JP2006265144A - Metal complex compound and organic electroluminescent element using the same - Google Patents

Metal complex compound and organic electroluminescent element using the same Download PDF

Info

Publication number
JP2006265144A
JP2006265144A JP2005084183A JP2005084183A JP2006265144A JP 2006265144 A JP2006265144 A JP 2006265144A JP 2005084183 A JP2005084183 A JP 2005084183A JP 2005084183 A JP2005084183 A JP 2005084183A JP 2006265144 A JP2006265144 A JP 2006265144A
Authority
JP
Japan
Prior art keywords
group
substituted
unsubstituted
layer
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005084183A
Other languages
Japanese (ja)
Inventor
Katsuhiko Takagi
克彦 高木
Makoto Kimura
真 木村
Chishio Hosokawa
地潮 細川
Masakazu Funahashi
正和 舟橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2005084183A priority Critical patent/JP2006265144A/en
Publication of JP2006265144A publication Critical patent/JP2006265144A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Other In-Based Heterocyclic Compounds (AREA)
  • Pyridine Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic EL element having high luminous efficiency with long life and provide a metal complex compound that can realize these merits. <P>SOLUTION: In a metal complex compound having a specific structure and an organic electroluminescent device that has at least a monolayer or multiple layers of organic thin film layers between the cathode and the anode, at least one layer in the organic thin film layers is the organic electroluminescent device including the metal complex compounds as a single or multiple components. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、新規金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子に関し、特に、長寿命で、高発光輝度及び高発光効率な有機エレクトロルミネッセンス素子及びそれを実現する新規な金属錯体化合物に関するものである。   The present invention relates to a novel metal complex compound and an organic electroluminescence device using the same, and more particularly, to a long-life organic electroluminescence device having high emission luminance and high emission efficiency and a novel metal complex compound that realizes the same. is there.

有機エレクトロルミネッセンス素子(以下エレクトロルミネッセンスをELと略記することがある)は、電界を印加することにより、陽極より注入された正孔と陰極より注入された電子の再結合エネルギーにより蛍光性物質が発光する原理を利用した自発光素子である。イーストマン・コダック社のC.W.Tang等による積層型素子による低電圧駆動有機EL素子の報告(C.W.Tang,S.A.Vanslyke,アプライドフィジックスレターズ(Applied Physics Letters),51巻、913頁、1987年等)がなされて以来、有機材料を構成材料とする有機EL素子に関する研究が盛んに行われている。Tang等は、トリス(8−キノリノラト)アルミニウムを発光層に、トリフェニルジアミン誘導体を正孔輸送層に用いている。積層構造の利点としては、発光層への正孔の注入効率を高めること、陰極より注入された電子をブロックして再結合により生成する励起子の生成効率を高めること、発光層内で生成した励起子を閉じ込めること等が挙げられる。この例のように有機EL素子の素子構造としては、正孔輸送(注入)層、電子輸送性発光層の二層型、または正孔輸送(注入)層、発光層、電子輸送(注入)層の3層型等がよく知られている。こうした積層型構造素子では注入された正孔と電子の再結合効率を高めるため、素子構造や形成方法の工夫がなされている。   In an organic electroluminescence element (hereinafter, electroluminescence may be abbreviated as EL), a fluorescent substance emits light by recombination energy of holes injected from an anode and electrons injected from a cathode by applying an electric field. It is a self-luminous element utilizing the principle of Eastman Kodak's C.I. W. Tang et al. Reported on a low-voltage driven organic EL element using a stacked element (CW Tang, SA Vanslyke, Applied Physics Letters, 51, 913, 1987, etc.). Since then, researches on organic EL elements using organic materials as constituent materials have been actively conducted. Tang et al. Use tris (8-quinolinolato) aluminum for the light emitting layer and a triphenyldiamine derivative for the hole transporting layer. The advantages of the stacked structure are that it increases the efficiency of hole injection into the light-emitting layer, blocks the electrons injected from the cathode, increases the generation efficiency of excitons generated by recombination, and generates in the light-emitting layer For example, confining excitons. As in this example, the organic EL device has an element structure of a hole transport (injection) layer, an electron transporting light emitting layer, or a hole transport (injection) layer, a light emitting layer, an electron transport (injection) layer. The three-layer type is well known. In such a stacked structure element, the element structure and the formation method are devised in order to increase the recombination efficiency of injected holes and electrons.

また、発光材料としてはトリス(8−キノリノラト)アルミニウム錯体等の金属錯体化合物、クマリン誘導体、テトラフェニルブタジエン誘導体、ビススチリルアリーレン誘導体、オキサジアゾール誘導体等の発光材料が知られており、それからは青色から赤色までの可視領域の発光が得られることが報告されており、カラー表示素子の実現が期待されている(例えば、特許文献1、特許文献2、特許文献3等)。
近年、有機EL素子の発光層に蛍光材料の他に、金属錯体化合物であるりん光材料を利用することも提案されている(非特許文献1)。このように有機EL素子の発光層においてりん光材料の励起状態の一重項と三重項とを利用し、高い発光効率が達成されている。有機EL素子内で電子と正孔が再結合する際にはスピン多重度の違いから一重項励起子と三重項励起子とが1:3の割合で生成すると考えられているので、りん光性の発光材料を用いれば蛍光のみを使った素子に比べて3〜4倍の発光効率の達成が考えれる。このような有機EL素子においては、三重項の励起状態又は三重項の励起子が消光しないように順次、陽極、正孔輸送層、有機発光層、電子輸送層(正孔阻止層)、電子輸送層、陰極のように層を積層する構成が用いられ、有機発光層にホスト化合物とりん光発光性の化合物が用いれてきた(特許文献4、特許文献5)。
As light emitting materials, metal complex compounds such as tris (8-quinolinolato) aluminum complex, light emitting materials such as coumarin derivatives, tetraphenylbutadiene derivatives, bisstyrylarylene derivatives, oxadiazole derivatives and the like are known. It is reported that light emission in the visible region from red to red is obtained, and realization of a color display element is expected (for example, Patent Document 1, Patent Document 2, Patent Document 3 and the like).
In recent years, it has been proposed to use a phosphorescent material, which is a metal complex compound, in addition to a fluorescent material in the light emitting layer of an organic EL element (Non-patent Document 1). In this way, high emission efficiency is achieved by utilizing the singlet and triplet excited states of the phosphorescent material in the light emitting layer of the organic EL element. When electrons and holes are recombined in an organic EL device, it is considered that singlet excitons and triplet excitons are generated at a ratio of 1: 3 due to the difference in spin multiplicity. If the light emitting material is used, it can be considered that the light emission efficiency is 3 to 4 times that of an element using only fluorescence. In such an organic EL device, an anode, a hole transport layer, an organic light emitting layer, an electron transport layer (hole blocking layer), and an electron transport are sequentially arranged so that the triplet excited state or triplet exciton is not quenched. A structure in which layers are stacked such as a layer and a cathode has been used, and a host compound and a phosphorescent compound have been used in an organic light emitting layer (Patent Documents 4 and 5).

また、金属錯体化合物としては、中心金属にアルミニウム、ベリリウム、亜鉛、マグネシム等を用いた例が報告されている(例えば、特許文献6、特許文献7、特許文献8)。これらは、発光材料のみならず、キャリア輸送材料、特に電子輸送材料として用いられている(非特許文献2)。しかしながら、これらは、電子輸送性に優れるものの、寿命、発光効率とも十分でなく、更なる改良が求められている。   In addition, examples of metal complex compounds in which aluminum, beryllium, zinc, magnesium, or the like is used as a central metal have been reported (for example, Patent Document 6, Patent Document 7, and Patent Document 8). These are used not only as light emitting materials but also as carrier transport materials, particularly as electron transport materials (Non-patent Document 2). However, these are excellent in electron transport properties, but their life and luminous efficiency are not sufficient, and further improvement is required.

特開平8−239655号公報JP-A-8-239655 特開平7−183561号公報Japanese Patent Laid-Open No. 7-183561 特開平3−200289号公報JP-A-3-200289 米国特許第6,097,147号明細書US Pat. No. 6,097,147 国際公開WO01/41512号International Publication No. WO01 / 41512 特開平10−308279号公報Japanese Patent Laid-Open No. 10-308279 特開平11−149983号公報JP-A-11-149983 特開2000−357588号公報JP 2000-357588 A M.A.Baldo,et al.,Appl.Phys.Lett.,75,4(1999)M.M. A. Baldo, et al. , Appl. Phys. Lett. , 75, 4 (1999) 城戸淳二監修、「有機EL材料とディスプレイ」、シーエムシー社(2001)Supervised by Junji Kido, “Organic EL materials and displays”, CMC (2001)

本発明は、発光効率が高く、長寿命の有機EL素子、およびそれを実現する有機EL素子用材料を提供することを課題とする。   An object of the present invention is to provide an organic EL element having high luminous efficiency and a long lifetime, and a material for an organic EL element that realizes the organic EL element.

本発明者等は、前記課題を解決するために鋭意研究を重ねた結果、下記一般式(I)又は(II)で表される金属錯体化合物を有機EL素子用材料として用いることにより、発光効率が高く、長寿命の有機EL素子を作製することが可能であることを見出した。本発明はかかる知見に基づいて完成したものである。   As a result of intensive studies in order to solve the above problems, the present inventors have used a metal complex compound represented by the following general formula (I) or (II) as a material for an organic EL device, thereby improving luminous efficiency. It has been found that an organic EL device having a high lifetime and a long lifetime can be produced. The present invention has been completed based on such findings.

Figure 2006265144
Figure 2006265144

すなわち、本発明は、陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも一層が、上記一般式(I)又は(II)で表わされる特定の構造を有する金属錯体化合物を単独もしくは混合物の成分として含有する有機エレクトロルミネッセンス素子を提供するものである。   That is, the present invention provides an organic electroluminescence device in which a single organic layer or a plurality of organic thin film layers including at least a light emitting layer is sandwiched between a cathode and an anode. ) Or (II) An organic electroluminescent device containing a metal complex compound having a specific structure represented by (II) alone or as a component of a mixture is provided.

また、本発明は、上記一般式(I)又は(II)の金属錯体化合物の配位子である下記一般式(III)で表される配位子化合物を提供するものである。

Figure 2006265144
Moreover, this invention provides the ligand compound represented by the following general formula (III) which is a ligand of the metal complex compound of the said general formula (I) or (II).
Figure 2006265144

本発明の金属錯体化合物を有機薄膜層に用いた有機EL素子は、特に本発明の金属錯体化合物を発光材料として用いると、高発光効率、高発光輝度で、長寿命である。   The organic EL device using the metal complex compound of the present invention for the organic thin film layer has high luminous efficiency, high luminance and long life, particularly when the metal complex compound of the present invention is used as a light emitting material.

本発明は、陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも一層が、一般式(I)又は(II)で表わされる特定の構造を有する金属錯体化合物を単独もしくは混合物の成分として含有する有機エレクトロルミネッセンス素子を提供するものである。   In the organic electroluminescence device in which one or more organic thin film layers including at least a light emitting layer are sandwiched between a cathode and an anode, at least one of the organic thin film layers has the general formula (I) or ( An organic electroluminescence device containing a metal complex compound having a specific structure represented by II) alone or as a component of a mixture is provided.

Figure 2006265144
Figure 2006265144

式中、R1〜R12はそれぞれ独立に、水素原子、置換もしくは無置換の核炭素数1〜50のアルキル基、置換もしくは無置換の核炭素数5〜50のアリール基、置換もしくは無置換の核炭素数6〜50のアラルキル基、置換もしくは無置換の核炭素数5〜50のシクロアルキル基、置換もしくは無置換の核炭素数1〜50のアルコキシル基、置換もしくは無置換の核炭素数5〜50のアリールオキシ基、置換もしくは無置換の核炭素数5〜50のアリールアミノ基、置換もしくは無置換の核炭素数1〜20のアルキルアミノ基、置換もしくは無置換の核炭素数4〜50の複素環基、シアノ基、又はハロゲン原子である。
1〜R4、R5〜R8、及びR9〜R12のうち隣接するものは、互いに結合し置換もしくは無置換の環状構造を形成しても良い。
一般式(I)において、mは1〜3、nは0〜2の整数である。一般式(II)において、mは1〜4である。
Lは、補助配位子で、置換もしくは無置換の核炭素数5〜50のアリール基、置換もしくは無置換の核炭素数5〜50のアリールオキシ基、又は置換もしくは無置換の核炭素数4〜50の複素環基である。
Mは、周期表の1族、2族、9族、10族、11族、12族、又は13族に含まれる元素である。
In the formula, R 1 to R 12 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 nuclear carbon atoms, a substituted or unsubstituted aryl group having 5 to 50 nuclear carbon atoms, substituted or unsubstituted. An aralkyl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 50 nuclear carbon atoms, a substituted or unsubstituted alkoxyl group having 1 to 50 nuclear carbon atoms, a substituted or unsubstituted nuclear carbon number 5-50 aryloxy group, substituted or unsubstituted arylamino group having 5-50 carbon atoms, substituted or unsubstituted alkylamino group having 1-20 carbon atoms, substituted or unsubstituted 4-4 carbon atoms 50 heterocyclic groups, cyano groups, or halogen atoms.
Adjacent ones of R 1 to R 4 , R 5 to R 8 , and R 9 to R 12 may be bonded to each other to form a substituted or unsubstituted cyclic structure.
In the general formula (I), m is an integer of 1 to 3, and n is an integer of 0 to 2. In general formula (II), m is 1-4.
L is an auxiliary ligand, a substituted or unsubstituted aryl group having 5 to 50 nuclear carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear carbon atoms, or a substituted or unsubstituted nuclear carbon number 4 ˜50 heterocyclic groups.
M is an element contained in Group 1, Group 2, Group 9, Group 10, Group 11, Group 12, or Group 13 of the Periodic Table.

