exceed the operation margin, and as a result, the control gear train 40 does not return to the standby position and the final tooth 41a of the missing gear and the drive input gear 45 are not connected. Troubles that repeat the first contact, fatal troubles that cannot be started due to poor suction of the solenoid SL, and the like may occur. In the case of the toner replenishing device of the image forming apparatus mentioned above as an example, the load torque applied to the drive system differs greatly when the toner fluidity is good and when the toner is blocked after being left for a long period of time. For various applications, it was difficult to adopt due to the above problems.

特開平11−189338号公報JP-A-11-189338 特開平2000−118768号公報JP 2000-118768 A

以上で説明した通り、従来のメカクラッチ機構では、「動作毎の回転量及び累積回転量のばらつき排除」と、「被駆動側の負荷変動に影響されない安定した動作」の2点を両立することができない。そのため、電気的な回転量検出手段や制御手段を設けなければならず、製品コストの上昇を招いていた。この問題を解決し得る安価でシンプルな構成のメカクラッチ機構の開発が求められている。   As described above, in the conventional mechanical clutch mechanism, both “removal of rotation amount and cumulative rotation amount for each operation” and “stable operation that is not affected by load fluctuation on the driven side” must be compatible. I can't. Therefore, an electrical rotation amount detection means and a control means have to be provided, resulting in an increase in product cost. Development of an inexpensive and simple mechanical clutch mechanism that can solve this problem has been demanded.

本発明は上記事情に鑑みてなされたもので、その目的とする処は、安価でシンプルな構成のクラッチ機構とこれを用いた粉体搬送装置及びシート搬送装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an inexpensive and simple clutch mechanism, and a powder conveying apparatus and a sheet conveying apparatus using the clutch mechanism.

上記目的を達成するため、本発明は、被駆動側と駆動連結され、外周の少なくとも1箇所に歯の無い欠歯領域を有する欠歯ギアと、該欠歯ギアの略円周方向に所定エリア内で移動可能であるとともに、該欠歯ギアに対向して該欠歯ギアへ駆動入力可能な遊星ギアと、 該遊星ギアを回転駆動する為の駆動手段と、該遊星ギアの位置を係止可能な係止手段とを有し、該遊星ギアは、自重又は付勢手段によって一方向へ付勢されており、該係止手段は、該遊星ギアの付勢方向に対する移動を係止可能であることを特徴とする。   In order to achieve the above-mentioned object, the present invention provides a missing tooth gear that is drivingly connected to a driven side and has a missing tooth region without teeth at at least one position on the outer periphery, and a predetermined area in a substantially circumferential direction of the missing tooth gear. A planetary gear that is movable within the planetary gear and capable of being input to the partial gear in opposition to the partial gear, driving means for rotationally driving the planetary gear, and locking the position of the planetary gear The planetary gear is biased in one direction by its own weight or biasing means, and the locking means can lock the movement of the planetary gear in the biasing direction. It is characterized by being.

本発明によれば、安価且つシンプルな構成で、動作毎の回転量ばらつき及び累積回転量ばらつきのない正確な動作と、被駆動側の負荷変動に影響されない安定した動作とを両立するメカクラッチ機構を実現することができる。   According to the present invention, a mechanical clutch mechanism that achieves both an accurate operation without variation in rotational amount and cumulative rotational amount for each operation and a stable operation that is not influenced by load fluctuation on the driven side, with an inexpensive and simple configuration. Can be realized.

以下に本発明の実施の形態を添付図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

<実施の形態1>
本発明の実施の形態1について図1〜図6を用いて説明する。
<Embodiment 1>
Embodiment 1 of the present invention will be described with reference to FIGS.

図1は本発明に基づくメカクラッチ機構の外観図である。   FIG. 1 is an external view of a mechanical clutch mechanism according to the present invention.

駆動出力軸11は、被駆動側と駆動連結された回転可能な軸であり、欠歯ギア2は該駆動出力軸11に対して固定されている。アイドラギア10は、駆動出力軸11上に回転自在に取り付けられており、モータMからの駆動供給を受けて、遊星ギア1へと回転駆動を伝達する。   The drive output shaft 11 is a rotatable shaft that is drivingly connected to the driven side, and the toothless gear 2 is fixed to the drive output shaft 11. The idler gear 10 is rotatably mounted on the drive output shaft 11, receives the drive supply from the motor M, and transmits the rotational drive to the planetary gear 1.

