JP2006263593A - Method for treating brewery wastewater - Google Patents

Method for treating brewery wastewater Download PDF

Info

Publication number
JP2006263593A
JP2006263593A JP2005085895A JP2005085895A JP2006263593A JP 2006263593 A JP2006263593 A JP 2006263593A JP 2005085895 A JP2005085895 A JP 2005085895A JP 2005085895 A JP2005085895 A JP 2005085895A JP 2006263593 A JP2006263593 A JP 2006263593A
Authority
JP
Japan
Prior art keywords
wastewater
flocculant
polymer flocculant
iron
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005085895A
Other languages
Japanese (ja)
Other versions
JP4799888B2 (en
Inventor
Takuji Sato
託爾 佐藤
Kenji Mori
賢治 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dianitrix Co Ltd
Original Assignee
Dianitrix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dianitrix Co Ltd filed Critical Dianitrix Co Ltd
Priority to JP2005085895A priority Critical patent/JP4799888B2/en
Publication of JP2006263593A publication Critical patent/JP2006263593A/en
Application granted granted Critical
Publication of JP4799888B2 publication Critical patent/JP4799888B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating brewery wastewater by which the load to be applied to an activated sludge tank can be decreased when the brewery wastewater to be generated at a step of brewing Shochu, Sake or the like, particularly, unrefined Sake lees are dehydrated by a dehydrator and treated in the activated sludge tank. <P>SOLUTION: The method for treating brewery wastewater comprises the steps of: adding a silica-iron-based inorganic flocculant to brewery waste water; adding an organic polymer flocculant to the inorganic flocculant-added brewery waste water; and subjecting the organic polymer flocculant-added brewery wastewater to solid-liquid separation treatment. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、醸造の際に発生する醸造廃水の処理方法に関する。   The present invention relates to a method for treating brewery wastewater generated during brewing.

従来、下水処理場や、食品工場、製紙工場、化学工場等の廃水処理施設では、沈降分離、生物処理等の処理により廃水を浄化させている。かかる廃水処理において発生する汚泥は、スクリューデカンター、ベルトプレス等で脱水処理された後、焼却処分されることが一般的である。また、汚泥の脱水効率向上を目的として、あらかじめ、汚泥に高分子凝集剤を添加混合して汚泥粒子をフロック化することが広く行われている。
ここで、汚泥に対し良好で且つ安定した脱水処理を行うには、汚泥粒子と水とを効率良く分離させること、すなわち、大きなフロックを安定的に形成させ、含水率の低い脱水ケーキを得ることが重要であり、これまで、種々の高分子凝集剤および脱水処理方法が提案されている。たとえば、(1)アミド基含有単量体と、カチオン性単量体と、エーテル型単量体または水酸基含有単量体とからなる高分子凝集剤(特許文献1等)や、(2)有機質汚泥に対して、ポリ塩化アルミニウム、硫酸バンド、塩化第二鉄、硫酸第一鉄、ポリ硫酸鉄等の無機凝集剤および両性高分子凝集剤による脱水処理を順次行うことにより脱水ケーキの含水率を低下させる脱水処理方法が開示されている(特許文献2、3等)。
Conventionally, in wastewater treatment facilities such as sewage treatment plants, food factories, paper mills, chemical factories, etc., wastewater is purified by processes such as sedimentation separation and biological treatment. In general, sludge generated in such wastewater treatment is dehydrated by a screw decanter, a belt press or the like and then incinerated. In addition, for the purpose of improving the dewatering efficiency of sludge, it is widely practiced to flocate sludge particles in advance by adding and mixing a polymer flocculant to the sludge.
Here, in order to perform good and stable dehydration treatment on sludge, it is possible to efficiently separate sludge particles and water, that is, to stably form large flocs and obtain a dehydrated cake with low moisture content. In the past, various polymer flocculants and dehydration methods have been proposed. For example, (1) a polymer flocculant (such as Patent Document 1) comprising an amide group-containing monomer, a cationic monomer, and an ether type monomer or a hydroxyl group-containing monomer; The water content of the dewatered cake is reduced by sequentially performing dehydration treatment on sludge with inorganic flocculants such as polyaluminum chloride, sulfate band, ferric chloride, ferrous sulfate, polyiron sulfate, and amphoteric polymer flocculants. A dehydration method for reducing the temperature is disclosed (Patent Documents 2, 3, etc.).