一般式(I)及び(II)におけるR1〜R12のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基、2−フェニルイソプロピル基、トリクロロメチル基、トリフルオロメチル基、ベンジル基、α−フェノキシベンジル基、α,α−ジメチルベンジル基、α,α−メチルフェニルベンジル基、α,α−ジトリフルオロメチルベンジル基、トリフェニルメチル基、α−ベンジルオキシベンジル基等が挙げられる。
一般式(I)及び(II)におけるR1〜R12及びLのアリール基としては、例えば、フェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、4−エチルフェニル基、ビフェニル基、4−メチルビフェニル基、4−エチルビフェニル基、4−シクロヘキシルビフェニル基、テルフェニル基、3,5−ジクロロフェニル基、ナフチル基、5−メチルナフチル基、アントリル基、ピレニル基等が挙げられる。
Examples of the alkyl group represented by R 1 to R 12 in the general formulas (I) and (II) include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a s-butyl group, a t-butyl group, and a pentyl group. Hexyl group, heptyl group, octyl group, stearyl group, 2-phenylisopropyl group, trichloromethyl group, trifluoromethyl group, benzyl group, α-phenoxybenzyl group, α, α-dimethylbenzyl group, α, α-methyl Examples include phenylbenzyl group, α, α-ditrifluoromethylbenzyl group, triphenylmethyl group, α-benzyloxybenzyl group and the like.
Examples of the aryl group represented by R 1 to R 12 and L in the general formulas (I) and (II) include a phenyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, and 4-ethylphenyl. Group, biphenyl group, 4-methylbiphenyl group, 4-ethylbiphenyl group, 4-cyclohexylbiphenyl group, terphenyl group, 3,5-dichlorophenyl group, naphthyl group, 5-methylnaphthyl group, anthryl group, pyrenyl group, etc. Can be mentioned.

一般式(I)及び(II)におけるR1〜R12のアラルキル基としては、例えば、ベンジル基、1−フェニルエチル基、2−フェニルエチル基、1−フェニルイソプロピル基、2−フェニルイソプロピル基、フェニル−t−ブチル基、α−ナフチルメチル基、1−α−ナフチルエチル基、2−α−ナフチルエチル基、1−α−ナフチルイソプロピル基、2−α−ナフチルイソプロピル基、β−ナフチルメチル基、1−β−ナフチルエチル基、2−β−ナフチルエチル基、1−β−ナフチルイソプロピル基、2−β−ナフチルイソプロピル基、1−ピロリルメチル基、2−(1−ピロリル)エチル基、p−メチルベンジル基、m−メチルベンジル基、o−メチルベンジル基、p−クロロベンジル基、m−クロロベンジル基、o−クロロベンジル基、p−ブロモベンジル基、m−ブロモベンジル基、o−ブロモベンジル基、p−ヨードベンジル基、m−ヨードベンジル基、o−ヨードベンジル基、p−ヒドロキシベンジル基、m−ヒドロキシベンジル基、o−ヒドロキシベンジル基、p−アミノベンジル基、m−アミノベンジル基、o−アミノベンジル基、p−ニトロベンジル基、m−ニトロベンジル基、o−ニトロベンジル基、p−シアノベンジル基、m−シアノベンジル基、o−シアノベンジル基、1−ヒドロキシ−2−フェニルイソプロピル基、1−クロロ−2−フェニルイソプロピル基等が挙げられる。 Examples of the aralkyl group of R 1 to R 12 in the general formulas (I) and (II) include a benzyl group, a 1-phenylethyl group, a 2-phenylethyl group, a 1-phenylisopropyl group, a 2-phenylisopropyl group, Phenyl-t-butyl group, α-naphthylmethyl group, 1-α-naphthylethyl group, 2-α-naphthylethyl group, 1-α-naphthylisopropyl group, 2-α-naphthylisopropyl group, β-naphthylmethyl group 1-β-naphthylethyl group, 2-β-naphthylethyl group, 1-β-naphthylisopropyl group, 2-β-naphthylisopropyl group, 1-pyrrolylmethyl group, 2- (1-pyrrolyl) ethyl group, p- Methylbenzyl group, m-methylbenzyl group, o-methylbenzyl group, p-chlorobenzyl group, m-chlorobenzyl group, o-chlorobenzyl group, p Bromobenzyl group, m-bromobenzyl group, o-bromobenzyl group, p-iodobenzyl group, m-iodobenzyl group, o-iodobenzyl group, p-hydroxybenzyl group, m-hydroxybenzyl group, o-hydroxybenzyl Group, p-aminobenzyl group, m-aminobenzyl group, o-aminobenzyl group, p-nitrobenzyl group, m-nitrobenzyl group, o-nitrobenzyl group, p-cyanobenzyl group, m-cyanobenzyl group, o-Cyanobenzyl group, 1-hydroxy-2-phenylisopropyl group, 1-chloro-2-phenylisopropyl group and the like can be mentioned.

一般式(I)及び(II)におけるR1〜R12のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、シクロオクチル基、シクロノニル基、ビシクロヘプチル基、ビシクロオクチル基、トリシクロヘプチル基、アダマンチル基等が挙げられ、シクロペンチル基、シクロヘキシル基、シクロへプチル基、ビシクロヘプチル基、ビシクロオクチル基、アダマンチル基が好ましい。
1〜R12のアルコキシル基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、s−ブトキシ基、t−ブトキシ基、各種ペンチルオキシ基、各種ヘキシルオキシ基等が挙げられる。
一般式(I)及び(II)におけるR1〜R12及びLのアリールオキシ基としては、例えば、フェノキシ基、トリルオキシ基、ナフチルオキシ基等が挙げられる。
Examples of the cycloalkyl group represented by R 1 to R 12 in the general formulas (I) and (II) include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, and a bicyclo group. A heptyl group, a bicyclooctyl group, a tricycloheptyl group, an adamantyl group and the like can be mentioned. A cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a bicycloheptyl group, a bicyclooctyl group and an adamantyl group are preferable.
Examples of the alkoxyl group of R 1 to R 12 include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, an s-butoxy group, a t-butoxy group, various pentyloxy groups, and various hexyloxy groups. Groups and the like.
The general formula (I) and (II) in R 1 to R 12 and L aryloxy group include phenoxy group, tolyloxy group, naphthyloxy group and the like.

一般式(I)及び(II)におけるR1〜R12のアリールアミノ基としては、例えば、ジフェニルアミノ基、ジトリルアミノ基、ジナフチルアミノ基、ナフチルフェニルアミノ基等が挙げられる。
一般式(I)及び(II)におけるR1〜R12のアルキルアミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジヘキシルアミノ基等が挙げられる。
一般式(I)及び(II)におけるR1〜R12及びLの複素環基としては、例えば、イミダゾール、ベンゾイミダゾール、ピロール、フラン、チオフェン、ベンゾチオフェン、オキサジアゾリン、インドリン、カルバゾール、ピリジン、キノリン、イソキノリン、ベンゾキノン、ピラロジン、イミダゾリジン、ピペリジン、ヒドロキシキノリン誘導体、フェニルピリジン誘導体等の残基が挙げられる。
一般式(I)及び(II)におけるR1〜R12のハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子等が挙げられる。
Examples of the arylamino group of R 1 to R 12 in the general formulas (I) and (II) include a diphenylamino group, a ditolylamino group, a dinaphthylamino group, and a naphthylphenylamino group.
Examples of the alkylamino group of R 1 to R 12 in the general formulas (I) and (II) include a dimethylamino group, a diethylamino group, and a dihexylamino group.
Examples of the heterocyclic group of R 1 to R 12 and L in the general formulas (I) and (II) include imidazole, benzimidazole, pyrrole, furan, thiophene, benzothiophene, oxadiazoline, indoline, carbazole, pyridine, Residues such as quinoline, isoquinoline, benzoquinone, pyrarodine, imidazolidine, piperidine, hydroxyquinoline derivative, phenylpyridine derivative and the like can be mentioned.
As a halogen atom of R < 1 > -R < 12 > in general formula (I) and (II), a fluorine atom, a chlorine atom, a bromine atom etc. are mentioned, for example.

また、前記一般式(I)及び(II)におけるR1〜R12及びLで表される各基の置換基として炭素数1〜10のアルキル基及び炭素数1〜10のアルコキシ基が好ましく、炭素数1〜10のアルキル基がより好ましい。具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、t−ブチル基、n−ペンチル基、シクロペンチル基、n−ヘキシル基、シクロヘキシル基が特に好ましい。 Moreover, as a substituent of each group represented by R < 1 > -R < 12 > and L in the said general formula (I) and (II), a C1-C10 alkyl group and a C1-C10 alkoxy group are preferable, A C1-C10 alkyl group is more preferable. Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group, n-pentyl group, cyclopentyl group, n-hexyl group, and cyclohexyl group are included. Particularly preferred.

一般式(I)及び(II)におけるMは、周期表の1族、2族、9族、10族、11族、12族、又は13族に含まれる元素であり、好ましくはLi、Be、Ir、Pt、Cu、Zn、又はAlであり、特に好ましくはPt、Zn、又はAlである。   M in the general formulas (I) and (II) is an element included in Group 1, Group 2, Group 9, Group 10, Group 11, Group 12, or Group 13 of the periodic table, preferably Li, Be, Ir, Pt, Cu, Zn, or Al, particularly preferably Pt, Zn, or Al.

一般式(I)又は(II)で表される特定の構造を有する金属錯体化合物の具体例を下に示すが、これら例示化合物に限定されるものではない。   Specific examples of the metal complex compound having a specific structure represented by the general formula (I) or (II) are shown below, but are not limited to these exemplified compounds.

Figure 2006265144
Figure 2006265144

以下に本発明の有機EL素子に関して詳細に説明する。
(1)有機EL素子の構成
以下に本発明に用いられる有機EL素子の代表的な構成例を示す。もちろん、本発明はこれに限定されるものではない。
(1)陽極/正孔輸送層/発光層/陰極
(2)陽極/発光層/電子輸送層/陰極
(3)陽極/正孔輸送層/発光層/電子輸送層/陰極
(4)陽極/正孔輸送層/発光層/付着改善層/陰極
(5)陽極/絶縁層/正孔輸送層/発光層/電子輸送層/陰極
(6)陽極/正孔輸送層/発光層/電子輸送層/絶縁層/陰極
(7)陽極/無機半導体層/絶縁層/正孔輸送層/発光層/絶縁層/陰極
(8)陽極/絶縁層/正孔輸送層/発光層/電子輸送層/絶縁層/陰極
などの構造を挙げることができる。これらの中で通常(3)、(5)又は(6)の構成が好ましく用いられる。
本発明の金属錯体化合物は、上記のどの有機層に用いられてもよいが、これらの構成要素の中の発光材料、電子注入材料又は電子輸送材料として含有されていることが好ましい。特に好ましくは発光層に含有されている場合である。含有させる量は30〜100モル%から選ばれる。
The organic EL element of the present invention will be described in detail below.
(1) Configuration of Organic EL Element A typical configuration example of the organic EL element used in the present invention is shown below. Of course, the present invention is not limited to this.
(1) Anode / hole transport layer / light emitting layer / cathode
(2) Anode / light emitting layer / electron transport layer / cathode
(3) Anode / hole transport layer / light emitting layer / electron transport layer / cathode
(4) Anode / hole transport layer / light emitting layer / adhesion improving layer / cathode
(5) Anode / insulating layer / hole transporting layer / light emitting layer / electron transporting layer / cathode
(6) Anode / hole transport layer / light emitting layer / electron transport layer / insulating layer / cathode
(7) Anode / inorganic semiconductor layer / insulating layer / hole transporting layer / light emitting layer / insulating layer / cathode
(8) Structures of anode / insulating layer / hole transporting layer / light emitting layer / electron transporting layer / insulating layer / cathode can be mentioned. Of these, the structure of (3), (5) or (6) is preferably used.
The metal complex compound of the present invention may be used in any of the organic layers described above, but is preferably contained as a light-emitting material, an electron injection material, or an electron transport material in these constituent elements. Particularly preferred is the case where it is contained in the light emitting layer. The amount to be contained is selected from 30 to 100 mol%.