遊星ギア1は、駆動出力軸11を中心に揺動可能な揺動アーム3よって支持されている。該揺動アーム3は、同揺動アーム3上に形成された突起形状3bと、駆動側板13上に形成された長穴13aとの係合関係によって、揺動可能な限界角度領域が規制されており、該遊星ギア1は、これにより設定された可動エリア内で移動可能になっている。   The planetary gear 1 is supported by a swing arm 3 that can swing around a drive output shaft 11. The swing arm 3 is restricted in its swingable limit angle region by the engagement relationship between the protrusion 3b formed on the swing arm 3 and the elongated hole 13a formed on the drive side plate 13. The planetary gear 1 is movable within the movable area set thereby.

尚、以後遊星ギア1の可動エリアのうち、付勢方向側の端部を「開始端」、付勢とは反対方向の端部を「終端」と定義する。該遊星ギア1は、アイドラギア10と欠歯ギア2の両者に対して噛み合い可能に配置されている。又、遊星ギア1を揺動支持する揺動アーム3は、付勢ばね4により図1左図で時計回りに付勢されている(図1右図では反時計回り)。欠歯ギア2の歯先形状は、遊星ギアとの噛み合い時に歯先当たりを起こさないよう、テーパ取りが施されている(本実施の形態では、全周の歯に対してテーパ取りを施しているが、噛み合い時のみの問題であるため、本質的には最初の1〜2歯に対してのみで十分である)。   Hereinafter, in the movable area of the planetary gear 1, the end on the biasing direction side is defined as “start end”, and the end in the direction opposite to the bias is defined as “end”. The planetary gear 1 is disposed so as to be able to mesh with both the idler gear 10 and the toothless gear 2. The swing arm 3 that swings and supports the planetary gear 1 is biased clockwise by a biasing spring 4 in the left view of FIG. 1 (counterclockwise in the right view of FIG. 1). The tooth tip shape of the toothless gear 2 is tapered so as not to cause contact with the tip when meshing with the planetary gear (in this embodiment, the teeth on the entire circumference are tapered). However, since it is a problem only at the time of meshing, essentially only the first 1-2 teeth are sufficient).

又、本実施の形態に係るメカクラッチ機構には、欠歯ギア2と同期して回転する制御カム5と、この制御カム5と連動して揺動アーム3の揺動エリア(=遊星ギア1の可動エリア)を可変制御可能な制御レバー6とから成る遊星ギア位置制御機構(位置制御手段)が設けられている。制御レバー6は、その先端部が揺動アーム3の係合部3cと係合可能になっており、制御カム5の位相(即ち、欠歯ギア2の位相)に応じて、揺動アーム3の揺動可能領域を可変制御する。   In addition, the mechanical clutch mechanism according to the present embodiment includes a control cam 5 that rotates in synchronization with the toothless gear 2 and a swing area of the swing arm 3 (= planetary gear 1) in conjunction with the control cam 5. A planetary gear position control mechanism (position control means) comprising a control lever 6 capable of variably controlling the movable area). The front end of the control lever 6 can be engaged with the engaging portion 3 c of the swing arm 3, and the swing arm 3 depends on the phase of the control cam 5 (that is, the phase of the missing gear 2). The swingable region is variably controlled.

ここで、本実施の形態に係るメカクラッチ機構の基本動作について図2〜図5を用いて説明する。尚、各図の左図は欠歯ギアと遊星ギアの位置関係を示し、右図は制御カムと制御レバーの係合関係を示している。   Here, the basic operation of the mechanical clutch mechanism according to the present embodiment will be described with reference to FIGS. The left diagram in each figure shows the positional relationship between the toothless gear and the planetary gear, and the right diagram shows the engagement relationship between the control cam and the control lever.

スタンバイ状態(図2参照)では、揺動アーム3は、ソレノイドSLのフラッパ12によって位置が係止されており、欠歯ギア2は、欠歯部が揺動ギア1に対向する位相で保持されている。この状態では、制御レバー6は、揺動アームの係合部3aと大きく離間しており、遊星ギア1の可動エリアは最大となっている。   In the standby state (see FIG. 2), the position of the swing arm 3 is locked by the flapper 12 of the solenoid SL, and the missing tooth gear 2 is held in a phase where the missing tooth portion faces the swing gear 1. ing. In this state, the control lever 6 is largely separated from the engaging portion 3a of the swing arm, and the movable area of the planetary gear 1 is maximized.

