JP2006261203A - Photoconductive layer constituting radiation imaging panel and radiation imaging panel - Google Patents

Photoconductive layer constituting radiation imaging panel and radiation imaging panel Download PDF

Info

Publication number
JP2006261203A
JP2006261203A JP2005072955A JP2005072955A JP2006261203A JP 2006261203 A JP2006261203 A JP 2006261203A JP 2005072955 A JP2005072955 A JP 2005072955A JP 2005072955 A JP2005072955 A JP 2005072955A JP 2006261203 A JP2006261203 A JP 2006261203A
Authority
JP
Japan
Prior art keywords
radiation
photoconductive layer
imaging panel
radiation imaging
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2005072955A
Other languages
Japanese (ja)
Inventor
Kiyoteru Miyake
清照 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2005072955A priority Critical patent/JP2006261203A/en
Publication of JP2006261203A publication Critical patent/JP2006261203A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance residual characteristics of photoconduction in a photoconductive layer composed of Bi<SB>x</SB>MO<SB>y</SB>polycrystal. <P>SOLUTION: A photoconductive layer constituting a radiation imaging panel for recording radiation image information as an electrostatic latent image is a polycrystal composed of Bi<SB>x</SB>MO<SB>y</SB>(M is at least one kind of Ge, Si and Ti) wherein x satisfies following relation 11.1≤x≤11.95, and y is a stoichiometric number of oxygen atoms dependent on M and x. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、X線などの放射線撮像装置に適用して好適な放射線撮像パネルに関し、詳しくは、放射線撮像パネルを構成する光導電層に関するものである。   The present invention relates to a radiation imaging panel suitable for application to a radiation imaging apparatus such as an X-ray, and more particularly to a photoconductive layer constituting the radiation imaging panel.

従来より、医療用X線撮影において、被験者の受ける被爆線量の減少、診断性能の向上等のために、X線に感応する光導電層を感光体として用い、この光導電層にX線により形成された静電潜像を、光或いは多数の電極で読み取って記録するX線撮像パネルが知られている。これらは、周知の撮影法であるTV撮像管による間接撮影法と比較して高解像度である点で優れている。   Conventionally, in medical X-ray photography, a photoconductive layer sensitive to X-rays has been used as a photoconductor to reduce the exposure dose received by subjects and improve diagnostic performance. An X-ray imaging panel that reads and records a recorded electrostatic latent image with light or multiple electrodes is known. These are superior in that the resolution is higher than the indirect photographing method using a TV image pickup tube which is a well-known photographing method.

上述したX線撮像パネルは、この撮像パネル内に設けられた電荷生成層にX線を照射することによって、X線エネルギーに相当する電荷を生成し、生成した電荷を電気信号として読み出すようにしたものであって、上記光導電層は電荷生成層として機能する。   The X-ray imaging panel described above generates charges corresponding to X-ray energy by irradiating the charge generation layer provided in the imaging panel with X-rays, and reads the generated charges as an electrical signal. The photoconductive layer functions as a charge generation layer.

Bi12MO20(ただし、MはGe,Si,Ti中の少なくとも1種である。)は光導電性、誘電性を有するため、光導電層としての用途が検討され、例えば、特許文献1にはBi12GeO20、Bi12SiO20を光導電層に用いることが記載されている。通常、Bi12MO20の結晶組成は化学量論比であることが最適と考えられており、例えば特許文献2および3にはx=12、y=20の組成を有するBi12GeO20、Bi12SiO20が記載されている。 Bi 12 MO 20 (wherein M is at least one of Ge, Si, and Ti) has photoconductivity and dielectric properties, so its use as a photoconductive layer has been studied. Describes that Bi 12 GeO 20 and Bi 12 SiO 20 are used for the photoconductive layer. In general, it is considered that the crystal composition of Bi 12 MO 20 is the stoichiometric ratio. For example, in Patent Documents 2 and 3, Bi 12 GeO 20 and Bi having compositions of x = 12 and y = 20 are disclosed in Patent Documents 2 and 3. 12 SiO 20 is described.