(2)透光性基板
本発明の有機EL素子は透光性の基板上に作製する。ここでいう透光性基板は有機EL素子を支持する基板であり、波長400〜700nmの可視領域の光の透過率が50%以上で、平滑な基板が好ましい。
具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等が挙げられる。またポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルスルフィド、ポリスルホン等を挙げることができる。
(2) Translucent substrate The organic EL device of the present invention is produced on a translucent substrate. Here, the translucent substrate is a substrate that supports the organic EL element, and is preferably a smooth substrate that has a light transmittance of 50% or more in the visible region with a wavelength of 400 to 700 nm.
Specifically, a glass plate, a polymer plate, etc. are mentioned. Examples of the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.

(3)陽極
有機薄膜EL素子の陽極は、正孔を正孔輸送層又は発光層に注入する役割を担うものであり、4.5eV以上の仕事関数を有することが効果的である。本発明に用いられる陽極材料の具体例としては、酸化インジウム錫合金(ITO)、酸化インジウム亜鉛合金(IZO)、酸化錫(NESA)、金、銀、白金、銅等が適用できる。またこれらの合金や、積層体を用いてもよい。
陽極はこれらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させることにより作製することができる。
このように発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率が10%より大きくすることが好ましい。また陽極のシート抵抗は、数百Ω/□以下が好ましい。陽極の膜厚は材料にもよるが、通常10nm〜1μm、好ましくは10〜200nmの範囲で選択される。
(3) Anode The anode of the organic thin film EL element plays a role of injecting holes into the hole transport layer or the light emitting layer, and it is effective to have a work function of 4.5 eV or more. Specific examples of the anode material used in the present invention include indium tin oxide alloy (ITO), indium zinc oxide alloy (IZO), tin oxide (NESA), gold, silver, platinum, copper, and the like. Moreover, you may use these alloys and laminated bodies.
The anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
Thus, when light emission from the light emitting layer is taken out from the anode, it is preferable that the transmittance of the anode for light emission is greater than 10%. The sheet resistance of the anode is preferably several hundred Ω / □ or less. Although the film thickness of the anode depends on the material, it is usually selected in the range of 10 nm to 1 μm, preferably 10 to 200 nm.

(4)発光層
有機EL素子の発光層は以下の機能を併せ持つものである。すなわち、
(1)注入機能;電界印加時に陽極または正孔注入層より正孔を注入することができ、 陰極または電子注入層より電子を注入することができる機能
(2)輸送機能;注入した電荷(電子と正孔)を電界の力で移動させる機能
(3)発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能
がある。但し、正孔の注入されやすさと電子の注入されやすさに違いがあってもよく、また正孔と電子の移動度で表される輸送能に大小があってもよいが、どちらか一方の電荷を移動することが好ましい。
(4) Light emitting layer The light emitting layer of an organic EL element has the following functions. That is,
(1) Injection function: Function that can inject holes from the anode or hole injection layer when an electric field is applied, and can inject electrons from the cathode or electron injection layer
(2) Transport function: Function to move injected charges (electrons and holes) by the force of electric field
(3) Light-emitting function: Provides a field for recombination of electrons and holes, and has a function to connect this to light emission. However, there may be a difference between the ease of hole injection and the ease of electron injection, and the transport capability represented by the mobility of holes and electrons may be large or small. It is preferable to move the charge.

この発光層を形成する方法としては、例えば蒸着法、スピンコート法、LB法等の公知の方法を適用することができる。発光層は、特に分子堆積膜であることが好ましい。
ここで分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、溶液状態または液相状態の材料化合物から固体化され形成された膜のことであり、通常この分子堆積膜は、LB法により形成された薄膜(分子累積膜)とは凝集構造、高次構造の相違や、それに起因する機能的な相違により区分することができる。
また、特開昭57−51781号公報に開示されているように、樹脂等の結着剤と材料化合物とを溶剤に溶かして溶液とした後、これをスピンコート法等により薄膜化することによっても、発光層を形成することができる。
本発明においては、本発明の目的が損なわれない範囲で、所望により発光層に本発明の金属錯体化合物からなる発光材料以外の他の公知の発光材料を含有させても良く、また本発明の金属錯体化合物からなる発光材料を含む発光層に、他の公知の発光材料を含む発光層を積層しても良い。
As a method for forming the light emitting layer, for example, a known method such as an evaporation method, a spin coating method, or an LB method can be applied. The light emitting layer is particularly preferably a molecular deposited film.
Here, the molecular deposited film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidifying from a material compound in a solution state or a liquid phase state. Can be classified from a thin film (accumulated film) formed by the LB method according to a difference in an agglomerated structure and a higher-order structure and a functional difference resulting therefrom.
Further, as disclosed in JP-A-57-51781, a binder such as a resin and a material compound are dissolved in a solvent to form a solution, and then this is thinned by a spin coating method or the like. In addition, a light emitting layer can be formed.
In the present invention, a known light emitting material other than the light emitting material comprising the metal complex compound of the present invention may be contained in the light emitting layer as desired, as long as the object of the present invention is not impaired. A light emitting layer containing another known light emitting material may be stacked on a light emitting layer containing a light emitting material made of a metal complex compound.

本発明の金属錯体化合物と共に発光層に使用できる発光材料又はドーピング材料としては、例えば、ナフタレン、フェナントレン、ルブレン、アントラセン、テトラセン、ピレン、ペリレン、クリセン、デカシクレン、コロネン、テトラフェニルシクロペンタジエン、ペンタフェニルシクロペンタジエン、フルオレン、スピロフルオレン、9,10−ジフェニルアントラセン、9,10−ビス(フェニルエチニル)アントラセン、1,4−ビス(9’−エチニルアントラセニル)ベンゼン等の縮合多環芳香族化合物およびそれらの誘導体、トリス(8−キノリノラト)アルミニウム、ビス−(2−メチル−8−キノリノラート)−(4−フェニルフェノラト)アルミニウム等の有機金属錯体、フタロシアニン誘導体、ポルフィリン誘導体、トリアリールアミン誘導体、スチリルアミン誘導体、スチルベン誘導体、クマリン誘導体、ピラン誘導体、オキサゾン誘導体、ベンゾチアゾール誘導体、ベンゾオキサゾール誘導体、ベンゾイミダゾール誘導体、ピラジン誘導体、ケイ皮酸エステル誘導体、ジケトピロロピロール誘導体、アクリドン誘導体、キナクリドン誘導体等が挙げられるが、これらに限定されるものではない。   Examples of the light emitting material or doping material that can be used in the light emitting layer together with the metal complex compound of the present invention include naphthalene, phenanthrene, rubrene, anthracene, tetracene, pyrene, perylene, chrysene, decacyclene, coronene, tetraphenylcyclopentadiene, pentaphenylcyclopentaene. Fused polycyclic aromatic compounds such as pentadiene, fluorene, spirofluorene, 9,10-diphenylanthracene, 9,10-bis (phenylethynyl) anthracene, 1,4-bis (9′-ethynylanthracenyl) benzene, and the like Derivatives, organometallic complexes such as tris (8-quinolinolato) aluminum, bis- (2-methyl-8-quinolinolato)-(4-phenylphenolato) aluminum, phthalocyanine derivatives, porphyrin derivatives, Arylamine derivatives, styrylamine derivatives, stilbene derivatives, coumarin derivatives, pyran derivatives, oxazone derivatives, benzothiazole derivatives, benzoxazole derivatives, benzimidazole derivatives, pyrazine derivatives, cinnamic acid ester derivatives, diketopyrrolopyrrole derivatives, acridone derivatives, Examples thereof include, but are not limited to, quinacridone derivatives.

(5)正孔注入、輸送層
正孔輸送層は発光層への正孔注入を助け、発光領域まで輸送する層であって、正孔移動度が大きい。このような正孔注入、輸送層としてはより低い電界強度で正孔を発光層に輸送する材料が好ましく、さらに正孔の移動度が、例えば104〜106V/cmの電界印加時に、少なくとも10-4cm2/V・秒であれば好ましい。正孔輸送層、注入層に用いる化合物としては、従来、光導伝材料において正孔の電荷輸送材料として慣用されているものや、EL素子の正孔注入層に使用される公知のものの中から任意のものを選択して用いることができる。ただし、これまで用いられてきた正孔輸送層、注入層に用いられてきた化合物はほとんどがイオン化エネルギーが5.5eV以下と小さいが、前記、炭化水素系の発光材料は通常イオン化エネルギーが5.6〜5.8eVと大きいため、本発明で用いる正孔輸送層、注入層用材料としては、特にイオン化エネルギーが大きく、発光層として用いる材料のイオン化ポテンシャルに近い材料を用いる必要がある。正孔輸送層、注入層用材料と発光層に用いる材料のイオン化ポテンシャルの差は0.2eV以下であることが好ましく、より好ましくは0.1eV以下である。前記の好ましい性質を有するものであれば用いる材料としては特に制限はなく、以下に記載したような化合物から任意のものを選択して用いることができる。
(5) Hole injection and transport layer The hole transport layer is a layer that assists hole injection into the light emitting layer and transports it to the light emitting region, and has a high hole mobility. As such a hole injection and transport layer, a material that transports holes to the light emitting layer with a lower electric field strength is preferable. Further, when an electric field is applied with a hole mobility of, for example, 10 4 to 10 6 V / cm, At least 10 −4 cm 2 / V · sec is preferable. As the compound used for the hole transport layer and the injection layer, any of those conventionally used as a charge transport material for holes in optical transmission materials and known compounds used for the hole injection layer of EL elements can be used. Can be selected and used. However, most of the compounds used in the hole transport layer and the injection layer that have been used so far have a small ionization energy of 5.5 eV or less, but the above-mentioned hydrocarbon-based light-emitting materials usually have an ionization energy of 5. Since it is as large as 6 to 5.8 eV, it is necessary to use a material having a particularly high ionization energy and close to the ionization potential of the material used for the light emitting layer as the material for the hole transport layer and injection layer used in the present invention. The difference in ionization potential between the hole transport layer / injection layer material and the material used for the light emitting layer is preferably 0.2 eV or less, more preferably 0.1 eV or less. The material to be used is not particularly limited as long as it has the above preferable properties, and any material can be selected and used from the compounds described below.