ソレノイドSLがONすると、フラッパ12と揺動アーム爪部3cの係合が外れるため、遊星ギア1は、付勢ばね4の付勢により開始端13aに向けて移動し、欠歯ギア2の最初の歯2aと噛み合う(図3参照)。遊星ギア1と欠歯ギア2が噛み合うと、アイドラギア10と欠歯ギア2の間に、遊星ギア1を介して駆動負荷トルク分の回転駆動力が発生する。このとき、遊星ギアの内部では、アイドラギアから受ける伝達力と、欠歯ギアから受ける反力とが作用する。この2つの力は理論上相殺されるものの、駆動伝達に伴うギアの圧力角の影響により、アイドラギア・欠歯ギアと遊星ギアの間に軸間力が発生する。そして、この軸間力に起因する負荷抵抗等により、大きくはないものの、遊星ギアを可動エリア終端13b側へ移動させる力が発生する。以後、この力を「遊星ギアの復元トルク」と定義する。   When the solenoid SL is turned on, the flapper 12 and the swing arm claw portion 3c are disengaged, so that the planetary gear 1 moves toward the start end 13a by the urging of the urging spring 4 and Meshes with the teeth 2a (see FIG. 3). When the planetary gear 1 and the partial gear 2 mesh with each other, a rotational driving force corresponding to the driving load torque is generated between the idler gear 10 and the partial gear 2 via the planetary gear 1. At this time, in the planetary gear, a transmission force received from the idler gear and a reaction force received from the missing gear act. Although these two forces are theoretically offset, an interaxial force is generated between the idler gear, the toothless gear and the planetary gear due to the influence of the pressure angle of the gear accompanying the drive transmission. And although it is not large by the load resistance etc. resulting from this interaxial force, the force which moves a planetary gear to the movable area terminal end 13b side generate | occur | produces. Hereinafter, this force is defined as “the restoration torque of the planetary gear”.

遊星ギアの復元トルクが揺動アームの付勢力を上回る場合は(図4(a)参照)、遊星ギア1と欠歯ギア2が噛み合うと同時に、遊星ギア1はアイドラギア10と欠歯ギア2の両者に対して相対的にほぼ停止した状態のまま、欠歯ギア2、アイドラギア10と共に終端13bへ移動する。そして、遊星ギア1が可動エリアの終端13bに到達すると、遊星ギア1に掛かる復元トルクを揺動アーム3が受け止め、遊星ギア1は、アイドラギア10を回転駆動し始める。やがて、欠歯ギア2の回転が進み、欠歯部が遊星ギア1に対向する位置へ戻ってくると、遊星ギア1と欠歯ギア2の噛み合いは外れ、駆動が切断される。それに伴い、遊星ギア1に作用していた駆動トルクは消滅し、遊星ギア1は、付勢ばね4の作用でスタンバイ位置へ復帰する。   When the restoration torque of the planetary gear exceeds the urging force of the swing arm (see FIG. 4A), the planetary gear 1 and the toothless gear 2 mesh with each other, and the planetary gear 1 moves between the idler gear 10 and the toothless gear 2. It moves to the terminal end 13b together with the toothless gear 2 and the idler gear 10 while being relatively stopped with respect to both. Then, when the planetary gear 1 reaches the end 13b of the movable area, the swinging arm 3 receives the restoring torque applied to the planetary gear 1, and the planetary gear 1 starts to rotate the idler gear 10. Eventually, the rotation of the toothless gear 2 advances, and when the toothless portion returns to the position facing the planetary gear 1, the planetary gear 1 and the toothless gear 2 are disengaged and the drive is cut off. Along with this, the driving torque acting on the planetary gear 1 disappears, and the planetary gear 1 returns to the standby position by the action of the biasing spring 4.

一方、遊星ギアの復元トルクが揺動アームの付勢力に満たない場合は(図4(b)参照)、遊星ギア1は、可動エリアの終端13bへ移動できずに開始端13aに留まったまま、欠歯ギア2を回転駆動する。やがて、制御カム5の作用で制御レバー6が揺動し、揺動アーム3を持ち上げるため、遊星ギア1は、強制的に可動エリアの終端近傍まで移動させられる(図5)。そして、欠歯ギア2の欠歯部が遊星ギア1と対向する位置に戻ってくる直前に、制御レバーの突起部6aが制御カムの段差部5aを乗り越えると、制御レバー6と揺動アーム3の当接は解除され、揺動アーム3は、付勢ばね4の作用によってスタンバイ位置へ戻る。これと同時に、遊星ギア1と欠歯ギア2の噛み合いも外れる。   On the other hand, when the restoration torque of the planetary gear is less than the urging force of the swing arm (see FIG. 4B), the planetary gear 1 cannot move to the end 13b of the movable area and remains at the start end 13a. Then, the toothless gear 2 is driven to rotate. Eventually, the control lever 6 swings by the action of the control cam 5 and lifts the swing arm 3, so that the planetary gear 1 is forcibly moved to the vicinity of the end of the movable area (FIG. 5). When the protruding portion 6a of the control lever gets over the stepped portion 5a of the control cam immediately before the missing tooth portion of the missing gear 2 returns to the position facing the planetary gear 1, the control lever 6 and the swing arm 3 are moved. Is released, and the swing arm 3 returns to the standby position by the action of the biasing spring 4. At the same time, the planetary gear 1 and the toothless gear 2 are disengaged.

