JP2006262816A - Method for producing concentrated milk and concentrated milk - Google Patents

Method for producing concentrated milk and concentrated milk Download PDF

Info

Publication number
JP2006262816A
JP2006262816A JP2005087970A JP2005087970A JP2006262816A JP 2006262816 A JP2006262816 A JP 2006262816A JP 2005087970 A JP2005087970 A JP 2005087970A JP 2005087970 A JP2005087970 A JP 2005087970A JP 2006262816 A JP2006262816 A JP 2006262816A
Authority
JP
Japan
Prior art keywords
milk
acidity
concentration
concentrated milk
solid content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005087970A
Other languages
Japanese (ja)
Inventor
Takashi Sugawara
崇 菅原
Junko Ono
淳子 小野
Hiroshi Echizen
浩 越膳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Dairies Corp
Original Assignee
Meiji Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Milk Products Co Ltd filed Critical Meiji Milk Products Co Ltd
Priority to JP2005087970A priority Critical patent/JP2006262816A/en
Publication of JP2006262816A publication Critical patent/JP2006262816A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dairy Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing concentrated milk enabling control of acidity, and to provide concentrated milk produced by the method. <P>SOLUTION: This method for producing the concentrated milk is based on knowledge that acidity can be indirectly controlled by controlling factors with reference to acidity, found through making it clear, as a result of comparing acidity of concentrated milk with each kind of component, that the factors are solid concentration, nonfat milk solid concentration (SNF), refraction sugar content (Brix), and specific gravity (density) or the like in concentration treatment of raw material milk. As a result of this, it is possible to stably produce quality-governing milk having acidity within a standard. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、酸度の制御を可能にした濃縮乳の製造方法及びその製造方法により製造された濃縮乳に関する。より詳しくは、原料乳の濃縮処理において、酸度と関連する因子を解明し、その因子を制御することによって間接的に、酸度を制御することを特徴とする濃縮乳の製造方法及びその製造方法により製造された濃縮乳に関する。   The present invention relates to a method for producing concentrated milk that enables control of acidity, and a concentrated milk produced by the production method. More specifically, in the process of concentrating raw material milk, a factor relating to acidity is clarified, and by controlling the factor, the acidity is controlled indirectly, and the concentrated milk production method and method It relates to the concentrated milk produced.

消費者が牛乳類に求める要素には、「自然さ」、「おいしさ」、「栄養/機能」の3つがあると言われている。ここで、現状の牛乳類が持つ特徴(長所、短所)を整理すると、次のようになる。「普通牛乳」には、自然・天然という良いイメージがあり、味もおいしいという評価があるが、一方で、カルシウム等の栄養がもっと欲しいという意見がある。「低脂肪牛乳」には、カロリーが少なく、さっぱりしていて良いという評価があるが、一方で、味が薄く、栄養がもっと欲しいという意見がある。「特濃牛乳」には、コクがあって、味もおいしいという評価があるが、一方で、脂肪分が多くて、太りそうであるという意見がある。「白物乳飲料」には、カルシウム等の栄養が豊富で良いという評価があるが、一方で、人工的であり、味が苦手であるという意見がある。このように、消費者が求める3大要素である「自然さ」、「おいしさ」、「栄養/機能」を同時に満たす牛乳類が、これまでは存在していなかった。さらに、消費者が牛乳類に求める価値は多様化しており、新しい価値の提供が必要であった。   It is said that there are three factors that consumers demand from milk: “naturalness”, “taste”, and “nutrition / function”. Here, the characteristics (advantages and disadvantages) of current milk are summarized as follows. “Normal milk” has a good image of nature and nature, and has a reputation for being delicious, but there is an opinion that it wants more nutrition such as calcium. “Low-fat milk” has a reputation for being low in calories and refreshing, but on the other hand, there is an opinion that it is light in taste and wants more nutrition. “Tokuno Milk” has a reputation for being rich and delicious, but on the other hand, there is an opinion that it has a lot of fat and seems to be fat. “White milk beverages” have been evaluated to be rich in nutrients such as calcium, but on the other hand, there is an opinion that they are artificial and poor in taste. Thus, there has never been a milk that satisfies the three major elements that consumers demand, “naturalness,” “taste,” and “nutrition / function” at the same time. In addition, the value consumers demand for milk has diversified, and new value needs to be provided.

乳等省令の改正により、新しく「成分調整牛乳」が誕生した。成分調整牛乳とは、生乳のみ(生乳100%)から膜処理等の技術により、特定の成分(水分等)を除去したものであり、「無脂肪牛乳(脱脂乳)」及び「低脂肪牛乳(部分脱脂乳)」を除いたものである。この成分調整牛乳は、消費者が牛乳類に求める3大要素を満たし、かつ、消費者が牛乳類に求める価値の多様化にも対応できる可能性がある。例えば無脂乳固形分を濃縮した成分調整牛乳では、牛乳の自然な甘味が強調され、濃厚なコクやまろやかさを味わうことが可能となる。   A new “ingredient-adjusted milk” was born by the amendment of the Ordinance of Milk Ingredient-adjusted milk is obtained by removing specific ingredients (moisture, etc.) from raw milk only (100% raw milk) using techniques such as membrane treatment. (Partial skim milk) ”is excluded. This component-adjusted milk satisfies the three major elements that consumers demand for milk, and may be able to cope with the diversification of values that consumers demand for milk. For example, in the component-adjusted milk obtained by concentrating the non-fat milk solid content, the natural sweetness of the milk is emphasized, and it becomes possible to taste a rich richness and mellowness.

