JP2006263723A - Manufacturing method of layered product - Google Patents

Manufacturing method of layered product Download PDF

Info

Publication number
JP2006263723A
JP2006263723A JP2006052080A JP2006052080A JP2006263723A JP 2006263723 A JP2006263723 A JP 2006263723A JP 2006052080 A JP2006052080 A JP 2006052080A JP 2006052080 A JP2006052080 A JP 2006052080A JP 2006263723 A JP2006263723 A JP 2006263723A
Authority
JP
Japan
Prior art keywords
inorganic fine
fine particles
dispersion
fine particle
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006052080A
Other languages
Japanese (ja)
Other versions
JP4894298B2 (en
Inventor
Takumi Shibuta
匠 渋田
Taiichi Sakatani
泰一 阪谷
Kiminari Nanbu
仁成 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2006052080A priority Critical patent/JP4894298B2/en
Publication of JP2006263723A publication Critical patent/JP2006263723A/en
Application granted granted Critical
Publication of JP4894298B2 publication Critical patent/JP4894298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide the manufacturing method of a layered product where an inorganic particulate layer excellent in strength is formed on a substrate. <P>SOLUTION: The manufacturing method of the layered product where the inorganic particulate is formed on the substrate including a step of preparing a mixture inorganic particulate dispersion where an inorganic particulate (A) and an inorganic particulate (B) satisfying all the following conditions (1) to (3) are dispersed in a liquid dispersion medium, a step of coating the mixture inorganic particulate dispersion onto the substrate, and a step of forming the inorganic particulate layer on the substrate by removing the liquid dispersion medium from the dispersion coating the substrate. (1) Mean particle diameter Da of inorganic particulate (A) is 1-20 nm, mean particle diameter Db of inorganic particulate (B) is 30-300 nm, Da≤0.15Db, (2) 0.01≤Vca/(Vca+Vcb)≤0.40, and 0.60≤Vcb/(Vca+Vcb)≤0.99, however, Vca=Wa/da, Vcb=Wb/db, wherein Wa: weight of inorganic particulate (A) in mixture inorganic particulate dispersion, Wb: weight of inorganic particulate (B) in mixture inorganic particulate dispersion, da: density of inorganic particulate (A), db: density of inorganic particulate (B), and(3) 0.01≤(Wa+Wb)/Wt≤0.20, however, Wt: weight of mixture inorganic particulate dispersion. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、基材とその上に形成された無機微粒子層とを有する積層体の製造方法、および基材上に無機微粒子層を形成して基材の傷つきを防止する方法に関する。 The present invention relates to a method for producing a laminate having a substrate and an inorganic fine particle layer formed thereon, and a method for preventing the substrate from being damaged by forming the inorganic fine particle layer on the substrate.

熱可塑性樹脂で構成される成形品は、一般に帯電防止性に劣り汚れが付着しやすい。熱可塑性樹脂からなり、汚れの付着を防止した成形品として、熱可塑性樹脂層上に無機コロイドを含む液を塗布し、次いで媒体を除去して前記無機コロイド由来の無機微粒子層を形成させて製造される汚れ防止性フィルムが特許文献1に開示されている。   Molded products made of thermoplastic resins are generally inferior in antistatic properties and easily adhere to dirt. Manufactured by applying a liquid containing an inorganic colloid on a thermoplastic resin layer, and then removing the medium to form an inorganic fine particle layer derived from the inorganic colloid, as a molded article made of a thermoplastic resin and preventing adhesion of dirt. An antifouling film is disclosed in Patent Document 1.

特開2004−307856号公報JP 2004-307856 A

しかしながら前記の汚れ防止性フィルムは、無機微粒子同士の接着力が不十分であり、フィルムの変形や摩擦力などの外的力の作用などによって無機微粒子層が欠落することがあった。   However, the antifouling film has insufficient adhesion between inorganic fine particles, and the inorganic fine particle layer may be lost due to the action of external force such as film deformation or frictional force.

上記のような従来技術の問題に鑑みて本発明は、基材上に強度に優れる無機微粒子層が形成された積層体の製造方法を提供しようとするものである。さらに本発明は、基材上に強度に優れる無機微粒子層を形成することにより、基材の傷つきを防止する方法を提供しようとするものである。   In view of the above-described problems of the prior art, the present invention intends to provide a method for producing a laminate in which an inorganic fine particle layer having excellent strength is formed on a substrate. Furthermore, the present invention intends to provide a method for preventing the substrate from being damaged by forming an inorganic fine particle layer having excellent strength on the substrate.

本発明は、
下記の条件(1)〜(3)を全て満たす無機微粒子(A)および無機微粒子(B)が液体分散媒中に分散している混合無機微粒子分散液を調製すること、
該混合無機微粒子分散液を基材上に塗布すること、および
前記基材に塗布した前記分散液から分散媒を除去して基材上に無機微粒子層を形成すること
を含む、基材と、その上に形成された無機微粒子層とを有する積層体の製造方法を提供する。
(1)無機微粒子(A)の平均粒子径Daが1〜20nmであり、無機微粒子(B)の平均粒子径Dbが30〜300nmであり、かつDa≦0.15Dbである。
(2)0.01≦Va/(Va+Vb)≦0.40であり、かつ0.60≦Vb/(Va+Vb)≦0.99である。
(但し、VaおよびVbは、それぞれ、混合無機微粒子分散液の調製に使用した無機微粒子(A)と(B)の体積の合計に対する、無機微粒子(A)の体積の分率および無機微粒子(B)の体積の分率である。)
(3)0.01≦(Wa+Wb)/Wt≦0.20である。
(但し、Waは混合無機微粒子分散液中の無機微粒子(A)の重量であり、Wbは混合無機微粒子分散液中の無機微粒子(B)の重量であり、Wtは混合無機微粒子分散液の重量である。)
さらに本発明は、下記の条件(1)〜(3)を全て満たす無機微粒子(A)および無機微粒子(B)が液体分散媒中に分散している混合無機微粒子分散液を調製すること、
該混合無機微粒子分散液を基材上に塗布すること、および
前記基材に塗布した前記分散液から液体分散媒を除去して基材上に無機微粒子層を形成すること
を含む、基材上に無機微粒子層を形成して該基材の傷つきを防止する方法を提供する。
(1)無機微粒子(A)の平均粒子径Daが1〜20nm、無機微粒子(B)の平均粒子径Dbが30〜300nmであり、かつDa≦0.15Db
(2)0.01≦Vca/(Vca+Vcb)≦0.40、かつ0.60≦Vcb/(Vca+Vcb)≦0.99
但し、Vca=Wa/da、Vcb=Wb/dbであり、ここでWa:混合無機微粒子分散液中の無機微粒子(A)の重量、Wb:混合無機微粒子分散液中の無機微粒子(B)の重量、da:無機微粒子(A)の密度、db:無機微粒子(B)の密度
(3)0.01≦(Wa+Wb)/Wt≦0.20
但し、Wt:混合無機微粒子分散液の重量
The present invention
Preparing a mixed inorganic fine particle dispersion in which inorganic fine particles (A) and inorganic fine particles (B) satisfying all of the following conditions (1) to (3) are dispersed in a liquid dispersion medium;
Applying the mixed inorganic fine particle dispersion onto a substrate; and removing the dispersion medium from the dispersion applied to the substrate to form an inorganic fine particle layer on the substrate; and A method for producing a laminate having an inorganic fine particle layer formed thereon is provided.
(1) The average particle diameter Da of the inorganic fine particles (A) is 1 to 20 nm, the average particle diameter Db of the inorganic fine particles (B) is 30 to 300 nm, and Da ≦ 0.15 Db.
(2) 0.01 ≦ Va / (Va + Vb) ≦ 0.40 and 0.60 ≦ Vb / (Va + Vb) ≦ 0.99.
(Va and Vb are the volume fraction of the inorganic fine particles (A) and the inorganic fine particles (B, respectively) with respect to the total volume of the inorganic fine particles (A) and (B) used for the preparation of the mixed inorganic fine particle dispersion. ) Volume fraction.)
(3) 0.01 ≦ (Wa + Wb) /Wt≦0.20.
(Wa is the weight of the inorganic fine particles (A) in the mixed inorganic fine particle dispersion, Wb is the weight of the inorganic fine particles (B) in the mixed inorganic fine particle dispersion, and Wt is the weight of the mixed inorganic fine particle dispersion. .)
Furthermore, the present invention provides a mixed inorganic fine particle dispersion in which inorganic fine particles (A) and inorganic fine particles (B) satisfying all the following conditions (1) to (3) are dispersed in a liquid dispersion medium,
Applying the mixed inorganic fine particle dispersion onto the substrate, and removing the liquid dispersion medium from the dispersion applied onto the substrate to form an inorganic fine particle layer on the substrate. A method for preventing damage to the substrate by forming an inorganic fine particle layer is provided.
(1) The average particle diameter Da of the inorganic fine particles (A) is 1 to 20 nm, the average particle diameter Db of the inorganic fine particles (B) is 30 to 300 nm, and Da ≦ 0.15 Db
(2) 0.01 ≦ Vca / (Vca + Vcb) ≦ 0.40 and 0.60 ≦ Vcb / (Vca + Vcb) ≦ 0.99
However, Vca = Wa / da, Vcb = Wb / db, where Wa: weight of the inorganic fine particles (A) in the mixed inorganic fine particle dispersion, Wb: weight of the inorganic fine particles (B) in the mixed inorganic fine particle dispersion Weight, da: density of inorganic fine particles (A), db: density of inorganic fine particles (B) (3) 0.01 ≦ (Wa + Wb) /Wt≦0.20
Where Wt: Weight of the mixed inorganic fine particle dispersion