具体例として例えば、トリアゾール誘導体(米国特許3,112,197号明細書等参照)、オキサジアゾール誘導体(米国特許3,189,447号明細書等参照)、イミダゾール誘導体(特公昭37−16096号公報等参照)、ポリアリールアルカン誘導体(米国特許3,615,402号明細書、同第3,820,989号明細書、同第3,542,544号明細書、特公昭45−555号公報、同51−10983号公報、特開昭51−93224号公報、同55−17105号公報、同56−4148号公報、同55−108667号公報、同55−156953号公報、同56−36656号公報等参照)、ピラゾリン誘導体およびピラゾロン誘導体(米国特許第3,180,729号明細書、同第4,278,746号明細書、特開昭55−88064号公報、同55−88065号公報、同49−105537号公報、同55−51086号公報、同56−80051号公報、同56−88141号公報、同57−45545号公報、同54−112637号公報、同55−74546号公報等参照)、フェニレンジアミン誘導体(米国特許第3,615,404号明細書、特公昭51−10105号公報、同46−3712号公報、同47−25336号公報、特開昭54−53435号公報、同54−110536号公報、同54−119925号公報等参照)、アリールアミン誘導体(米国特許第3,567,450号明細書、同第3,180,703号明細書、同第3,240,597号明細書、同第3,658,520号明細書、同第4,232,103号明細書、同第4,175,961号明細書、同第4,012,376号明細書、特公昭49−35702号公報、同39−27577号公報、特開昭55−144250号公報、同56−119132号公報、同56−22437号公報、西独特許第1,110,518号明細書等参照)、アミノ置換カルコン誘導体(米国特許第3,526,501号明細書等参照)、オキサゾール誘導体(米国特許第3,257,203号明細書等に開示のもの)、スチリルアントラセン誘導体(特開昭56−46234号公報等参照)、フルオレノン誘導体(特開昭54−110837号公報等参照)、ヒドラゾン誘導体(米国特許第3,717,462号明細書、特開昭54−59143号公報、同55−52063号公報、同55−52064号公報、同55−46760号公報、同55−85495号公報、同57−11350号公報、同57−148749号公報、特開平2−311591号公報等参照)、スチルベン誘導体(特開昭61−210363号公報、同第61−228451号公報、同61−14642号公報、同61−72255号公報、同62−47646号公報、同62−36674号公報、同62−10652号公報、同62−30255号公報、同60−93455号公報、同60−94462号公報、同60−174749号公報、同60−175052号公報等参照)、シラザン誘導体(米国特許第4,950,950号明細書)、ポリシラン系(特開平2−204996号公報)、アニリン系共重合体(特開平2−282263号公報)、特開平1−211399号公報に開示されている導電性高分子オリゴマー(特にチオフェンオリゴマー)等を挙げることができる。   Specific examples include, for example, triazole derivatives (see US Pat. No. 3,112,197), oxadiazole derivatives (see US Pat. No. 3,189,447, etc.), imidazole derivatives (Japanese Patent Publication No. 37-16096). Polyarylalkane derivatives (US Pat. Nos. 3,615,402, 3,820,989, 3,542,544, JP-B-45-555). 51-10983, JP-A-51-93224, 55-17105, 56-4148, 55-108667, 55-156953, 56-36656 Patent Publication etc.), pyrazoline derivatives and pyrazolone derivatives (US Pat. Nos. 3,180,729 and 4,278,746) JP, 55-88064, 55-88065, 49-105537, 55-51086, 56-80051, 56-88141, 57-45545. Gazette, 54-112737, 55-74546, etc.), phenylenediamine derivatives (US Pat. No. 3,615,404, JP-B 51-10105, 46-3712, 47-25336, JP-A 54-53435, 54-110536, 54-1119925, etc.), arylamine derivatives (US Pat. No. 3,567,450), 3,180,703, 3,240,597, 3,658,520, 4,232,1 No. 3, No. 4,175,961, No. 4,012,376, JP-B No. 49-35702, No. 39-27577, JP-A No. 55-144250 56-119132, 56-22437, West German Patent 1,110,518, etc.), amino-substituted chalcone derivatives (see US Pat. No. 3,526,501, etc.), Oxazole derivatives (disclosed in US Pat. No. 3,257,203, etc.), styryl anthracene derivatives (see JP 56-46234 A, etc.), fluorenone derivatives (see JP 54-110837 A, etc.) ), Hydrazone derivatives (US Pat. No. 3,717,462, JP-A-54-59143, 55-52063, 55-52064). No. 55-46760, No. 55-85495, No. 57-11350, No. 57-148799, JP-A-2-311591, etc.), Stilbene derivatives (JP-A 61-61). No. 210363, No. 61-228451, No. 61-14642, No. 61-72255, No. 62-47646, No. 62-36674, No. 62-10652, No. 62- 30255, 60-94455, 60-94462, 60-174749, 60-175052, etc.), silazane derivatives (US Pat. No. 4,950,950) , Polysilanes (JP-A-2-204996), aniline copolymers (JP-A-2-282263), JP-A-1 Conductive polymer oligomers disclosed in 211399 JP can (particularly thiophene oligomer).

正孔輸送層は、さらに正孔の注入を助けるために別途正孔注入層を設けることもできる。正孔注入層の材料としては正孔輸送層と同様の材料を使用することができるが、ポルフィリン化合物(特開昭63−2956965号公報等に開示のもの)、芳香族第三級アミン化合物およびスチリルアミン化合物(米国特許第4,127,412号明細書、特開昭53−27033号公報、同54−58445号公報、同54−149634号公報、同54−64299号公報、同55−79450号公報、同55−144250号公報、同56−119132号公報、同61−295558号公報、同61−98353号公報、同63−295695号公報等参照)、ヘキサアザフェニレン誘導体(特表2003−519432)などを用いることもできる。
また米国特許第5,061,569号に記載されている2個の縮合芳香族環を分子内に有する、例えば4,4’−ビス(N−(1−ナフチル)−N−フェニルアミノ)ビフェニル(以下NPDと略記する)、また特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4’,4”−トリス(N−(3−メチルフェニル)−N−フェニルアミノ)トリフェニルアミン(以下MTDATAと略記する)等を挙げることができる。
The hole transport layer may be provided with a separate hole injection layer to further assist hole injection. As the material for the hole injection layer, the same material as that for the hole transport layer can be used, but a porphyrin compound (disclosed in Japanese Patent Laid-Open No. 63-295965), an aromatic tertiary amine compound, and Styrylamine compounds (US Pat. No. 4,127,412, JP-A-53-27033, 54-58445, 54-149634, 54-64299, 55-79450 No. 55-144250, No. 56-119132, No. 61-295558, No. 61-98353, No. 63-295695, etc.), Hexaazaphenylene derivatives (Special Table 2003) 519432) can also be used.
Further, for example, 4,4′-bis (N- (1-naphthyl) -N-phenylamino) biphenyl having two condensed aromatic rings described in US Pat. No. 5,061,569 in the molecule. (Hereinafter abbreviated as NPD), and 4,4 ′, 4 ″ -tris (N- (3−3) in which three triphenylamine units described in JP-A-4-308688 are linked in a starburst type. And methylphenyl) -N-phenylamino) triphenylamine (hereinafter abbreviated as MTDATA).

また芳香族ジメチリディン系化合物の他、p型Si、p型SiC等の無機化合物も正孔注入層の材料として使用することができる。
正孔注入、輸送層は上述した化合物を、例えば真空蒸着法、スピンコート法、キャスト法、LB法等の公知の方法により薄膜化することにより形成することができる。正孔注入、輸送層としての膜厚は特に制限はないが、通常は5nm〜5μmである。この正孔注入、輸送層は正孔輸送帯域に本発明の化合物を含有していれば、上述した材料の一種または二種以上からなる一層で構成されてもよいし、または前記正孔注入、輸送層とは別種の化合物からなる正孔注入、輸送層を積層したものであってもよい。
また有機半導体層も正孔輸送層の一部であるが、これは発光層への正孔注入または電子注入を助ける層であって、10-10S/cm以上の導電率を有するものが好適である。このような有機半導体層の材料としては、含チオフェンオリゴマーや特開平8−193191号公報に開示してある含アリールアミンオリゴマー等の導電性オリゴマー、含アリールアミンデンドリマー等の導電性デンドリマー等を用いることができる。
In addition to aromatic dimethylidin compounds, inorganic compounds such as p-type Si and p-type SiC can also be used as the material for the hole injection layer.
The hole injection and transport layer can be formed by thinning the above-described compound by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. The thickness of the hole injection or transport layer is not particularly limited, but is usually 5 nm to 5 μm. As long as this hole injection and transport layer contains the compound of the present invention in the hole transport zone, it may be composed of one or more of the above materials, or the hole injection, A layer in which a hole injection / transport layer made of a compound different from the transport layer is laminated may be used.
The organic semiconductor layer is also a part of the hole transport layer, which is a layer that assists hole injection or electron injection into the light emitting layer, and preferably has a conductivity of 10 −10 S / cm or more. It is. As a material for such an organic semiconductor layer, a conductive oligomer such as a thiophene-containing oligomer, an arylamine oligomer disclosed in JP-A-8-193191, a conductive dendrimer such as an arylamine dendrimer, or the like is used. Can do.

(6)電子注入、輸送層
電子輸送層は発光層への電子の注入を助ける層であって、電子移動度が大きい。
有機ELは発光した光が電極(この場合は陰極)により反射するため、直接陽極から取り出される発光と、電極による反射を経由して取り出される発光とが干渉することが知られている。この干渉効果を効率的に利用するため、電子輸送層は数nm〜数μmの膜厚で適宜選ばれるが、特に膜厚が厚いとき、電圧上昇を避けるために、104〜106V/cmの電界印加時に電子移動度が少なくとも10-5cm2/Vs以上であることが望ましい。電子輸送層に用いられる材料としては、以下に記載したような各種化合物を用いることができるが、これまで用いられてきた電子輸送層用の化合物はアフィニティレベルが3.0eV程度あるものが多いが、本発明では低電圧化のために電子輸送層と発光層に用いる材料のアフィニティレベルを近いものとすることで電子障壁を著しく小さくすることが必要である。したがって、本発明で用いる電子輸送層用材料としては、前記、炭化水素系の発光材料のアフィニティレベル(2.6〜2.8eV程度)に近いアフィニティレベルを有するものを選択する必要がある。電子輸送層と発光層に用いる材料のアフィニティレベルの差は0.2eV以下であることが好ましく、より好ましくは0.1eV以下である。電子輸送層に用いる化合物としては、前記の好ましい性質を有するものであれば特に制限はなく、以下に記載するような化合物の中から選択することができる。
(6) Electron injection and transport layer The electron transport layer is a layer that assists the injection of electrons into the light emitting layer and has a high electron mobility.
In organic EL, since emitted light is reflected by an electrode (in this case, a cathode), it is known that light emitted directly from the anode interferes with light emitted via reflection by the electrode. In order to efficiently use this interference effect, the electron transport layer is appropriately selected with a film thickness of several nanometers to several micrometers, but particularly when the film thickness is large, 10 4 to 10 6 V / It is desirable that the electron mobility is at least 10 −5 cm 2 / Vs or more when an electric field of cm is applied. As the material used for the electron transport layer, various compounds as described below can be used, but many of the compounds for the electron transport layer that have been used so far have an affinity level of about 3.0 eV. In the present invention, in order to reduce the voltage, it is necessary to make the electron barrier remarkably small by making the affinity levels of the materials used for the electron transport layer and the light emitting layer close to each other. Therefore, as the material for the electron transport layer used in the present invention, it is necessary to select a material having an affinity level close to the affinity level (about 2.6 to 2.8 eV) of the hydrocarbon-based light emitting material. The difference in affinity level between the materials used for the electron transport layer and the light emitting layer is preferably 0.2 eV or less, more preferably 0.1 eV or less. The compound used for the electron transport layer is not particularly limited as long as it has the above-mentioned preferable properties, and can be selected from the compounds described below.

具体例としては例えば、8−ヒドロキシキノリンまたはその誘導体の金属錯体が挙げられる。上記8−ヒドロキシキノリンまたはその誘導体の金属錯体の具体例としては、オキシン(一般に8−キノリノールまたは8−ヒドロキシキノリン)のキレートを含む金属キレートオキシノイド化合物が挙げられる。
例えば発光材料の項で記載したトリス(8−キノリノラト)アルミニウム(Alq)を電子注入層の材料として用いることができる。
Specific examples thereof include a metal complex of 8-hydroxyquinoline or a derivative thereof. Specific examples of the metal complex of 8-hydroxyquinoline or its derivative include metal chelate oxinoid compounds containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline).
For example, tris (8-quinolinolato) aluminum (Alq) described in the light emitting material can be used as a material for the electron injection layer.

一方オキサジアゾール誘導体としては、以下の一般式で表される電子伝達化合物が挙げられる。

Figure 2006265144
(式中、Ar1、Ar2、Ar3、Ar5、Ar6、及びAr9はそれぞれ置換もしくは無置換のアリール基を示し、それぞれ互いに同一であっても異なっていてもよい。またAr4、Ar7、及びAr8は置換もしくは無置換のアリーレン基を示し、それぞれ同一であっても異なっていてもよい) On the other hand, examples of the oxadiazole derivative include electron transfer compounds represented by the following general formula.
Figure 2006265144
(In the formula, Ar 1 , Ar 2 , Ar 3 , Ar 5 , Ar 6 , and Ar 9 each represent a substituted or unsubstituted aryl group, and may be the same or different from each other. Ar 4 , Ar 7 and Ar 8 represent a substituted or unsubstituted arylene group, which may be the same or different.

上式中のアリール基としてはフェニル基、ビフェニル基、アントラニル基、ペリレニル基、ピレニル基が挙げられる。またアリーレン基としてはフェニレン基、ナフチレン基、ビフェニレン基、アントラニレン基、ペリレニレン基、ピレニレン基などが挙げられる。また置換基としては炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基またはシアノ基等が挙げられる。この電子伝達化合物は薄膜形成性のものが好ましい。
上記電子伝達性化合物の具体例としては下記のものを挙げることができる。
Examples of the aryl group in the above formula include a phenyl group, a biphenyl group, an anthranyl group, a perylenyl group, and a pyrenyl group. Examples of the arylene group include a phenylene group, a naphthylene group, a biphenylene group, an anthranylene group, a peryleneylene group, and a pyrenylene group. Examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyano group. This electron transfer compound is preferably a thin film-forming compound.
Specific examples of the electron transfer compound include the following.