牛乳関係法令集(乳業団体衛生連絡協議会、平成十六年三月)の42頁の記載によると、成分調整牛乳の成分規格は、無脂乳固形分が8.0%以上、酸度(乳酸として)が0.18%以下、細菌数(標準平板培養法で1mlあたり)が50,000以下、大腸菌群が陰性である。ここで、酸度とは、同書の56頁の「5 乳及び乳製品の酸度の測定法」による測定値である。このように、成分調整牛乳では、酸度を規格の通りに設定することが必須となる。ところが、例えば成分調整牛乳を製造するために、原料乳を膜分離法により濃縮処理し、製造した濃縮乳の酸度を測定したところ、その酸度が上限値を超えてしまい(規定値を外れてしまい)、規格外となるものがあった。具体的には、膜分離法による濃縮処理において、濃縮倍率を高くし、高濃度とした濃縮乳の酸度が上限値を超えてしまい、規格外となった。   According to the description on page 42 of the Law Concerning Milk Related Laws (Milk Industry Hygiene Liaison Council, March 2006), the component standard for ingredient-adjusted milk is non-fat milk solid content of 8.0% or more, acidity (as lactic acid) Is 0.18% or less, the number of bacteria (per 1 ml by standard plate culture method) is 50,000 or less, and coliform bacteria are negative. Here, the acidity is a value measured by “5 Method for Measuring Acidity of Milk and Dairy Products” on page 56 of the same book. Thus, in the component-adjusted milk, it is essential to set the acidity according to the standard. However, for example, in order to produce component-adjusted milk, the raw milk is concentrated by membrane separation, and the acidity of the produced concentrated milk is measured. As a result, the acidity exceeds the upper limit value (deviates from the specified value). ), Some were out of specification. Specifically, in the concentration treatment by the membrane separation method, the acidity of concentrated milk with a high concentration concentration and high concentration exceeded the upper limit value, which was out of specification.

この現象を解明するため、膜分離法による成分濃度の変化に伴い、乳酸やその他の有機酸等が増加する可能性を実験的に検討した。乳酸やクエン酸等の濃度を測定したが、乳酸は殆ど検出されず、クエン酸等も濃度に大きな変化は見られなかった。前記した通り、成分調整牛乳や濃縮乳を安定して製造するためには、酸度を規格の通りに設定することが必須であり、そのためには、酸度に影響する因子を解明する必要がある。そして、その因子を使用し、酸度を簡便に制御することが必要である。酸度の測定には、試薬の調製、滴定、計算といった煩雑な操作を必要とする。そのため、酸度よりも測定が簡便な因子を解明し、その因子を使用して、成分調整牛乳や濃縮乳の製造条件、製造装置の運転条件等を簡便に制御することが望まれていた。   In order to elucidate this phenomenon, the possibility of increasing lactic acid and other organic acids with the change in the component concentration by membrane separation was examined experimentally. Concentrations of lactic acid and citric acid were measured, but lactic acid was hardly detected, and no significant change was found in the concentration of citric acid or the like. As described above, in order to stably produce component-adjusted milk and concentrated milk, it is essential to set the acidity according to the standard, and for that purpose, it is necessary to elucidate the factors that affect the acidity. And it is necessary to control the acidity easily using the factor. The measurement of acidity requires complicated operations such as reagent preparation, titration, and calculation. Therefore, it has been desired to elucidate factors that are easier to measure than acidity, and to use them to easily control the production conditions of component-adjusted milk and concentrated milk, the operating conditions of production equipment, and the like.

原料乳を膜分離法により濃縮処理し、タンパク質やカルシウム等の栄養成分を高めた加工乳及びその製造方法に関する先行技術としては特開2002-051699号公報(特許文献1)及び特開2002-253116号公報(特許文献2)などがある。これらの特許文献には、原料乳を逆浸透膜(RO)法あるいはナノ濾過膜(NF)法で処理することにより、加工乳(濃縮乳)を製造する方法が記載されている。しかし、酸度やその制御方法については記載されていない。   As prior art regarding processed milk in which raw milk is concentrated by membrane separation method and nutritional components such as protein and calcium are increased and a method for producing the same, JP 2002-051699 A (Patent Document 1) and JP 2002-253116 A Gazette (Patent Document 2). These patent documents describe a method of producing processed milk (concentrated milk) by processing raw milk by a reverse osmosis membrane (RO) method or a nanofiltration membrane (NF) method. However, it does not describe the acidity and its control method.

原料乳を膜分離法により濃縮処理し、タンパク質やカルシウム等の栄養成分を高めた発酵乳や、ナトリウムやカリウム等を低減した粉乳及びその製造方法に関する先行技術としては特開平06-014707号公報(特許文献3)及び特開平08-266221号公報(特許文献4)などがある。これらの特許文献には、原料乳を逆浸透膜(RO)法で処理することにより、濃厚な発酵乳を製造する方法、及び原料乳をナノ濾過膜(NF)法で処理することにより、部分脱塩された脱脂粉乳を製造する方法が記載されている。しかし、酸度やその制御方法については記載されていない。   As prior art relating to fermented milk obtained by concentrating raw material milk by a membrane separation method to increase nutrient components such as protein and calcium, milk powder reduced in sodium and potassium, etc. and a method for producing the same, JP-A 06-014707 ( Patent Document 3) and Japanese Patent Application Laid-Open No. 08-266221 (Patent Document 4). In these patent documents, raw milk is processed by a reverse osmosis membrane (RO) method to produce a concentrated fermented milk, and raw milk is processed by a nanofiltration membrane (NF) method, A method for producing desalted nonfat dry milk is described. However, it does not describe the acidity and its control method.

