JP2006264521A - Vehicle assembling accuracy managing method - Google Patents

Vehicle assembling accuracy managing method Download PDF

Info

Publication number
JP2006264521A
JP2006264521A JP2005086182A JP2005086182A JP2006264521A JP 2006264521 A JP2006264521 A JP 2006264521A JP 2005086182 A JP2005086182 A JP 2005086182A JP 2005086182 A JP2005086182 A JP 2005086182A JP 2006264521 A JP2006264521 A JP 2006264521A
Authority
JP
Japan
Prior art keywords
assembly
vehicle
accuracy
assembling
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005086182A
Other languages
Japanese (ja)
Other versions
JP4600113B2 (en
Inventor
Tomoki Hayama
共樹 巴山
Masato Suzui
正人 鈴井
Yoshinari Umeki
吉成 梅木
Takahiro Iwaya
貴裕 岩屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005086182A priority Critical patent/JP4600113B2/en
Publication of JP2006264521A publication Critical patent/JP2006264521A/en
Application granted granted Critical
Publication of JP4600113B2 publication Critical patent/JP4600113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Assembly (AREA)
  • Automobile Manufacture Line, Endless Track Vehicle, Trailer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicle assembling accuracy managing method capable of accomplishing a stable assembling accuracy management of a completed vehicle by introducing a centralized management of the product accuracy of vehicle components and the assembling accuracy of the components while the components and/or constituent members (sub-assembly) likely to influence the assembling accuracy of the completed vehicle are specified. <P>SOLUTION: In a manufacturing line for vehicles where a plurality of vehicle components and/or constituent members are assembled to each other and the completed vehicle is manufactured, proper assembling positions are measured for each piece of the vehicle components and/or constituent members to prepare the assembling position data, in which each piece of assembling position data is made an explanatory variable while the reference assembling position data to exhibit the assembling accuracies of the final or intermediate completed vehicle is made an object variable, and by making regression analysis based on the explanatory variable and the object variable, the vehicle components and/or constituent members having a high rate of contribution relatively are specified, while the object variable is adjusted to the proper assembling accuracy. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数の部品と、該部品が組み付けられて構成される車両構成部材を複数組付けることで製造される車両用ボディーの製造ラインにおいて、前記複数の部品および前記車両構成部材の組付け精度を管理するための車両組付け精度管理方法に係り、特に、完成車両の組付け精度に影響を与える部品や車両構成部材(サブアッシー)を特定しながら、該車両構成部材の組付け精度を集中管理することにより、完成車両の安定した組付け精度管理を実現することのできる車両組付け精度管理方法に関するものである。   The present invention provides an assembly of the plurality of parts and the vehicle constituent member in a production line for a vehicle body manufactured by assembling a plurality of parts and a plurality of vehicle constituent members constituted by assembling the parts. The present invention relates to a vehicle assembly accuracy management method for managing accuracy, and in particular, specifies the parts and vehicle components (sub-assy) that affect the assembly accuracy of a completed vehicle, while reducing the assembly accuracy of the vehicle components. The present invention relates to a vehicle assembly accuracy management method capable of realizing stable assembly accuracy management of a completed vehicle by centralized management.

従来の車両ボディーの組付け精度管理方法は、多数の部品が最終的に組み付けられてなる完成車両ボディーの中から任意の完成車両ボディーを抜き出し、オフライン上で多数の組付け精度チェックポイントを計測管理していた。かかる精度チェックポイントは4000箇所程度にも及び、1台の車両ボディーの組付け精度計測に1.5日程度を要する一方で、任意に抜き出した数台の車両ボディーをもって全数車両(例えば、1日で生産される車両ボディーは1000台程度にも及ぶ)を代表させていたため、その組付け精度管理方法には改善の余地が多分に存在していた。また、車両ボディーの各部位の部品精度やサブアッシーの組付け精度は、その周辺の複数の部品精度やサブアッシーの組付け精度の影響を多分に受けており、ある組付け部位に許容公差外の組付け公差が発見された場合でも、実際にどの部品の製品精度あるいはどのサブアッシーの組付け精度が完成車両の組付け精度に影響を与えているのかの特定が極めて困難であり、従来は熟練技術者の主観に基づいて元凶部位の特定がなされるに留まっていた。   The conventional assembly accuracy management method for vehicle bodies is to extract any completed vehicle body from the completed vehicle body that is finally assembled with a large number of parts, and measure and manage numerous assembly accuracy checkpoints offline. Was. Such accuracy check points are about 4000 places, and it takes about 1.5 days to measure the assembly accuracy of one vehicle body. On the other hand, all the vehicles (for example, one day) have several vehicle bodies extracted arbitrarily. The number of vehicle bodies produced in Japan is about 1000), so there is a lot of room for improvement in the assembly accuracy management method. In addition, the accuracy of parts in each part of the vehicle body and the assembly accuracy of the sub-assembly are largely affected by the accuracy of multiple parts around it and the assembly accuracy of the sub-assembly. However, it is extremely difficult to specify which part product accuracy or sub-assembly assembly accuracy actually affects the assembly accuracy of the finished vehicle. Based on the subjectivity of the skilled engineer, the original brute was identified.

ところで、特許文献1には、車両ボディーの組立方法に関する発明が開示されている。かかる組立方法は、複数の車体構成部品同士の接合面での複数の溶接接合部位について部品単独の状態で予めその寸法や位置、形状に関する精度を測定しておき、相手側接合面との突合せの際に干渉や隙間発生などの不具合が発生するか否かを予測し、双方の接合面同士の精度が完全に一致して不具合の発生がないと判定された部位から先に溶接接合をおこなうものである。   Incidentally, Patent Document 1 discloses an invention relating to a vehicle body assembling method. In this assembly method, the accuracy of the dimensions, position, and shape is measured in advance in a single component state for a plurality of welded joint portions at the joint surfaces of a plurality of vehicle body components, and the butt joint surface is matched. And predicting whether or not defects such as interference and gaps will occur, and performing welding joints first from the part where the accuracy of both joint surfaces is perfectly matched and determined that there is no defect It is.