一方、非特許文献1には、融液の組成を10≦x≦14の範囲で変化させBixMOyの単結晶の育成を行ったところ、x=11.5の融液で育成された単結晶(この単結晶の結晶組成比はグラフの読取値より約12.15と約12.69)で光伝導電流が最大になることが記載されている。また、非特許文献2には、融液の組成について、GeO2含有率を9.0〜20.0mol%の範囲(x換算で9≦x≦20)で変化させてBixGeOy単結晶を、SiO2含有率を9.0〜18.0mol%の範囲(x換算で8≦x≦20)で変化させてBixSiOy単結晶をそれぞれ育成し、育成した単結晶のμτ(キャリア移動度と寿命の積)の変化を調べたことが記載されている。
特開平11−211832号 特開平11−237478号 特開2000−249769号 日本化学会誌, 1981 No.10 p.1630〜p.1639 Journal of Applied physics., vol.94, No.4, p.2507〜p.2509(2003)
On the other hand, in Non-Patent Document 1, when the composition of the melt was changed in the range of 10 ≦ x ≦ 14 and a Bi x MO y single crystal was grown, the single crystal grown in the melt with x = 11.5 was obtained. (The crystal composition ratio of this single crystal is about 12.15 and about 12.69 from the reading of the graph), and it is described that the photoconductive current becomes maximum. Non-Patent Document 2 discloses that a Bi x GeO y single crystal is obtained by changing the GeO 2 content in the range of 9.0 to 20.0 mol% (9 ≦ x ≦ 20 in terms of x) with respect to the composition of the melt. 2 Bi x SiO y single crystals were grown by changing the content in the range of 9.0 to 18.0 mol% (8 ≦ x ≦ 20 in terms of x), and μτ (product of carrier mobility and lifetime) of the grown single crystals. ) Was investigated.
JP-A-11-211832 JP-A-11-237478 JP 2000-249769 The Chemical Society of Japan, 1981 No.10 p.1630〜p.1639 Journal of Applied physics., Vol.94, No.4, p.2507-p.2509 (2003)

本発明者は鋭意検討を行ったところ、特許文献2および3の記載に反し、通常考えられている化学量論比の結晶組成よりもビスマスが少ない方が光伝導の残留特性が向上できることを見いだし本発明に至った。なお、上記の非特許文献1および2に記載されているのはいずれも単結晶のBixMOyであって、これは粒界が極めて少ないために暗電流が低減され、X線光電流量が向上すると期待されるが、製造コストが高い上に、実用に供する数十センチ角サイズといった大面積化は技術的に困難であるため実用的には不向きである。加えて、単結晶ではその組成の制御が困難であるため、所望の組成の単結晶が得られないという問題がある。 As a result of diligent study, the present inventor has found that contrary to the description in Patent Documents 2 and 3, the residual property of photoconduction can be improved when there is less bismuth than the crystal composition of the stoichiometric ratio that is normally considered. The present invention has been reached. Note that both Non-Patent Documents 1 and 2 described above are single crystal Bi x MO y , which has a very small grain boundary, which reduces dark current and increases the X-ray photoelectric flow rate. Although it is expected to improve, the manufacturing cost is high, and it is technically difficult to increase the area such as a size of several tens of centimeters for practical use. In addition, since it is difficult to control the composition of a single crystal, there is a problem that a single crystal having a desired composition cannot be obtained.

すなわち、本発明は、放射線画像情報を静電潜像として記録する放射線撮像パネルを構成する光導電層として光伝導の残留特性が向上したBixMOy多結晶体からなる光導電層を提供することを目的とするものである。 That is, the present invention provides a photoconductive layer made of a Bi x MO y polycrystal having improved photoconductive residual characteristics as a photoconductive layer constituting a radiation imaging panel that records radiation image information as an electrostatic latent image. It is for the purpose.

本発明の放射線画像情報を静電潜像として記録する放射線撮像パネルを構成する光導電層は、該光導電層がBixMOy(ただし、MはGe,Si,Ti中の少なくとも1種である。)からなる多結晶体であり、前記BixMOyのxが11.1≦x≦11.95、yはMおよびxにより決まる化学量論的な酸素原子数(y=1.5x+2)であることを特徴とするものである。 The photoconductive layer constituting the radiation imaging panel that records the radiographic image information of the present invention as an electrostatic latent image has a photoconductive layer of Bi x MO y (where M is at least one of Ge, Si, and Ti). The Bi x MO y is 11.1 ≦ x ≦ 11.95, and y is the stoichiometric number of oxygen atoms determined by M and x (y = 1.5x + 2). ).