特開2002-051699号公報JP 2002-051699 A 特開2002-253116号公報JP 2002-253116 A 特開平06-014707号公報Japanese Patent Laid-Open No. 06-014707 特開平08-266221号公報Japanese Unexamined Patent Publication No. 08-266221

本発明は、上記従来技術の課題点を鑑みてなされたものであり、酸度の制御を可能にした濃縮乳の製造方法及びその製造方法により製造された濃縮乳を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a concentrated milk manufacturing method capable of controlling acidity and a concentrated milk manufactured by the manufacturing method.

本発明は、原料乳の濃縮処理において、酸度と関連する因子を制御することによって間接的に、酸度を制御することを特徴とする濃縮乳の製造方法及びその製造方法により製造された濃縮乳を提供することを別の目的とする。   The present invention relates to a method for producing concentrated milk, characterized by controlling acidity indirectly by controlling a factor related to acidity in the concentration treatment of raw milk, and concentrated milk produced by the production method. Another purpose is to provide.

本発明者らは、上記課題に鑑み、鋭意研究を重ねた結果、原料乳の濃縮処理において、酸度と関連する因子には、固形分濃度、無脂乳固形分濃度(SNF)、屈折糖度(Brix)、比重(密度)、濃縮倍率等があることを解明し、その因子を制御することによって間接的に、酸度を制御することができるとの知見を見いだし、本発明を完成するに至った。   In view of the above problems, the present inventors have conducted extensive research. As a result, in the concentration treatment of raw milk, factors related to acidity include solid content concentration, non-fat milk solid content concentration (SNF), refractive sugar content ( Brix), specific gravity (density), concentration ratio, etc. were elucidated, and the knowledge that the acidity can be indirectly controlled by controlling the factors was found, and the present invention was completed. .

前記した通り、酸度と関連する因子を見いだすため、膜分離法による成分濃度の変化に伴い、乳酸やその他の有機酸等が増加する可能性を実験的に検討することも行った。実際に、乳酸やクエン酸等の濃度を測定したが、乳酸は殆ど検出されず、クエン酸等も濃度に大きな変化は見られなかった。   As described above, in order to find a factor related to acidity, the possibility of increasing lactic acid, other organic acids, and the like with the change of the component concentration by the membrane separation method was also examined experimentally. Actually, concentrations of lactic acid and citric acid were measured, but almost no lactic acid was detected, and no significant change was found in the concentration of citric acid or the like.

すなわち、本発明は、
[1] 原料乳の濃縮処理において、固形分濃度、無脂乳固形分濃度(SNF)、屈折糖度(Brix)、比重(密度)、濃縮倍率のうちの1つ以上の数値と酸度との相関関係を使用して、酸度を制御することを特徴とする濃縮乳の製造方法、
[2] 相関関係が比例関係であることを特徴とする、前記[1]に記載の濃縮乳の製造方法、
[3] 濃縮処理が膜分離法であることを特徴とする、前記[1]または[2]のいずれかに記載の濃縮乳の製造方法、
[4] 膜分離法がナノ濾過膜(NF)法及び/又は逆浸透膜(RO)法であることを特徴とする、前記[3]に記載の濃縮乳の製造方法、
[5] 前記[1]〜[4]のいずれかに記載の製造方法によって製造した濃縮乳
からなる。
That is, the present invention
[1] Correlation between one or more values of solid content, non-fat milk solid content (SNF), refractive sugar (Brix), specific gravity (density), concentration ratio and acidity in the concentration process of raw milk A method for producing concentrated milk, characterized in that the acidity is controlled using a relationship,
[2] The method for producing concentrated milk according to [1], wherein the correlation is a proportional relationship,
[3] The method for producing concentrated milk according to any one of [1] or [2], wherein the concentration treatment is a membrane separation method,
[4] The method for producing concentrated milk according to [3] above, wherein the membrane separation method is a nanofiltration membrane (NF) method and / or a reverse osmosis membrane (RO) method,
[5] A concentrated milk produced by the production method according to any one of [1] to [4].

本明細書において「原料乳」とは、生乳、原乳、全脂乳、脱脂乳、ホエイ等の乳成分を含む液体である。   In this specification, “raw milk” is a liquid containing milk components such as raw milk, raw milk, whole milk, skim milk and whey.

本明細書において「濃縮乳」とは、前記の原料乳を膜分離法や真空蒸発法等の濃縮処理により得られる液体であり、さらに「濃縮乳」には、前記の濃縮処理の前工程又は後工程に、殺菌処理、均質化処理、遠心分離処理、脂肪濃度調整処理等を加えて得られる液体が含まれる場合もある。つまり「濃縮乳」には、例えば全脂乳から得られた濃縮乳に遠心分離処理を行うことにより、乳脂肪濃度を調整した成分調整牛乳、脱脂乳から得られた濃縮乳にクリームを添加することにより、乳脂肪濃度を調整した成分調整牛乳等も含まれる。   In the present specification, “concentrated milk” is a liquid obtained by concentrating the raw material milk by a membrane separation method, a vacuum evaporation method, or the like. The liquid obtained by adding a sterilization process, a homogenization process, a centrifugation process, a fat concentration adjustment process, etc. may be contained in a post process. In other words, in “concentrated milk”, cream is added to concentrated milk obtained from skim milk, component-adjusted milk with adjusted milk fat concentration, for example, by subjecting concentrated milk obtained from whole milk to a centrifugal separation treatment Thus, component-adjusted milk or the like with adjusted milk fat concentration is also included.