特開2003−237651号公報JP 2003-237651 A

特許文献1に開示の車両ボディーの組立方法によれば、車体全体としての精度のばらつきに個々の車体構成部品の精度のばらつきが影響しにくくなり、車体全体としての寸法精度を向上させることができる。しかし、車両生産ラインにおいては車体構成部品の組付け順序が設定されており、したがって、接合時の不具合のないものから順に接合させていく方法は、車体ごとに接合順序が異なることとなり、車体製造の歩留まりの低下が否めない。さらに、かかる発明では、完成した車両ボディーにおける多数箇所の組付け精度チェックポイントに対して、どの車両構成部材(または組付け工程)の組付け精度がより大きな影響を与えているのかを特定することはできない。複数の車体構成部品を組付けていく際に、最終的な完成車両ボディーの組付け精度に対して、どの組付け工程がより大きな影響を与えているのかが特定できれば、かかる組付け工程の組付け精度を集中管理できる。また、既述するような少数台数の抜き取り検査によることなく、全台数の組付け精度の保証にも繋がることとなる。   According to the vehicle body assembling method disclosed in Patent Document 1, the variation in accuracy of individual vehicle body components is less likely to affect the variation in accuracy of the entire vehicle body, and the dimensional accuracy of the entire vehicle body can be improved. . However, in the vehicle production line, the assembly order of the vehicle body components is set. Therefore, the method of joining in order from the one that does not have a defect at the time of joining has a different joining order for each vehicle body. There is no denying the decline in yield. Furthermore, in this invention, it is specified which assembly component (or assembly process) has a greater influence on the assembly accuracy checkpoints at multiple locations in the completed vehicle body. I can't. If it is possible to identify which assembly process has a greater effect on the assembly accuracy of the final finished vehicle body when assembling multiple vehicle body components, the assembly process The attachment accuracy can be centrally managed. Moreover, it will also lead to the guarantee of the assembly accuracy of all the units without using the sampling inspection of a small number of units as described above.

本発明は、上記する問題に鑑みてなされたものであり、複数の車体構成部品を組付けて完成車両を製造する際に、完成車両の組付け精度に対して、どの部品の組付け精度あるいはどの車両構成部材(サブアッシー)の組付け精度がより大きな影響を与えているのかを特定することで、完成車両の安定した組付け精度管理を実現することのできる車両組付け精度管理方法を提供することを目的としている。   The present invention has been made in view of the above-described problems. When a completed vehicle is manufactured by assembling a plurality of vehicle body components, the assembly accuracy of any component or the assembly accuracy of the completed vehicle is determined. Providing a vehicle assembly accuracy management method that can realize stable assembly accuracy management of a finished vehicle by specifying which vehicle component (sub assembly) assembly accuracy has a greater influence The purpose is to do.

前記目的を達成すべく、本発明による車両組付け精度管理方法は、複数の部品と、該部品が組み付けられて構成される車両構成部材を複数組付けることで製造される車両用ボディーの製造ラインにおいて、前記複数の部品および前記車両構成部材の組付け精度を管理するための車両組付け精度管理方法であって、前記部品および前記車両構成部材の組付け工程において、それぞれの組付け位置を測定し、それらの測定データを組付け位置データとして記憶するとともに、該組付け位置データを説明変数とし、前記部品および前記車両構成部材を組付けて構成される車両ボディーの完全完成品または中間完成品の組付け精度を表す基準組付け位置データを目的変数とし、前記説明変数と前記目的変数とに基づく回帰分析をおこなうことにより、完全完成品または中間完成品の組付け精度に対して寄与率の相対的に高い部品または車両構成部材を特定する工程を含むことを特徴とする。   In order to achieve the above object, a vehicle assembly accuracy management method according to the present invention is a production line for a vehicle body manufactured by assembling a plurality of parts and a plurality of vehicle components formed by assembling the parts. A vehicle assembly accuracy management method for managing assembly accuracy of the plurality of parts and the vehicle component member, wherein each assembly position is measured in the assembly step of the component and the vehicle component member Then, the measurement data is stored as assembly position data, and the assembly position data is used as an explanatory variable, and the vehicle body is a complete or intermediate product formed by assembling the parts and the vehicle components. By using the reference assembly position data representing the assembly accuracy of the objective variable and performing a regression analysis based on the explanatory variable and the objective variable, Characterized in that it comprises a step of identifying a relatively high component or vehicle component contribution ratio with respect to the total finished product or intermediate product of the assembling accuracy.

フロアやボディサイド、リアパネル、ルーフなどの各車両構成部材が溶接接合されることによって組立てられて車両ボディーの中間完成品が製造され、かかる中間完成品にエンジンや駆動系部材などが接続されて車両ボディーの完全完成品が製造される。ここで、個々の車両構成部材はその前段階のサブ組付けライン(サブアッシー工程)にて多数の部品が組み付けられていわゆる小サブアッシーとなり、複数の小サブアッシー同士が組み付けられて中サブアッシーとなり、順次車両構成部材が組み付けられて大サブアッシーとなり、最終的な車両ボディーが製造されることとなる。   The vehicle components such as floor, body side, rear panel, and roof are assembled by welding to produce an intermediate finished product of the vehicle body, and the intermediate finished product is connected to an engine, a drive system member, etc. A fully finished body is produced. Here, each vehicle component is assembled into a so-called small sub-assembly by attaching a large number of parts in the sub-assembly line (sub-assembly process) in the previous stage, and a plurality of small sub-assemblies are assembled to each other. Thus, the vehicle components are sequentially assembled into a large sub-assembly, and the final vehicle body is manufactured.

第一の車両構成部材を構成する多数の部品(における各部位)や、各車両構成部材(小サブアッシー〜大サブアッシー)には、部品の各部位の製品精度(孔の位置や孔径など)や組付け精度、車両構成部材の組付け精度(許容公差)が設定されており、それぞれの測定ポイントにおける部品部位や組付け状況が測定され、その測定データが集積される。すなわち、車両構成部材を構成する複数の部品に関する測定データ(部品自体の製品精度や部品同士の組付け精度)と、複数の小サブアッシーごとの組付け精度に関する測定データ、複数の小サブアッシーから構成される中サブアッシーごとの組付け精度に関する測定データ、さらには複数の中サブアッシーから構成される大サブアッシーごとの組付け精度に関する測定データが各製造ラインごとに集積されることとなる。   The product accuracy (hole position, hole diameter, etc.) of each part of the parts of the first vehicle constituent member (each part) and each vehicle constituent member (small sub-assembly to large sub-assembly) Assembling accuracy and assembling accuracy (allowable tolerance) of the vehicle constituent members are set, and the component parts and the assembling situation at each measurement point are measured, and the measurement data is accumulated. That is, from the measurement data (the product accuracy of the parts themselves and the assembly accuracy of the parts), the measurement data related to the assembly accuracy for each of the plurality of small sub-assemblies, and the plurality of small sub-assemblies Measurement data relating to the assembly accuracy for each medium sub-assembly configured, and further measurement data relating to the assembly accuracy for each large sub-assembly composed of a plurality of medium sub-assemblies are accumulated for each production line.