多結晶体とは一般に方位が異なる単結晶が集合した固体を意味し、ここにいう多結晶体も方位が異なる単結晶が集合したものであって、焼結やエアロゾルデポジション、気相成長などで形成される単結晶が緻密に集合し、結晶同士が自ら接合ないし結合している状態であって、有機材料、高分子材料、無機材料からなる結合剤(バインダー)を含まないものを意味する。   A polycrystal generally means a solid in which single crystals with different orientations are assembled, and the polycrystal here is a collection of single crystals with different orientations, such as sintering, aerosol deposition, vapor phase growth, etc. This means that the single crystals formed in the above are densely assembled and the crystals are bonded or bonded together, and do not contain a binder (binder) made of an organic material, a polymer material, or an inorganic material. .

前記MはTiであることが好ましい。
前記BixMOyは焼結体であることが好ましい。ここで、焼結体とは、BixMOyの粉体を融点以下又は少量の液相の存在する温度で加熱して、構成粒子間に接合又は合体が起こり形成されたものを意味する。
The M is preferably Ti.
The Bi x MO y is preferably a sintered body. Here, the sintered body means a material formed by bonding or coalescence between constituent particles by heating a powder of Bi x MO y at a temperature below the melting point or at a temperature at which a small amount of liquid phase exists.

本発明の放射線撮像パネルは、放射線画像情報を静電潜像として記録するBixMOyからなる多結晶体であって、前記BixMOyのxが11.1≦x≦11.95、yはMおよびxにより決まる化学量論的な酸素原子数である光導電層を備えたことを特徴とするものである。 The radiation imaging panel of the present invention is a polycrystalline body made of Bi x MO y that records radiation image information as an electrostatic latent image, wherein x of the Bi x MO y is 11.1 ≦ x ≦ 11.95, y is characterized by having a photoconductive layer having a stoichiometric number of oxygen atoms determined by M and x.

本発明の光導電層はBixMOyからなる多結晶体であり、BixMOyのxが11.1≦x≦11.95、yはMおよびxにより決まる化学量論的な酸素原子数であるため、光伝導の残留特性を向上させることが可能となる。5フレーム/秒のセミ動画や5〜30フレーム/秒の動画の場合、前に感知した電気信号の影響を受けると画像が不鮮明となったり乱れたりという問題が出てくるが、本発明のBixMOyからなる光導電層の場合には光伝導の残留特性が優れているので、セミ動画はもちろんのこと動画に採用した場合にも前に感知した電気信号の影響を受けにくいものとすることが可能となる。 The photoconductive layer of the present invention is a polycrystalline body comprising a Bi x MO y, Bi x MO x is 11.1 ≦ x ≦ 11.95 of y, y is the stoichiometric oxygen atom determined by M and x Since it is a number, it is possible to improve the residual property of photoconduction. In the case of a 5 frames / second semi-moving image or a 5-30 frame / second moving image, there is a problem that the image becomes unclear or distorted when affected by the previously sensed electrical signal. since in the case of the photoconductive layer consisting of x MO y residual characteristics of the photoconductive are good, semi-video shall not susceptible to electrical signals sensed before in the case of employing a matter of course video It becomes possible.

また、本発明の光導電層は多結晶体であるために光導電層の大面積化に対応が可能である上、単結晶のBixMOyに比較して光導電層の製造コストを抑えることができる。 Further, since the photoconductive layer of the present invention is a polycrystal, it can cope with an increase in the area of the photoconductive layer, and also suppresses the manufacturing cost of the photoconductive layer compared with single crystal Bi x MO y. be able to.

また、光導電物質粒子同士が接触しているので、塗布法で形成される光導電層のようにバインダーが介在することに起因する発生電荷の捕集効率の低減が抑制され、電気ノイズを小さくすることが可能となり、画像の粒状性が向上し、感度を向上させることができる。   In addition, since the photoconductive substance particles are in contact with each other, a reduction in the efficiency of collecting generated charges due to the presence of a binder as in a photoconductive layer formed by a coating method is suppressed, and electric noise is reduced. It is possible to improve the graininess of the image and improve the sensitivity.

なお、MをTiとすることにより、あるいはBixMOyを焼結体とすることによって、発生電荷の捕集効果をさらに高めることができ、感度を向上させることが可能となる。 In addition, when M is Ti or Bi x MO y is a sintered body, the effect of collecting generated charges can be further enhanced, and the sensitivity can be improved.