本明細書において「酸度」とは、牛乳関係法令集(乳業団体衛生連絡協議会、平成十六年三月)の56頁の「5 乳及び乳製品の酸度の測定法」による測定値であり、詳細は以下の通りである。すなわち、試料10mlに同量の炭酸ガスを含まない水を加えて希釈し、指示薬としてフェノールフタレイン液0.5mlを加えて、0.1mol/L水酸化ナトリウム溶液で30秒間、微紅色の消失しない点を限度として滴定し、その滴定量から試料100g当たりの乳酸のパーセント量を求め酸度とする。0.1mol/L水酸化ナトリウム溶液1mlは、乳酸9mgに相当する。指示薬は、フェノールフタレイン1gを50%エタノールに溶かして100mlとする。   In this specification, “acidity” is a measurement value according to “5 Measuring Method of Acidity of Milk and Dairy Products” on page 56 of the Laws and Regulations Related to Milk (Milk Industry Hygiene Liaison Council, March 2004). The details are as follows. That is, 10 ml of sample is diluted by adding the same amount of water without carbon dioxide gas, 0.5 ml of phenolphthalein solution is added as an indicator, and a slight red color does not disappear for 30 seconds with 0.1 mol / L sodium hydroxide solution. The amount of lactic acid per 100 g of the sample is determined from the titration amount, and the acidity is obtained. 1 ml of 0.1 mol / L sodium hydroxide solution corresponds to 9 mg of lactic acid. As an indicator, 1 g of phenolphthalein is dissolved in 50% ethanol to make 100 ml.

本明細書において「比例関係」とは、例えば酸度と固形分濃度のような、2つの因子の相関関係が一次式で近似できることを意味する。   In this specification, “proportional relationship” means that the correlation between two factors such as acidity and solid content concentration can be approximated by a linear expression.

本発明者らが、成分調整牛乳を製造するために、原料乳を膜分離法により濃縮処理し、製造した濃縮乳の酸度を測定したところ、その酸度が上限値を超えてしまい(規定値を外れてしまい)、規格外となるものがあった。具体的には、膜分離法による濃縮処理において、濃縮倍率を高くし、高濃度とした濃縮乳の酸度が上限値を超えてしまい、規格外となった。この現象を解明するため、乳酸やクエン酸等の濃度の影響を検討した結果、それらの酸度への影響はないことが分かった。   In order to produce component-adjusted milk, the present inventors concentrated raw material milk by a membrane separation method, and measured the acidity of the produced concentrated milk. As a result, the acidity exceeded the upper limit (the specified value was exceeded). There was something that was out of specification. Specifically, in the concentration treatment by the membrane separation method, the acidity of concentrated milk with a high concentration concentration and high concentration exceeded the upper limit value, which was out of specification. In order to elucidate this phenomenon, the effects of concentrations of lactic acid and citric acid were examined, and it was found that there was no effect on their acidity.

さらなる実験的な検討を進め、濃縮乳の酸度と各種成分との比較を試みた結果、原料乳の濃縮処理において、酸度と関連する因子には、固形分濃度、無脂乳固形分濃度(SNF)、屈折糖度(Brix)、比重(密度)、濃縮倍率等があることを解明した。そして、その因子を制御することによって間接的に、酸度を制御することができるとの知見を見いだし、酸度が規格内となる成分調整牛乳を安定して製造することが可能となった。   As a result of further experimental investigation and comparison of acidity of concentrated milk with various components, the factors related to acidity in raw milk concentration treatment include solid content, non-fat milk solid content (SNF) ), Refractive sugar (Brix), specific gravity (density), concentration ratio, etc. And the knowledge that an acidity can be controlled indirectly by controlling the factor was found, and it became possible to manufacture stably component-adjusted milk having an acidity within the standard.

本発明によれば、酸度の制御を可能にした濃縮乳の製造方法及びその製造方法により製造された濃縮乳を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the concentrated milk manufactured by the manufacturing method of the concentrated milk which enabled control of acidity, and its manufacturing method can be provided.

本発明によれば、原料乳の濃縮処理において、酸度と関連する因子を制御することによって間接的に、酸度を制御することを特徴とする濃縮乳の製造方法及びその製造方法により製造された濃縮乳を提供することができる。   According to the present invention, in the concentration treatment of raw milk, the acidity is controlled indirectly by controlling the factor related to the acidity, and the concentrated milk produced by the production method is characterized by controlling the acidity. Milk can be provided.