さらに、複数の大サブアッシーから構成される完成車両(例えば、車両ボディーの中間完成品)においても、該車両ボディーに固有の複数の組付け精度を測定するための測定ポイントが設定されており、各測定ポイントごとに固有の組付け許容公差が設けられている。   Furthermore, even in a completed vehicle composed of a plurality of large subassies (for example, an intermediate finished product of a vehicle body), measurement points for measuring a plurality of assembly accuracy inherent to the vehicle body are set, Each measurement point has a unique assembly tolerance.

ここで、車両ボディーの各部位は、複数の部品や車両構成部材が相互に接続されることによって構成されており、したがって、車両ボディーの各組付け位置における組付け精度は、複数の部品や構成部材(小サブアッシーを構成する部品、小サブアッシー〜大サブアッシーまでの車両構成部材)の組付け精度が相互に関連することによって決定されるものである。そこで、本発明においては、複数の部品や車両構成部材の各組付け工程ごとに、予め設定されたそれぞれの組付け位置を測定して組付け位置データとし、それらの組付け位置データを記憶(集積)しておく。また、完成車両の複数の組付け位置の組付け精度を測定して基準組付け位置データとする。この基準組付け位置データを目的変数とし、複数の部品や車両構成部材の組付け位置データを説明変数とし、基準組付け位置データに相対的に大きな影響を与え得る一つまたは複数の組付け位置データ(部品やサブアッシー(の組付け工程))を、回帰分析に基づいて特定しようとするものである。   Here, each part of the vehicle body is configured by connecting a plurality of parts and vehicle constituent members to each other. Therefore, the assembly accuracy at each assembly position of the vehicle body is determined by the plurality of parts and the configuration. The assembling accuracy of the members (parts constituting the small sub-assembly, vehicle constituent members from the small sub-assembly to the large sub-assembly) is determined by being related to each other. Therefore, in the present invention, for each assembly step of a plurality of parts and vehicle components, each preset assembly position is measured as assembly position data, and the assembly position data is stored ( Accumulate). Further, the assembly accuracy of a plurality of assembly positions of the completed vehicle is measured and used as reference assembly position data. This reference assembly position data is used as an objective variable, and the assembly position data of a plurality of parts and vehicle components are used as explanatory variables. Data (parts and subassemblies) is to be identified based on regression analysis.

ここで、回帰分析とは、任意に設定された目的変数に対して、該目的変数に影響を与える(相間のある)一つまたは複数のファクター(説明変数)を特定し、目的変数を説明変数で表すことによって所望の予測値を求める評価手法のことである。説明変数が複数想定される場合には、説明変数ごとに目的変数に対する寄与率を求めることが可能となり、この寄与率の相対的に高い説明変数に基づいて回帰式を設定することにより、実測値により近似した回帰式を得ることが可能となる。なお、設定された回帰式が実測値を精度よく反映するものか否かを判断する指標となる相間係数(重相間係数)は、適宜の値(例えば、0.8など)に設定すればよく、寄与率の値に応じて、組付け精度チェックポイントごとに、単回帰式や重回帰式が設定されることとなる。   Here, regression analysis specifies one or a plurality of factors (explanatory variables) that affect the objective variable (there is a correlation) for an arbitrarily set objective variable, and the objective variable is an explanatory variable. This is an evaluation method for obtaining a desired predicted value by expressing with. When multiple explanatory variables are assumed, it is possible to determine the contribution rate to the objective variable for each explanatory variable. By setting a regression equation based on the explanatory variable with a relatively high contribution rate, the actual measurement value Thus, it is possible to obtain an approximate regression equation. It should be noted that the interphase coefficient (multiphase coefficient) that serves as an index for determining whether or not the set regression equation accurately reflects the actual measurement value may be set to an appropriate value (for example, 0.8). Depending on the value of the contribution rate, a single regression equation or multiple regression equation is set for each assembly accuracy checkpoint.

本発明の車両組付け精度管理方法によれば、完成車両の組付け精度測定ポイントにおける組付け精度に最も影響を与え得る車両構成部品(の部品製造工程や組付け工程)、車両構成部材の組付け工程を容易に特定することができ、かかる部品製造工程における製品製造精度や車両構成部材の組付け工程における組付け精度を集中管理することにより、効率的で高精度な完成車両の組付け精度管理を実現することが可能となる。また、完成車両の組付け精度測定ポイントにおいて組付け公差が許容値をオーバーした際には、寄与率の高い部品製造工程や車両構成部材の組付け工程における設定許容公差をより厳しく設定することにより、完成車両の組付け公差を許容値以内に容易に収めることが可能となる。さらに、従来のように技術者ごとに元凶部材の特定方法が異なる方法に比べて、集積された測定データと回帰分析に基づく管理方法を適用することにより、均一かつ安定した製造ラインの組付け管理を実現することが可能となる。   According to the vehicle assembly accuracy management method of the present invention, a vehicle component (part manufacturing process or assembly process) that can most affect the assembly accuracy at the assembly accuracy measurement point of a completed vehicle, and a set of vehicle components The assembly process can be easily identified, and the product manufacturing accuracy in the component manufacturing process and the assembly accuracy in the assembly process of the vehicle components are centrally managed, so that the assembly accuracy of the completed vehicle can be efficiently and highly accurate. Management can be realized. In addition, when the assembly tolerance exceeds the allowable value at the assembly accuracy measurement point of the finished vehicle, by setting a tighter tolerance for setting in the parts manufacturing process and the assembly process of the vehicle components with a high contribution rate, As a result, the assembly tolerance of the completed vehicle can be easily kept within the allowable value. Furthermore, compared to the conventional method in which the identification method of the original component is different for each engineer, by applying the management method based on the accumulated measurement data and regression analysis, uniform and stable production line assembly management Can be realized.