本発明によれば、基材上に膜強度に優れる無機微粒子層が形成された積層体を製造することができる。また本発明によれば、基材の傷つきを防止することができる。
According to the present invention, a laminate in which an inorganic fine particle layer having excellent film strength is formed on a substrate can be produced. Moreover, according to this invention, the damage of a base material can be prevented.

本発明で用いる基材の素材はガラスや金属部材等の硬質材料でもよいが、加工・取扱の容易さから熱可塑性樹脂が好ましい。基材を構成する熱可塑性樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、エチレンおよび/またはα−オレフィンと他の重合性単量体との共重合体などのオレフィン系樹脂;ポリ塩化ビニル樹脂、ポリ塩化ビニリデンなどの塩素含有樹脂;テトラフルオロエチレンの単独重合体、テトラフルオロエチレンと他の重合性単量体(例えばエチレンやα−オレフィンなど)との共重合体などのフッ素含有樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル系樹脂;ポリメタクリル酸メチルやメタクリル酸メチルと他の重合性単量体との共重合体などのアクリル系樹脂;ポリスチレンやスチレンと他の重合性単量体との共重合体などのスチレン系樹脂;トリアセチルセルロースやジアセチルセルロースなどのセルロース系樹脂;ポリカーボネート樹脂;ポリアミド樹脂;ウレタン系樹脂;これらの混合物などが挙げられる。   The base material used in the present invention may be a hard material such as glass or a metal member, but a thermoplastic resin is preferred from the viewpoint of ease of processing and handling. Examples of the thermoplastic resin constituting the substrate include polyethylene resins, polypropylene resins, ethylene and / or olefin resins such as copolymers of α-olefins and other polymerizable monomers; polyvinyl chloride resins, polychlorinated resins Chlorine-containing resins such as vinylidene; Fluorine-containing resins such as tetrafluoroethylene homopolymers, copolymers of tetrafluoroethylene and other polymerizable monomers (for example, ethylene and α-olefins); polyethylene terephthalate, polyethylene Polyester resins such as naphthalate; Acrylic resins such as polymethyl methacrylate and copolymers of methyl methacrylate and other polymerizable monomers; Copolymerization of polystyrene and styrene with other polymerizable monomers Styrenic resins such as coalesce; Cellulose such as triacetyl cellulose and diacetyl cellulose Examples thereof include: a roulose resin; a polycarbonate resin; a polyamide resin; a urethane resin; and a mixture thereof.

透明性に優れた積層体の製造には、オレフィン系樹脂、塩素含有樹脂、フッ素含有樹脂、ポリエステル系樹脂、アクリル系樹脂、スチレン系樹脂、セルロース系樹脂、ポリカーボネート樹脂等からなる基材を使用することが好ましい。
基材は、単一の層からなる単層基材であってもよく、また、2層以上の層からなる多層基材であってもよい。多層基材の例としては、各々が熱可塑性樹脂からなる2以上の層からなる多層基材や、熱可塑性樹脂からなる一層以上の層と、熱可塑性樹脂以外の材料(例えば金属)からなる一層以上の層とからなる複合多層基材が挙げられる。
基材の形状、大きさ、厚さは特に限定されるものではない。
For the production of a laminate having excellent transparency, a substrate made of olefin resin, chlorine-containing resin, fluorine-containing resin, polyester resin, acrylic resin, styrene resin, cellulose resin, polycarbonate resin or the like is used. It is preferable.
The base material may be a single layer base material composed of a single layer, or may be a multilayer base material composed of two or more layers. Examples of the multilayer substrate include a multilayer substrate composed of two or more layers, each composed of a thermoplastic resin, one or more layers composed of a thermoplastic resin, and a layer composed of a material (for example, metal) other than the thermoplastic resin. A composite multilayer substrate composed of the above layers can be mentioned.
The shape, size, and thickness of the substrate are not particularly limited.

本発明で使用する混合無機微粒子分散液は、下記の条件(1)、(2)および(3)を満たす。
(1)無機微粒子(A)の平均粒子径Daが1〜20nmであり、無機微粒子(B)の平均粒子径Dbが30〜300nmであり、かつDa≦0.15Dbである。
(2)0.01≦Va/(Va+Vb)≦0.40であり、かつ0.60≦Vb/(Va+Vb)≦0.99である。
(但し、VaおよびVbは、それぞれ、混合無機微粒子分散液の調製に使用した無機微粒子(A)と(B)の体積の合計に対する、無機微粒子(A)の体積の分率および無機微粒子(B)の体積の分率である。)
(3)0.01≦(Wa+Wb)/Wt≦0.20である。
(但し、Waは混合無機微粒子分散液中の無機微粒子(A)の重量であり、Wbは混合無機微粒子分散液中の無機微粒子(B)の重量であり、Wtは混合無機微粒子分散液の重量である。)
The mixed inorganic fine particle dispersion used in the present invention satisfies the following conditions (1), (2) and (3).
(1) The average particle diameter Da of the inorganic fine particles (A) is 1 to 20 nm, the average particle diameter Db of the inorganic fine particles (B) is 30 to 300 nm, and Da ≦ 0.15 Db.
(2) 0.01 ≦ Va / (Va + Vb) ≦ 0.40 and 0.60 ≦ Vb / (Va + Vb) ≦ 0.99.
(Va and Vb are the volume fraction of the inorganic fine particles (A) and the inorganic fine particles (B, respectively) with respect to the total volume of the inorganic fine particles (A) and (B) used for the preparation of the mixed inorganic fine particle dispersion. ) Volume fraction.)
(3) 0.01 ≦ (Wa + Wb) /Wt≦0.20.
(Wa is the weight of the inorganic fine particles (A) in the mixed inorganic fine particle dispersion, Wb is the weight of the inorganic fine particles (B) in the mixed inorganic fine particle dispersion, and Wt is the weight of the mixed inorganic fine particle dispersion. .)