Figure 2006265144
Figure 2006265144

また、下記一般式(3A)又は(3B)で表される含窒素複素環誘導体も電子輸送材料として好適である。

Figure 2006265144
Further, a nitrogen-containing heterocyclic derivative represented by the following general formula (3A) or (3B) is also suitable as an electron transporting material.
Figure 2006265144

{式中、A1〜A3は、窒素原子又は炭素原子であり、Rは、置換もしくは無置換の炭素数6〜60のアリール基、置換もしくは無置換の炭素数3〜60のヘテロアリール基、炭素数1〜20のアルキル基、炭素数1〜20のハロアルキル基、又は炭素数1〜20のアルコキシ基である。nは0から5の整数であり、nが2以上の整数であるとき、複数のRは互いに同一又は異なっていてもよい。
また、隣接する複数のR基同士で互いに結合して、置換もしくは無置換の炭素環式脂肪族環、あるいは、置換もしくは無置換の炭素環式芳香族環を形成していてもよい。Ar10は、置換もしくは無置換の炭素数6〜60のアリール基、又は置換もしくは無置換の炭素数3〜60のヘテロアリール基であり、Ar11は、水素原子、炭素数1〜20のアルキル基、炭素数1〜20のハロアルキル基、炭素数1〜20のアルコキシ基、置換もしくは無置換の炭素数6〜60のアリール基、又は置換もしくは無置換の炭素数3〜60のヘテロアリール基である。
(ただし、Ar10とAr11のいずれか一方は置換もしくは無置換の炭素数10〜60の縮合環基、又は置換もしくは無置換の炭素数3〜60のヘテロ縮合環基である。)
1、L2は、それぞれ単結合、置換もしくは無置換の炭素数6〜60の縮合環、置換もしくは無置換の炭素数3〜60のヘテロ縮合環又は置換もしくは無置換のフルオレニレン基である。}
{Wherein A 1 to A 3 are a nitrogen atom or a carbon atom, and R is a substituted or unsubstituted aryl group having 6 to 60 carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 60 carbon atoms. , An alkyl group having 1 to 20 carbon atoms, a haloalkyl group having 1 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms. n is an integer of 0 to 5, and when n is an integer of 2 or more, a plurality of R may be the same or different from each other.
A plurality of adjacent R groups may be bonded to each other to form a substituted or unsubstituted carbocyclic aliphatic ring or a substituted or unsubstituted carbocyclic aromatic ring. Ar 10 is a substituted or unsubstituted aryl group having 6 to 60 carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 60 carbon atoms, Ar 11 is a hydrogen atom, an alkyl having 1 to 20 carbon atoms A group, a haloalkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 60 carbon atoms. is there.
(However, any one of Ar 10 and Ar 11 is a substituted or unsubstituted condensed ring group having 10 to 60 carbon atoms, or a substituted or unsubstituted hetero condensed ring group having 3 to 60 carbon atoms.)
L 1 and L 2 are each a single bond, a substituted or unsubstituted condensed ring having 6 to 60 carbon atoms, a substituted or unsubstituted heterocyclic ring having 3 to 60 carbon atoms, or a substituted or unsubstituted fluorenylene group. }

また、下記一般式(4)で表される含窒素複素環誘導体は電子輸送材料として好適である(特願2003−004139)。
HAr−L1−Ar1−Ar2 (4)
(式中、HArは、置換もしくは無置換の炭素数3〜40の含窒素複素環であり、L1は、単結合、置換もしくは無置換の炭素数6〜60のアリーレン基、置換もしくは無置換の炭素数3〜60のヘテロアリーレン基又は置換もしくは無置換のフルオレニレン基であり、Ar1は、置換もしくは無置換の炭素数6〜60の2価の芳香族炭化水素基であり、Ar2は、置換もしくは無置換の炭素数6〜60のアリール基又は、置換もしくは無置換の炭素数3〜60のヘテロアリール基である。)
A nitrogen-containing heterocyclic derivative represented by the following general formula (4) is suitable as an electron transport material (Japanese Patent Application No. 2003-004139).
HAr-L 1 -Ar 1 -Ar 2 (4)
(In the formula, HAr is a substituted or unsubstituted nitrogen-containing heterocycle having 3 to 40 carbon atoms, and L 1 is a single bond, a substituted or unsubstituted arylene group having 6 to 60 carbon atoms, substituted or unsubstituted. A heteroarylene group having 3 to 60 carbon atoms or a substituted or unsubstituted fluorenylene group, Ar 1 is a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 60 carbon atoms, and Ar 2 is A substituted or unsubstituted aryl group having 6 to 60 carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 60 carbon atoms.)

下記一般式で表されるシラシクロペンタジエン誘導体を電子輸送材料として用いた電界発光素子も提案されている(特開平09−087616)。

Figure 2006265144
(式中、X及びYは、それぞれ独立に炭素数1から6までの飽和もしくは不飽和の炭化水素基、アルコキシ基、アルケニルオキシ基、アルキニルオキシ基、ヒドロキシ基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロ環又はXとYが結合して飽和又は不飽和の環を形成した構造であり、R13 〜R16は、それぞれ独立に水素、ハロゲン、置換もしくは無置換の炭素数1から6までのアルキル基、アルコキシ基、アリールオキシ基、パーフルオロアルキル基、パーフルオロアルコキシ基、アミノ基、アルキルカルボニル基、アリールカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、アゾ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、スルフィニル基、スルフォニル基、スルファニル基、シリル基、カルバモイル基、アリール基、ヘテロ環基、アルケニル基、アルキニル基、ニトロ基、ホルミル基、ニトロソ基、ホルミルオキシ基、イソシアノ基、シアネート基、イソシアネート基、チオシアネート基、イソチオシアネート基もしくはシアノ基又は隣接した場合には置換もしくは無置換の環が縮合した構造である。) An electroluminescent device using a silacyclopentadiene derivative represented by the following general formula as an electron transporting material has also been proposed (Japanese Patent Laid-Open No. 09-087616).
Figure 2006265144
(Wherein X and Y are each independently a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group, an alkenyloxy group, an alkynyloxy group, a hydroxy group, a substituted or unsubstituted aryl group, It is a structure in which a substituted or unsubstituted hetero ring or X and Y are combined to form a saturated or unsaturated ring, and R 13 to R 16 are each independently hydrogen, halogen, substituted or unsubstituted carbon number 1 To 6 alkyl groups, alkoxy groups, aryloxy groups, perfluoroalkyl groups, perfluoroalkoxy groups, amino groups, alkylcarbonyl groups, arylcarbonyl groups, alkoxycarbonyl groups, aryloxycarbonyl groups, azo groups, alkylcarbonyloxy Group, arylcarbonyloxy group, alkoxycarbonyloxy group, aryloxy Carbonyloxy group, sulfinyl group, sulfonyl group, sulfanyl group, silyl group, carbamoyl group, aryl group, heterocyclic group, alkenyl group, alkynyl group, nitro group, formyl group, nitroso group, formyloxy group, isocyano group, cyanate group , An isocyanate group, a thiocyanate group, an isothiocyanate group or a cyano group, or, when adjacent, a substituted or unsubstituted ring is condensed.)

下記一般式で表されるボラン誘導体を電子輸送材料として用いた電界発光素子も提案されている(特再2000−040586)。

Figure 2006265144
(式中、R17〜R24およびZ2は、それぞれ独立に、水素原子、飽和もしくは不飽和の炭化水素基、芳香族基、ヘテロ環基、置換アミノ基、置換ボリル基、アルコキシ基またはアリールオキシ基を示し、X1、Y1およびZ1は、それぞれ独立に、飽和もしくは不飽和の炭化水素基、芳香族基、ヘテロ環基、置換アミノ基、アルコキシ基またはアリールオキシ基を示し、Z1とZ2の置換基は相互に結合して縮合環を形成してもよく、nは1〜3の整数を示し、nが2以上の場合、Z1は異なってもよい。但し、nが1、X1、Y1およびR18がメチル基であって、R24が水素原子または置換ボリル基の場合、およびnが3でZ1がメチル基の場合を含まない。) An electroluminescent device using a borane derivative represented by the following general formula as an electron transport material has also been proposed (Japanese Patent Publication No. 2000-040586).
Figure 2006265144
(Wherein R 17 to R 24 and Z 2 are each independently a hydrogen atom, a saturated or unsaturated hydrocarbon group, an aromatic group, a heterocyclic group, a substituted amino group, a substituted boryl group, an alkoxy group or an aryl group) X 1 , Y 1 and Z 1 each independently represents a saturated or unsaturated hydrocarbon group, aromatic group, heterocyclic group, substituted amino group, alkoxy group or aryloxy group; The substituents of 1 and Z 2 may be bonded to each other to form a condensed ring, n represents an integer of 1 to 3, and when n is 2 or more, Z 1 may be different, provided that n 1, X 1 , Y 1 and R 18 are methyl groups, R 24 is a hydrogen atom or a substituted boryl group, and n is 3 and Z 1 is a methyl group.

下記一般式(5)で示される有機ガリウム化合物も電子注入材料として提案されている(特開平10−088121)。


Figure 2006265144
[式中、Q1及びQ2は、それぞれ独立に下記一般式(6)で表される配位子
Figure 2006265144
{式中、環A1及びA2は、置換もしくは無置換の互いに縮合した6員アリール環構造である}
を表し、Lはハロゲン原子、置換もしくは未置換のアルキル基、置換もしくは未置換のシクロアルキル基、置換もしくは未置換のアリール基、置換もしくは未置換の複素環、−OR1
{R1は水素原子、置換もしくは未置換のアルキル基、置換もしくは未置換のシクロアルキル基、置換もしくは未置換のアリール基、置換もしくは未置換の複素環基である。}
又は−O−Ga−Q3(Q4
{Q3及びQ4はQ1及びQ2と同じ意味を表す。}
で示される配位子を表す。] An organic gallium compound represented by the following general formula (5) has also been proposed as an electron injection material (Japanese Patent Laid-Open No. 10-088121).


Figure 2006265144
Wherein Q 1 and Q 2 are each independently a ligand represented by the following general formula (6)
Figure 2006265144
{Wherein rings A 1 and A 2 are substituted or unsubstituted 6-membered aryl ring structures fused together}
L represents a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocycle, —OR 1
{R 1 is a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group. }
Or -O-Ga-Q 3 (Q 4 )
{Q 3 and Q 4 represent the same meaning as Q 1 and Q 2 . }
Represents a ligand represented by ]