また、従来のように完成車両の中から少台数を任意に抜き出して組付け精度をチェックするものではなく、部品の製造工程や各車両構成部材の組付け工程にて全部品または全サブアッシーの計測チェックをおこなう方法により、設定された許容公差を外れた部品や車両構成部材をその時点でインラインから取り除くことができ、したがって組付け管理精度の極めて高い車両製造ラインを実現することが可能となる。   In addition, it does not check the assembly accuracy by arbitrarily extracting a small number from the completed vehicle as in the past, but it is not necessary to check all parts or all sub-assemblies in the part manufacturing process and each vehicle component assembly process. By the method of performing the measurement check, it is possible to remove parts and vehicle components that have deviated from the set allowable tolerance from the in-line at that time, and thus it is possible to realize a vehicle production line with extremely high assembly management accuracy. .

また、本発明による車両組付け精度管理方法の他の実施形態において、前記組付け位置の測定は、該組付け位置の画像または映像を取得し、予め記憶された正規の組付け位置との公差を算出するものであり、該組付け位置データは該公差に基づく値であることを特徴とする。   Further, in another embodiment of the vehicle assembly accuracy management method according to the present invention, the measurement of the assembly position is performed by obtaining an image or video of the assembly position, and a tolerance with a pre-stored normal assembly position. The assembly position data is a value based on the tolerance.

例えば、各製品製造工程や各車両構成部材の組付け工程には、それぞれ固有のCCDカメラが設置されており、該カメラ内には、計測ポイントごとに該計測部位の正規の基準位置が設定されている。カメラで任意の計測ポイントを計測すると、計測者側からは、基準位置と実際の撮影位置(計測部位の実際の位置)が視認できる。また、例えば2次元での公差(X方向に+2mm、Y方向に−1mmなど)が自動表示されるような実施形態であってもよい。かかる計測方法により、各部品や各サブアッシーにおいて設定された計測ポイントにおける組付け位置データが公差に基づいて計測され、かかる組付け位置データが各組付け工程ごとに集積される。   For example, a unique CCD camera is installed in each product manufacturing process and each vehicle component assembly process, and a normal reference position of the measurement site is set for each measurement point in the camera. ing. When an arbitrary measurement point is measured with the camera, the reference position and the actual imaging position (actual position of the measurement site) can be visually recognized from the measurer side. Further, for example, an embodiment in which a two-dimensional tolerance (such as +2 mm in the X direction and −1 mm in the Y direction) is automatically displayed may be used. With this measurement method, the assembly position data at the measurement points set in each component and each sub assembly is measured based on the tolerance, and the assembly position data is accumulated for each assembly process.

さらに、本発明による車両組付け精度管理方法の他の実施形態は、前記目的変数に対して寄与率が相対的に高い前記部品の組付け精度および/または前記車両構成部材の組付け精度に関して、製造治具や組付け治具、製造装置や組付け装置を含む複数の製造要因または組付け要因を第二の説明変数とし、部品の組付け精度や車両構成部材の組付け精度を第二の目的変数とし、該第二の目的変数に対して寄与率の相対的に高い製造要因または組付け要因を集中管理することによって、完全完成品または中間完成品の組付け精度に対して寄与率の高い部品の組付け精度および/または車両構成部材の組付け精度を適宜の組付け精度に調整することを特徴とする。   Furthermore, another embodiment of the vehicle assembly accuracy management method according to the present invention relates to the assembly accuracy of the component and / or the assembly accuracy of the vehicle component having a relatively high contribution rate to the objective variable. Multiple manufacturing factors or assembly factors including manufacturing jigs, assembly jigs, manufacturing devices, and assembly devices are used as second explanatory variables, and the assembly accuracy of parts and the assembly accuracy of vehicle components are As a target variable, by centrally managing manufacturing factors or assembly factors that have a relatively high contribution ratio to the second objective variable, the contribution ratio can be reduced with respect to the assembly accuracy of a complete finished product or an intermediate finished product. It is characterized by adjusting high assembly accuracy of parts and / or assembly accuracy of vehicle components to an appropriate assembly accuracy.

本発明は、完成車両の組付け精度に相対的に大きな影響を与える車両構成部品(の部品製造工程や組付け工程)や車両構成部材(の組付け工程)において、該部品を製造する際、または該車両構成部材を組付ける際の様々な製造要因や組付け要因、例えば、組付け治具や溶接ロボットなどの製造装置や組付け装置などの中で、部品の製品精度や組付け精度、車両構成部材の組付け精度に相対的に大きな影響を与える製造要因または組付け要因を特定するものである。特定された製造要因や組付け要因を集中管理することにより、完成車両に大きな影響を与える車両構成部品の製品精度や車両構成部材の組付け精度を調整することで、結果的に完成車両の組付け精度の管理を図ることができる。   The present invention provides a vehicle component (part manufacturing process and assembly process) and a vehicle component (assembly process) that have a relatively large influence on the assembly accuracy of a completed vehicle. Or various manufacturing factors and assembly factors when assembling the vehicle component, for example, in the manufacturing equipment and assembly equipment such as assembly jigs and welding robots, The manufacturing factor or the assembling factor that has a relatively large influence on the assembling accuracy of the vehicle constituent member is specified. By centrally managing the specified manufacturing factors and assembly factors, adjusting the product accuracy of vehicle components and the assembly accuracy of vehicle components that have a significant impact on the finished vehicle results in the assembly of the finished vehicle. The attachment accuracy can be managed.

ここで、車両構成部材の組付け精度に対する寄与率を例えば3段階に評価(寄与率の高い順に3,2,1とする)するとともに、組付け工程の中でもその組付け要因の改善のし易さの程度を同様に3段階に評価(改善し易い順に3,2,1とする)し、双方を掛け合わせた値が相対的に高い組付け要因を説明変数とすることができる。この説明変数が一つの場合は単回帰分析により、説明変数が複数ある場合(同程度の寄与率を有する説明変数がある場合)は重回帰分析によって目的変数(車両構成部材の組付け精度)を所望の値以内に調整することができる。   Here, the contribution rate of the vehicle component to the assembly accuracy is evaluated, for example, in three stages (3, 2, and 1 in descending order of contribution rate), and the assembly factor can be easily improved even in the assembly process. Similarly, the degree of the length can be evaluated in three stages (3, 2, and 1 in order of easy improvement), and an assembling factor having a relatively high value obtained by multiplying both can be used as an explanatory variable. When there is one explanatory variable, single regression analysis is used. When there are multiple explanatory variables (when there are explanatory variables with similar contribution ratios), the objective variable (assembly accuracy of vehicle components) is determined by multiple regression analysis. Adjustment can be made within a desired value.