前記混合無機微粒子分散液の調製では、平均粒子径Daが1〜20nmである無機微粒子(A)と、平均粒子径Dbが30〜300nmである無機微粒子(B)とをDa≦0.15Dbを満たすように選択し、これらを上記条件(2)および(3)を満たすような量関係で混合する。
無機微粒子(A)の化学組成と無機微粒子(B)の化学組成とは同じであってもよく、また異なってもよい。無機微粒子(A)および無機微粒子(B)として使用される無機微粒子の例としては、金属微粒子、金属酸化物微粒子、金属水酸化物微粒子、金属炭酸塩微粒子、金属硫酸塩微粒子等が挙げられる。金属微粒子の金属元素としては、金、パラジウム、白金、銀などが例示される。金属酸化物微粒子、金属水酸化物微粒子、金属炭酸塩微粒子、金属硫酸塩微粒子における金属元素としては、珪素、アルミニウム、亜鉛、マグネシウム、カルシウム、バリウム、チタン、ジルコニウム、マンガン、鉄、セリウム、ニッケル、スズなどが例示される。形成される無機微粒子層の均一さと緻密さの観点からは、金属酸化物微粒子または金属水酸化物微粒子を用いることが好ましく、特に珪素またはアルミニウムの酸化物微粒子もしくは水酸化物微粒子が好ましい。このような無機微粒子を用いることにより、無機微粒子が極めて緻密にかつ均一に充填された無機微粒子層を設けることができる。透明性に優れた無機微粒子層を形成するためには、無機微粒子(A)および無機微粒子(B)として、シリカ微粒子を用いることがより好ましい。
In the preparation of the mixed inorganic fine particle dispersion, the inorganic fine particles (A) having an average particle diameter Da of 1 to 20 nm and the inorganic fine particles (B) having an average particle diameter Db of 30 to 300 nm satisfy Da ≦ 0.15 Db. It selects so that it may satisfy | fill, and these are mixed by the quantity relationship which satisfies the said conditions (2) and (3).
The chemical composition of the inorganic fine particles (A) and the chemical composition of the inorganic fine particles (B) may be the same or different. Examples of the inorganic fine particles used as the inorganic fine particles (A) and the inorganic fine particles (B) include metal fine particles, metal oxide fine particles, metal hydroxide fine particles, metal carbonate fine particles, metal sulfate fine particles and the like. Examples of the metal element of the metal fine particles include gold, palladium, platinum, and silver. As metal elements in metal oxide fine particles, metal hydroxide fine particles, metal carbonate fine particles, metal sulfate fine particles, silicon, aluminum, zinc, magnesium, calcium, barium, titanium, zirconium, manganese, iron, cerium, nickel, Examples include tin. From the viewpoint of the uniformity and density of the formed inorganic fine particle layer, it is preferable to use metal oxide fine particles or metal hydroxide fine particles, and silicon or aluminum oxide fine particles or hydroxide fine particles are particularly preferable. By using such inorganic fine particles, it is possible to provide an inorganic fine particle layer in which inorganic fine particles are packed very densely and uniformly. In order to form an inorganic fine particle layer having excellent transparency, it is more preferable to use silica fine particles as the inorganic fine particles (A) and the inorganic fine particles (B).

混合無機微粒子分散液は、典型的には、例えば下記[1]〜[5]のいずれかの方法により調製することができるが、これらの方法に限定されるものではない。
[1]無機微粒子(A)の粉末と無機微粒子(B)の粉末とを同時に共通の液体分散媒中に添加し、分散させる方法。
[2]無機微粒子(A)を第一の液体分散媒中に分散させて第一の分散液を調製し、別途、無機微粒子(B)を第二の液体分散媒中に分散させて第二の分散液を調製し、次いで第一および第二の分散液を混合する方法。
[3]無機微粒子(A)を液体分散媒中に分散させて分散液を調製し、次いで該分散液に無機微粒子(B)の粉末を添加し、分散させる方法。
[4]無機微粒子(B)を液体分散媒中に分散させて分散液を調製し、次いで該分散液に無機微粒子(A)の粉末を添加し、分散させる方法。
[5]分散媒中で粒成長させて無機微粒子(A)を含有する第一の分散液を調製し、別途、分散媒中で粒成長させて無機微粒子(B)を含有する第二の分散液を調製し、次いで第一および第二の分散液を混合する方法。
超音波分散、超高圧分散等の強分散手法を適用することにより、混合無機微粒子分散液中において、無機微粒子を特に均一に分散させることが出来る。
より均一な分散を達成するために、混合無機微粒子分散液の調製に使用する無機微粒子(A)の分散液や無機微粒子(B)の分散液や、最終的に得られる混合無機微粒子分散液中で無機微粒子はコロイド状態であることが好ましい。
Typically, the mixed inorganic fine particle dispersion can be prepared, for example, by any of the following methods [1] to [5], but is not limited to these methods.
[1] A method in which a powder of inorganic fine particles (A) and a powder of inorganic fine particles (B) are simultaneously added and dispersed in a common liquid dispersion medium.
[2] Disperse the inorganic fine particles (A) in the first liquid dispersion medium to prepare a first dispersion, and separately disperse the inorganic fine particles (B) in the second liquid dispersion medium. And then mixing the first and second dispersions.
[3] A method in which the inorganic fine particles (A) are dispersed in a liquid dispersion medium to prepare a dispersion, and then the inorganic fine particles (B) are added to the dispersion and dispersed.
[4] A method in which inorganic fine particles (B) are dispersed in a liquid dispersion medium to prepare a dispersion, and then the inorganic fine particles (A) are added to the dispersion and dispersed.
[5] A first dispersion containing inorganic fine particles (A) is prepared by grain growth in a dispersion medium. Separately, a second dispersion containing inorganic fine particles (B) is grown in a dispersion medium. A method of preparing a liquid and then mixing the first and second dispersions.
By applying a strong dispersion method such as ultrasonic dispersion or ultrahigh pressure dispersion, the inorganic fine particles can be dispersed particularly uniformly in the mixed inorganic fine particle dispersion.
In order to achieve a more uniform dispersion, the dispersion of inorganic fine particles (A) and the dispersion of inorganic fine particles (B) used in the preparation of the mixed inorganic fine particle dispersion, and the finally obtained mixed inorganic fine particle dispersion The inorganic fine particles are preferably in a colloidal state.

前記[2]、[3]、[4]または[5]の方法において、無機微粒子(A)の分散液、無機微粒子(B)の分散液、または無機微粒子(A)の分散液と無機微粒子(B)の分散液の両方がコロイダルアルミナである場合には、陽性に帯電するアルミナ粒子を安定化させるため、コロイダルアルミナ中に塩素イオン、硫酸イオン、酢酸イオンなどの陰イオンを対アニオンとして添加することが好ましい。コロイダルアルミナのpHは特に限定されるものではないが、分散液の安定性の観点からpH2〜6であることが好ましい。
また、前記[1]の方法においても、無機微粒子(A)および無機微粒子(B)の少なくとも一方がアルミナであって、混合無機微粒子分散液がコロイド状態である場合には、該混合無機微粒子分散液に塩素イオン、硫酸イオン、酢酸イオンなどの陰イオンを添加することが好ましい。
In the method [2], [3], [4] or [5], a dispersion of inorganic fine particles (A), a dispersion of inorganic fine particles (B), or a dispersion of inorganic fine particles (A) and inorganic fine particles. When both dispersions of (B) are colloidal alumina, in order to stabilize positively charged alumina particles, anions such as chloride ion, sulfate ion and acetate ion are added as a counter anion to colloidal alumina. It is preferable to do. The pH of colloidal alumina is not particularly limited, but is preferably 2 to 6 from the viewpoint of the stability of the dispersion.
Also in the above method [1], when at least one of the inorganic fine particles (A) and the inorganic fine particles (B) is alumina and the mixed inorganic fine particle dispersion is in a colloidal state, the mixed inorganic fine particles are dispersed. It is preferable to add anions such as chloride ions, sulfate ions, acetate ions to the liquid.

前記[2]、[3]、[4]または[5]の方法において、無機微粒子(A)の分散液、無機微粒子(B)の分散液、または無機微粒子(A)の分散液と無機微粒子(B)の分散液の両方がコロイダルシリカである場合には、陰性に帯電するシリカ粒子を安定化させるため、コロイダルシリカ中にアンモニウムイオン、アルカリ金属イオン、アルカリ土類金属イオンなどの陽イオンを対カチオンとして添加することが好ましい。コロイダルシリカのpHは特に限定されるものではないが、分散液の安定性の観点からpH8〜11であることが好ましい。
また、前記[1]の方法においても、無機微粒子(A)および無機微粒子(B)のうちの少なくとも一つがシリカであって、混合無機微粒子分散液がコロイド状態である場合には、該混合無機微粒子分散液にアンモニウムイオン、アルカリ金属イオン、アルカリ土類金属イオンなどの陽イオンを添加することが好ましい。
In the method [2], [3], [4] or [5], a dispersion of inorganic fine particles (A), a dispersion of inorganic fine particles (B), or a dispersion of inorganic fine particles (A) and inorganic fine particles. When both dispersions of (B) are colloidal silica, in order to stabilize the negatively charged silica particles, cations such as ammonium ions, alkali metal ions, alkaline earth metal ions, etc. are added to the colloidal silica. It is preferable to add it as a counter cation. The pH of the colloidal silica is not particularly limited, but is preferably pH 8 to 11 from the viewpoint of the stability of the dispersion.
In the method [1], when at least one of the inorganic fine particles (A) and the inorganic fine particles (B) is silica and the mixed inorganic fine particle dispersion is in a colloidal state, the mixed inorganic fine particles are used. It is preferable to add a cation such as ammonium ion, alkali metal ion, or alkaline earth metal ion to the fine particle dispersion.