本発明の濃縮乳の製造方法は、原料乳の濃縮処理において、酸度と固形分濃度との相関関係を使用して、酸度を制御することを特徴とするが、酸度を制御する因子は、固形分濃度に限定されない。固形分濃度と相関関係にある因子であれば適用することが可能であり、無脂乳固形分濃度(SNF)、屈折糖度(Brix)、比重(密度)、タンパク質濃度、濃縮倍率等が例示できる。実際に固形分濃度の測定には手間が掛かるため、本発明の濃縮乳の製造方法において酸度を制御する方法には、屈折糖度や比重、濃縮倍率のような簡便に測定できる因子を使用することが望ましい。ところで、原料乳である全脂乳、脱脂乳等の組成は変動するため、酸度と固形分濃度との相関関係は、原料乳によって異なり、一定しない。そのため、数種類の原料乳について酸度と固形分濃度、無脂乳固形分濃度、屈折糖度、比重等を予め測定し、これらの相関関係を求めておく。そして、酸度が規定値から外れない、安全側の固形分濃度、無脂乳固形分濃度、屈折糖度、比重等で酸度を制御することが望ましい。   The concentrated milk production method of the present invention is characterized in that, in the concentration treatment of raw milk, the acidity is controlled using the correlation between the acidity and the solid content concentration. The concentration is not limited. Any factor that has a correlation with the solid content concentration can be applied, and non-fat milk solid content concentration (SNF), refractive sugar content (Brix), specific gravity (density), protein concentration, concentration rate, etc. can be exemplified. . Actually, it takes time to measure the solid content, and therefore the method for controlling the acidity in the method for producing concentrated milk of the present invention uses factors that can be easily measured such as the refractive sugar content, specific gravity, and concentration ratio. Is desirable. Incidentally, since the composition of raw milk such as full fat milk and skim milk varies, the correlation between acidity and solid content concentration varies depending on the raw milk and is not constant. Therefore, acidity, solid content concentration, non-fat milk solid content concentration, refractive sugar content, specific gravity, etc. are measured in advance for several types of raw milk, and their correlation is obtained. And it is desirable to control acidity by solid content concentration, non-fat milk solid content concentration, refractive sugar content, specific gravity, etc. on the safe side where the acidity does not deviate from the specified value.

本発明の濃縮乳の製造方法は、原料乳の濃縮処理において、酸度と無脂乳固形分濃度(SNF)との相関関係を使用して、酸度を制御することを特徴とするが、前記した通り、酸度を制御する因子は、無脂乳固形分濃度に限定されない。無脂乳固形分濃度と相関関係にある因子であれば適用することが可能であり、屈折糖度(Brix)、比重(密度)、タンパク質濃度等が例示できる。   The concentrated milk production method of the present invention is characterized in that, in the concentration treatment of raw material milk, the acidity is controlled using the correlation between the acidity and the non-fat milk solid content concentration (SNF). As described above, the factor controlling the acidity is not limited to the non-fat milk solid content concentration. Any factor having a correlation with the non-fat milk solid content concentration can be applied, and examples thereof include refractive sugar (Brix), specific gravity (density), and protein concentration.

本発明の濃縮乳の製造方法は、原料乳の濃縮処理において、酸度と屈折糖度(Brix)との相関関係を使用して、酸度を制御することを特徴とする。屈折糖度は糖度計(refractometer)を用いて簡便に短時間で測定できるため、濃縮乳の製造工程から試料を採取し、その場で数値を確認することができる。製造装置の運転状態が適切か否かを断続的に判断しながら、屈折糖度を一定値に安定させる運転を行うことで間接的に、酸度を規格内に制御することが可能となる。   The method for producing concentrated milk of the present invention is characterized in that the acidity is controlled using the correlation between acidity and refractive sugar (Brix) in the raw milk concentration process. Refractive sugar can be measured easily and in a short time using a refractometer, so a sample can be taken from the manufacturing process of concentrated milk and the value can be confirmed on the spot. It is possible to indirectly control the acidity within the standard by performing an operation of stabilizing the refractive sugar content at a constant value while intermittently determining whether or not the operation state of the production apparatus is appropriate.

本発明の濃縮乳の製造方法は、原料乳の濃縮処理において、酸度と比重(密度)との相関関係を使用して、酸度を制御することを特徴とする。比重は比重計を用いて簡便に瞬時で測定できるため、濃縮乳の製造工程に比重計を設置し、連続的に数値を確認することができる。製造装置の運転状態が適切か否かを連続的に判断しながら、比重を一定値に安定させる運転を行うことで間接的に、酸度を規格内に制御することが可能となる。例えば比重の増減やその増減の傾向をコンピューター等で処理することにより、比重を自動的に制御し、その結果として、酸度も自動的に制御することが可能となる。   The method for producing concentrated milk of the present invention is characterized in that the acidity is controlled using the correlation between acidity and specific gravity (density) in the concentration treatment of raw material milk. Since the specific gravity can be measured easily and instantaneously using a hydrometer, a specific gravity meter can be installed in the manufacturing process of concentrated milk to continuously check the numerical value. It is possible to indirectly control the acidity within the standard by performing an operation of stabilizing the specific gravity at a constant value while continuously determining whether or not the operation state of the manufacturing apparatus is appropriate. For example, the specific gravity is automatically controlled by processing the increase or decrease in specific gravity or the tendency of the increase or decrease with a computer or the like, and as a result, the acidity can also be automatically controlled.

本発明の濃縮乳の製造方法において、酸度と固形分濃度、無脂乳固形分濃度、屈折糖度、比重等との相関関係は比例関係であることを特徴とする。本発明において、2つの因子の相関関係は一次式で近似できる。   In the method for producing concentrated milk of the present invention, the correlation between acidity and solid content concentration, nonfat milk solid content concentration, refractive sugar content, specific gravity and the like is a proportional relationship. In the present invention, the correlation between two factors can be approximated by a linear expression.