1〜Q4で示される一般式(6)の残基は、8−ヒドロキシキノリン、2−メチル−8−ヒドロキシキノリン等のキノリン残基があるが、これらに限られるものではない。
一般式(6)で示される環A1及びA2は、互いに結合した置換もしくは未置換のアリール環もしくは複素環構造である。この金属錯体はn型半導体としての性質が強く、電子注入能力が大きい。さらには、錯体形成時の生成エネルギーも低いために、形成した金属錯体の金属と配位子との結合性も強固になり、発光材料としての蛍光量子効率も大きくなっている。一般式(6)の配位子を形成する環A1およびA2の置換基の具体的な例を挙げると、塩素、臭素、ヨウ素、フッ素のハロゲン原子、メチル基、エチル基、プロピル基、ブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基、トリクロロメチル基等の置換もしくは未置換のアルキル基、フェニル基、ナフチル基、3−メチルフェニル基、3−メトキシフェニル基、3−フルオロフェニル基、3−トリクロロメチルフェニル基、3−トリフルオロメチルフェニル基、3−ニトロフェニル基等の置換もしくは未置換のアリール基、メトキシ基、n−ブトキシ基、t−ブトキシ基、トリクロロメトキシ基、トリフルオロエトキシ基、ペンタフルオロプロポキシ基、2,2,3,3−テトラフルオロプロポキシ基、1,1,1,3,3,3−ヘキサフルオロ−2−プロポキシ基、6−(パーフルオロエチル)ヘキシルオキシ基等の置換もしくは未置換のアルコキシ基、フェノキシ基、p−ニトロフェノキシ基、p−t−ブチルフェノキシ基、3−フルオロフェノキシ基、ペンタフルオロフェニル基、3−トリフルオロメチルフェノキシ基等の置換もしくは未置換のアリールオキシ基、メチルチオ基、エチルチオ基、t−ブチルチオ基、ヘキシルチオ基、オクチルチオ基、トリフルオロメチルチオ基等の置換もしくは未置換のアルキルチオ基、フェニルチオ基、p−ニトロフェニルチオ基、p‐t−ブチルフェニルチオ基、3−フルオロフェニルチオ基、ペンタフルオロフェニルチオ基、3−トリフルオロメチルフェニルチオ基等の置換もしくは未置換のアリールチオ基、シアノ基、ニトロ基、アミノ基、メチルアミノ基、ジエチルアミノ基、エチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジフェニルアミノ基等のモノまたはジ置換アミノ基、ビス(アセトキシメチル)アミノ基、ビス(アセトキシエチル)アミノ基、ビスアセトキシプロピル)アミノ基、ビス(アセトキシブチル)アミノ基等のアシルアミノ基、水酸基、シロキシ基、アシル基、メチルカルバモイル基、ジメチルカルバモイル基、エチルカルバモイル基、ジエチルカルバモイル基、プロイピルカルバモイル基、ブチルカルバモイル基、フェニルカルバモイル基等のカルバモイル基、カルボン酸基、スルフォン酸基、イミド基、シクロペンタン基、シクロヘキシル基等のシクロアルキル基、フェニル基、ナフチル基、ビフェニル基、アントラニル基、フェナントリル基、フルオレニル基、ピレニル基等のアリール基、ピリジニル基、ピラジニル基、ピリミジニル基、ピリダジニル基、トリアジニル基、インドリニル基、キノリニル基、アクリジニル基、ピロリジニル基、ジオキサニル基、ピペリジニル基、モルフォリジニル基、ピペラジニル基、トリアチニル基、カルバゾリル基、フラニル基、チオフェニル基、オキサゾリル基、オキサジアゾリル基、ベンゾオキサゾリル基、チアゾリル基、チアジアゾリル基、ベンゾチアゾリル基、トリアゾリル基、イミダゾリル基、ベンゾイミダゾリル基、プラニル基等の複素環基等がある。また、以上の置換基同士が結合してさらなる6員アリール環もしくは複素環を形成しても良い。
Residues of the general formula (6) represented by Q 1 to Q 4 is 8-hydroxyquinoline, is quinoline residue such as 2-methyl-8-hydroxyquinoline, but not limited thereto.
Rings A 1 and A 2 represented by the general formula (6) are substituted or unsubstituted aryl rings or heterocyclic structures bonded to each other. This metal complex has strong properties as an n-type semiconductor and has a large electron injection capability. Furthermore, since the generation energy at the time of complex formation is also low, the bond between the metal of the formed metal complex and the ligand is strengthened, and the fluorescence quantum efficiency as a light emitting material is also increased. Specific examples of the substituents of the rings A 1 and A 2 that form the ligand of the general formula (6) include chlorine, bromine, iodine, halogen atoms of fluorine, methyl group, ethyl group, propyl group, Substituted or unsubstituted alkyl groups such as butyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group, trichloromethyl group, phenyl group, naphthyl group, 3-methyl A substituted or unsubstituted aryl group such as phenyl group, 3-methoxyphenyl group, 3-fluorophenyl group, 3-trichloromethylphenyl group, 3-trifluoromethylphenyl group, 3-nitrophenyl group, methoxy group, n- Butoxy group, t-butoxy group, trichloromethoxy group, trifluoroethoxy group, pentafluoropropoxy group, 2,2,3,3-tetrafluoro Substituted or unsubstituted alkoxy groups such as lopropoxy group, 1,1,1,3,3,3-hexafluoro-2-propoxy group, 6- (perfluoroethyl) hexyloxy group, phenoxy group, p-nitrophenoxy Group, p-t-butylphenoxy group, 3-fluorophenoxy group, pentafluorophenyl group, substituted or unsubstituted aryloxy group such as 3-trifluoromethylphenoxy group, methylthio group, ethylthio group, t-butylthio group, Substituted or unsubstituted alkylthio groups such as hexylthio group, octylthio group, trifluoromethylthio group, phenylthio group, p-nitrophenylthio group, pt-butylphenylthio group, 3-fluorophenylthio group, pentafluorophenylthio Substitution of 3-group, 3-trifluoromethylphenylthio group, etc. Or an unsubstituted arylthio group, cyano group, nitro group, amino group, methylamino group, diethylamino group, ethylamino group, diethylamino group, dipropylamino group, dibutylamino group, diphenylamino group, or other mono- or disubstituted amino group Group, acylamino group such as bis (acetoxymethyl) amino group, bis (acetoxyethyl) amino group, bisacetoxypropyl) amino group, bis (acetoxybutyl) amino group, hydroxyl group, siloxy group, acyl group, methylcarbamoyl group, dimethyl group A carbamoyl group such as a carbamoyl group, an ethylcarbamoyl group, a diethylcarbamoyl group, a propylcarbamoyl group, a butylcarbamoyl group, and a phenylcarbamoyl group, a cycloalkyl group such as a carboxylic acid group, a sulfonic acid group, an imide group, a cyclopentane group, and a cyclohexyl group Kill group, phenyl group, naphthyl group, biphenyl group, anthranyl group, phenanthryl group, fluorenyl group, pyrenyl group and other aryl groups, pyridinyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, triazinyl group, indolinyl group, quinolinyl group, acridinyl Group, pyrrolidinyl group, dioxanyl group, piperidinyl group, morpholidinyl group, piperazinyl group, triatinyl group, carbazolyl group, furanyl group, thiophenyl group, oxazolyl group, oxadiazolyl group, benzoxazolyl group, thiazolyl group, thiadiazolyl group, benzothiazolyl Groups, triazolyl groups, imidazolyl groups, benzoimidazolyl groups, and heterocyclic groups such as pranyl groups. Moreover, the above substituents may combine to form a further 6-membered aryl ring or heterocyclic ring.

本発明の好ましい形態に、電子を輸送する領域または陰極と有機層の界面領域に、還元性ドーパントを含有する素子がある。ここで、還元性ドーパントとは、電子輸送性化合物を還元ができる物質と定義される。したがって、一定の還元性を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物または希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体、希土類金属の有機錯体からなる群から選択される少なくとも一つの物質を好適に使用することができる。   In a preferred embodiment of the present invention, there is an element containing a reducing dopant in an electron transporting region or an interface region between a cathode and an organic layer. Here, the reducing dopant is defined as a substance capable of reducing the electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility, such as alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earth metals. At least selected from the group consisting of oxides, alkaline earth metal halides, rare earth metal oxides or rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes, rare earth metal organic complexes One substance can be preferably used.

また、より具体的に、好ましい還元性ドーパントとしては、Na(仕事関数:2.36eV)、K(仕事関数:2.28eV)、Rb(仕事関数:2.16eV)およびCs(仕事関数:1.95eV)からなる群から選択される少なくとも一つのアルカリ金属や、Ca(仕事関数:2.9eV)、Sr(仕事関数:2.0〜2.5eV)、およびBa(仕事関数:2.52eV)からなる群から選択される少なくとも一つのアルカリ土類金属が挙げられる仕事関数が2.9eV以下のものが特に好ましい。これらのうち、より好ましい還元性ドーパントは、K、RbおよびCsからなる群から選択される少なくとも一つのアルカリ金属であり、さらに好ましくは、RbまたはCsであり、最も好ましいのは、Csである。これらのアルカリ金属は、特に還元能力が高く、電子注入域への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2.9eV以下の還元性ドーパントとして、これら2種以上のアルカリ金属の組合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRbあるいはCsとNaとKとの組み合わせであることが好ましい。Csを組み合わせて含むことにより、還元能力を効率的に発揮することができ、電子注入域への添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。   More specifically, preferable reducing dopants include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV) and Cs (work function: 1 .95 eV), at least one alkali metal selected from the group consisting of Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV), and Ba (work function: 2.52 eV). Particularly preferred are those having a work function of 2.9 eV or less, including at least one alkaline earth metal selected from the group consisting of: Of these, a more preferred reducing dopant is at least one alkali metal selected from the group consisting of K, Rb and Cs, more preferably Rb or Cs, and most preferably Cs. These alkali metals have particularly high reducing ability, and the addition of a relatively small amount to the electron injection region can improve the light emission luminance and extend the life of the organic EL element. Further, as a reducing dopant having a work function of 2.9 eV or less, a combination of these two or more alkali metals is also preferable. Particularly, a combination containing Cs, for example, Cs and Na, Cs and K, Cs and Rb, A combination of Cs, Na and K is preferred. By including Cs in combination, the reducing ability can be efficiently exhibited, and by adding to the electron injection region, the emission luminance and the life of the organic EL element can be improved.

本発明においては陰極と有機層の間に絶縁体や半導体で構成される電子注入層をさらに設けても良い。この時、電流のリークを有効に防止して、電子注入性を向上させることができる。このような絶縁体としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこれらのアルカリ金属カルコゲニド等で構成されていれば、電子注入性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ金属カルコゲニドとしては、例えば、Li2O、K2O、Na2S、Na2SeおよびNa2Oが挙げられ、好ましいアルカリ土類金属カルコゲニドとしては、例えば、CaO、BaO、SrO、BeO、BaS、およびCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、LiCl、KClおよびNaCl等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF2、BaF2、SrF2、MgF2及びBeF2といったフッ化物や、フッ化物以外のハロゲン化物が挙げられる。 In the present invention, an electron injection layer composed of an insulator or a semiconductor may be further provided between the cathode and the organic layer. At this time, current leakage can be effectively prevented and the electron injection property can be improved. As such an insulator, it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved. Specifically, preferable alkali metal chalcogenides include, for example, Li 2 O, K 2 O, Na 2 S, Na 2 Se, and Na 2 O, and preferable alkaline earth metal chalcogenides include, for example, CaO, BaO. , SrO, BeO, BaS, and CaSe. Further, preferable alkali metal halides include, for example, LiF, NaF, KF, LiCl, KCl, and NaCl. Examples of preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.

また、電子輸送層を構成する半導体としては、Ba、Ca、Sr、Yb、Al、Ga、In、Li、Na、Cd、Mg、Si、Ta、Sb及びZnの少なくとも一つの元素を含む酸化物、窒化物または酸化窒化物等の一種単独または二種以上の組み合わせが挙げられる。また、電子輸送層を構成する無機化合物が、微結晶または非晶質の絶縁性薄膜であることが好ましい。電子輸送層がこれらの絶縁性薄膜で構成されていれば、より均質な薄膜が形成されるために、ダークスポット等の画素欠陥を減少させることができる。なお、このような無機化合物としては、上述したアルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲン化物等が挙げられる。   Further, as a semiconductor constituting the electron transport layer, an oxide containing at least one element of Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta, Sb, and Zn. , Nitrides or oxynitrides, or a combination of two or more thereof. Moreover, it is preferable that the inorganic compound which comprises an electron carrying layer is a microcrystal or an amorphous insulating thin film. If the electron transport layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include the alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides described above.

(7)陰極
陰極としては仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム・銀合金、アルミニウム/酸化アルミニウム、アルミニウム・リチウム合金、インジウム、希土類金属などが挙げられる。
この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。
ここで発光層からの発光を陰極から取り出す場合、陰極の発光に対する透過率は10%より大きくすることが好ましい。
また陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜1μm、好ましくは50〜200nmである。
(7) Cathode As the cathode, those having a work function (4 eV or less) metal, an alloy, an electrically conductive compound and a mixture thereof as an electrode material are used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / silver alloy, aluminum / aluminum oxide, aluminum / lithium alloy, indium, and rare earth metals.
The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
Here, when light emitted from the light emitting layer is taken out from the cathode, it is preferable that the transmittance with respect to the light emitted from the cathode is larger than 10%.
The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually 10 nm to 1 μm, preferably 50 to 200 nm.

(8)絶縁層
有機ELは超薄膜に電界を印加するために、リークやショートによる画素欠陥が生じやすい。これを防止するために、一対の電極間に絶縁性の薄膜層を挿入することが好ましい。
絶縁層に用いられる材料としては例えば酸化アルミニウム、弗化リチウム、酸化リチウム、弗化セシウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化カルシウム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマニウム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が挙げられる。
これらの混合物や積層物を用いてもよい。
(8) Insulating layer Since organic EL applies an electric field to an ultra-thin film, pixel defects are likely to occur due to leakage or short-circuiting. In order to prevent this, it is preferable to insert an insulating thin film layer between the pair of electrodes.
Examples of materials used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, silicon oxide, and oxide. Examples include germanium, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, and vanadium oxide.
A mixture or laminate of these may be used.

(9)有機EL素子の作製例
以上例示した材料および方法により陽極、発光層、必要に応じて正孔注入層、および必要に応じて電子注入層を形成し、さらに陰極を形成することにより有機EL素子を作製することができる。また陰極から陽極へ、前記と逆の順序で有機EL素子を作製することもできる。
以下、透光性基板上に陽極/正孔輸送層/発光層/電子注入層/陰極が順次設けられた構成の有機EL素子の作製例を記載する。
(9) Preparation Example of Organic EL Element An anode, a light emitting layer, a hole injection layer as necessary, and an electron injection layer as necessary are formed by the materials and methods exemplified above, and an organic layer is formed by forming a cathode. An EL element can be manufactured. Moreover, an organic EL element can also be produced from the cathode to the anode in the reverse order.
Hereinafter, an example of manufacturing an organic EL device having a structure in which an anode / a hole transport layer / a light emitting layer / an electron injection layer / a cathode are sequentially provided on a translucent substrate will be described.