本発明において、無機微粒子(A)の平均粒子径Daは1〜20nmであり、無機微粒子(B)の平均粒子径Dbは30〜300nmであり、かつDa≦0.15Dbであることが必要である。ここで、無機微粒子(A)の平均粒子径Daは動的光散乱法またはシアーズ法により求められる。動的光散乱法による平均粒子径の測定は、市販の粒度分布測定装置を使用して行なうことができる。シアーズ法とは、Analytical Chemistry,vol.28,P.1981−1983,1956に記載された方法であって、シリカ粒子の平均粒子径の測定に適用される分析手法であり、pH=3のコロイダルシリカ分散液をpH=9にするまでに消費されるNaOHの量から表面積を求め、求めた表面積から球相当径を算出する方法である。このようにして求められた球相当径を平均粒子径とする。また、無機微粒子(B)の平均粒子径DbはBET法またはレーザー回折散乱法で求められる球相当径である。   In the present invention, the inorganic fine particles (A) have an average particle diameter Da of 1 to 20 nm, the inorganic fine particles (B) have an average particle diameter Db of 30 to 300 nm, and Da ≦ 0.15 Db. is there. Here, the average particle diameter Da of the inorganic fine particles (A) is obtained by a dynamic light scattering method or a Sears method. The measurement of the average particle diameter by the dynamic light scattering method can be performed using a commercially available particle size distribution measuring apparatus. The Sears method is referred to Analytical Chemistry, vol. 28, p. 1981-1983, 1956, which is an analytical technique applied to the measurement of the average particle size of silica particles, and is consumed before the pH = 3 colloidal silica dispersion is brought to pH = 9. In this method, the surface area is determined from the amount of NaOH, and the equivalent sphere diameter is calculated from the determined surface area. The sphere equivalent diameter thus determined is taken as the average particle diameter. The average particle diameter Db of the inorganic fine particles (B) is a sphere equivalent diameter determined by the BET method or the laser diffraction scattering method.

本発明で用いる混合無機微粒子分散液は、下記の条件(2)を満たさなければならない。
(2)0.01≦Va/(Va+Vb)≦0.40であり、かつ0.60≦Vb/(Va+Vb)≦0.99である。
但し、VaおよびVbは、それぞれ、混合無機微粒子分散液の調製に使用した無機微粒子(A)と(B)の体積の合計に対する、無機微粒子(A)の体積の分率および無機微粒子(B)の体積の分率である。
無機微粒子(A)および(B)の体積分率は、それぞれの無機微粒子の密度と質量とから算出することができる。すなわち、Vca=Wa/da、Vcb=Wb/dbであり、Wa:混合無機微粒子分散液中の無機微粒子(A)の重量、Wb:混合無機微粒子分散液中の無機微粒子(B)の重量、da:無機微粒子(A)の密度、db:無機微粒子(B)の密度 である。無機微粒子の密度は定容積膨張法で求めることができる。なお、無機微粒子(A)および(B)が同じ化学種であれば、一般に、無機微粒子(A)および(B)の体積分率は、無機微粒子(A)および(B)の重量分率と等しいため、式(2)におけるVaをWaに、VbをWbに置き換えることができる。この条件(2)は、混合無機微粒子分散液の調製に使用する無機微粒子(A)および無機微粒子(B)のそれぞれの密度と量を適宜選択することにより充足させることができる。
The mixed inorganic fine particle dispersion used in the present invention must satisfy the following condition (2).
(2) 0.01 ≦ Va / (Va + Vb) ≦ 0.40 and 0.60 ≦ Vb / (Va + Vb) ≦ 0.99.
However, Va and Vb are respectively the volume fraction of the inorganic fine particles (A) and the inorganic fine particles (B) with respect to the total volume of the inorganic fine particles (A) and (B) used for the preparation of the mixed inorganic fine particle dispersion. Is a volume fraction.
The volume fraction of the inorganic fine particles (A) and (B) can be calculated from the density and mass of each inorganic fine particle. That is, Vca = Wa / da, Vcb = Wb / db, Wa: weight of the inorganic fine particles (A) in the mixed inorganic fine particle dispersion, Wb: weight of the inorganic fine particles (B) in the mixed inorganic fine particle dispersion, da: density of the inorganic fine particles (A), db: density of the inorganic fine particles (B). The density of the inorganic fine particles can be determined by a constant volume expansion method. In general, if the inorganic fine particles (A) and (B) are the same chemical species, the volume fraction of the inorganic fine particles (A) and (B) is generally equal to the weight fraction of the inorganic fine particles (A) and (B). Since they are equal, Va in equation (2) can be replaced with Wa and Vb can be replaced with Wb. This condition (2) can be satisfied by appropriately selecting the density and amount of the inorganic fine particles (A) and inorganic fine particles (B) used for the preparation of the mixed inorganic fine particle dispersion.

本発明で用いる混合無機微粒子分散液は、下記の条件(3)を満たさなければならない。
(3)0.01≦(Wa+Wb)/Wt≦0.20
但し、Waは混合無機微粒子分散液中の無機微粒子(A)の重量であり、Wbは混合無機微粒子分散液中の無機微粒子(B)の重量であり、Wtは混合無機微粒子分散液の重量である。この条件(3)は、混合無機微粒子分散液の調製に使用する無機微粒子(A)、無機微粒子(B)および液体分散媒の量を適宜選択することにより充足させることができる。
The mixed inorganic fine particle dispersion used in the present invention must satisfy the following condition (3).
(3) 0.01 ≦ (Wa + Wb) /Wt≦0.20
However, Wa is the weight of the inorganic fine particles (A) in the mixed inorganic fine particle dispersion, Wb is the weight of the inorganic fine particles (B) in the mixed inorganic fine particle dispersion, and Wt is the weight of the mixed inorganic fine particle dispersion. is there. This condition (3) can be satisfied by appropriately selecting the amount of inorganic fine particles (A), inorganic fine particles (B) and liquid dispersion medium used for the preparation of the mixed inorganic fine particle dispersion.

本発明において、混合無機微粒子分散液には、無機微粒子の分散の安定化などを目的として、例えば界面活性剤、有機系電解質などの添加剤を添加してもよい。
混合無機微粒子分散液が界面活性剤を含む場合、その含有量は液体分散媒100重量部に対し、通常0.1重量部以下である。用いられる界面活性剤は特に限定されるものではなく、例えばアニオン性界面活性剤、カチオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤などが挙げられる。
アニオン性界面活性剤としては、カルボン酸のアルカリ金属塩が挙げられ、具体的にはカプリル酸ナトリウム、カプリル酸カリウム、デカン酸ナトリウム、カプロン酸ナトリウム、ミリスチン酸ナトリウム、オレイン酸カリウム、ステアリン酸テトラメチルアンモニウム、ステアリン酸ナトリウムなどが挙げられる。特に、炭素原子数6〜10のアルキル鎖を有するカルボン酸のアルカリ金属塩が好ましい。
In the present invention, an additive such as a surfactant or an organic electrolyte may be added to the mixed inorganic fine particle dispersion for the purpose of stabilizing the dispersion of the inorganic fine particles.
When the mixed inorganic fine particle dispersion contains a surfactant, the content thereof is usually 0.1 parts by weight or less with respect to 100 parts by weight of the liquid dispersion medium. The surfactant used is not particularly limited, and examples thereof include an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant.
Examples of the anionic surfactant include alkali metal salts of carboxylic acid, specifically sodium caprylate, potassium caprylate, sodium decanoate, sodium caproate, sodium myristate, potassium oleate, tetramethyl stearate. Examples include ammonium and sodium stearate. In particular, an alkali metal salt of a carboxylic acid having an alkyl chain having 6 to 10 carbon atoms is preferable.

カチオン性界面活性剤としては、例えば、塩化セチルトリメチルアンモニウム、塩化ジオクタデシルジメチルアンモニウム、臭化−N−オクタデシルピリジニウム、臭化セチルトリエチルホスホニウムなどが挙げられる。
非イオン性界面活性剤としては、例えば、ソルビタン脂肪酸エステルグリセリン脂肪酸エステルなどが挙げられる。
両性界面活性剤としては、2−アルキル−N−カルボキシメチル−N−ヒドロキシエチルイミダゾリニウムベタイン、ラウリン酸アミドプロピルベタインなどが挙げられる。
Examples of the cationic surfactant include cetyltrimethylammonium chloride, dioctadecyldimethylammonium chloride, -N-octadecylpyridinium bromide, cetyltriethylphosphonium bromide, and the like.
Examples of the nonionic surfactant include sorbitan fatty acid ester glycerin fatty acid ester and the like.
Examples of amphoteric surfactants include 2-alkyl-N-carboxymethyl-N-hydroxyethyl imidazolinium betaine and lauric acid amidopropyl betaine.