本発明の光導電層は、BixMOyからなる多結晶体であり、BixMOyのxが11.1≦x≦11.95、yはMおよびxにより決まる化学量論的な酸素原子数であることを特徴とする。xがこの範囲からはずれると、光伝導の残留特性が低下する。 The photoconductive layer of the present invention, Bi x MO a polycrystalline body comprising a y, Bi x MO y of x is 11.1 ≦ x ≦ 11.95, y stoichiometric oxygen determined by M and x It is characterized by the number of atoms. If x deviates from this range, the residual characteristics of photoconductivity are reduced.

BixMOyからなる多結晶体であって、BixMOyのxが11.1≦x≦11.95、yはMおよびxにより決まる化学量論的な酸素原子数である光導電層を製造するには、下記に示す原料の溶液あるいは粉体のBiとMの組成比(モル比)が、所望のBixMOyの結晶の組成比となるよう調整することにより製造することができる。 A polycrystalline body consisting Bi x MO y, Bi x MO x is 11.1 ≦ x ≦ 11.95 of y, y is the photoconductive layer is a stoichiometric oxygen atom number determined by M and x Can be produced by adjusting the composition ratio (molar ratio) of Bi and M of the raw material solution or powder shown below to the desired composition ratio of Bi x MO y crystals. it can.

具体的な方法としては、第1にビスマス塩と金属アルコキシドを酸性条件下で反応させBixMOy前駆体液を得、得られたこのBixMOy前駆体液を支持体に塗布し、乾燥してできたBixMOy膜もしくはBixMOy前駆体膜を焼結する方法をあげることができる。 As a specific method, first, a Bi x MO y precursor liquid is obtained by reacting a bismuth salt and a metal alkoxide under acidic conditions. The obtained Bi x MO y precursor liquid is applied to a support and dried. Examples thereof include a method of sintering a Bi x MO y film or a Bi x MO y precursor film formed in this way.

上記ビスマス塩は硝酸ビスマスまたは酢酸ビスマスであることが好ましく、金属アルコキシドはGe,Si,Tiのアルコキシド、より具体的には、Ge(O−CH34,Ge(O−C254,Ge(O−iC374,Si(O−CH34,Si(O−C254,Si(O−iC374,Ti(O−CH34,Ti(O−C254 ,Ti(O−iC374 などを好ましくあげることができる。 The bismuth salt is preferably bismuth nitrate or bismuth acetate, and the metal alkoxide is an alkoxide of Ge, Si, Ti, more specifically, Ge (O—CH 3 ) 4 , Ge (O—C 2 H 5 ). 4 , Ge (O—iC 3 H 7 ) 4 , Si (O—CH 3 ) 4 , Si (O—C 2 H 5 ) 4 , Si (O—iC 3 H 7 ) 4 , Ti (O—CH 3) ) 4 , Ti (O—C 2 H 5 ) 4 , Ti (O—iC 3 H 7 ) 4 and the like can be preferably exemplified.

ビスマス塩と金属アルコキシドを酸性条件下で加水分解する方法としては、適宜公知の方法により行うことができ、例えば、ビスマス塩と金属アルコキシドを酢酸、メトキシエタノールと硝酸の混合水溶液、エトキシエタノールと硝酸の混合水溶液などとともに加水分解することが好ましい。加水分解後、BixMOy前駆体液が得られるが、これを支持体に塗布する前に、濃縮または還流を行うことがより好ましい。 As a method of hydrolyzing a bismuth salt and a metal alkoxide under acidic conditions, it can be carried out by a known method as appropriate. For example, a bismuth salt and a metal alkoxide can be mixed with acetic acid, a mixed aqueous solution of methoxyethanol and nitric acid, It is preferable to hydrolyze with a mixed aqueous solution. After hydrolysis, a Bi x MO y precursor solution is obtained, but it is more preferable to perform concentration or reflux before applying this to the support.

支持体に塗布したBixMOy前駆体膜を焼結する場合には、BixMOy前駆体膜を成形した被焼成体(成形体)の焼結時に、この成形体を載置する台であるセッターとして酸化物材料、具体的には、酸化アルミニウム焼結体、酸化ジルコニウム焼結体、あるいは酸化アルミニウムの単結晶などを用いることが好ましい。このようなセッターを用いて焼結を行うことによって、BixMOy焼結体をセッターと融着させることなく製造することができる。図1に、BixMOy焼結体の製造方法を示す概略構成断面図を示す。 In the case of sintering the Bi x MO y precursor film coated on the support, a stage on which the molded body is placed when the fired body (molded body) formed with the Bi x MO y precursor film is sintered. As the setter, it is preferable to use an oxide material, specifically, an aluminum oxide sintered body, a zirconium oxide sintered body, or a single crystal of aluminum oxide. By sintering using such a setter, the Bi x MO y sintered body can be manufactured without fusing with the setter. FIG. 1 is a schematic cross-sectional view showing a method for producing a Bi x MO y sintered body.