一方、日本酒等の醸造酒や焼酎等の蒸留酒などの酒類の製造工程では、原料である米を水洗いした際に生じる洗米廃水、モロミを搾って酒類を分離した後に残るモロミ粕等を脱水処理した際に生じる廃水、酒類を入れる瓶を洗浄した際に生じる洗瓶廃水等の種々の廃水(醸造廃水)が生じる。
これらの醸造廃水、特にモロミ粕を脱水した廃水は、pHが低く、またBODやCODが著しく高いため、そのままでは活性汚泥槽の負荷が高すぎて処理できない。そのため、従来、モロミ粕を脱水した廃水は、洗瓶廃水または洗米廃水で希釈する処理を行わなければならず、そのためには大規模な活性汚泥槽を設ける必要があった。
このような問題に対し、醸造廃水を少し希釈し、これを加圧浮上処理することにより活性汚泥の負荷を低減する方法が試行されている。
特開平4−96913号公報 特開昭63−158200号公報 特開平2−180700号公報
On the other hand, in the process of producing alcoholic beverages such as sake brewed sake and distilled spirits such as shochu, the rice sewage wastewater generated when the raw rice is washed with water, moromi residue remaining after squeezing moromi to separate the alcoholic beverages, etc. are dehydrated. Various types of waste water (brewing waste water) such as waste water generated at the time of washing and washing bottle waste water generated when washing a bottle containing liquor are produced.
These brewing wastewaters, especially wastewaters from dehydrated moromi koji, have low pH and extremely high BOD and COD, so that the activated sludge tank is too heavy to be treated as it is. Therefore, conventionally, waste water from which moromi koji has been dehydrated has to be diluted with washing bottle waste water or rice washing waste water, and for that purpose, it has been necessary to provide a large-scale activated sludge tank.
In order to solve such a problem, a method of reducing the load of activated sludge by diluting brewing wastewater a little and subjecting it to a pressure levitation treatment has been tried.
JP-A-4-96913 JP 63-158200 A Japanese Patent Laid-Open No. 2-180700

しかし、醸造廃水、特にモロミ粕を脱水した後の廃水中に含まれるBODやCODは非常に高濃度であるため、上記のような方法であっても、BODやCODを充分に低減することはできず、活性汚泥槽でそのまま処理できるほどに負荷を低減することは困難である。
このような問題に対し、上述のような汚泥の処理に用いられている高分子凝集剤を用いることが考えられる。しかしながら、本発明者らの検討によれば、高分子凝集剤を用いた従来の方法を醸造廃水の処理に適用しても、BODやCODを低減することは容易ではなく、上記と同様、活性汚泥槽でそのまま処理できるほどに負荷を低減することは困難である。
本発明は、前記事情を鑑みてなされたものであり、焼酎、日本酒などの製造工程で発生する醸造廃水、特にモロミ粕等を脱水機にて脱水した後の廃水の活性汚泥槽に対する負荷を低減できる処理方法を提供することを目的とする。
However, since BOD and COD contained in brewing wastewater, especially wastewater after dewatering moromi koji, are very high in concentration, even with the above method, BOD and COD can be sufficiently reduced. However, it is difficult to reduce the load to such an extent that it can be directly processed in the activated sludge tank.
For such a problem, it is conceivable to use a polymer flocculant used in the treatment of sludge as described above. However, according to the study by the present inventors, even if the conventional method using a polymer flocculant is applied to the treatment of brewing wastewater, it is not easy to reduce BOD and COD. It is difficult to reduce the load so that it can be processed as it is in the sludge tank.
The present invention has been made in view of the above circumstances, and reduces the load on the activated sludge tank of brewing wastewater generated in the manufacturing process of shochu, sake, etc., especially waste water after dewatering moromi koji etc. with a dehydrator. It aims at providing the processing method which can be performed.

本発明者らは、上記課題を解決すべく鋭意検討した結果、醸造廃水に対し、まずシリカ−鉄系無機凝集剤を添加し、その後、有機高分子凝集剤を添加し、さらに固液分離処理を行うことにより、活性汚泥処理が可能な程度にまで醸造廃水中のBOD、CODを低減できることを見出し、本発明に到達した。
即ち、本発明は、醸造廃水に対し、シリカ−鉄系無機凝集剤を添加した後、有機高分子凝集剤を添加し、固液分離処理を行うことを特徴とする醸造廃水の処理方法である。
As a result of intensive studies to solve the above problems, the present inventors first added a silica-iron-based inorganic flocculant to brewing wastewater, then added an organic polymer flocculant, and further a solid-liquid separation treatment By performing the process, it was found that BOD and COD in brewing wastewater can be reduced to such an extent that activated sludge treatment is possible, and the present invention has been achieved.
That is, the present invention is a brewing wastewater treatment method characterized by adding a silica-iron-based inorganic flocculant to a brewery wastewater, and then adding an organic polymer flocculant and performing solid-liquid separation treatment. .

本発明の醸造廃水の処理方法によれば、醸造廃水、特にモロミ粕等を脱水機にて脱水した際に生じる廃水の活性汚泥槽に対する負荷を低減できる。そのため、活性汚泥槽がコンパクト化でき、効率よく醸造廃水の処理を行うことができる。   According to the method for treating brewing wastewater of the present invention, it is possible to reduce the load on the activated sludge tank of the wastewater generated when brewing wastewater, especially moromi koji, etc. is dehydrated by a dehydrator. Therefore, the activated sludge tank can be made compact and the brewing wastewater can be treated efficiently.

以下、本発明をより詳細に説明する。
本発明の醸造廃水の処理方法は、醸造廃水に対して、異なる凝集剤を用いて2段階の凝集処理を行うことを特徴としている。以下、各凝集処理について説明する。
Hereinafter, the present invention will be described in more detail.
The brewing wastewater treatment method of the present invention is characterized in that the brewing wastewater is subjected to a two-stage flocculation treatment using different flocculating agents. Hereinafter, each aggregation process will be described.