混合無機微粒子分散液が有機系電解質を含む場合、その含有量は分散媒100重量部に対し、通常0.01重量部以下である。本発明における有機系電解質とは、電離性イオン性基を有する有機化合物のうちで界面活性剤でないものを指す。例えば、p−トルエンスルホン酸ナトリウム、ベンゼンスルホン酸ナトリウム、ブチルスルホン酸カリウム、フェニルホスフィン酸ナトリウム、ジエチルリン酸ナトリウムなどが挙げられる。該有機系電解質はベンゼンスルホン酸誘導体であることが好ましい。   When the mixed inorganic fine particle dispersion contains an organic electrolyte, the content is usually 0.01 parts by weight or less with respect to 100 parts by weight of the dispersion medium. The organic electrolyte in the present invention refers to an organic compound having an ionizable ionic group that is not a surfactant. Examples thereof include sodium p-toluenesulfonate, sodium benzenesulfonate, potassium butylsulfonate, sodium phenylphosphinate, sodium diethylphosphate, and the like. The organic electrolyte is preferably a benzenesulfonic acid derivative.

本発明において、基材上に混合無機微粒子分散液を塗布する方法は特に限定されるものではなく、例えば、基材表面に、グラビアコーティング、リバースコーティング、刷毛ロールコーティング、スプレーコーティング、キスコーティング、ダイコーティング、ディッピング、バーコーティングなどの公知の方法で塗布することができる。混合無機微粒子分散液の塗布量は特に限定されるものではないが、1回の塗工で塗布する量は、分散液の状態で1〜20g/m2であることが好ましい。 In the present invention, the method for applying the mixed inorganic fine particle dispersion on the substrate is not particularly limited. For example, gravure coating, reverse coating, brush roll coating, spray coating, kiss coating, die coating on the substrate surface. It can apply | coat by well-known methods, such as coating, dipping, and bar coating. The coating amount of the mixed inorganic fine particle dispersion is not particularly limited, but the coating amount in one application is preferably 1 to 20 g / m 2 in the state of the dispersion.

基材に混合無機微粒子分散液を塗布する前に、基材表面にコロナ処理、オゾン処理、プラズマ処理、フレーム処理、電子線処理、アンカーコート処理、洗浄処理などの前処理を行なうことが好ましい。   Before applying the mixed inorganic fine particle dispersion on the substrate, it is preferable to perform pretreatment such as corona treatment, ozone treatment, plasma treatment, flame treatment, electron beam treatment, anchor coating treatment, and washing treatment on the surface of the substrate.

また、ベース材に本発明で用いる混合無機微粒子分散液とは異なる無機物含有液をベース材に塗布し、乾燥することにより、該ベース材上に無機物被膜を形成して調製した積層物を基材として使用してもよい。ベース材としては、先に基材として例示したものを使用することができる。無機物含有液としては、コロイダルアルミナ、コロイダルシリカおよび分散媒に膨潤及びへき開する性質を有する粘土系鉱物を含有する液が好適に用いられる。   In addition, a base material is a laminate prepared by applying an inorganic-containing liquid different from the mixed inorganic fine particle dispersion used in the present invention to the base material and drying to form an inorganic film on the base material. May be used as As the base material, those exemplified above as the base material can be used. As the inorganic substance-containing liquid, a liquid containing a colloidal alumina, colloidal silica, and a clay mineral having a property of swelling and cleaving into a dispersion medium is preferably used.

基材上に塗布した混合無機微粒子分散液から、適宜の方法により液体分散媒を除去することにより、基材上に無機微粒子層を形成する。液体分散媒の除去は、例えば、常圧下、または減圧下における加熱により行なうことができる。液体分散媒を除去する際の圧力、加熱温度は、使用する無機微粒子(A)、無機微粒子(B)および液体分散媒に応じて適宜選択することができる。例えば、分散媒が水であるときは、一般的には50〜80℃で、好ましくは約60℃で乾燥することができる。   An inorganic fine particle layer is formed on the substrate by removing the liquid dispersion medium from the mixed inorganic fine particle dispersion applied on the substrate by an appropriate method. The removal of the liquid dispersion medium can be performed, for example, by heating under normal pressure or reduced pressure. The pressure and heating temperature for removing the liquid dispersion medium can be appropriately selected according to the inorganic fine particles (A), inorganic fine particles (B) and liquid dispersion medium to be used. For example, when the dispersion medium is water, it can be dried generally at 50 to 80 ° C, preferably at about 60 ° C.

本発明では、基材の種類や、無機微粒子層の形成に使用する無機微粒子(A)および無機微粒子(B)の種類を適宜選択することにより、様々な用途に適した積層体を製造することができる。例えば無機微粒子として、一般に光半導体と称されるような酸化チタンを用いた場合には、得られる積層体は特定の光線吸収バンドを有する膜となり、光線透過制御性に優れる材料として好適である。   In the present invention, a laminate suitable for various applications is produced by appropriately selecting the type of substrate and the type of inorganic fine particles (A) and inorganic fine particles (B) used for forming the inorganic fine particle layer. Can do. For example, when titanium oxide, which is generally called an optical semiconductor, is used as the inorganic fine particles, the resulting laminate is a film having a specific light absorption band and is suitable as a material having excellent light transmission controllability.

細孔を有する無機微粒子を用いる場合には、光学的、電子的、磁気的、生物学的などの機能付与を目的に、前記細孔に目的に応じた材料を導入してもよい。細孔に材料を導入する場合には、無機微粒子層の形成前の無機微粒子に導入してもよいし、基材上に形成された無機微粒子層を構成する無機微粒子に導入してもよい。   When inorganic fine particles having pores are used, a material corresponding to the purpose may be introduced into the pores for the purpose of imparting optical, electronic, magnetic, or biological functions. When the material is introduced into the pores, it may be introduced into the inorganic fine particles before the formation of the inorganic fine particle layer or may be introduced into the inorganic fine particles constituting the inorganic fine particle layer formed on the substrate.

前記した方法で基材上に形成される無機微粒子層は、膜強度に優れるため、基材の傷つきを防止することができる。特に基材にトリアセチルセルロース等のセルロース系樹脂、ポリエチレンテレフタレート等のエステル系樹脂、ポリメタクリル酸メチル等のアクリル系樹脂を用いた場合、前記無機微粒子層は、LCD、PDP、CRT、有機EL、無機EL、FEDのような各種ディスプレイ表面を保護するハードコート材として好適である。   Since the inorganic fine particle layer formed on the substrate by the above-described method has excellent film strength, the substrate can be prevented from being damaged. In particular, when a cellulose resin such as triacetyl cellulose, an ester resin such as polyethylene terephthalate, or an acrylic resin such as polymethyl methacrylate is used as the base material, the inorganic fine particle layer is composed of LCD, PDP, CRT, organic EL, It is suitable as a hard coat material for protecting various display surfaces such as inorganic EL and FED.

本発明における無機微粒子層をハードコート材として使用する場合は、表面での反射光に起因する視認性の低下を防ぐため、必要に応じて該無機微粒子層上に反射防止膜や防眩膜を積層してもよい。   When the inorganic fine particle layer in the present invention is used as a hard coat material, an antireflection film or an antiglare film is formed on the inorganic fine particle layer as necessary in order to prevent a decrease in visibility due to reflected light on the surface. You may laminate.

本発明における無機微粒子層は膜強度に優れるため、該無機微粒子層を積層する基材として透明性に優れる熱可塑性樹脂基材を選択することにより、該積層体を各種ディスプレイのガラス代替材料として、具体的には透明基板や、建造物や自動車の窓ガラス、自動車の外板等として利用することができる。   Since the inorganic fine particle layer in the present invention is excellent in film strength, by selecting a thermoplastic resin substrate having excellent transparency as a substrate on which the inorganic fine particle layer is laminated, the laminate is used as a glass substitute material for various displays. Specifically, it can be used as a transparent substrate, a window glass of a building or an automobile, an outer panel of an automobile, and the like.