本発明の濃縮乳の製造方法において、濃縮処理は特に限定されないが、非加熱でタンパク質等、栄養成分の変性が殆ど起こらないことから、膜分離法であることが望ましい。   In the method for producing concentrated milk of the present invention, the concentration treatment is not particularly limited, but it is preferably a membrane separation method because non-heating causes almost no denaturation of nutrient components such as proteins.

本発明の濃縮乳の製造方法において、膜分離法は特に限定されないが、タンパク質や乳糖等、栄養成分の損失が少ないことから、ナノ濾過膜(NF)法及び/又は逆浸透膜(RO)法であることが望ましい。ナノ濾過膜(NF)法と逆浸透膜(RO)法は併用することが可能であり、互いは直列に設置しても、並列に設置しても良い。また、製造したい成分調整牛乳の組成に合わせて、互いの膜面積やその比率は自由に設定しても良い。   In the method for producing concentrated milk of the present invention, the membrane separation method is not particularly limited, but since there is little loss of nutrient components such as protein and lactose, the nanofiltration membrane (NF) method and / or the reverse osmosis membrane (RO) method It is desirable that The nanofiltration membrane (NF) method and the reverse osmosis membrane (RO) method can be used in combination, and may be installed in series or in parallel. Moreover, according to the composition of the component-adjusted milk to be produced, the mutual membrane area and the ratio thereof may be set freely.

以下、本発明に関して実施例を挙げて説明するが、本発明は、これにより限定されるものではない。   Hereinafter, although an example is given and explained about the present invention, the present invention is not limited by this.

[実施例1](逆浸透膜(RO)法による全脂乳の濃縮処理)
逆浸透膜(RO)法により全脂乳を濃縮処理した。使用した逆浸透膜は、RO-3838/30-FF(Dow社製)である。所定の濃縮倍率において濃縮乳を採取し、酸度、固形分濃度、無脂乳固形分濃度を測定した。それぞれの相関関係を図1〜図2に示した。
[Example 1] (Concentration treatment of whole milk by reverse osmosis membrane (RO) method)
Whole fat milk was concentrated by a reverse osmosis membrane (RO) method. The reverse osmosis membrane used is RO-3838 / 30-FF (Dow). Concentrated milk was collected at a predetermined concentration ratio, and acidity, solid content concentration, and non-fat milk solid content concentration were measured. Each correlation is shown in FIGS.

今回の実験において、図1では、酸度をX[%]、固形分濃度をY[重量%]とし、互いの関係を一次式で近似すると、Y=82.55・X+3.75となった。このとき、成分調整牛乳の成分規格として全脂乳の酸度(乳酸として)を0.18%以下に設定した場合、固形分濃度は18.6%以下に設定することとなる。装置の運転を安全側で制御することを考慮し、全脂乳の酸度を0.17%以下に設定した場合、固形分濃度は17.8%以下に設定することとなる。図2では、酸度をX[%]、無脂乳固形分濃度をY[重量%]とし、互いの関係を一次式で近似すると、Y=56.20・X+2.54となった。このとき、全脂乳の酸度を0.18%以下に設定した場合、無脂乳固形分濃度は12.6%以下に設定することとなる。全脂乳の酸度を0.17%以下に設定した場合、無脂乳固形分濃度は12.1%以下に設定することとなる。   In this experiment, in FIG. 1, when the acidity is X [%], the solid content concentration is Y [wt%], and the mutual relationship is approximated by a linear expression, Y = 82.55 · X + 3.75. At this time, when the acidity (as lactic acid) of the whole fat milk is set to 0.18% or less as the component standard of the component-adjusted milk, the solid content concentration is set to 18.6% or less. In consideration of controlling the operation of the apparatus on the safe side, when the acidity of the whole milk is set to 0.17% or less, the solid content concentration is set to 17.8% or less. In FIG. 2, when the acidity is X [%], the non-fat milk solid content concentration is Y [wt%], and the mutual relationship is approximated by a linear expression, Y = 56.20 · X + 2.54 is obtained. At this time, when the acidity of the whole milk is set to 0.18% or less, the non-fat milk solid content concentration is set to 12.6% or less. When the acidity of the whole milk is set to 0.17% or less, the non-fat milk solid content concentration is set to 12.1% or less.

[実施例2](ナノ濾過膜(NF)法による脱脂乳の濃縮処理)
ナノ濾過膜(NF)法により脱脂乳を濃縮処理した。使用したナノ濾過膜は、NF-3838/30-FF(Dow社製)である。脱脂乳の場合、乳脂肪を殆ど含まないため、固形分濃度と無脂乳固形分濃度は同等である。所定の濃縮倍率において濃縮乳を採取し、酸度、固形分濃度(無脂乳固形分濃度)、屈折糖度、比重を測定した。それぞれの相関関係を図3〜図5に示した。
[Example 2] (Concentration treatment of skim milk by nanofiltration membrane (NF) method)
The skim milk was concentrated by a nanofiltration membrane (NF) method. The nanofiltration membrane used is NF-3838 / 30-FF (Dow). In the case of skim milk, since the milk fat is hardly contained, the solid content concentration and the non-fat milk solid content concentration are the same. Concentrated milk was collected at a predetermined concentration ratio, and acidity, solid content (non-fat milk solid content), refractive sugar content, and specific gravity were measured. Each correlation is shown in FIGS.