以上の説明から理解できるように、本発明の車両組付け精度管理方法によれば、完成車両に設定された複数の組付け位置における組付け精度に最も影響を与え得る車両構成部品(の製造工程や組付け工程)、車両構成部材(の組付け工程)を容易に特定することができ、かかる部品製造/組付け工程や車両構成部材の組付け工程における製品精度や組付け精度を集中管理することにより、効率的で高精度な完成車両の組付け精度管理を実現することが可能となる。また、本発明の車両組付け精度管理方法によれば、各部品の製造工程や組付け工程、各車両構成部材の組付け工程から所望の製品精度や組付け精度を満足しない車両構成部品や車両構成部材を随時取り除くことにより、ほぼ全ての完成車両の組付け精度を保証することができる。   As can be understood from the above description, according to the vehicle assembly accuracy management method of the present invention, a vehicle component (manufacturing process) that can most affect the assembly accuracy at a plurality of assembly positions set in a completed vehicle. Assembly process) and vehicle component (assembly process) can be easily specified, and product accuracy and assembly accuracy in the parts manufacturing / assembly process and vehicle component assembly process are centrally managed. This makes it possible to realize efficient and highly accurate assembly accuracy management of the completed vehicle. Further, according to the vehicle assembly accuracy management method of the present invention, the vehicle component and vehicle that do not satisfy the desired product accuracy and assembly accuracy from the manufacturing process and assembly process of each component and the assembly process of each vehicle component. By removing the components at any time, the assembly accuracy of almost all completed vehicles can be guaranteed.

以下、図面を参照して本発明の実施の形態を説明する。図1は、車両構成部材が順に組み付けられていく流れを示した模式図を、図2は、フェンダーブラケットの組付け精度が、フロントフードとヘッドランプの隙間精度に大きく寄与していることを示した模式図をそれぞれ示している。図3は、車両構成部材の測定ポイントを計測している状況を示した模式図を、図4は、カメラから見た図3のIV部の拡大図をそれぞれ示している。図5は、フェンダーブラケットの組付け公差と、フロントフードとヘッドランプの隙間公差の関係を示した図を、図6は、フェンダーブラケットの組付け要因と、組付け要因の中から決定される説明変数を示した図をそれぞれ示している。なお、回帰分析に際しての具体的な算定式は公知であるため、以下ではその記載を省略する。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a flow in which vehicle components are assembled in order, and FIG. 2 shows that the accuracy of assembling the fender bracket greatly contributes to the accuracy of the clearance between the front hood and the headlamp. The schematic diagrams are respectively shown. FIG. 3 is a schematic diagram showing a situation where measurement points of vehicle constituent members are being measured, and FIG. 4 is an enlarged view of the IV part of FIG. 3 as viewed from the camera. FIG. 5 is a diagram showing the relationship between the assembly tolerance of the fender bracket and the clearance tolerance between the front hood and the headlamp, and FIG. 6 is an explanation determined from the assembly factors of the fender bracket and the assembly factors. Each figure shows a variable. In addition, since the specific calculation formula at the time of regression analysis is well-known, the description is abbreviate | omitted below.

図1は、小サブアッシーであるエプロン1を製造する小サブアッシー工程N1からエンジンコンパートメント2が組み付けられる中サブアッシー工程N2、さらにエンジンコンパートメント2からメインボディー3が製造される大サブアッシー工程N3を経て完成車両ボディー4が製造されるまでの流れを模式的に示したものである。各サブアッシー工程では、それぞれ適宜の測定ポイントが設けられていて、例えばCCDカメラにて組付け精度の測定がおこなわれ、各サブアッシー工程に載置されたPCに測定データが集積される。各サブアッシー工程におけるPCはネットワークで中央管理者側のPCに繋げられており、測定データの集中管理がおこなわれる。例えば、小サブアッシー工程N1で製造されるエプロン1における測定ポイントはx1であり、エンジンコンパートメント2における測定ポイントはy1〜y4であり、メインボディー3における測定ポイントはz1〜z5、完成車両ボディー4における測定ポイントはw1〜w7である。なお、各サブアッシー工程にて設定される測定ポイントは、完成車両ボディー4の測定ポイントに影響を与えると考えられる適宜の部位が設定されており、図示する部位に限定されるものではない。また、サブアッシー工程のみならず、小サブアッシーを構成する構成部品の製造ブースにおいても部品の各部位(孔位置や孔径など)の測定がおこなわれる。   FIG. 1 shows a sub-assembly process N2 in which an engine compartment 2 is assembled from a small sub-assembly process N1 for manufacturing an apron 1 that is a small sub-assembly, and a large sub-assembly process N3 in which a main body 3 is manufactured from the engine compartment 2. The flow until the completed vehicle body 4 is manufactured is schematically shown. In each sub-assembly process, appropriate measurement points are provided, for example, the assembly accuracy is measured by a CCD camera, and the measurement data is accumulated in the PC placed in each sub-assembly process. The PC in each sub-assembly process is connected to a PC on the central manager side via a network, and centralized management of measurement data is performed. For example, the measurement point in the apron 1 manufactured in the small sub-assembly process N1 is x1, the measurement points in the engine compartment 2 are y1 to y4, the measurement points in the main body 3 are z1 to z5, and in the completed vehicle body 4. Measurement points are w1 to w7. The measurement points set in each sub-assembly process are set as appropriate parts that are considered to affect the measurement points of the completed vehicle body 4, and are not limited to the parts shown in the drawing. In addition to the sub-assembly process, each part (hole position, hole diameter, etc.) of the part is measured not only in the manufacturing booth of the component parts constituting the small sub-assembly.

一例を示すために、図2に基づいて、完成車両5におけるフロントフード51とヘッドランプ52の隙間精度を取り上げる。   In order to show an example, the clearance accuracy between the front hood 51 and the headlamp 52 in the completed vehicle 5 will be taken up based on FIG.