本発明の積層体を構成する無機微粒子層の厚みは特に限定されず、目的とする強度によって適宜設定することができる。なお、基材上に無機微粒子層を積層して該基材の傷つきを防止する場合、すなわち前記無機微粒子層をハードコート材として使用する場合には、無機微粒子層の膜厚を0.5μm〜10μmとすることが好ましい。   The thickness of the inorganic fine particle layer constituting the laminate of the present invention is not particularly limited and can be appropriately set depending on the intended strength. When the inorganic fine particle layer is laminated on the substrate to prevent the substrate from being scratched, that is, when the inorganic fine particle layer is used as a hard coat material, the thickness of the inorganic fine particle layer is 0.5 μm to The thickness is preferably 10 μm.

以下に、本発明を実施例を挙げて説明するが、本発明はこれらの例に限定されない。なお実施例及び比較例中の試験方法は次の通りである。また、各実施例および比較例における無機微粒子の平均粒子径と、混合無機微粒子分散液中の各無機微粒子の全無機微粒子に対する体積分率は表1にまとめた。なお、全ての例において、無機微粒子層の形成に使用した無機微粒子(A)および(B)は、共にシリカであったので、各無機微粒子の重量分率を体積分率として使用した。製造した積層体の評価結果は表2にまとめた。
<無機微粒子層の表面観察>
走査型電子顕微鏡(SEM)により表面観察を行ない、そのSEM像に基づいて無機微粒子層の均一性と緻密性を評価した。
<無機微粒子層の膜強度評価>
積層体の無機微粒子層について、以下の方法で膜強度の評価を行った。
キムワイプ(商品名:クレシア社製)で無機微粒子層表面を20往復こすり、こする前と後のHaze値の変化の大きさを求めた。変化が小さいほど、膜強度に優れる。HazeはJIS K7105に従い、直読式ヘーズコンピューター(HGM−2DP;C光源;スガ試験機製)を用いて測定した。
<鉛筆硬度評価>
JISK5400に準拠し、荷重500gfにて測定を行った。
<耐擦傷性評価>
#0000のスチールウールを用いて荷重200gf/cm2にて10往復行ない、傷の有無を目視観察した。
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. In addition, the test method in an Example and a comparative example is as follows. The average particle diameter of the inorganic fine particles and the volume fraction of each inorganic fine particle in the mixed inorganic fine particle dispersion with respect to the total inorganic fine particles in each Example and Comparative Example are summarized in Table 1. In all the examples, since the inorganic fine particles (A) and (B) used for forming the inorganic fine particle layer were both silica, the weight fraction of each inorganic fine particle was used as the volume fraction. The evaluation results of the manufactured laminate are summarized in Table 2.
<Surface observation of inorganic fine particle layer>
The surface was observed with a scanning electron microscope (SEM), and the uniformity and denseness of the inorganic fine particle layer were evaluated based on the SEM image.
<Film strength evaluation of inorganic fine particle layer>
With respect to the inorganic fine particle layer of the laminate, the film strength was evaluated by the following method.
The surface of the inorganic fine particle layer was rubbed 20 times with Kimwipe (trade name: manufactured by Crecia), and the magnitude of change in the Haze value before and after rubbing was determined. The smaller the change, the better the film strength. Haze was measured according to JIS K7105 using a direct reading haze computer (HGM-2DP; C light source; manufactured by Suga Test Instruments).
<Pencil hardness evaluation>
Based on JISK5400, the measurement was performed with a load of 500 gf.
<Abrasion resistance evaluation>
Using # 0000 steel wool, 10 reciprocations were performed at a load of 200 gf / cm 2 and the presence or absence of scratches was visually observed.

<基材>
A層、B層およびC層がこの順に積層された3層フィルム(総厚み:130μm)をベース材として用いた。A層、B層およびC層は、それぞれ、ポリエチレン樹脂(商品名:スミカセン F208−0;住友化学社製)、エチレン/ヘキセン−1共重合体(商品名:エクセレンFX CX2001;住友化学社製)をB層、他のエチレン/ヘキセン−1共重合体(商品名:スミカセンE FV201;住友化学社製)で構成されていた。各層の厚みの割合は、A層/B層/C層=2/6/2であった。
99重量部のイオン交換水に1重量部の合成サポナイト(商品名:スメクトンSA;クニミネ工業株式会社製)を分散させて第一の分散液を調製した。次いで、この第一の分散液9.000重量%、コロイダルアルミナ(商品名:アルミナゾル520、BET法により測定した平均粒子径:20nm、固形分濃度20重量%;分散媒:水;日産化学工業株式会社製)9.000重量%、コロイダルシリカ(商品名:スノーテックス20、BET法により測定した平均粒子径:20nm、固形分濃度20重量%;分散媒:水;日産化学工業株式会社製)2.400重量%、カプリル酸ナトリウム(東京化成工業株式会社製)0.014重量%、p−トルエンスルホン酸ナトリウム(ナカライテスク株式会社製)0.002重量%、イオン交換水79.584重量%を混合して、第二の分散液を調製した。前記ベース材のC層の表面にコロナ処理を施した後に、該コロナ処理面に前記第二の分散液を塗布し、乾燥することにより、C層の表面に予備被覆層を形成させた。なお、第二の分散液の塗布量は、乾燥後のC層表面の単位面積当たりの予備被覆層の重量が0.2g/m2となるように調整した。また、乾燥はドライヤー温度=60℃にて行った。このようにして得られた被覆フィルムを以下の実施例および比較例において基材として使用した。
<Base material>
A three-layer film (total thickness: 130 μm) in which an A layer, a B layer, and a C layer were laminated in this order was used as a base material. A layer, B layer, and C layer are respectively polyethylene resin (trade name: Sumikacene F208-0; manufactured by Sumitomo Chemical Co., Ltd.), ethylene / hexene-1 copolymer (trade name: Excellen FX CX2001; manufactured by Sumitomo Chemical Co., Ltd.) And B layer, other ethylene / hexene-1 copolymer (trade name: Sumikacene E FV201; manufactured by Sumitomo Chemical Co., Ltd.). The ratio of the thickness of each layer was A layer / B layer / C layer = 2/6/2.
A first dispersion was prepared by dispersing 1 part by weight of synthetic saponite (trade name: Smecton SA; manufactured by Kunimine Kogyo Co., Ltd.) in 99 parts by weight of ion-exchanged water. Next, 9.000 wt% of this first dispersion, colloidal alumina (trade name: alumina sol 520, average particle size measured by BET method: 20 nm, solid content concentration 20 wt%; dispersion medium: water; Nissan Chemical Industries Ltd. 9.000% by weight, colloidal silica (trade name: Snowtex 20, average particle size measured by BET method: 20 nm, solid content concentration 20% by weight; dispersion medium: water; manufactured by Nissan Chemical Industries, Ltd.) 2 400% by weight, sodium caprylate (Tokyo Kasei Kogyo Co., Ltd.) 0.014% by weight, sodium p-toluenesulfonate (Nacalai Tesque Co., Ltd.) 0.002% by weight, ion-exchanged water 79.584% by weight A second dispersion was prepared by mixing. After subjecting the surface of the C layer of the base material to corona treatment, the second dispersion was applied to the corona-treated surface and dried to form a preliminary coating layer on the surface of the C layer. The coating amount of the second dispersion was adjusted so that the weight of the preliminary coating layer per unit area on the surface of the C layer after drying was 0.2 g / m 2 . The drying was performed at a dryer temperature = 60 ° C. The coated film thus obtained was used as a substrate in the following examples and comparative examples.