今回の実験において、図3では、酸度をX[%]、固形分濃度をY[重量%]とし、互いの関係を一次式で似すると、Y=65.86・X+1.36となった。このとき、脱脂乳の酸度を0.18%以下に設定した場合、固形分濃度は13.2%以下に設定することとなる。脱脂乳の酸度を0.17%以下に設定した場合、固形分濃度は12.5%以下に設定することとなる。図4では、酸度をX[%]、屈折糖度をY[%]とし、互いの関係を一次式で近似すると、Y=71.23・X+2.06となった。このとき、脱脂乳の酸度を0.18%以下に設定した場合、屈折糖度は14.9%以下に設定することとなる。脱脂乳の酸度を0.17%以下に設定した場合、屈折糖度は14.2%以下に設定することとなる。図5では、酸度をX[%]、比重をY[−]とし、互いの関係を一次式で近似すると、Y=0.268・X+0.999となった。このとき、脱脂乳の酸度を0.18%以下に設定した場合、比重は1.047以下に設定することとなる。脱脂乳の酸度を0.17%以下に設定した場合、比重は1.044以下に設定することとなる。   In this experiment, in FIG. 3, when the acidity is X [%], the solid content concentration is Y [wt%], and the mutual relationship is similar by a linear expression, Y = 65.86 · X + 1.36. At this time, when the acidity of skim milk is set to 0.18% or less, the solid content concentration is set to 13.2% or less. When the acidity of skim milk is set to 0.17% or less, the solid content concentration is set to 12.5% or less. In FIG. 4, when the acidity is X [%], the refractive sugar degree is Y [%], and the mutual relationship is approximated by a linear expression, Y = 71.23 · X + 2.06. At this time, when the acidity of skim milk is set to 0.18% or less, the refractive sugar content is set to 14.9% or less. When the acidity of skim milk is set to 0.17% or less, the refractive sugar content is set to 14.2% or less. In FIG. 5, when the acidity is X [%], the specific gravity is Y [−], and the mutual relationship is approximated by a linear expression, Y = 0.268 · X + 0.999. At this time, when the acidity of skim milk is set to 0.18% or less, the specific gravity is set to 1.047 or less. When the acidity of skim milk is set to 0.17% or less, the specific gravity is set to 1.044 or less.

[実施例3](逆浸透膜(RO)法によるホエイの濃縮処理)
逆浸透膜(RO)法によりホエイを濃縮処理した。使用した逆浸透膜は、RO-3838/30-FF(Dow社製)である。ホエイの場合、乳脂肪を殆ど含まないため、固形分濃度と無脂乳固形分濃度は同等である。所定の濃縮倍率において濃縮乳を採取し、酸度、固形分濃度(無脂乳固形分濃度)、を測定した。それぞれの相関関係を図6に示した。
[Example 3] (Concentration treatment of whey by reverse osmosis membrane (RO) method)
Whey was concentrated by a reverse osmosis membrane (RO) method. The reverse osmosis membrane used is RO-3838 / 30-FF (Dow). In the case of whey, since it contains almost no milk fat, the solid content concentration and the non-fat milk solid content concentration are equivalent. Concentrated milk was collected at a predetermined concentration ratio, and acidity and solid content concentration (non-fat milk solid content concentration) were measured. The respective correlations are shown in FIG.

今回の実験において、図6では、酸度をX[%]、固形分濃度をY[重量%]とし、互いの関係を一次式で似すると、Y=93.88・X+2.24となった。   In this experiment, in FIG. 6, when the acidity is X [%], the solid content concentration is Y [wt%], and the mutual relationship is similar by a linear expression, Y = 93.88 · X + 2.24.

酸度の制御を可能にした濃縮乳の製造方法及びその製造方法により製造された濃縮乳を提供することができる。具体的には、原料乳の濃縮処理において、酸度と関連する因子を制御することによって間接的に、酸度を制御することを特徴とする濃縮乳の製造方法及びその製造方法により製造された濃縮乳を提供することができる。   It is possible to provide a concentrated milk production method capable of controlling acidity and the concentrated milk produced by the production method. Specifically, in the concentration treatment of raw material milk, the method for producing concentrated milk characterized by controlling the acidity indirectly by controlling the factor related to acidity, and the concentrated milk produced by the production method Can be provided.

図1は、全脂乳における酸度と固形分濃度の関係を示したグラフである。FIG. 1 is a graph showing the relationship between acidity and solid content concentration in whole milk. 図2は、全脂乳における酸度と無脂乳固形分濃度の関係を示したグラフである。FIG. 2 is a graph showing the relationship between acidity and nonfat milk solid content concentration in whole milk. 図3は、脱脂乳における酸度と固形分濃度の関係を示したグラフである。FIG. 3 is a graph showing the relationship between acidity and solid content concentration in skim milk. 図4は、脱脂乳における酸度と屈折糖度の関係を示したグラフである。FIG. 4 is a graph showing the relationship between acidity and refractive sugar content in skim milk. 図5は、脱脂乳における酸度と比重の関係を示したグラフである。FIG. 5 is a graph showing the relationship between acidity and specific gravity in skim milk. 図6は、ホエイにおける酸度と固形分濃度の関係を示したグラフである。FIG. 6 is a graph showing the relationship between acidity and solid content concentration in whey.