本発明の処理方法においては、まず、醸造廃水にシリカ−鉄系無機凝集剤を添加する。シリカ−鉄系無機凝集剤を添加することにより、一次フロックが形成される。
シリカ−鉄系無機凝集剤の添加による凝集処理は、特に限定されないが、たとえば、醸造廃水に対して、シリカ−鉄系無機凝集剤の原液を、必要に応じて水で適宜希釈して添加し、撹拌混合することにより行うことができる。
In the treatment method of the present invention, first, a silica-iron-based inorganic flocculant is added to brewing wastewater. By adding a silica-iron-based inorganic flocculant, primary floc is formed.
The agglomeration treatment by adding the silica-iron-based inorganic flocculant is not particularly limited. For example, a stock solution of the silica-iron-based inorganic flocculant is appropriately diluted with water and added to brewing wastewater as necessary. , By stirring and mixing.

本発明の処理方法により処理される醸造廃水は、焼酎、日本酒等の酒類など、発酵作用を利用して製造される製品の製造工程において発生する廃水であり、たとえば焼酎、日本酒等の瓶を洗浄した洗瓶廃水、原料の米を洗浄した洗米廃水、モロミ粕の脱水後の廃水などが含まれる。
本発明は、特に、焼酎および/または日本酒のモロミ粕を脱水した後の廃水の処理に好適である。通常、モロミから酒を分離した後に残るモロミ粕は、更に機械的に脱水処理され、固相(スカム)と水相とに分離される。このとき、スカムの殆どは堆肥の原料として場外に排出される。一方、水相、すなわちモロミ粕を脱水した後の廃水は、pHが3.5〜5の酸性で、SSは300〜500mg/l程度であるが、BODおよびCODが異常に高く、通常、BODが50,000〜100,000mg/l、CODが20,000〜50,000mg/lにも達するため、そのままでは負荷が高すぎて活性汚泥槽に放流できないが、本発明の処理方法により処理することにより、活性汚泥槽での処理が可能となる。
本発明により処理される醸造廃水は、凝集剤の効果と使用量を勘案し、且つコストを削減するためには、BODが50,000mg/l以下であることが好ましく、30,000mg/l以上であることが好ましい。BODが50,000mg/lを越えるような醸造廃水、たとえばモロミ粕を脱水した後の廃水については、水や、比較的BODが低い洗米廃水などで希釈して用いることが好ましい。BODが50,000mg/l以下であると、薬剤の添加量が少なくてすみ、またフロックの形成も非常に良好であり、BOD等の除去率が良好である。更に、水で希釈してBODを低くすれば薬剤は少なくてすむが、処理しなければいけない廃水量が増え、装置を大きくする必要があり、更には活性汚泥槽の容量も増やさなければならないなどの問題がある。
The brewery wastewater treated by the treatment method of the present invention is wastewater generated in the production process of products produced using fermentation, such as alcoholic beverages such as shochu and sake. For example, bottles such as shochu and sake are washed. This includes waste water from washing bottles, waste water from washing rice, and waste water from dehydrated moromi koji.
The present invention is particularly suitable for the treatment of waste water after dehydrating shochu and / or sake moromi koji. Usually, the moromi mash remaining after separating sake from moromi is further mechanically dehydrated and separated into a solid phase (scum) and an aqueous phase. At this time, most of the scum is discharged out of the field as compost material. On the other hand, the water phase, that is, the waste water after dewatering the moromi koji is acidic with a pH of 3.5 to 5 and SS is about 300 to 500 mg / l, but BOD and COD are abnormally high. Is 50,000 to 100,000 mg / l and COD reaches 20,000 to 50,000 mg / l, so that the load is too high to be discharged into the activated sludge tank as it is, but it is treated by the treatment method of the present invention. By this, the process in an activated sludge tank becomes possible.
The brewing wastewater treated according to the present invention preferably has a BOD of 50,000 mg / l or less, and 30,000 mg / l or more in order to reduce the cost in consideration of the effect and amount of the flocculant. It is preferable that Brewing wastewater with a BOD exceeding 50,000 mg / l, for example, wastewater after dewatering moromi koji is preferably diluted with water or rice washing wastewater with a relatively low BOD. When the BOD is 50,000 mg / l or less, the amount of drug added can be reduced, the formation of flocs is very good, and the removal rate of BOD and the like is good. Furthermore, if the BOD is decreased by diluting with water, the amount of chemicals can be reduced. However, the amount of wastewater that must be treated increases, the equipment needs to be enlarged, and the capacity of the activated sludge tank must be increased. There is a problem.