以上の順序により、ソレノイドONを基点とした1回転周期制御が行われる。   With the above sequence, one rotation cycle control with the solenoid ON as a base point is performed.

上記動作を実現するためには、設計上少なくとも満たすべき条件が存在する。先ず、欠歯ギア2の欠歯領域と、遊星ギア1の可動エリア、そして、ソレノイドSLによる係止位置の相関について述べる(図6参照)。   In order to realize the above operation, there are conditions that must be satisfied at least in design. First, the relationship between the missing tooth region of the missing gear 2, the movable area of the planetary gear 1, and the locking position by the solenoid SL will be described (see FIG. 6).

欠歯ギア2の中心に対する遊星ギア1の最大可動角度範囲(可動エリアの開始端から終端まで)をθ、遊星ギア1が欠歯ギア2と噛み合わずに移動できる角度範囲をα、遊星ギア1の可動エリア終端からソレノイドSLによる係止位置までの角度をβとする。   The maximum movable angle range (from the start end to the end of the movable area) of the planetary gear 1 with respect to the center of the missing gear 2 is θ, the angular range in which the planetary gear 1 can move without meshing with the missing gear 2 is α, and the planetary gear 1 The angle from the end of the movable area to the locking position by the solenoid SL is β.

欠歯ギア2は、1回転周期動作の完了後、次にソレノイドをONした時も、必ず遊星ギア1と欠歯ギア2が噛み合える位置に、欠歯ギア2の最初の歯2aが位置せねばならない。又、遊星ギア1がスタンバイ位置に復帰した時、次にソレノイドをONする前に、欠歯ギアの最初の歯2aが遊星ギア1と噛み合ってはいけない。以上より、欠歯部の範囲を規定する角度αは、次の条件を満たす必要がある。   When the solenoid is turned on next time after completion of one rotation cycle operation, the missing tooth gear 2 is always positioned at the position where the planetary gear 1 and the missing gear 2 can mesh with each other. I have to. Also, when the planetary gear 1 returns to the standby position, the first tooth 2a of the missing gear must not mesh with the planetary gear 1 before the solenoid is turned on next time. As described above, the angle α that defines the range of the missing tooth portion needs to satisfy the following condition.

β<α<θ
次に、揺動アームの付勢力に関する条件について述べる。
β <α <θ
Next, conditions regarding the urging force of the swing arm will be described.

欠歯ギア2のピッチ円半径をRk、遊星ギア1のピッチ円半径をRs、遊星ギア1の空転トルクをTs、スタンバイ位置で揺動アーム3が付勢ばね4から受ける力のうち揺動方向の成分をF、揺動アーム3の回動中心から付勢ばね4の作用点までの距離をRy、揺動アーム3と遊星ギア1の自重によって発生する、揺動機構の回動中心モーメントをMyとする(Myは揺動アームの位置によって変化するため、ここでは移動エリア内での最大値とする)。   The pitch circle radius of the toothless gear 2 is Rk, the pitch circle radius of the planetary gear 1 is Rs, the idling torque of the planetary gear 1 is Ts, and the swing direction of the force received by the swing arm 3 from the biasing spring 4 at the standby position F is the component, Ry is the distance from the pivot center of the swing arm 3 to the point of action of the biasing spring 4, and the pivot center moment of the swing mechanism generated by the weight of the swing arm 3 and the planetary gear 1 is It is assumed that My (My changes depending on the position of the swing arm, and is the maximum value in the moving area here).

以上のように各値を定義すると、揺動アーム回動中心周りに作用する力は、以下のように算出できる。   When each value is defined as described above, the force acting around the swing arm rotation center can be calculated as follows.

遊星ギア1の空転トルクによって、揺動アーム3が反時計方向に受けるモーメント:(Ts/Rs)*Rk
付勢ばね4によって揺動アーム3が時計方向に受けるモーメント:F*Ry
以上を用いると、揺動アームがスタンバイ時に時計方向へ確実に付勢されているための条件は、
(Ts/Rs)*Rk<F*Ry+My
となる。これを満たすことが、ソレノイドONによって動作のトリガが掛かる条件となる。通常、Tsは十分に小さい値であるため、普通に設計すればこの条件を満たすことができるが、連続動作に伴う摩擦抵抗増加等も考慮して設計する必要がある(言うまでもなく、付勢力はソレノイドの許容負荷以内となるように設定しなければならない)。
Moment that the swing arm 3 receives counterclockwise due to the idling torque of the planetary gear 1: (Ts / Rs) * Rk
Moment received by the oscillating arm 3 in the clockwise direction by the urging spring 4: F * Ry
Using the above, the condition for the rocking arm to be reliably urged clockwise in standby is
(Ts / Rs) * Rk <F * Ry + My
It becomes. Satisfying this condition is a condition for triggering the operation when the solenoid is turned on. Usually, since Ts is a sufficiently small value, this condition can be satisfied if it is designed normally. However, it is necessary to design in consideration of an increase in frictional resistance associated with continuous operation (not to mention the biasing force is It must be set to be within the allowable load of the solenoid).