この隙間精度に影響を与えると考えられるサブアッシーの組付け要因は多様に想定され、例えば、カウルサブアッシーやラジエータサポートの基準穴、フェンダーサイドブラケットの基準穴、スプリングサポートの基準穴などがそれである。   There are various subassembly assembly factors that are thought to affect the clearance accuracy, such as the cowl subassembly and radiator support reference holes, fender side bracket reference holes, and spring support reference holes. .

そこで、フロントフード51とヘッドランプ52の隙間精度に影響を与えると考えられるサブアッシー(小サブアッシー〜大サブアッシー)について、各サブアッシーを説明変数として重回帰分析を実施する。ここで、重回帰分析における目的変数は、フロントフード51とヘッドランプ52の隙間精度であり、説明変数は既述する各サブアッシー(の適宜の部位)における組付け精度である。重回帰分析の結果、例えば、図2で示す実施形態では、フェンダーブラケット部分(図中のx1箇所)の目的変数に対する寄与率が最も大きな値となっている。   Therefore, a multiple regression analysis is performed for each sub-assembly (small sub-assembly to large sub-assembly), which is considered to affect the clearance accuracy between the front hood 51 and the headlamp 52, with each sub-assembly as an explanatory variable. Here, the objective variable in the multiple regression analysis is the clearance accuracy between the front hood 51 and the headlamp 52, and the explanatory variable is the assembly accuracy at each subassembly (appropriate portion thereof) described above. As a result of the multiple regression analysis, for example, in the embodiment shown in FIG. 2, the contribution rate of the fender bracket portion (x1 location in the figure) to the objective variable has the largest value.

そこで、最大相間を与える単回帰式:f(x)=a1x1+a0(a1,a0は算定済み)が算定される。求められた単回帰式の重相関係数が適宜に設定された値を満足していることを確認し、該単回帰式の妥当性を確認しておく。   Therefore, a single regression equation giving the maximum phase: f (x) = a1x1 + a0 (a1 and a0 have been calculated) is calculated. It is confirmed that the obtained multiple correlation coefficient of the single regression equation satisfies an appropriately set value, and the validity of the single regression equation is confirmed.

図3は、任意のサブアッシー工程におけるサブアッシーの適宜部位の計測状況を示したものである。図示する実施例は、サブアッシーaに穿設された孔a1の穿設位置を計測しているものである。孔位置の計測は、サブアッシーaが載置治具7上に固定された姿勢で、CCDカメラ6にておこなわれる。   FIG. 3 shows a measurement situation of an appropriate part of the subassembly in an arbitrary subassembly process. In the illustrated embodiment, the drilling position of the hole a1 drilled in the sub assembly a is measured. The hole position is measured by the CCD camera 6 in a posture in which the sub assembly a is fixed on the mounting jig 7.

図4は、CCDカメラ6から計測者が見た画面の状況を示したものである。図中のX1は、孔a1が本来位置するべき基準点であり、図示する実施例では、実際の孔a1が水平方向にt2、鉛直方向にt1の公差位置にあることを意味している。ここで、例えば、図示する円形の輪郭を2次元上の許容公差と設定すれば、この円形から外れた位置に孔a1が計測された際に、このサブアッシーaをインラインから取り除くことができる。   FIG. 4 shows the state of the screen viewed by the measurer from the CCD camera 6. X1 in the figure is a reference point where the hole a1 should be originally located, and in the illustrated embodiment, it means that the actual hole a1 is at a tolerance position of t2 in the horizontal direction and t1 in the vertical direction. Here, for example, if the circular contour shown in the figure is set as a two-dimensional tolerance, the sub-assembly a can be removed from the inline when the hole a1 is measured at a position deviating from the circular shape.

図5では、かかる単回帰式のまわりに実際の測定データp、p、…が散在している状況が示されている。ここで、図中のa1〜a2までの範囲:L2は、当初設定されていたフェンダーブラケットの許容公差である。一方、図中のL1の範囲は、フロントフード51とヘッドランプ52の隙間の許容公差範囲である。図からも明らかなように、当初設定されていたフェンダーブラケットの許容公差では、フロントフード51とヘッドランプ52の隙間の許容公差を満足させることができない。そこで、算定された単回帰式f(x)と許容公差範囲L1に基づき、フェンダーブラケットの許容公差をb1〜b2までの範囲:L3に設定し直すことにより、完成車両の適宜部位における許容公差を満足し得るサブアッシーの組付け精度範囲を確定することができる。   FIG. 5 shows a situation where actual measurement data p, p,... Are scattered around the single regression equation. Here, the range from a1 to a2 in the figure: L2 is an allowable tolerance of the fender bracket that was initially set. On the other hand, the range of L1 in the figure is an allowable tolerance range of the gap between the front hood 51 and the headlamp 52. As is apparent from the figure, the tolerance of the gap between the front hood 51 and the headlamp 52 cannot be satisfied with the tolerance of the fender bracket that was initially set. Therefore, based on the calculated single regression equation f (x) and the allowable tolerance range L1, by setting the allowable tolerance of the fender bracket to a range L3 from b1 to b2, the allowable tolerance at an appropriate part of the completed vehicle is set. The subassembly assembly accuracy range that can be satisfied can be determined.

図6は、フロントフード51とヘッドランプ52の隙間精度に最も影響を与えると特定されたフェンダーブラケット精度s1について、該フェンダーブラケット精度s1に影響を与え得る組付け要因を抽出した図である。フェンダーブラケット精度s1に影響を与え得る組付け要因としては、例えば図示するような溶接ロボットs11や治具精度s12、さらには図示しないパレット精度やパネル精度、さらには、フェンダーブラケットを運搬する際のばらつきなどが考えられる。   FIG. 6 is a diagram in which assembling factors that can affect the fender bracket accuracy s1 are extracted for the fender bracket accuracy s1 that is identified as having the greatest influence on the clearance accuracy between the front hood 51 and the headlamp 52. Assembling factors that may affect the fender bracket accuracy s1 include, for example, a welding robot s11 and jig accuracy s12 as illustrated, pallet accuracy and panel accuracy (not illustrated), and variations in transporting the fender bracket. And so on.

溶接ロボットs11をより詳細に見てみると、その打点順序s111やガン角度s112、電流値/通電時間s113や図示しない加圧力や先端のチップ径などが要素となる。   Looking at the welding robot s11 in more detail, the dot order s111, the gun angle s112, the current value / energization time s113, the applied pressure not shown, the tip diameter at the tip, and the like are factors.