本発明で使用されるシリカ−鉄系無機凝集剤は、シリカおよび鉄を主成分とする無機の凝集剤である。
シリカ−鉄系無機凝集剤中、シリカと鉄のモル比は特に限定されず、任意の比のものが使用できる。除濁効果、及び沈降速度などの点で、Si/Fe=0.5〜3のものが好ましい。
シリカ−鉄系無機凝集剤としては、たとえば水道機工(株)から、市販されている一般式[SiO・[Fe]で表されるポリシリカ鉄系凝集剤(商品名:PSI−025〜PSI−300、分子量:200,000〜500,000(ダルトン))などが挙げられる。
The silica-iron-based inorganic flocculant used in the present invention is an inorganic flocculant mainly composed of silica and iron.
In the silica-iron-based inorganic flocculant, the molar ratio of silica and iron is not particularly limited, and an arbitrary ratio can be used. Si / Fe = 0.5-3 is preferable in terms of turbidity and sedimentation speed.
As the silica-iron-based inorganic flocculant, for example, a polysilica iron-based flocculant represented by the general formula [SiO 2 ] n · [Fe 2 O 3 ] commercially available from Waterworks Kiko Co., Ltd. (trade name: PSI) -025 to PSI-300, molecular weight: 200,000 to 500,000 (Dalton)).

シリカ−鉄系無機凝集剤は、一種を単独で用いてもよく、二種以上を併用してもよい。
シリカ−鉄系無機凝集剤の添加量は、醸造廃水の種類、水質、BOD、COD、SS等を考慮して設定されるものであり、フロックを形成する量が添加される。たとえば、焼酎および/または日本酒のモロミ粕の脱水した後の廃水であって、BOD濃度が50,000mg/l程度の醸造廃水の場合には、シリカ−鉄系無機凝集剤を、3,000〜8,000ppmの濃度となるよう添加することが好ましい。
A silica-iron type inorganic flocculant may be used individually by 1 type, and may use 2 or more types together.
The addition amount of the silica-iron-based inorganic flocculant is set in consideration of the type of brewing wastewater, water quality, BOD, COD, SS, etc., and the amount that forms floc is added. For example, in the case of brewery wastewater after dehydration of shochu and / or sake moromi koji with a BOD concentration of about 50,000 mg / l, a silica-iron-based inorganic flocculant is added to 3,000 to It is preferable to add to a concentration of 8,000 ppm.

次いで、シリカ−鉄系無機凝集剤を添加した後、有機高分子凝集剤を添加する。有機高分子凝集剤を添加することにより、シリカ−鉄系無機凝集剤の添加により形成された一次フロックを粗大化する。
有機高分子凝集剤の添加による凝集処理は、特に限定されないが、たとえば、醸造廃水に対して、有機高分子凝集剤の溶液を、必要に応じて適宜希釈して添加し、撹拌混合することにより行うことができる。
Next, after adding a silica-iron-based inorganic flocculant, an organic polymer flocculant is added. By adding the organic polymer flocculant, the primary floc formed by the addition of the silica-iron inorganic flocculant is coarsened.
The agglomeration treatment by adding the organic polymer flocculant is not particularly limited. For example, the organic polymer flocculant solution is appropriately diluted as necessary with respect to brewing wastewater, and stirred and mixed. It can be carried out.

有機高分子凝集剤としては、一般的に市販されている任意の有機高分子凝集剤が使用可能である。かかる有機高分子凝集剤としては、通常、水溶性高分子が用いられており、その分子量やイオン性等が異なる様々な種類のものがある。たとえばイオン性によりアニオン性高分子凝集剤、ノニオン性高分子凝集剤、カチオン性高分子凝集剤、両性高分子凝集剤に大別される。本発明においては、特に、醸造廃水中のBODやCODの低減効果に優れる点で、カチオン性および/または両性高分子凝集剤が好ましい。   As the organic polymer flocculant, any commercially available organic polymer flocculant can be used. As such an organic polymer flocculant, a water-soluble polymer is usually used, and there are various types having different molecular weights and ionic properties. For example, anionic polymer flocculants, nonionic polymer flocculants, cationic polymer flocculants, and amphoteric polymer flocculants are roughly classified according to ionic properties. In the present invention, a cationic and / or amphoteric polymer flocculant is particularly preferable in that it is excellent in reducing BOD and COD in brewing wastewater.