まず適当な透光性基板上に陽極材料からなる薄膜を1μm以下、好ましくは10〜200nmの範囲の膜厚になるように蒸着やスパッタリング等の方法により形成して陽極を作製する。次にこの陽極上に正孔輸送層を設ける。正孔輸送層の形成は、前述したように真空蒸着法、スピンコート法、キャスト法、LB法等の方法により行うことができるが、均質な膜が得られやすく、かつピンホールが発生しにくい等の点から真空蒸着法により形成することが好ましい。真空蒸着法により正孔輸送層を形成する場合、その蒸着条件は使用する化合物(正孔輸送層の材料)、目的とする正孔注入層の結晶構造や再結合構造等により異なるが、一般に蒸着源温度50〜450℃、真空度10-7〜10-3Torr、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、膜厚5nm〜5μmの範囲で適宜選択することが好ましい。 First, a thin film made of an anode material is formed on a suitable light-transmitting substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably 10 to 200 nm. Next, a hole transport layer is provided on the anode. As described above, the hole transport layer can be formed by a vacuum deposition method, a spin coating method, a casting method, an LB method, or the like, but it is easy to obtain a homogeneous film and pinholes are not easily generated. From the point of view, it is preferable to form by vacuum deposition. When forming a hole transport layer by vacuum deposition, the deposition conditions vary depending on the compound used (material of the hole transport layer), the crystal structure of the target hole injection layer, the recombination structure, etc. The source temperature is preferably selected from the range of 50 to 450 ° C., the degree of vacuum of 10 −7 to 10 −3 Torr, the deposition rate of 0.01 to 50 nm / second, the substrate temperature of −50 to 300 ° C., and the thickness of 5 nm to 5 μm. .

この正孔輸送材料の上に無機化合物層を数nm〜数十nm形成する。この無機化合物層は様々な方法で成膜できるが、具体的には真空蒸着、スパッタリング、電子ビーム蒸着等である。真空蒸着法により無機化合物層を形成する場合、その蒸着条件は使用する化合物(正孔輸送層の材料)、目的とする正孔輸送層の結晶構造や再結合構造等により異なるが、一般に蒸着源温度500〜1000℃、真空度10-7〜10-3Torr、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、膜厚1nm〜20nmの範囲で適宜選択することが好ましい。
以上の正孔輸送層、無機化合物層の形成を順次繰り返し、正孔輸送層を多層化することによって有機EL層を数十〜数μmまで厚膜化できる。繰り返し単位は特に制限はないが、2〜10回が好ましい。
An inorganic compound layer is formed from several nm to several tens of nm on this hole transport material. This inorganic compound layer can be formed by various methods, and specifically, vacuum deposition, sputtering, electron beam deposition, and the like. When an inorganic compound layer is formed by vacuum deposition, the deposition conditions vary depending on the compound used (the material of the hole transport layer), the crystal structure of the target hole transport layer, the recombination structure, etc. It is preferable to appropriately select the temperature within a range of 500 to 1000 ° C., a degree of vacuum of 10 −7 to 10 −3 Torr, a deposition rate of 0.01 to 50 nm / second, a substrate temperature of −50 to 300 ° C., and a film thickness of 1 nm to 20 nm.
By repeating the formation of the hole transport layer and the inorganic compound layer in this order and multilayering the hole transport layer, the organic EL layer can be thickened to several tens to several μm. The repeating unit is not particularly limited but is preferably 2 to 10 times.

次に正孔輸送層上に発光層を設ける発光層の形成も、所望の有機発光材料を用いて真空蒸着法、スパッタリング、スピンコート法、キャスト法等の方法により有機発光材料を薄膜化することにより形成できるが、均質な膜が得られやすく、かつピンホールが発生しにくい等の点から真空蒸着法により形成することが好ましい。真空蒸着法により発光層を形成する場合、その蒸着条件は使用する化合物により異なるが、一般的に正孔輸送層と同じような条件範囲の中から選択することができる。   Next, the formation of the light emitting layer on the hole transport layer is also performed by thinning the organic light emitting material by a method such as vacuum deposition, sputtering, spin coating, or casting using a desired organic light emitting material. However, it is preferably formed by a vacuum deposition method from the standpoint that a homogeneous film is easily obtained and pinholes are not easily generated. In the case of forming a light emitting layer by a vacuum vapor deposition method, the vapor deposition conditions vary depending on the compounds used, but can generally be selected from the same condition range as the hole transport layer.

次にこの発光層上に電子輸送層を設ける。正孔輸送層、発光層と同様、均質な膜を得る必要から真空蒸着法により形成することが好ましい。蒸着条件は正孔輸送層、発光層と同様の条件範囲から選択することができる。
また正孔輸送層と同様に無機化合物層を形成することにより、電子輸送層を多層化することも可能である。電子輸送層を多層化することによって有機EL層を数十〜数μmまで厚膜化できる。繰り返し単位は特に制限はないが、2〜10回が好ましい。
Next, an electron transport layer is provided on the light emitting layer. As with the hole transport layer and the light emitting layer, it is preferable to form by a vacuum evaporation method because it is necessary to obtain a homogeneous film. Deposition conditions can be selected from the same condition ranges as the hole transport layer and the light emitting layer.
Moreover, it is also possible to make an electron carrying layer multilayer by forming an inorganic compound layer similarly to a positive hole transport layer. By making the electron transport layer multi-layered, the organic EL layer can be thickened to several tens to several μm. The repeating unit is not particularly limited but is preferably 2 to 10 times.

最後に陰極を積層して有機EL素子を得ることができる。
陰極は金属から構成されるもので、蒸着法、スパッタリングを用いることができる。しかし下地の有機物層を製膜時の損傷から守るためには真空蒸着法が好ましい。
これまで記載してきた有機EL素子の作製は一回の真空引きで一貫して陽極から陰極まで作製することが好ましい。
Finally, an organic EL element can be obtained by laminating a cathode.
The cathode is made of metal, and vapor deposition or sputtering can be used. However, vacuum deposition is preferred to protect the underlying organic layer from damage during film formation.
It is preferable that the organic EL device described so far is manufactured from the anode to the cathode consistently by a single vacuum.

本発明の有機EL素子の各層の形成方法は特に限定されない。従来公知の真空蒸着法、スピンコーティング法等による形成方法を用いることができる。本発明の有機EL素子に用いる、前記一般式(I)又は(II)で示される化合物を含有する有機薄膜層は、真空蒸着法、分子線蒸着法(MBE法)あるいは溶媒に解かした溶液のディッピング法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布法による公知の方法で形成することができる。
本発明の有機EL素子の各有機層の膜厚は特に制限されないが、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常は数nmから1μmの範囲が好ましい。
なお有機EL素子に直流電圧を印加する場合、陽極を+、陰極を−の極性にして、5〜40Vの電圧を印加すると発光が観測できる。また逆の極性で電圧を印加しても電流は流れず、発光は全く生じない。さらに交流電圧を印加した場合には陽極が+、陰極が−の極性になった時のみ均一な発光が観測される。印加する交流の波形は任意でよい。
The formation method of each layer of the organic EL element of the present invention is not particularly limited. Conventionally known methods such as vacuum deposition and spin coating can be used. The organic thin film layer containing the compound represented by the general formula (I) or (II) used in the organic EL device of the present invention is formed by a vacuum evaporation method, a molecular beam evaporation method (MBE method) or a solution dissolved in a solvent. It can be formed by a known method such as a dipping method, a spin coating method, a casting method, a bar coating method, or a roll coating method.
The film thickness of each organic layer of the organic EL device of the present invention is not particularly limited. Generally, if the film thickness is too thin, defects such as pinholes are likely to occur. Conversely, if it is too thick, a high applied voltage is required and the efficiency is deteriorated. Therefore, the range of several nm to 1 μm is usually preferable.
When a direct current voltage is applied to the organic EL element, light emission can be observed by applying a voltage of 5 to 40 V with the anode as + and the cathode as -polarity. In addition, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when alternating voltage is applied, uniform light emission is observed only when the anode has a positive polarity and the cathode has a negative polarity. The waveform of the alternating current to be applied may be arbitrary.

以下、本発明を実施例をもとに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to a following example, unless the summary is exceeded.

[合成実施例] Str.(1)の合成
下記のように二段階で合成した
(1)9−ピコリノイルフルオレンの合成
500mL三口フラスコを脱気窒素置換し、テトラヒドロフラン(THF)100mLに溶かしたカリウムt−ブトキシド13.465g(120mmol)を入れ、THF30mLに溶かしたフルオレン8.310g(50mmol)を加えて30分間撹拌した後、THF20mLに溶かしたピコリン酸エチルエステル9.072g(60mmol)を加え、70℃で24時間加熱環流した。
後処理として、水とエーテルを100mLずつ加え、12M塩酸10mL(120mmol)で中和した後、エーテル層を取り出し、さらに水層を100mLのエーテルで2回抽出し、これらのエーテル層を合わせ、100mLの水で2回水洗した。その後、飽和食塩水と硫酸マグネシウムで乾燥、溶媒を除去し真空乾燥した。エタノール130mLで再結晶を行い、目的物11.5gを得た(黄色固体、収率85%)。m.p.123〜124℃
[Synthesis Examples] Str. Synthesis of (1) (1) Synthesis of 9-picolinoylfluorene synthesized in two steps as follows: A 500 mL three-necked flask was purged with nitrogen and 13.465 g of potassium t-butoxide dissolved in 100 mL of tetrahydrofuran (THF) ( 120 mmol), 8.310 g (50 mmol) of fluorene dissolved in 30 mL of THF was added and stirred for 30 minutes, then 9.072 g (60 mmol) of picolinic acid ethyl ester dissolved in 20 mL of THF was added, and heated to reflux at 70 ° C. for 24 hours. .
As a post-treatment, 100 mL of water and ether were added, neutralized with 10 mL (120 mmol) of 12M hydrochloric acid, the ether layer was taken out, and the aqueous layer was extracted twice with 100 mL of ether. These ether layers were combined, and 100 mL Washed twice with water. Then, it dried with the saturated salt solution and magnesium sulfate, the solvent was removed, and it vacuum-dried. Recrystallization was performed with 130 mL of ethanol to obtain 11.5 g of the target product (yellow solid, yield 85%). m. p. 123-124 ° C

(2)Str.(1)の合成
100mL三口フラスコを脱気窒素置換し、THF30mLに溶かした9−ピコリノイルフルオレン2.731g(10mmol)を加え、さらに5mL注射器を用いてジエチル亜鉛ヘプタン溶液(1M)を5mL(5mmol)加え、70℃で24時間加熱環流した。反応終了後、生成した赤橙色沈殿をろ過し、赤色固体1.5gを得た(収率25%)。1H−NMRスペクトル(図1)及びFAB−MS(Fast atom bombardment mass spectrometry、高速原子衝撃イオン質量スペクトル)の測定により、Str.(1)と同定した。
(2) Str. Synthesis of (1) A 100 mL three-necked flask was purged with degassed nitrogen, and 2.731 g (10 mmol) of 9-picolinoylfluorene dissolved in 30 mL of THF was added. ) And heated to reflux at 70 ° C. for 24 hours. After completion of the reaction, the produced red-orange precipitate was filtered to obtain 1.5 g of a red solid (yield 25%). By measuring 1 H-NMR spectrum (FIG. 1) and FAB-MS (Fast atom bombardment mass spectrometry, fast atom bombardment ion mass spectrum), Str. Identified as (1).

[実施例1]
25×75×1.1mmサイズのガラス基板上に、膜厚120nmのインジウムスズ酸化物からなる透明電極を設けた。このガラス基板に紫外線及びオゾンを照射して洗浄したのち、真空蒸着装置にこの基板を設置した。
正孔輸送層として、N,N’−ジ(ナフタレン−1−イル)−N,N’−ジフェニルベンジジンを80nmの厚さに蒸着した。次いで、発光層として、上記 化合物 Str.(1)を40nmの厚さに蒸着した。
次いで、電子注入層として、トリス(8−ヒドロキシキノリナト)アルミニウムを20nmの厚さに蒸着した。次いで、弗化リチウムを1nmの厚さに蒸着し、次いでアルミニウムを150nmの厚さに蒸着した。このアルミニウム/弗化リチウムは陰極として働く。このようにして有機EL素子を作製した。
次にこの素子に通電試験を行ったところ、電流密度10mA/cm2にて、発光効率2.2cd/A、220cd/m2の赤色発光が得られた。初期輝度500cd/m2で直流の連続通電試験を行ったところ、輝度半減時間は、1,000時間以上であった。
[Example 1]
A transparent electrode made of indium tin oxide having a thickness of 120 nm was provided on a glass substrate having a size of 25 × 75 × 1.1 mm. After this glass substrate was cleaned by irradiating ultraviolet rays and ozone, the substrate was placed in a vacuum deposition apparatus.
As the hole transport layer, N, N′-di (naphthalen-1-yl) -N, N′-diphenylbenzidine was deposited to a thickness of 80 nm. Next, the compound Str. (1) was deposited to a thickness of 40 nm.
Next, tris (8-hydroxyquinolinato) aluminum was deposited to a thickness of 20 nm as an electron injection layer. Next, lithium fluoride was evaporated to a thickness of 1 nm, and then aluminum was evaporated to a thickness of 150 nm. This aluminum / lithium fluoride serves as the cathode. In this way, an organic EL device was produced.
Next, when an energization test was performed on the device, red light emission with a light emission efficiency of 2.2 cd / A and 220 cd / m 2 was obtained at a current density of 10 mA / cm 2 . When a DC continuous current test was performed at an initial luminance of 500 cd / m 2 , the luminance half time was 1,000 hours or more.