一方、治具精度s12を詳細に見てみると、クランプのガタs121やクランプ順序s122、スライド設備のガタs123や図示しない基準ピン径の逃げ量やスパッタの付着の有無などが要素となる。   On the other hand, when the jig accuracy s12 is examined in detail, factors such as the clamp play s121, the clamp order s122, the slide equipment play s123, the escape amount of a reference pin diameter (not shown), and the presence or absence of spatter adhesion are factors.

そこで、各要素がフェンダーブラケット精度s1に与える寄与率を回帰分析にて求めて数値化し(図では寄与率の大きな順に3,2,1としている)、さらに、各要素の改善のし易さの程度(難易度)を経験則から同様に数値化する(図では改善し易い順に3,2,1としている)。そして、寄与率の数値と難易度の数値を掛け合わせてなる総合値が相対的に大きな要素を説明変数とし、重回帰分析をおこなうことにより、フェンダーブラケット精度を管理することができる。所要のフェンダーブラケット精度公差は、既に図3のL3で決定されているため、かかる精度公差となるように上記説明変数の要素を集中管理すればよい。   Therefore, the contribution ratio that each element gives to the fender bracket accuracy s1 is obtained by regression analysis and digitized (in the figure, it is set as 3, 2, 1 in descending order of contribution ratio), and the ease of improvement of each element is further improved. The degree (difficulty level) is quantified in the same way from the rule of thumb (in the figure, it is 3, 2, and 1 in order of easy improvement). The fender bracket accuracy can be managed by performing multiple regression analysis using an element having a relatively large total value obtained by multiplying the contribution value and the difficulty value as an explanatory variable. Since the required fender bracket accuracy tolerance has already been determined in L3 of FIG. 3, the elements of the explanatory variables may be centrally managed so as to be the accuracy tolerance.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

車両構成部材が順に組み付けられていく流れを示した模式図。The schematic diagram which showed the flow in which a vehicle structural member is assembled | attached in order. フェンダーブラケットの組付け精度が、フロントフードとヘッドランプの隙間精度に大きく寄与していることを示した模式図。A schematic diagram showing that the assembly accuracy of the fender bracket greatly contributes to the clearance accuracy between the front hood and the headlamp. 車両構成部材の測定ポイントを計測している状況を示した模式図。The schematic diagram which showed the condition which is measuring the measurement point of a vehicle structural member. カメラから見た図3のIV部の拡大図。The enlarged view of the IV section of FIG. 3 seen from the camera. フェンダーブラケットの組付け公差と、フロントフードとヘッドランプの隙間公差の関係を示した図。The figure which showed the assembly tolerance of a fender bracket, and the relationship between the clearance tolerance of a front hood and a headlamp. フェンダーブラケットの組付け要因と、組付け要因の中から決定される説明変数を示した図。The figure which showed the explanatory variable determined from the assembly factor of a fender bracket, and an assembly factor.

符号の説明Explanation of symbols

1…エプロン、2…エンジンコンパートメント、3…メインボディー、4…完成車両ボディー、5…完成車両、51…フロントフード、52…ヘッドランプ、x1、y1〜y4、z1〜z5、w1〜w7…測定ポイント、N1…小サブアッシー工程、N2…中サブアッシー工程、N3…大サブアッシー工程、N4…最終組付け工程   DESCRIPTION OF SYMBOLS 1 ... Apron, 2 ... Engine compartment, 3 ... Main body, 4 ... Completed vehicle body, 5 ... Completed vehicle, 51 ... Front hood, 52 ... Headlamp, x1, y1-y4, z1-z5, w1-w7 ... Measurement Point, N1 ... Small sub-assembly process, N2 ... Medium sub-assembly process, N3 ... Large sub-assembly process, N4 ... Final assembly process

Claims (3)

複数の部品と、該部品が組み付けられて構成される車両構成部材を複数組付けることで製造される車両用ボディーの製造ラインにおいて、前記複数の部品および前記車両構成部材の組付け精度を管理するための車両組付け精度管理方法であって、
前記部品および前記車両構成部材の組付け工程において、それぞれの組付け位置を測定し、それらの測定データを組付け位置データとして記憶するとともに、該組付け位置データを説明変数とし、前記部品および前記車両構成部材を組付けて構成される車両ボディーの完全完成品または中間完成品の組付け精度を表す基準組付け位置データを目的変数とし、前記説明変数と前記目的変数とに基づく回帰分析をおこなうことにより、完全完成品または中間完成品の組付け精度に対して寄与率の相対的に高い部品または車両構成部材を特定する工程を含むことを特徴とする車両組付け精度管理方法。
In a production line for a vehicle body manufactured by assembling a plurality of parts and a plurality of vehicle constituent members constituted by assembling the parts, the assembly accuracy of the plurality of parts and the vehicle constituent members is managed. A vehicle assembly accuracy management method for
In the step of assembling the part and the vehicle component, the respective assembling positions are measured, the measurement data is stored as assembling position data, the assembling position data is used as an explanatory variable, and the parts and the Regression analysis is performed based on the explanatory variables and the objective variables, with reference assembling position data representing the accuracy of assembling the complete or intermediate finished vehicle body constructed by assembling the vehicle components. Thus, a vehicle assembly accuracy management method comprising a step of identifying a part or a vehicle constituent member having a relatively high contribution rate to the assembly accuracy of a complete product or an intermediate product.
前記組付け位置の測定は、該組付け位置の画像または映像を取得し、予め記憶された正規の組付け位置との公差を算出するものであり、該組付け位置データは該公差に基づく値であることを特徴とする請求項1に記載の車両組付け精度管理方法。   The measurement of the assembly position is to obtain an image or video of the assembly position and calculate a tolerance with a normal assembly position stored in advance, and the assembly position data is a value based on the tolerance. The vehicle assembly accuracy management method according to claim 1, wherein: 請求項1または2に記載の車両組付け精度管理方法において、
前記目的変数に対して寄与率が相対的に高い前記部品の組付け精度および/または前記車両構成部材の組付け精度に関して、製造治具や組付け治具、製造装置や組付け装置を含む複数の製造要因または組付け要因を第二の説明変数とし、部品の組付け精度や車両構成部材の組付け精度を第二の目的変数とし、該第二の目的変数に対して寄与率の相対的に高い製造要因または組付け要因を集中管理することによって、完全完成品または中間完成品の組付け精度に対して寄与率の高い部品の組付け精度および/または車両構成部材の組付け精度を適宜の組付け精度に調整することを特徴とする車両組付け精度管理方法。
In the vehicle assembly accuracy management method according to claim 1 or 2,
A plurality of components including a manufacturing jig, an assembling jig, a manufacturing apparatus, and an assembling apparatus with respect to the assembling accuracy of the component and / or the assembling accuracy of the vehicle component having a relatively high contribution rate to the objective variable. The manufacturing factor or assembly factor is the second explanatory variable, the assembly accuracy of the parts and the assembly accuracy of the vehicle components are the second objective variable, and the contribution ratio is relative to the second objective variable. By centrally managing high manufacturing factors or assembly factors, the assembly accuracy of parts and / or vehicle components that have a high contribution rate to the accuracy of assembly of complete or intermediate products is appropriately adjusted. The vehicle assembly accuracy management method is characterized by adjusting the assembly accuracy of the vehicle.
JP2005086182A 2005-03-24 2005-03-24 Vehicle assembly accuracy control method Active JP4600113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005086182A JP4600113B2 (en) 2005-03-24 2005-03-24 Vehicle assembly accuracy control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005086182A JP4600113B2 (en) 2005-03-24 2005-03-24 Vehicle assembly accuracy control method