カチオン性高分子凝集剤は、分子内にカチオン基を有する水溶性高分子であり、たとえば、ジアルキルアミノエチル(メタ)アクリレート類の4級アンモニウム塩を構成単位として含有する重合体、アクリルアミド重合体のマンニッヒ変性物、ポリビニルアミン、ポリビニルアミジン等が挙げられる。中でも、ジアルキルアミノエチル(メタ)アクリレート類の4級アンモニウム塩を構成単位として含有する重合体が好ましく、ジアルキルアミノエチル(メタ)アクリレート類の4級アンモニウム塩のみから構成される重合体、または、ジアルキルアミノエチル(メタ)アクリレート類の4級アンモニウム塩とその他のモノマーとの共重合体が特に好ましい。その他のモノマーとしては、より高分子量化を計ることができるため、アクリルアミドが好ましい。その他のモノマーとしては、共重合可能な非極性の水溶性モノマーまたは少量の疎水性モノマーを含んでも良い。
両性高分子凝集剤は、分子内にカチオン基とアニオン基とを併せ持つ高分子凝集剤であり、たとえば上記カチオン性高分子凝集剤に用いられるモノマーと、アクリル酸などの、アニオン基を形成するモノマーとを共重合させたものが挙げられる。
カチオン性および両性高分子凝集剤中のカチオン基の量(カチオン化率)は、全構成単位に対し、1〜50モル%が好ましい。
The cationic polymer flocculant is a water-soluble polymer having a cationic group in the molecule. For example, a polymer or acrylamide polymer containing a quaternary ammonium salt of dialkylaminoethyl (meth) acrylate as a constituent unit. Mannich modified product, polyvinylamine, polyvinylamidine and the like can be mentioned. Among them, a polymer containing a quaternary ammonium salt of a dialkylaminoethyl (meth) acrylate as a constituent unit is preferable. A polymer composed only of a quaternary ammonium salt of a dialkylaminoethyl (meth) acrylate, or a dialkyl Copolymers of quaternary ammonium salts of aminoethyl (meth) acrylates and other monomers are particularly preferred. As the other monomer, acrylamide is preferable because higher molecular weight can be measured. Other monomers may include copolymerizable nonpolar water-soluble monomers or small amounts of hydrophobic monomers.
The amphoteric polymer flocculant is a polymer flocculant having both a cation group and an anion group in the molecule. For example, a monomer used for the cationic polymer flocculant and a monomer that forms an anion group such as acrylic acid. And a copolymer thereof.
The amount of the cationic group (cationization rate) in the cationic and amphoteric polymer flocculants is preferably 1 to 50 mol% with respect to all the structural units.

有機高分子凝集剤は、分子量が大きいほど凝集効果が優れるため好ましく、たとえば 300万以上であることが好ましく、500万以上がより好ましい。   The organic polymer flocculant is preferable because the larger the molecular weight, the better the aggregation effect. For example, it is preferably 3 million or more, more preferably 5 million or more.

有機高分子凝集剤は、一種を単独で用いてもよく、二種以上を併用してもよい。
有機高分子凝集剤の添加量は、上記のシリカ−鉄系無機凝集剤の添加量と同様に、醸造廃水の種類、水質、BOD、COD、SS等を考慮して設定されるものであり、たとえば、焼酎および/または日本酒のモロミ粕の脱水した後の廃水であって、BOD濃度が50,000mg/l程度の醸造廃水の場合には、有機高分子凝集剤を、5〜10ppmの濃度となるよう添加することが好ましい。
An organic polymer flocculant may be used individually by 1 type, and may use 2 or more types together.
The addition amount of the organic polymer flocculant is set in consideration of the type of brewing wastewater, water quality, BOD, COD, SS, etc., similar to the addition amount of the silica-iron inorganic flocculant described above, For example, in the case of waste water after dewatering shochu and / or sake moromi koji and brewing waste water having a BOD concentration of about 50,000 mg / l, the organic polymer flocculant has a concentration of 5 to 10 ppm. It is preferable to add so that it becomes.

次いで、有機高分子凝集剤を添加した後、固液分離処理を行う。これにより、固形分(スカム)と水相とを分離させる。
固液分離処理の方法としては、一般的に固液分離に用いられている方法を用いることができ、たとえば、クリュープレス型脱水機、フィルタープレス型脱水機、ベルトプレス型脱水機、スクリューデカンター等の脱水機を用いる方法、加圧浮上法等が挙げられる。本発明においては、これらの中でも、固液分離処理が加圧浮上法により行われることが好ましい。
加圧浮上法は、浮遊懸濁粒子の除去、濃縮等に使用される方法であり、加圧下で空気を水に溶解した後、減圧して空気をガス化し、微細な気泡を発生させる方法であり、発生した気泡が浮遊懸濁粒子に付着して浮遊懸濁粒子を浮上させ、固液分離を行うと同時に、その浮力によって浮遊懸濁粒子が濃縮され、スカムとして分離される。
加圧浮上法は、市販の加圧浮上装置を用いて行うことができる。
Next, after adding an organic polymer flocculant, solid-liquid separation treatment is performed. Thereby, solid content (scum) and a water phase are isolate | separated.
As a method of solid-liquid separation treatment, a method generally used for solid-liquid separation can be used. For example, a clew press type dehydrator, a filter press type dehydrator, a belt press type dehydrator, a screw decanter, etc. And a method using a dehydrator, a pressure levitation method, and the like. In the present invention, among these, it is preferable that the solid-liquid separation treatment is performed by a pressure flotation method.
The pressurized levitation method is a method used for removal, concentration, etc. of suspended suspended particles. After dissolving air in water under pressure, the pressure is reduced to gasify the air and generate fine bubbles. In addition, the generated bubbles adhere to the suspended particles to float the suspended particles and perform solid-liquid separation. At the same time, the suspended particles are concentrated by the buoyancy and separated as scum.
The pressure levitation method can be performed using a commercially available pressure levitation device.

このとき、分離された水相は、そのまま活性汚泥槽に放出して活性汚泥による生物化学処理を行い、放流できる水質までBOD、COD等の数値を落としてから放流される。
また、分離されたスカムは脱水機に戻し、モロミ粕と共に脱水される。
At this time, the separated aqueous phase is discharged as it is into the activated sludge tank, subjected to biochemical treatment with activated sludge, and discharged after dropping the values of BOD, COD, etc. to the water quality that can be discharged.
The separated scum is returned to the dehydrator and dehydrated together with the moromi candy.