[実施例2]
実施例1において、化合物Str.(1)のかわりにStr.(2)を用いて、有機EL素子を作製した。
この素子に通電試験を行ったところ、電流密度10mA/cm2にて、発光効率 2.0cd/A、200cd/m2の赤色発光が得られた。初期輝度500cd/m2で直流の連続通電試験を行ったところ、輝度半減時間は、1,000時間以上であった。
[Example 2]
In Example 1, compound Str. Instead of (1), Str. An organic EL element was produced using (2).
When an energization test was performed on this device, red light emission with a light emission efficiency of 2.0 cd / A and 200 cd / m 2 was obtained at a current density of 10 mA / cm 2 . When a direct current continuous current test was performed at an initial luminance of 500 cd / m 2 , the luminance half time was 1,000 hours or more.

[比較例1]
実施例1において、化合物Str.(1)のかわりに、亜鉛フタロシアニン錯体を用いて、有機EL素子を作製した。
この素子に通電試験を行ったところ、電流密度10mA/cm2にて、発光効率 1.0cd/A、100cd/cm2の青色発光が得られた。初期輝度500cd/m2で直流の連続通電試験を行ったところ、輝度半減時間は、100時間と短かった。これは、亜鉛フタロシアニン錯体が会合したためと考えられる。
[Comparative Example 1]
In Example 1, compound Str. An organic EL device was produced using a zinc phthalocyanine complex instead of (1).
When this device was subjected to a current test, blue light emission with a light emission efficiency of 1.0 cd / A and 100 cd / cm 2 was obtained at a current density of 10 mA / cm 2 . When a DC continuous energization test was performed at an initial luminance of 500 cd / m 2 , the luminance half time was as short as 100 hours. This is presumably because the zinc phthalocyanine complex was associated.

以上の結果から判るように、本発明に金属錯体化合物を有機EL素子の発光材料に用いた場合、赤色発光素子において、高効率、長寿命化の効果が顕著であった。   As can be seen from the above results, when the metal complex compound is used in the present invention for the light emitting material of the organic EL device, the red light emitting device has a remarkable effect of high efficiency and long life.

以上詳細に説明したように、本発明の金属錯体化合物を用いた有機EL素子は、種々の発光色相を呈し、耐熱性が高く、特に、本発明の金属錯体化合物を有機EL素子の発光材料として用いると、高発光輝度及び高発光効率で、長寿命である。このため、本発明の有機EL素子は、実用性が高く、壁掛テレビの平面発光体やディスプレイのバックライト等の光源として有用である。有機EL素子の正孔注入・輸送材料、さらには電子写真感光体や有機半導体の電荷輸送材料としても用いることができる。こうした本発明の有機EL素子の効果は特に赤色発光素子で顕著に発揮される。   As described above in detail, the organic EL device using the metal complex compound of the present invention exhibits various emission hues and high heat resistance. In particular, the metal complex compound of the present invention is used as a light emitting material of the organic EL device. When used, it has a long lifetime with high light emission luminance and high light emission efficiency. For this reason, the organic EL element of the present invention has high practicality and is useful as a light source such as a flat light emitter of a wall-mounted television and a backlight of a display. It can also be used as a hole injection / transport material for organic EL devices, and further as a charge transport material for electrophotographic photoreceptors and organic semiconductors. Such an effect of the organic EL device of the present invention is remarkably exhibited particularly in a red light emitting device.

合成実施例で得られた化合物Str.(1)の1H−NMRスペクトルを示す図である。The compound Str. It is a figure which shows the < 1 > H-NMR spectrum of (1).

Claims (10)

下記一般式(I)で表される金属錯体化合物。
Figure 2006265144
[一般式(I)において、R1〜R12はそれぞれ独立に、水素原子、置換もしくは無置換の核炭素数1〜50のアルキル基、置換もしくは無置換の核炭素数5〜50のアリール基、置換もしくは無置換の核炭素数6〜50のアラルキル基、置換もしくは無置換の核炭素数5〜50のシクロアルキル基、置換もしくは無置換の核炭素数1〜50のアルコキシル基、置換もしくは無置換の核炭素数5〜50のアリールオキシ基、置換もしくは無置換の核炭素数5〜50のアリールアミノ基、置換もしくは無置換の核炭素数1〜20のアルキルアミノ基、置換もしくは無置換の核炭素数4〜50の複素環基、シアノ基、又はハロゲン原子である。
1〜R4、R5〜R8、及びR9〜R12のうち隣接するものは、互いに結合し置換もしくは無置換の環状構造を形成しても良い。
mは1〜3、nは0〜2の整数である。
Lは、補助配位子で、置換もしくは無置換の核炭素数5〜50のアリール基、置換もしくは無置換の核炭素数5〜50のアリールオキシ基、又は置換もしくは無置換の核炭素数4〜50の複素環基である。
Mは、周期表の1族、2族、9族、10族、11族、12族、又は13族の元素である。]
The metal complex compound represented by the following general formula (I).
Figure 2006265144
[In General Formula (I), R 1 to R 12 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 nuclear carbon atoms, or a substituted or unsubstituted aryl group having 5 to 50 nuclear carbon atoms. Substituted or unsubstituted aralkyl group having 6 to 50 nuclear carbon atoms, substituted or unsubstituted cycloalkyl group having 5 to 50 nuclear carbon atoms, substituted or unsubstituted alkoxyl group having 1 to 50 nuclear carbon atoms, substituted or unsubstituted Substituted aryloxy group having 5 to 50 nuclear carbon atoms, substituted or unsubstituted arylamino group having 5 to 50 nuclear carbon atoms, substituted or unsubstituted alkylamino group having 1 to 20 nuclear carbon atoms, substituted or unsubstituted It is a heterocyclic group having 4 to 50 nuclear carbon atoms, a cyano group, or a halogen atom.
Adjacent ones of R 1 to R 4 , R 5 to R 8 , and R 9 to R 12 may be bonded to each other to form a substituted or unsubstituted cyclic structure.
m is an integer of 1 to 3, and n is an integer of 0 to 2.
L is an auxiliary ligand, a substituted or unsubstituted aryl group having 5 to 50 nuclear carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear carbon atoms, or a substituted or unsubstituted nuclear carbon number 4 ˜50 heterocyclic groups.
M is an element of Group 1, Group 2, Group 9, Group 10, Group 11, Group 12, or Group 13 of the Periodic Table. ]
下記一般式(II)で表される請求項1記載の金属錯体化合物。

Figure 2006265144
[一般式(II)において、R1〜R12、及びMは、前記と同じであり、mは1〜4である。]
The metal complex compound of Claim 1 represented by the following general formula (II).

Figure 2006265144
[In General Formula (II), R < 1 > -R < 12 > and M are the same as the above, and m is 1-4. ]
前記一般式(I)又は(II)において、Mがリチウム(Li)、ベリリウム(Be)、イリジウム(Ir)、白金(Pt)、銅(Cu)、亜鉛(Zn)、又はアルミニウム(Al)元素である請求項1又は2に記載の金属錯体化合物。   In the general formula (I) or (II), M is an element of lithium (Li), beryllium (Be), iridium (Ir), platinum (Pt), copper (Cu), zinc (Zn), or aluminum (Al). The metal complex compound according to claim 1 or 2. 有機エレクトロルミネッセンス用材料である請求項1又は2に記載の金属錯体化合物。   The metal complex compound according to claim 1, which is a material for organic electroluminescence. 陰極と陽極間に少なくとも発光層を有する一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも一層が請求項1又は2に記載の金属錯体化合物を単独もしくは混合物の成分として含有する有機エレクトロルミネッセンス素子。   In the organic electroluminescent element in which the organic thin film layer which consists of the organic thin film layer which consists of a single layer or multiple layers which has at least a light emitting layer between the cathode and the anode is sandwiched, at least one layer of the organic thin film layer contains the metal complex compound according to claim 1 or 2. An organic electroluminescence device contained alone or as a component of a mixture. 前記有機薄膜層が発光帯域を有し、前記金属錯体化合物が該発光帯域に含有されている請求項5に記載の有機エレクトロルミネッセンス素子。   The organic electroluminescence device according to claim 5, wherein the organic thin film layer has a light emission band, and the metal complex compound is contained in the light emission band. 前記金属錯体化合物が前記発光層に含有されている請求項5に記載の有機エレクトロルミネッセンス素子。   The organic electroluminescent element according to claim 5, wherein the metal complex compound is contained in the light emitting layer. 前記有機薄膜層が電子注入層及び/又は電子輸送層を有し、前記金属錯体化合物が電子注入材料及び/又は電子輸送材料である請求項5に記載の有機エレクトロルミネッセンス素子。   The organic electroluminescence device according to claim 5, wherein the organic thin film layer has an electron injection layer and / or an electron transport layer, and the metal complex compound is an electron injection material and / or an electron transport material. 下記一般式(III)で表される金属錯体化合物の配位子化合物。
Figure 2006265144
A ligand compound of a metal complex compound represented by the following general formula (III).
Figure 2006265144
請求項1又は2に記載の金属錯体化合物の配位子である請求項9に記載の配位子化合物。

The ligand compound according to claim 9, which is a ligand of the metal complex compound according to claim 1.

JP2005084183A 2005-03-23 2005-03-23 Metal complex compound and organic electroluminescent element using the same Withdrawn JP2006265144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005084183A JP2006265144A (en) 2005-03-23 2005-03-23 Metal complex compound and organic electroluminescent element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005084183A JP2006265144A (en) 2005-03-23 2005-03-23 Metal complex compound and organic electroluminescent element using the same

Publications (1)

Publication Number Publication Date
JP2006265144A true JP2006265144A (en) 2006-10-05

Family

ID=37201482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005084183A Withdrawn JP2006265144A (en) 2005-03-23 2005-03-23 Metal complex compound and organic electroluminescent element using the same

Country Status (1)

Country Link
JP (1) JP2006265144A (en)

Similar Documents

Publication Publication Date Title
EP2213662B1 (en) Azaindenofluorenedione derivative, organic electroluminescent device material, and organic electroluminescent device
US8168327B2 (en) Imide derivative, material for organic electroluminescent device and organic electroluminescent device using the same
US7737625B2 (en) Organic electroluminescent device with carrier blocking layer interposed between two emitting layers
JP4970934B2 (en) Organic electroluminescence device
JP5249781B2 (en) Material for organic electroluminescence device and organic electroluminescence device
US20070134511A1 (en) Organic electroluminescence device
EP2018090A1 (en) Organic electroluminescent device
EP2045848A1 (en) Organic electroluminescent device material and organic electroluminescent device
EP2000456A9 (en) Material for organic electroluminescent device and organic electroluminescent device using the same
KR20080104293A (en) Aromatic amine derivative and organic electroluminescent device using same
WO2006073054A1 (en) Aromatic amine derivative and organic electroluminescent device using same
KR20080112325A (en) Aromatic amine derivative, and organic electroluminescence element using the same
WO2007080704A1 (en) Aromatic amine derivatives and organic electroluminescent devices made by using the same
WO2009084268A1 (en) Aromatic amine derivatives and organic electroluminescent device employing these
WO2006073059A1 (en) Aromatic amine derivative and organic electroluminescent device using same
JPWO2007058127A1 (en) Aromatic amine derivatives and organic electroluminescence devices using them
JPWO2006046441A1 (en) Aromatic amine compound and organic electroluminescence device using the same
WO2006006505A1 (en) Aromatic amine derivative and organic electroluminescent device using same
EP2034803A1 (en) Organic electroluminescence element
WO2008001551A1 (en) Aromatic amine derivative, and organic electroluminescence device using the same
WO2007060795A1 (en) Amine compound and organic electroluminescent element employing the same
JP6267701B2 (en) Aromatic amine derivative and organic electroluminescence device
WO2007032161A1 (en) Asymmetric fluorene derivative and organic electroluminescent element containing the same
JP2006273785A (en) Aromatic amine derivative and organic electroluminescence element using the same
WO2007058127A1 (en) Aromatic amine derivative and organic electroluminescent element using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100330