[実施例1]
無機微粒子(A)としてコロイダルシリカ(商品名:スノーテックスST−XS;シアーズ法による平均粒子径4〜6nm;固形分濃度20重量%;分散媒:水;日産化学工業株式会社製)15g、および無機微粒子(B)としてコロイダルシリカ(商品名:スノーテックスST−ZL;BET比表面積法による平均粒子径78nm;固形分濃度40wt%;分散媒:水;日産化学工業株式会社製)25gを60gの水と混合し、マグネチックスターラーを用いて攪拌し、混合無機微粒子分散液を調製した。上記混合無機微粒子分散液中の全無機微粒子に占める無機微粒子(A)および(B)の割合は表1のとおりであった。該混合無機微粒子分散液を、基材の予備被覆層上にバーコーターを用いて塗布した。その後、60℃で乾燥して分散媒を除去し、基材上に無機微粒子層が積層された積層体を得た。得られた積層体の無機微粒子層は、均一性、緻密性に優れており(図1を参照)、強度にも優れていた。
[Example 1]
Colloidal silica (trade name: Snowtex ST-XS; mean particle diameter 4-6 nm by Sears method; solid content concentration 20% by weight; dispersion medium: water; manufactured by Nissan Chemical Industries, Ltd.) as inorganic fine particles (A), and 60 g of colloidal silica (trade name: Snowtex ST-ZL; average particle diameter 78 nm according to BET specific surface area method; solid content concentration 40 wt%; dispersion medium: water; manufactured by Nissan Chemical Industries, Ltd.) as inorganic fine particles (B) It mixed with water and stirred using a magnetic stirrer to prepare a mixed inorganic fine particle dispersion. Table 1 shows the ratio of inorganic fine particles (A) and (B) to the total inorganic fine particles in the mixed inorganic fine particle dispersion. The mixed inorganic fine particle dispersion was applied onto the preliminary coating layer of the substrate using a bar coater. Then, it dried at 60 degreeC and the dispersion medium was removed, and the laminated body by which the inorganic fine particle layer was laminated | stacked on the base material was obtained. The resulting inorganic fine particle layer of the laminate was excellent in uniformity and denseness (see FIG. 1) and excellent in strength.

[実施例2]
無機微粒子(A)としてスノーテックスST−XSを5g、無機微粒子(B)としてスノーテックスST−ZLを25g、70gの水と混合し、マグネチックスターラーを用いて撹拌し、混合無機微粒子分散液を調製した。上記混合無機微粒子分散液中の全無機微粒子に占める無機微粒子(A)および(B)の割合は表1のとおりであった。該混合無機微粒子分散液を、基材の予備被覆層上にバーコーターを用いて塗布した。その後、60℃で乾燥して分散媒を除去し、基材上に無機微粒子層が積層された積層体を得た。得られた積層体の無機微粒子層は、均一性、緻密性に優れており(図2を参照)、強度にも優れていた。
[Example 2]
As the inorganic fine particles (A), 5 g of SNOWTEX ST-XS is mixed with 25 g and 70 g of water as SNOWTEX ST-ZL as the inorganic fine particles (B), and stirred with a magnetic stirrer. Prepared. Table 1 shows the ratio of inorganic fine particles (A) and (B) to the total inorganic fine particles in the mixed inorganic fine particle dispersion. The mixed inorganic fine particle dispersion was applied onto the preliminary coating layer of the substrate using a bar coater. Then, it dried at 60 degreeC and the dispersion medium was removed, and the laminated body by which the inorganic fine particle layer was laminated | stacked on the base material was obtained. The obtained inorganic fine particle layer of the laminate was excellent in uniformity and density (see FIG. 2) and excellent in strength.

[実施例3]
無機微粒子(A)として日産化学社製コロイダルシリカ(スノーテックスST−XS(平均粒径4〜6nm、固形分濃度20重量%)を650g、無機微粒子(B)として日産化学社製コロイダルシリカ(スノーテックスST−ZL(平均粒径78nm、固形分濃度40wt%)を1300g秤量し、4550gの水と混合、攪拌し、混合無機微粒子分散液を調製した。上記混合無機微粒子分散液中の全無機微粒子に占める無機微粒子(A)および(B)の割合は表1のとおりである。該混合無機微粒子分散液を、富士フィルム社製トリアセチルセルロースフィルム上にマイクログラビアロール(株式会社康井精機社製、120メッシュ)を用いて塗布し、60℃で乾燥した。該積層体上にさらに塗布および乾燥の操作をそれぞれ9回行い、基材上に無機微粒子層が積層されてなる積層体を得た。なお本実施例に用いたトリアセチルセルロースフィルムの鉛筆硬度はHB、耐擦傷性評価の結果、スチールウールによる多数の傷により白化した。本実施例で得られた積層体の鉛筆硬度は3H、耐擦傷性評価の結果、傷は無く、ハードコートフィルムとして好適であった。
[Example 3]
650 g of colloidal silica (Snowtex ST-XS (average particle size 4 to 6 nm, solid content concentration 20% by weight) manufactured by Nissan Chemical Co., Ltd. as inorganic fine particles (A) and colloidal silica (snow manufactured by Nissan Chemical Co., Ltd.) 1300 g of Tex ST-ZL (average particle size 78 nm, solid content concentration 40 wt%) was weighed, mixed with 4550 g of water and stirred to prepare a mixed inorganic fine particle dispersion.All inorganic fine particles in the mixed inorganic fine particle dispersion The ratio of the inorganic fine particles (A) and (B) to the total is as shown in Table 1. The mixed inorganic fine particle dispersion is placed on a triacetyl cellulose film manufactured by Fuji Film Co., Ltd., microgravure roll (manufactured by Yasui Seiki Co., Ltd.). , 120 mesh) and dried at 60 ° C. The coating and drying operations were further performed 9 times on the laminate, As a result of evaluating the pencil hardness of the triacetyl cellulose film used in this example as HB and scratch resistance, the laminate was whitened by numerous scratches caused by steel wool. The laminate obtained in this example had a pencil hardness of 3H, and as a result of scratch resistance evaluation, there was no scratch and it was suitable as a hard coat film.

[比較例1]
無機微粒子(B)としてスノーテックスST−ZLを25g、75gの水と混合し、マグネチックスターラーを用いて撹拌し、無機微粒子分散液を調製した。上記無機微粒子分散液中の全無機微粒子に占める無機微粒子(B)の割合は表1のとおりであった。該無機微粒子分散液を、基材の予備被覆層上にバーコーターを用いて塗布した。その後、60℃で乾燥して分散媒を除去し、基材上に無機微粒子層が積層された積層体を得た。得られた積層体における無機微粒子(B)のみからなる無機微粒子層は、均一性には優れるものの緻密性には劣り(図3を参照)、膜強度も低かった。
[Comparative Example 1]
As the inorganic fine particles (B), SNOWTEX ST-ZL was mixed with 25 g and 75 g of water and stirred using a magnetic stirrer to prepare an inorganic fine particle dispersion. Table 1 shows the ratio of the inorganic fine particles (B) to the total inorganic fine particles in the inorganic fine particle dispersion. The inorganic fine particle dispersion was coated on the preliminary coating layer of the substrate using a bar coater. Then, it dried at 60 degreeC and the dispersion medium was removed, and the laminated body by which the inorganic fine particle layer was laminated | stacked on the base material was obtained. The inorganic fine particle layer consisting only of the inorganic fine particles (B) in the obtained laminate was excellent in uniformity but inferior in denseness (see FIG. 3) and low in film strength.

Figure 2006263723
V=Vca+Vcb
Figure 2006263723
V = Vca + Vcb

Figure 2006263723
Figure 2006263723

実施例1で得られた積層体の無機微粒子層表面のSEM写真SEM photograph of the inorganic fine particle layer surface of the laminate obtained in Example 1 実施例2で得られた積層体の無機微粒子層表面のSEM写真SEM photograph of the surface of the inorganic fine particle layer of the laminate obtained in Example 2 比較例1で得られた積層体の無機微粒子層表面のSEM写真SEM photograph of the inorganic fine particle layer surface of the laminate obtained in Comparative Example 1

符号の説明Explanation of symbols

1 無機微粒子層
2 基材
1 Inorganic fine particle layer 2 Base material

Claims (3)