以上説明したように、従来の醸造廃水、特にモロミ粕を脱水した後の廃水は、そのままでは活性汚泥処理ができなかったが、シリカ−鉄系無機凝集剤を添加後、有機高分子凝集剤を添加して固液分離することで、活性汚泥処理が可能なレベルにまでBODやCODを低減できる。そのため、活性汚泥槽への負荷が軽減され、活性汚泥槽をコンパクト化できる。   As described above, conventional brewing wastewater, particularly wastewater after dewatering moromi koji, could not be activated sludge as it was, but after adding silica-iron inorganic flocculant, organic polymer flocculant was added. By adding and solid-liquid separation, BOD and COD can be reduced to a level that enables activated sludge treatment. Therefore, the load on the activated sludge tank is reduced and the activated sludge tank can be made compact.

以下の実施例により、本発明を更に詳細に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
(実施例1)
実施例1は、焼酎の製造工場から排出されるモロミ粕を脱水した時の廃水を使用して試験に供した。この廃水のpHは4.10、SSは316mg/lであり、BODは54,000mg/l、CODが24,000mg/lであった。
実施例1は、この廃水にシリカ−鉄系無機凝集剤(水道機工(株)製:商品名PSI−100)を、5,000ppmとなるように添加・混合してフロックを形成させた後、更に、有機高分子凝集剤として、カチオン性高分子凝集剤(アクリルアミド(AAM)/ジメチルアミノエチルアクリレート・メチルクロライド4級アンモニウム塩(DME)共重合体,AAM/DME=90/10モル%(カチオン化率10モル%),分子量約700万)を5ppmとなるように添加・混合した後、加圧浮上装置((株)宮本製作所製、MS9200型)にて固液分離処理した。スカムが除かれて流出してきた水相を分析した結果、BODが19,500mg/l、CODが13,870mg/lであり、そのまま活性汚泥槽にて処理可能な値となっていた。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples.
Example 1
Example 1 was subjected to a test using waste water obtained by dewatering moromi mash discharged from a shochu manufacturing factory. The pH of this wastewater was 4.10, SS was 316 mg / l, BOD was 54,000 mg / l, and COD was 24,000 mg / l.
In Example 1, a silica-iron-based inorganic flocculant (manufactured by Seiko Kiko Co., Ltd .: trade name PSI-100) was added to and mixed with this waste water so as to be 5,000 ppm to form a floc. Furthermore, as an organic polymer flocculant, a cationic polymer flocculant (acrylamide (AAM) / dimethylaminoethyl acrylate / methyl chloride quaternary ammonium salt (DME) copolymer, AAM / DME = 90/10 mol% (cation After the addition and mixing of 5 ppm, the molecular weight was about 7 million), solid-liquid separation was performed with a pressure flotation device (MS9200, manufactured by Miyamoto Seisakusho Co., Ltd.). As a result of analyzing the aqueous phase flowing out with the scum removed, the BOD was 19,500 mg / l and the COD was 13,870 mg / l, which were values that could be processed in the activated sludge tank as they were.

(実施例2〜3)
実施例2は、有機高分子凝集剤として、両性高分子凝集剤であるAAM/DME/アクリル酸ナトリウム(AA)=65/35/5モル%の共重合体(カチオン化率35モル%、分子量約570万)を使用した以外は実施例1と同様に処理を行った例であり、実施例3は、有機高分子凝集剤として、アニオン性高分子凝集剤であるAAM/AA=90/10モル%のアニオン系共重合体(分子量約920万)を使用し、添加量を10ppmとした以外は実施例1と同様に処理を行った例である。
両性高分子凝集剤を用いた実施例2では、BODが20,500mg/l、CODが13,000mg/lと大幅に低下した。
アニオン性高分子凝集剤を用いた実施例3では、BODが38,000mg/l、CODが16,500mg/lであった。
実施例1〜3の結果をまとめて表1に示した。
(Examples 2-3)
In Example 2, as an organic polymer flocculant, an amphoteric polymer flocculant AAM / DME / sodium acrylate (AA) = 65/35/5 mol% copolymer (cationization rate 35 mol%, molecular weight) This is an example in which the treatment was conducted in the same manner as in Example 1 except that about 5.7 million) was used. In Example 3, AAM / AA = 90/10, which is an anionic polymer flocculant, was used as the organic polymer flocculant. This is an example in which a treatment was carried out in the same manner as in Example 1 except that a mol% anionic copolymer (molecular weight of about 9.2 million) was used and the addition amount was 10 ppm.
In Example 2 using the amphoteric polymer flocculant, the BOD was significantly reduced to 20,500 mg / l and the COD to 13,000 mg / l.
In Example 3 using an anionic polymer flocculant, the BOD was 38,000 mg / l and the COD was 16,500 mg / l.
The results of Examples 1 to 3 are summarized in Table 1.