以上では、本発明に基づくメカクラッチ機構の基本動作について説明してきた。次に、その他の外乱に対する考え方を概説する。   The basic operation of the mechanical clutch mechanism based on the present invention has been described above. Next, the concept of other disturbances is outlined.

装置への適用個所によっては、駆動系が入力側から回される通常の使い方以外に、出力側から回される予定外のケースも存在し得る。例えば、ユーザが被駆動側を故意に操作した場合や、駆動系のガタや歪みに起因したスプリングバック(駆動連結が解除されて駆動負荷が開放された際に、被駆動側の駆動列が瞬間的に逆方向に回転する現象)等がこれに当たる。本実施の形態では、これらのケースに対しても、問題を生じることなく対応できる。先ず、出力側が順方向へ回されるケース(図2中で駆動出力軸11が反時計方向へ回される場合)については、モータONと同時にスタンバイ状態に復帰可能であり、問題にはならない。   Depending on the application to the device, there may be cases where the drive system is not scheduled to be rotated from the output side, in addition to the normal usage where the drive system is rotated from the input side. For example, when the user deliberately operates the driven side, or the springback due to backlash or distortion of the driving system (when the driving connection is released and the driving load is released, the driven train on the driven side This phenomenon is a phenomenon that rotates in the opposite direction. In this embodiment, it is possible to cope with these cases without causing a problem. First, in the case where the output side is rotated in the forward direction (in the case where the drive output shaft 11 is rotated counterclockwise in FIG. 2), it is possible to return to the standby state at the same time as the motor is turned on, which is not a problem.

一方、出力側が逆方向へ回されるケース(図2中で駆動出力軸11が時計方向へ回される場合)でも、遊星ギア1と欠歯ギア2が噛み合っていれば、モータONと同時にスタンバイ状態に自動復帰する。両者が噛み合わない範囲内で欠歯ギア2の位相が動かされたとしても、ソレノイドONして遊星ギア1が開始端へ移動した時に、欠歯ギアの1歯目2aと必ず噛み合えるような設計になっているため、問題なく動作させられる。唯一対策が必要となるのは、欠歯ギア2が動かされた結果、欠歯ギア2の最終歯の先端と遊星ギア1の歯先とが丁度かする位相になった場合で、対策がない場合、両者の歯先当たりに起因した異音が発生する恐れがある。   On the other hand, even in the case where the output side is rotated in the reverse direction (when the drive output shaft 11 is rotated in the clockwise direction in FIG. 2), if the planetary gear 1 and the missing gear 2 mesh with each other, the motor is turned on at the same time. Automatically returns to the state. Even if the phase of the toothless gear 2 is moved within the range in which the two do not mesh, when the solenoid is turned on and the planetary gear 1 moves to the start end, it is designed to always mesh with the first tooth 2a of the toothless gear. Because it is, it can be operated without problems. The only countermeasure is required when the tooth missing gear 2 is moved and the phase of the tip of the last tooth of the tooth missing gear 2 and the tooth tip of the planetary gear 1 is just right. In this case, there is a possibility that an abnormal noise due to the contact between both teeth is generated.

本実施の形態では、先に説明した遊星ギア位置制御機構により、欠歯ギア2のスタンバイ状態からの逆回転を禁止することで、この問題が発生しないよう対策している。具体的には、図2の右図からも分かるように、スタンバイ状態で駆動出力軸11を時計方向へ回転しようとすると、制御レバーの突起部6aと制御カムの段差部5aとがラチェット機構として係合し、その回転を係止する。   In the present embodiment, the above-described planetary gear position control mechanism prohibits reverse rotation of the missing gear 2 from the standby state to prevent this problem from occurring. Specifically, as can be seen from the right diagram in FIG. 2, when the drive output shaft 11 is rotated clockwise in the standby state, the control lever protrusion 6a and the control cam step 5a form a ratchet mechanism. Engage and lock its rotation.