Claims (5)

原料乳の濃縮処理において、固形分濃度、無脂乳固形分濃度(SNF)、屈折糖度(Brix)、比重(密度)、濃縮倍率のうちの1つ以上の数値と酸度との相関関係を使用して、酸度を制御することを特徴とする濃縮乳の製造方法。   In the concentration process of raw milk, use the correlation between one or more of solid content concentration, non-fat milk solid content concentration (SNF), refractive sugar content (Brix), specific gravity (density), concentration ratio and acidity And the manufacturing method of concentrated milk characterized by controlling acidity. 相関関係が比例関係であることを特徴とする、請求項1に記載の濃縮乳の製造方法。   The method for producing concentrated milk according to claim 1, wherein the correlation is a proportional relationship. 濃縮処理が膜分離法であることを特徴とする、請求項1または2のいずれか1項に記載の濃縮乳の製造方法。   The method for producing concentrated milk according to any one of claims 1 and 2, wherein the concentration treatment is a membrane separation method. 膜分離法がナノ濾過膜(NF)法及び/又は逆浸透膜(RO)法であることを特徴とする、請求項3に記載の濃縮乳の製造方法。   The method for producing concentrated milk according to claim 3, wherein the membrane separation method is a nanofiltration membrane (NF) method and / or a reverse osmosis membrane (RO) method. 請求項1〜4のいずれか1項に記載の製造方法によって製造した濃縮乳。



















The concentrated milk manufactured by the manufacturing method of any one of Claims 1-4.



















JP2005087970A 2005-03-25 2005-03-25 Method for producing concentrated milk and concentrated milk Pending JP2006262816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005087970A JP2006262816A (en) 2005-03-25 2005-03-25 Method for producing concentrated milk and concentrated milk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005087970A JP2006262816A (en) 2005-03-25 2005-03-25 Method for producing concentrated milk and concentrated milk

Publications (1)

Publication Number Publication Date
JP2006262816A true JP2006262816A (en) 2006-10-05

Family

ID=37199401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005087970A Pending JP2006262816A (en) 2005-03-25 2005-03-25 Method for producing concentrated milk and concentrated milk

Country Status (1)

Country Link
JP (1) JP2006262816A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010051206A (en) * 2008-08-27 2010-03-11 Meiji Milk Prod Co Ltd Method for producing concentrated milk
KR20160074255A (en) * 2014-12-18 2016-06-28 주식회사 엘지생활건강 Infant liquid formula composition and its manufacturing process
WO2017171109A1 (en) * 2016-03-29 2017-10-05 주식회사 엘지생활건강 Liquid formula composition and preparation method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010051206A (en) * 2008-08-27 2010-03-11 Meiji Milk Prod Co Ltd Method for producing concentrated milk
KR20160074255A (en) * 2014-12-18 2016-06-28 주식회사 엘지생활건강 Infant liquid formula composition and its manufacturing process
KR101639676B1 (en) 2014-12-18 2016-07-14 주식회사 엘지생활건강 Infant liquid formula composition and its manufacturing process
WO2017171109A1 (en) * 2016-03-29 2017-10-05 주식회사 엘지생활건강 Liquid formula composition and preparation method therefor

Similar Documents

Publication Publication Date Title
Lin et al. Measurement of ionic calcium in milk
Rombaut et al. Phospho‐and sphingolipid distribution during processing of milk, butter and whey
Omoarukhe et al. Effects of different calcium salts on properties of milk related to heat stability
Marella et al. Manufacture of modified milk protein concentrate utilizing injection of carbon dioxide
Prudêncio et al. Effect of whey nanofiltration process combined with diafiltration on the rheological and physicochemical properties of ricotta cheese
Hurt et al. Microfiltration of skim milk and modified skim milk using a 0.1-µm ceramic uniform transmembrane pressure system at temperatures of 50, 55, 60, and 65° C
Kirdar et al. Determination of the mineral content in yogurt whey
JP2006262816A (en) Method for producing concentrated milk and concentrated milk
JP6060075B2 (en) A fresh cream having a strong body and a method for producing the same.
Melnikova et al. Micellar casein production and application in dairy protein industry.
JP2021518169A (en) Whey dechlorination method and the whey obtained thereby
Xia et al. Production, composition and preservation of micellar casein concentrate and its application in cheesemaking: A review
Koutina et al. Influence of colloidal calcium phosphate level on the microstructure and rheological properties of rennet-induced skim milk gels
Kruchinin et al. Effect of CSN3 gene polymorphism on the formation of milk gels induced by physical, chemical, and biotechnological factors
Rinaldoni et al. Analytic determinations of minerals content by XRF, ICP and EEA in ultrafiltered milk and yoghurt
Lewis Partitioning milk constituents
Chamberland et al. Innovations from pressure-driven membrane processes in cheese technology: from milk protein concentrates to sustainability and precision cheesemaking
Pavoni et al. In natura ovine whey proteins concentration by ultrafiltration combining batch and diafiltration operating modes
JP2018074911A (en) Concentrated fermented milk and method for producing the same
JP5243149B2 (en) Method for producing concentrated milk
Wolfschoon Pombo et al. Buffering curves of ideal whey fractions obtained from a cascade membrane separation process
Reitmaier et al. Compositional analysis of dairy side streams and assessment of their applicability as diafiltration media
Kiełczewska et al. Protein preparations as ingredients for the enrichment of non-fermented milks
Dushkova et al. Composition and process characteristics during ultrafiltration of whey from kashkaval
Kashour et al. Comparative between Ammonia Ion selective electrode and dye binding method to study effect of processing methods on protein content of plain Yogurt

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080326

Free format text: JAPANESE INTERMEDIATE CODE: A621

A072 Dismissal of procedure

Effective date: 20080729

Free format text: JAPANESE INTERMEDIATE CODE: A072