Figure 2006263593
Figure 2006263593

(比較例1)
実施例1におけるシリカ−鉄系無機凝集剤に代えて、従来公知の無機凝集剤であるポリ塩化アルミニウムを用いた以外は実施例1と同様に処理を試みたが、ポリ塩化アルミニウムを5,000ppmとなるよう添加しただけではフロックは形成されなかった。
そこで、この液のpHを9にしたところ、微小のフロックが形成されたため、これに実施例1で用いたカチオン性高分子凝集剤(AAM/DME=90/10モル%の共重合体)を加えたが、5ppmの添加量ではフロックが粗大化せず、固液分離処理が出来なかった。
(Comparative Example 1)
A treatment was attempted in the same manner as in Example 1 except that polyaluminum chloride, which is a conventionally known inorganic aggregating agent, was used instead of the silica-iron-based inorganic aggregating agent in Example 1, but the polyaluminum chloride was 5,000 ppm. The floc was not formed only by adding to become.
Therefore, when the pH of this solution was set to 9, fine flocs were formed, and thus the cationic polymer flocculant (AAM / DME = 90/10 mol% copolymer) used in Example 1 was added thereto. However, when the addition amount was 5 ppm, flocs did not become coarse and solid-liquid separation treatment could not be performed.

(比較例2)
この例では、シリカ−鉄系無機凝集剤に代えてポリ塩化アルミニウムを用いた場合に、BODおよびCODが実施例1と同等のレベルの処理水が得られる最良の手法を検討した。その結果、BODおよびCODが実施例1と同等のレベルとするためには、ポリ塩化アルミニウムを7,000ppmの濃度となるよう添加した後、その液を、pHが9になるまで苛性ソーダで中和し、実施例3で用いたアニオン性高分子凝集剤(AAM/AA=90/10モル%共重合体)を30ppmの濃度となるよう添加した後、更に実施例1で用いたカチオン性高分子凝集剤(AAM/DME=90/10モル%共重合体)を80ppmの濃度となるよう添加する必要があった。また、水酸化アルミニウムが生成されるため、実施例1と比べ、スカムの発生量が約25%増量していた。
(Comparative Example 2)
In this example, when the polyaluminum chloride was used in place of the silica-iron-based inorganic flocculant, the best method for obtaining treated water having the same level of BOD and COD as in Example 1 was examined. As a result, in order to obtain BOD and COD at the same level as in Example 1, after adding polyaluminum chloride to a concentration of 7,000 ppm, the solution was neutralized with caustic soda until the pH reached 9. Then, after adding the anionic polymer flocculant (AAM / AA = 90/10 mol% copolymer) used in Example 3 to a concentration of 30 ppm, the cationic polymer used in Example 1 was further added. It was necessary to add a flocculant (AAM / DME = 90/10 mol% copolymer) to a concentration of 80 ppm. Moreover, since aluminum hydroxide was produced, the amount of scum generated was increased by about 25% compared to Example 1.

これらの結果から、醸造廃水にシリカ−鉄系無機凝集剤を添加後、有機高分子凝集剤を添加して固液分離する本発明が、ポリ塩化アルミニウムのようなシリカ−鉄系無機凝集剤以外の無機凝集剤を使用する場合と比べて、以下のような利点を有することが確認できた。
1)pH調整が不要である。
2)使用する薬剤の添加量や種類が少ない。
3)水酸化アルミニウム等の水酸化物を生成しないので、スカムの発生量が少ない。
4)処理が簡素化されるので処理能力が向上する。
また、本発明によれば、醸造廃水中のBODやCODを、活性汚泥槽でそのまま処理できる程度にまで低減できることから、従来の醸造廃水の処理で行われているように、活性汚泥槽で処理できるように希釈して処理する場合と比べ、活性汚泥槽のコンパクト化が期待できる。

From these results, after adding a silica-iron-based inorganic flocculant to brewing wastewater, the present invention in which an organic polymer flocculant is added and solid-liquid separated is not a silica-iron-based inorganic flocculant such as polyaluminum chloride. As compared with the case of using the inorganic flocculant, it was confirmed that the following advantages were obtained.
1) No pH adjustment is required.
2) The amount and type of chemicals used are small.
3) Since no hydroxide such as aluminum hydroxide is produced, the amount of scum generated is small.
4) Since processing is simplified, processing capacity is improved.
In addition, according to the present invention, since BOD and COD in brewing wastewater can be reduced to such an extent that they can be processed as they are in an activated sludge tank, they are treated in an activated sludge tank as in conventional brewing wastewater treatment. The activated sludge tank can be made more compact than the case where it is diluted and processed as possible.

Claims (1)

醸造廃水に対し、シリカ−鉄系無機凝集剤を添加した後、有機高分子凝集剤を添加し、固液分離処理を行うことを特徴とする醸造廃水の処理方法。

A method for treating brewing wastewater, comprising adding a silica-iron-based inorganic flocculant to a brewing wastewater and then adding an organic polymer flocculant to perform solid-liquid separation treatment.