その他、使用条件によっては、遊星ギア1と欠歯ギア2が噛み合う際に上手く噛み合えず、遊星ギアの歯と欠歯ギアの1歯目が連続的に歯飛びする現象が起こる可能性がある。この現象は、遊星ギアの回転速度が速い場合や、被駆動側の駆動負荷が大きい場合に、欠歯ギアの径に対して遊星ギアの径が小さい程、発生し易い。発生した場合の対策には、揺動アームの付勢力を調整することや、欠歯の最初の歯が欠歯ギア半径方向へ退避できるように板バネ形状にすること等、色々な方法が存在するが、欠歯ギアの1 歯目の背を低くすることが、最も簡単で効果的である。1歯目の背を低くすることにより、遊星ギアと欠歯ギアの1歯目が噛み合う瞬間に作用する力のベクトルが両ギアの軸間を結ぶ線に対して、より鈍角になるため、歯飛び防止の効果が得られる。   In addition, depending on use conditions, when the planetary gear 1 and the toothless gear 2 are engaged with each other, there is a possibility that the teeth of the planetary gear and the first tooth of the missing gear may continuously skip. . This phenomenon is more likely to occur when the planetary gear is smaller in diameter than the missing gear when the rotational speed of the planetary gear is high or the driven load on the driven side is large. There are various ways to deal with this problem, such as adjusting the biasing force of the oscillating arm and using a leaf spring shape so that the first tooth of the missing tooth can be retracted in the radial direction of the missing tooth gear. However, it is easiest and most effective to lower the back of the first tooth of the missing gear. By lowering the back of the first tooth, the force vector acting at the moment when the first gear of the planetary gear and the missing gear meshes becomes a more obtuse angle with respect to the line connecting the shafts of both gears. The effect of preventing jumping is obtained.

<他の実施の形態>
本発明は以上で説明した内容に限定されるものではない。
<Other embodiments>
The present invention is not limited to the contents described above.

上記実施の形態では、遊星ギア位置制御機構を設けることで、被駆動側の負荷変動の影響を受けないクラッチ機構を実現したが、被駆動側の負荷変動が小さく、動作時における遊星ギアの復元トルクが安定的に揺動アームの付勢力を上回る駆動装置の場合には、遊星ギア位置制御機構を省略することもできる。   In the above embodiment, the planetary gear position control mechanism is provided to realize the clutch mechanism that is not affected by the load fluctuation on the driven side, but the load fluctuation on the driven side is small, and the planetary gear is restored during operation. In the case of a driving device in which the torque stably exceeds the biasing force of the swing arm, the planetary gear position control mechanism can be omitted.

又、上記実施の形態では、欠歯ギア2に欠歯部を1箇所だけ設けたが、これは複数箇所あっても構わない。この構成を採ることにより、欠歯ギア1回転の間に行う制御動作を分割することができ、分割した複数の動作を任意のタイミングで制御することが可能になる。   Further, in the above embodiment, the missing gear 2 is provided with only one missing tooth portion, but there may be a plurality of missing tooth portions. By adopting this configuration, it is possible to divide the control operation performed during one rotation of the missing gear, and it is possible to control a plurality of divided operations at an arbitrary timing.

又、上記実施の形態では、遊星ギアを揺動アームで支持したが、例えば遊星ギアの回転中心軸を長穴溝によって移動可能に規制支持する構成であっても構わない(遊星ギア位置制御機構を用いる場合は、遊星ギアの回転軸部を直接制御レバーで持ち上げれば良い)。   In the above embodiment, the planetary gear is supported by the swing arm. However, for example, a configuration may be adopted in which the rotation center axis of the planetary gear is regulated and supported so as to be movable by the elongated groove (planetary gear position control mechanism). When using, lift the planetary gear shaft directly with the control lever).

その他、上記実施の形態では駆動出力軸11に欠歯ギア2を固定したが、欠歯ギアを回転自在に軸支し、欠歯ギアと一体で動作するもう1枚のギアによって、被駆動側のギア列へ駆動伝達する構成であっても、効果は同じである。   In addition, in the above embodiment, the toothless gear 2 is fixed to the drive output shaft 11, but the driven gear is supported by another gear that rotatably supports the toothless gear and operates integrally with the toothless gear. The effect is the same even if the drive transmission is transmitted to the other gear train.