Publications (2)

Publication Number Publication Date
JP2006264521A true JP2006264521A (en) 2006-10-05
JP4600113B2 JP4600113B2 (en) 2010-12-15

Family

ID=37200932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005086182A Active JP4600113B2 (en) 2005-03-24 2005-03-24 Vehicle assembly accuracy control method

Country Status (1)

Country Link
JP (1) JP4600113B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010134642A (en) * 2008-12-03 2010-06-17 Toyota Auto Body Co Ltd Vehicle body precision trend management system
JP2014129012A (en) * 2012-12-28 2014-07-10 Toyota Motor East Japan Inc Fitting analysis method and fitting analysis program of automobile opening/closing hood part
JP2016011013A (en) * 2014-06-27 2016-01-21 ダイハツ工業株式会社 Vehicle accuracy evaluation system
JP2016144995A (en) * 2015-02-09 2016-08-12 トヨタ車体株式会社 Designing method of target support position of upholstery with jig
US11572119B2 (en) 2020-07-30 2023-02-07 Toyota Jidosha Kabushiki Kaisha Vehicle parts assembly method and vehicle parts assembly apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102566507B (en) * 2011-12-29 2014-06-04 长城汽车股份有限公司 Method for improving manufacturing precision of metal plate products
JP6795629B2 (en) * 2019-01-10 2020-12-02 本田技研工業株式会社 Product measurement result display system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618224A (en) * 1992-07-01 1994-01-25 Fuji Heavy Ind Ltd Method and apparatus for measuring accuracy in assemblage
JPH0725371A (en) * 1993-07-08 1995-01-27 Nissan Motor Co Ltd Adjustment support device for body assembling jig
JP2002156214A (en) * 2000-11-17 2002-05-31 Omron Corp Inspection method for car body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618224A (en) * 1992-07-01 1994-01-25 Fuji Heavy Ind Ltd Method and apparatus for measuring accuracy in assemblage
JPH0725371A (en) * 1993-07-08 1995-01-27 Nissan Motor Co Ltd Adjustment support device for body assembling jig
JP2002156214A (en) * 2000-11-17 2002-05-31 Omron Corp Inspection method for car body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010134642A (en) * 2008-12-03 2010-06-17 Toyota Auto Body Co Ltd Vehicle body precision trend management system
JP2014129012A (en) * 2012-12-28 2014-07-10 Toyota Motor East Japan Inc Fitting analysis method and fitting analysis program of automobile opening/closing hood part
JP2016011013A (en) * 2014-06-27 2016-01-21 ダイハツ工業株式会社 Vehicle accuracy evaluation system
JP2016144995A (en) * 2015-02-09 2016-08-12 トヨタ車体株式会社 Designing method of target support position of upholstery with jig
US11572119B2 (en) 2020-07-30 2023-02-07 Toyota Jidosha Kabushiki Kaisha Vehicle parts assembly method and vehicle parts assembly apparatus

Also Published As

Publication number Publication date
JP4600113B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
JP4600113B2 (en) Vehicle assembly accuracy control method
US10571889B2 (en) System and method for joining workpieces to form an article
Ye et al. Weld bead recognition using laser vision with model-based classification
DE102006019917B4 (en) Method and device for ensuring the dimensional accuracy of multi-segment structural structures during assembly
Renken et al. Development of an adaptive, self-learning control concept for an additive manufacturing process
JP2005537988A (en) Method and apparatus for attaching a plurality of additional parts to a workpiece
JP4911232B2 (en) Bead inspection method and bead inspection device
CN109108529A (en) System and method for automatic welding
Mast et al. Steps and strategies in process improvement
JP2021516160A (en) A method for automatically determining the optimum welding parameters for performing work piece welding
US8176777B2 (en) Device and method for measuring layer thicknesses
WO2005031647A1 (en) Method and device for contactless optical determination of the 3-d position of an object
DE102013114972B4 (en) Vehicle weld quality inspection apparatus and method thereof
CN109108430B (en) System and method for automated welding
JP5356164B2 (en) Crack generation life prediction apparatus and crack generation life prediction method
EP1676128A1 (en) Method and device for testing a component having a complex surface contour, by means of ultrasound
WO2020011673A1 (en) Device and method for analyzing the surface of parts having cooling fluid openings
US20180239331A1 (en) System and method for object distance detection and positioning
KR101247763B1 (en) Methdo of block matching
WO2007112408A3 (en) Atom probe data and associated systems and methods
KR101666798B1 (en) Intelligent system and method for spreading sealer using vision system
KR102435468B1 (en) Vehicle body assembly hole processing system using vision sensor
US11983468B2 (en) Sealant profile system and method
Dahlstrom Variation simulation of sheet metal assemblies for geometrical quality: Parameter modeling and analysis.
DE102019101245A1 (en) Method and device for automated component measurement before, during or after the application of a seal on a component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4600113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3