JP2005085895A 2005-03-24 2005-03-24 Treatment method of brewing wastewater Active JP4799888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005085895A JP4799888B2 (en) 2005-03-24 2005-03-24 Treatment method of brewing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005085895A JP4799888B2 (en) 2005-03-24 2005-03-24 Treatment method of brewing wastewater

Publications (2)

Publication Number Publication Date
JP2006263593A true JP2006263593A (en) 2006-10-05
JP4799888B2 JP4799888B2 (en) 2011-10-26

Family

ID=37200116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005085895A Active JP4799888B2 (en) 2005-03-24 2005-03-24 Treatment method of brewing wastewater

Country Status (1)

Country Link
JP (1) JP4799888B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015033664A (en) * 2013-08-08 2015-02-19 日本錬水株式会社 Method for treating rice rinsing effluent
JP2017217652A (en) * 2017-09-26 2017-12-14 三菱ケミカルアクア・ソリューションズ株式会社 Method for treating rice-washing waste water
JP2019147154A (en) * 2017-09-26 2019-09-05 三菱ケミカルアクア・ソリューションズ株式会社 Rice wash wastewater treatment method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102659281B (en) * 2012-04-20 2014-07-09 重庆晨鸣水处理设备有限公司 Treatment method of liquor production wastewater

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933351B2 (en) * 1981-10-27 1984-08-15 国税庁長官 Sake clarification method
JPS606187B2 (en) * 1982-04-08 1985-02-16 日産化学工業株式会社 Soy sauce clarification method
JPH01189391A (en) * 1988-01-22 1989-07-28 Mitsubishi Heavy Ind Ltd Treatment of effluent water containing starch
JPH01284314A (en) * 1988-05-12 1989-11-15 Suido Kiko Kk Flocculant for water treatment
JPH03216179A (en) * 1990-01-17 1991-09-24 Catalysts & Chem Ind Co Ltd Sediment-settling agent for fermented liquid food and sediment-settling method using the same
JPH11293227A (en) * 1998-04-14 1999-10-26 Suzuka Fine Kk Agent for solidifying water-soluble organic matter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933351B2 (en) * 1981-10-27 1984-08-15 国税庁長官 Sake clarification method
JPS606187B2 (en) * 1982-04-08 1985-02-16 日産化学工業株式会社 Soy sauce clarification method
JPH01189391A (en) * 1988-01-22 1989-07-28 Mitsubishi Heavy Ind Ltd Treatment of effluent water containing starch
JPH01284314A (en) * 1988-05-12 1989-11-15 Suido Kiko Kk Flocculant for water treatment
JPH03216179A (en) * 1990-01-17 1991-09-24 Catalysts & Chem Ind Co Ltd Sediment-settling agent for fermented liquid food and sediment-settling method using the same
JPH11293227A (en) * 1998-04-14 1999-10-26 Suzuka Fine Kk Agent for solidifying water-soluble organic matter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015033664A (en) * 2013-08-08 2015-02-19 日本錬水株式会社 Method for treating rice rinsing effluent
JP2017217652A (en) * 2017-09-26 2017-12-14 三菱ケミカルアクア・ソリューションズ株式会社 Method for treating rice-washing waste water
JP2019147154A (en) * 2017-09-26 2019-09-05 三菱ケミカルアクア・ソリューションズ株式会社 Rice wash wastewater treatment method

Also Published As

Publication number Publication date
JP4799888B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
Ahmad et al. Water recycling from palm oil mill effluent (POME) using membrane technology
TWI516454B (en) Treatment for molasses spent wash and other wastewaters
US5308499A (en) Effluent treatment
US6589427B2 (en) Process for treatment of mixture of spent wash from distillery and black liquor from pulp and paper industry
EP3305732A1 (en) Wastewater treatment method
CN111056653A (en) Cold rolling wastewater treatment system and method
KR20010033893A (en) Dewatering of sludges deriving from paper industry
JP4799888B2 (en) Treatment method of brewing wastewater
JP6738492B2 (en) Water treatment method and water treatment device
JP6073109B2 (en) Decolorization method of wastewater subjected to anaerobic biological treatment
JP2009183888A (en) Sludge dehydration method
CN109790687B (en) Method for treating waste water sludge containing cellulose for producing liner paper board and producing cellulose ethanol
CN111233208A (en) Desulfurization waste water resource recovery system
Azmi et al. The effect of operating parameters on ultrafiltration and reverse osmosis of palm oil mill effluent for reclamation and reuse of water
EP3818013A1 (en) Anolyte as an additive for wastewater treatment
CN111635050A (en) Method and device for treating high-salinity mine water
JP2016168514A (en) Waste water treatment method
EP0941970A1 (en) Treatment of aqueous effluents by injection of carbon dioxide
JP4502989B2 (en) Wastewater treatment method
CN211896410U (en) Desulfurization waste water resource recovery system
US4882070A (en) Waste water clarification
JP6186944B2 (en) Papermaking wastewater treatment method
CN113840807A (en) Method for removing dissolved organic compounds from waste water
JP2010274244A (en) Method for clarifying treatment of steel production waste water
CN109626724A (en) A kind of textile waste treatment for reuse technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4799888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250