最後に、本実施の形態では、動作安定性のマージン確保の方法として、制御レバー6で揺動アーム3を持ち上げる遊星ギア位置制御機構を採用したが、遊星ギアの位置を制御する機構としては別の構成もあり得る。   Finally, in the present embodiment, a planetary gear position control mechanism that lifts the swing arm 3 with the control lever 6 is adopted as a method for securing a margin for operation stability. However, a mechanism for controlling the position of the planetary gear is different. There may also be a configuration of

例えば、欠歯ギアの回転位相に応じて遊星ギアに対してブレーキ部材を当接させる抵抗印加手段を設け、動作時に遊星ギアへ回転抵抗を与えることにより、遊星ギアが終端側へ自ら移動しようとする復元トルクを、揺動アームの付勢力より大きくする方法も有効である。類似構成としては、揺動アームと駆動出力軸の間に抵抗を生じさせるブレーキ機構であっても、同様の効果を得ることができる。   For example, by providing resistance applying means for bringing the brake member into contact with the planetary gear according to the rotational phase of the toothless gear and applying rotational resistance to the planetary gear during operation, the planetary gear tries to move to the terminal side itself. It is also effective to make the restoring torque to be larger than the urging force of the swing arm. As a similar configuration, the same effect can be obtained even with a brake mechanism that generates resistance between the swing arm and the drive output shaft.

本発明の適用可能な分野は回転駆動系全般に及び、あらゆる製品の低コスト化と品質向上に寄与する。   The field to which the present invention can be applied covers the entire rotary drive system, and contributes to cost reduction and quality improvement of all products.

本発明に基づくメカクラッチ機構の外観図である。It is an external view of the mechanical clutch mechanism based on this invention. 本発明に基づくメカクラッチ機構の動作待機状態の説明図である。It is explanatory drawing of the operation standby state of the mechanical clutch mechanism based on this invention. 本発明に基づくメカクラッチ機構の動作開始直後の説明図である。It is explanatory drawing immediately after the operation | movement start of the mechanical clutch mechanism based on this invention. 本発明に基づくメカクラッチ機構の動作中の説明図である。It is explanatory drawing in operation | movement of the mechanical clutch mechanism based on this invention. 本発明に基づくメカクラッチ機構の動作終了直前の説明図である。It is explanatory drawing just before completion | finish of operation | movement of the mechanical clutch mechanism based on this invention. 本発明に基づくメカクラッチ機構の力学解説図である。It is a mechanics explanatory view of the mechanical clutch mechanism based on this invention. 従来のメカクラッチ機構例である。It is an example of a conventional mechanical clutch mechanism. 従来のメカクラッチ機構例である。It is an example of a conventional mechanical clutch mechanism.

符号の説明Explanation of symbols

1 遊星ギア
2 欠歯ギア
3 揺動アーム
4 付勢ばね
5 制御カム
6 制御レバー
10 アイドラギア
11 駆動出力軸
12 ソレノイドのフラッパ
M モータ
SL ソレノイド
DESCRIPTION OF SYMBOLS 1 Planetary gear 2 Partial gear 3 Rocking arm 4 Energizing spring 5 Control cam 6 Control lever 10 Idler gear 11 Drive output shaft 12 Solenoid flapper M Motor SL Solenoid

Claims (7)

被駆動側と駆動連結され、外周の少なくとも1箇所に歯の無い欠歯領域を有する欠歯ギアと、
該欠歯ギアの略円周方向に所定エリア内で移動可能であるとともに、該欠歯ギアに対向して該欠歯ギアへ駆動入力可能な遊星ギアと、
該遊星ギアを回転駆動する為の駆動手段と、
該遊星ギアの位置を係止可能な係止手段とを有し、
該遊星ギアは、自重又は付勢手段によって一方向へ付勢されており、
該係止手段は、該遊星ギアの付勢方向に対する移動を係止可能であることを特徴とするクラッチ機構。
A toothless gear that is drivingly connected to the driven side and has a toothless region without teeth in at least one location on the outer periphery;
A planetary gear that is movable within a predetermined area in a substantially circumferential direction of the toothless gear, and that can be driven and input to the toothless gear facing the toothless gear;
Drive means for rotationally driving the planetary gear;
Locking means capable of locking the position of the planetary gear,
The planetary gear is biased in one direction by its own weight or biasing means,
The clutch mechanism is characterized in that the locking means can lock the movement of the planetary gear in the urging direction.
該遊星ギアの位置を制御可能な位置制御手段を有することを特徴とする請求項1記載のクラッチ機構。   The clutch mechanism according to claim 1, further comprising position control means capable of controlling the position of the planetary gear. 遊星ギアに対して、回転抵抗を付与・解除可能な抵抗印加手段を有することを特徴とする請求項1記載のクラッチ機構。   2. The clutch mechanism according to claim 1, further comprising resistance applying means capable of applying / releasing rotational resistance to the planetary gear. 前記欠歯ギアの欠歯領域と該遊星ギアの可動エリア及び前記係止手段による該遊星ギアの係止位置との関係は、該欠歯ギアの位相に関わらず、少なくとも該遊星ギアの可動エリア内のどこかで、該欠歯ギアと該遊星ギアの両者が噛合い可能であると共に、該欠歯ギアが所定の位相である場合には、該遊星ギア可動エリアの反付勢方向端から係止位置までの間のどの位置においても、両者は噛み合わない関係にあることを特徴とする請求項1記載のクラッチ機構。   The relationship between the missing tooth region of the toothless gear, the movable area of the planetary gear, and the locking position of the planetary gear by the locking means is at least the movable area of the planetary gear regardless of the phase of the missing gear. Somewhere, both the toothless gear and the planetary gear can mesh with each other, and when the toothless gear is in a predetermined phase, from the counter-biasing direction end of the planetary gear movable area. 2. The clutch mechanism according to claim 1, wherein at any position up to the locking position, the two do not mesh with each other. 前記規制手段は、ソレノイドであることを特徴とする請求項1〜3の何れかに記載のクラッチ機構。   The clutch mechanism according to claim 1, wherein the restricting means is a solenoid. 請求項1〜5の何れかに記載のクラッチ機構を用い、粉体を所定量ずつ搬送することを特徴とする粉体搬送装置。   6. A powder conveying apparatus using the clutch mechanism according to claim 1 to convey a predetermined amount of powder. 請求項1〜5の何れかに記載のクラッチ機構を用いてローラを駆動し、シート材を所定量搬送可能なシート搬送装置。   A sheet conveying apparatus capable of conveying a predetermined amount of sheet material by driving a roller using the clutch mechanism according to claim 1.
JP2005085619A 2005-03-24 2005-03-24 Clutch mechanism and powder conveyance device and sheet conveyance device using it Withdrawn JP2006266400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005085619A JP2006266400A (en) 2005-03-24 2005-03-24 Clutch mechanism and powder conveyance device and sheet conveyance device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005085619A JP2006266400A (en) 2005-03-24 2005-03-24 Clutch mechanism and powder conveyance device and sheet conveyance device using it