下記の条件(1)〜(3)を全て満たす無機微粒子(A)および無機微粒子(B)が液体分散媒中に分散している混合無機微粒子分散液を調製すること、
該混合無機微粒子分散液を基材上に塗布すること、および
前記基材に塗布した前記分散液から液体分散媒を除去して基材上に無機微粒子層を形成すること
を含む、基材上に無機微粒子層が形成された積層体の製造方法。
(1)無機微粒子(A)の平均粒子径Daが1〜20nm、無機微粒子(B)の平均粒子径Dbが30〜300nmであり、かつDa≦0.15Db
(2)0.01≦Vca/(Vca+Vcb)≦0.40、かつ0.60≦Vcb/(Vca+Vcb)≦0.99
但し、Vca=Wa/da、Vcb=Wb/dbであり、ここでWa:混合無機微粒子分散液中の無機微粒子(A)の重量、Wb:混合無機微粒子分散液中の無機微粒子(B)の重量、da:無機微粒子(A)の密度、db:無機微粒子(B)の密度
(3)0.01≦(Wa+Wb)/Wt≦0.20
但し、Wt:混合無機微粒子分散液の重量
Preparing a mixed inorganic fine particle dispersion in which inorganic fine particles (A) and inorganic fine particles (B) satisfying all of the following conditions (1) to (3) are dispersed in a liquid dispersion medium;
Applying the mixed inorganic fine particle dispersion onto the substrate, and removing the liquid dispersion medium from the dispersion applied onto the substrate to form an inorganic fine particle layer on the substrate. A method for producing a laminate having an inorganic fine particle layer formed thereon.
(1) The average particle diameter Da of the inorganic fine particles (A) is 1 to 20 nm, the average particle diameter Db of the inorganic fine particles (B) is 30 to 300 nm, and Da ≦ 0.15 Db
(2) 0.01 ≦ Vca / (Vca + Vcb) ≦ 0.40 and 0.60 ≦ Vcb / (Vca + Vcb) ≦ 0.99
However, Vca = Wa / da, Vcb = Wb / db, where Wa: the weight of the inorganic fine particles (A) in the mixed inorganic fine particle dispersion, Wb: the inorganic fine particles (B) in the mixed inorganic fine particle dispersion Weight, da: density of inorganic fine particles (A), db: density of inorganic fine particles (B) (3) 0.01 ≦ (Wa + Wb) /Wt≦0.20
Where Wt: Weight of the mixed inorganic fine particle dispersion
無機微粒子(A)および無機微粒子(B)がシリカである請求項1に記載の方法。 The method according to claim 1, wherein the inorganic fine particles (A) and the inorganic fine particles (B) are silica. 下記の条件(1)〜(3)を全て満たす無機微粒子(A)および無機微粒子(B)が液体分散媒中に分散している混合無機微粒子分散液を調製すること、
該混合無機微粒子分散液を基材上に塗布すること、および
前記基材に塗布した前記分散液から液体分散媒を除去して基材上に無機微粒子層を形成すること
を含む、基材上に無機微粒子層を形成して該基材の傷つきを防止する方法。
(1)無機微粒子(A)の平均粒子径Daが1〜20nm、無機微粒子(B)の平均粒子径Dbが30〜300nmであり、かつDa≦0.15Db
(2)0.01≦Vca/(Vca+Vcb)≦0.40、かつ0.60≦Vcb/(Vca+Vcb)≦0.99
但し、Vca=Wa/da、Vcb=Wb/dbであり、ここでWa:混合無機微粒子分散液中の無機微粒子(A)の重量、Wb:混合無機微粒子分散液中の無機微粒子(B)の重量、da:無機微粒子(A)の密度、db:無機微粒子(B)の密度
(3)0.01≦(Wa+Wb)/Wt≦0.20
但し、Wt:混合無機微粒子分散液の重量
Preparing a mixed inorganic fine particle dispersion in which inorganic fine particles (A) and inorganic fine particles (B) satisfying all of the following conditions (1) to (3) are dispersed in a liquid dispersion medium;
Applying the mixed inorganic fine particle dispersion onto the substrate, and removing the liquid dispersion medium from the dispersion applied onto the substrate to form an inorganic fine particle layer on the substrate. A method for preventing the substrate from being damaged by forming an inorganic fine particle layer on the substrate.
(1) The average particle diameter Da of the inorganic fine particles (A) is 1 to 20 nm, the average particle diameter Db of the inorganic fine particles (B) is 30 to 300 nm, and Da ≦ 0.15 Db
(2) 0.01 ≦ Vca / (Vca + Vcb) ≦ 0.40 and 0.60 ≦ Vcb / (Vca + Vcb) ≦ 0.99
However, Vca = Wa / da, Vcb = Wb / db, where Wa: the weight of the inorganic fine particles (A) in the mixed inorganic fine particle dispersion, Wb: the inorganic fine particles (B) in the mixed inorganic fine particle dispersion Weight, da: density of inorganic fine particles (A), db: density of inorganic fine particles (B) (3) 0.01 ≦ (Wa + Wb) /Wt≦0.20
Where Wt: Weight of the mixed inorganic fine particle dispersion
JP2006052080A 2005-02-28 2006-02-28 Manufacturing method of laminate Active JP4894298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006052080A JP4894298B2 (en) 2005-02-28 2006-02-28 Manufacturing method of laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005052872 2005-02-28
JP2005052872 2005-02-28
JP2006052080A JP4894298B2 (en) 2005-02-28 2006-02-28 Manufacturing method of laminate

Publications (2)

Publication Number Publication Date
JP2006263723A true JP2006263723A (en) 2006-10-05
JP4894298B2 JP4894298B2 (en) 2012-03-14

Family

ID=37200238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006052080A Active JP4894298B2 (en) 2005-02-28 2006-02-28 Manufacturing method of laminate

Country Status (1)

Country Link
JP (1) JP4894298B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013500280A (en) * 2009-07-30 2013-01-07 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング Composition comprising an anionic polymeric material and a salt of a saturated monocarboxylic acid having 6 to 22 carbon atoms
JP2017190274A (en) * 2016-04-15 2017-10-19 株式会社Inui Inorganic colloid-containing liquid, composition for inorganic fiber molded body and inorganic fiber molded body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049003A (en) * 2001-02-05 2003-02-21 Sekisui Chem Co Ltd Thermoplastic resin film, coating antifogging agent and agricultural film
JP3383050B2 (en) * 1993-12-28 2003-03-04 大日本印刷株式会社 Close-packed coating film, production method thereof and close-packed coating film forming film
JP2004122662A (en) * 2002-10-04 2004-04-22 Konica Minolta Holdings Inc Printing plate material and printing method using the material
JP2004307855A (en) * 2003-03-27 2004-11-04 Sumitomo Chem Co Ltd Stainproof film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3383050B2 (en) * 1993-12-28 2003-03-04 大日本印刷株式会社 Close-packed coating film, production method thereof and close-packed coating film forming film
JP2003049003A (en) * 2001-02-05 2003-02-21 Sekisui Chem Co Ltd Thermoplastic resin film, coating antifogging agent and agricultural film
JP2004122662A (en) * 2002-10-04 2004-04-22 Konica Minolta Holdings Inc Printing plate material and printing method using the material
JP2004307855A (en) * 2003-03-27 2004-11-04 Sumitomo Chem Co Ltd Stainproof film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013500280A (en) * 2009-07-30 2013-01-07 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング Composition comprising an anionic polymeric material and a salt of a saturated monocarboxylic acid having 6 to 22 carbon atoms
JP2017190274A (en) * 2016-04-15 2017-10-19 株式会社Inui Inorganic colloid-containing liquid, composition for inorganic fiber molded body and inorganic fiber molded body

Also Published As

Publication number Publication date
JP4894298B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
CN104684858B (en) Textured method is carried out to glass surface
CN103534219B (en) Anti-glare surface treatment method and goods thereof
US6949284B2 (en) Coating composition, it&#39;s coating layer, antireflection coating, antireflection film, image display and intermediate product
JP4816223B2 (en) Method for manufacturing antireflection laminate
CN105263877A (en) Method for sparkle control and articles thereof
CN102458830A (en) Inorganic particle composite and method for producing inorganic particle composite
JP5983158B2 (en) Optical laminated film
TWI461727B (en) Method for manufacturing laminated body
JP6480657B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP4894298B2 (en) Manufacturing method of laminate
US7749567B2 (en) Process for producing a layered article
JP6245705B2 (en) Hard coat film forming composition, cured film, and antistatic article
JP5151109B2 (en) LAMINATE MANUFACTURING METHOD AND SUBSTRATE PREVENTION METHOD
CN106661367B (en) Hard coating composition comprising polytetrafluoroethylene, hard coating, and flooring material comprising same
JP4830540B2 (en) Method for producing antiglare film
JP2017159507A (en) Decorative sheet and decorative plate
JP5050602B2 (en) Laminated body
KR101234971B1 (en) Method for producing an antireflective layered material
CN100592938C (en) Process for producing a layered article
JP2017205874A (en) Decorative sheet
JP3344190B2 (en) Gas barrier film and method for producing the same
JP4872739B2 (en) Manufacturing method of laminate
KR101291455B1 (en) Method for producing layered material comprising layer with inorganic particles
JPH11309818A (en) Film laminate body and manufacture thereof
JP5422941B2 (en) Manufacturing method of laminate

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R151 Written notification of patent or utility model registration

Ref document number: 4894298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350