Publications (1)

Publication Number Publication Date
JP2006266400A true JP2006266400A (en) 2006-10-05

Family

ID=37202595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005085619A Withdrawn JP2006266400A (en) 2005-03-24 2005-03-24 Clutch mechanism and powder conveyance device and sheet conveyance device using it

Country Status (1)

Country Link
JP (1) JP2006266400A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014102489A (en) * 2012-10-25 2014-06-05 Ricoh Co Ltd Speed change mechanism and image forming apparatus
JP2015018040A (en) * 2013-07-09 2015-01-29 キヤノン株式会社 Drive transmission unit and image forming apparatus including the same
JP2016024427A (en) * 2014-07-24 2016-02-08 京セラドキュメントソリューションズ株式会社 Image forming apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014102489A (en) * 2012-10-25 2014-06-05 Ricoh Co Ltd Speed change mechanism and image forming apparatus
JP2015018040A (en) * 2013-07-09 2015-01-29 キヤノン株式会社 Drive transmission unit and image forming apparatus including the same
JP2016024427A (en) * 2014-07-24 2016-02-08 京セラドキュメントソリューションズ株式会社 Image forming apparatus

Similar Documents

Publication Publication Date Title
US6070867A (en) Sheet supplying apparatus
JP2006266399A (en) Clutch mechanism and powder conveyance device and sheet conveyance device using it
JP4285521B2 (en) Drive transmission device and communication device
JP2008224025A (en) Clutch
KR100429929B1 (en) Auto cutter, auto cutter control method and printer using them
JP2006266400A (en) Clutch mechanism and powder conveyance device and sheet conveyance device using it
US6547236B1 (en) Pick-up mechanism and a method for performing a pick-up cycle in a reproduction machine
US6813459B2 (en) Rotary developing device
JP2011141035A (en) Planetary gear type reduction gear with magnetic torque limiter
JP2007131355A (en) Sheet feeder
JPH04224320A (en) Rotation control device and paper feeder with rotation control device
JP2005193818A (en) Electric mirror
US4971466A (en) Printing apparatus having a rotatable member rotatable in incremental steps smaller than the pitch of a detent gear and including means for accurately retaining the rotatable member at a predetermined position when the detent mechanism is inoperable
US6170348B1 (en) Swing arm transmission for driving sheet feed mechanism of a printing device media input tray
JP2007062933A (en) Paper feeding device and image forming device
JP2009250385A (en) Clutch device
JP4943036B2 (en) Driving device used in image forming apparatus
JP2006347687A (en) Intermittent rotary drive device for printer and intermittent rotary drive device
JP2927618B2 (en) Gear mechanism
JP2016190703A (en) Clutch mechanism and image forming apparatus
JP3791619B2 (en) Thermal transfer printer and image forming apparatus
JP4664957B2 (en) Sheet feeding device
JP3917774B2 (en) Paper feeder
JP2006206298A (en) Recording device
JP2004010318A (en) Sheet feeder

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603