図1は、支柱3を介して棚組みされたセッター2上に被焼成体1を載置した焼成開始前の状態を示している。被焼成体1はBixMOy前駆体膜の平板状の成形体である。セッター2は酸化アルミニウム焼結体、酸化ジルコニウム焼結体、あるいは酸化アルミニウムの単結晶などの酸化物材料であって、酸化ケイ素の含有量が1重量%以下、さらには0.3重量%以下であるものが好ましい。 FIG. 1 shows a state before firing is started in which a body 1 to be fired is placed on a setter 2 that is shelved via a column 3. The to-be-fired body 1 is a flat molded body of a Bi x MO y precursor film. Setter 2 is an oxide material such as an aluminum oxide sintered body, a zirconium oxide sintered body, or a single crystal of aluminum oxide, and has a silicon oxide content of 1% by weight or less, and further 0.3% by weight or less. Is preferred.

支柱3はセッターの外周付近に所定の間隔で複数配置され、それらの内部において被焼成体1がセッター2上に載置されている。なお、焼結時に、被焼成体上に重し板を載せた状態で焼成を行ってもよい。焼結温度は、被焼成体の種類、セッターの種類、被焼成体とセッターの組合せ等によって異なるため一概には言えないが、800℃〜900℃であることが好ましい。通常、焼結に用いられる白金材料からなるセッターの場合には、このような高温で焼結を行うと、セッターと披焼結体との間で融着が起こりBixMOy焼結体を得ることができないが、セッター2に上記酸化物材料を用いることによって、被焼成体1をセッター2と融着させることなく形成させることが可能となる。 A plurality of support columns 3 are arranged in the vicinity of the outer periphery of the setter at a predetermined interval. In addition, you may sinter in the state which mounted the weight board on the to-be-fired body at the time of sintering. The sintering temperature varies depending on the type of the body to be fired, the type of setter, the combination of the body to be fired and the setter, and the like, but cannot generally be said, but is preferably 800 ° C to 900 ° C. Usually, in the case of a setter made of a platinum material used for sintering, if sintering is performed at such a high temperature, fusion occurs between the setter and the sintered body, and the Bi x MO y sintered body is formed. Although it cannot be obtained, by using the oxide material for the setter 2, the fired body 1 can be formed without being fused to the setter 2.

本発明の光導電層を製造する方法としては、第2に真空中に予め調整しておいたBixMOy粉体をキャリアガスで巻き上げて、そのBixMOy粉体の混じったキャリアガスを真空中で支持体に吹き付けてBixMOy粉体を堆積させるエアロゾルデポジション法(AD法)、第3にBixMOy粉体をプレス機を用いて高圧力でプレスすることで膜化し、得られた膜を焼結させるプレス焼結法、第4にBixMOy粉体をバインダーを用いて塗布してグリーンシート(バインダーを含んだ膜)を作製し、このグリーンシートを焼成して脱バインダー化及び粉末の焼結化を行う方法(以下、グリーンシート法)などの方法があげられる。 As a method for producing the photoconductive layer of the present invention, secondly, Bi x MO y powder previously adjusted in a vacuum is wound up with a carrier gas, and the carrier gas mixed with the Bi x MO y powder is used. The aerosol deposition method (AD method) in which Bi x MO y powder is deposited by spraying on a support in a vacuum, and thirdly, the Bi x MO y powder is pressed at a high pressure using a press. And press sintering method to sinter the resulting film, and fourthly, a Bi x MO y powder is applied using a binder to produce a green sheet (a film containing the binder), and this green sheet is fired And a method of removing the binder and sintering the powder (hereinafter referred to as green sheet method).

上記第2〜第4に記載した製造方法に用いるBixMOy粉体の調整方法としては、ビスマス塩と金属アルコキシドを酸性条件下で加水分解してBixMOy前駆体液を得、得られたこのBixMOy前駆体液を濃縮してゲル状とし、このゲル状BixMOy前駆体を焼成してBixMOy粉体とする方法、酸化ビスマス(Bi23)とMO2(酸化ケイ素、酸化ゲルマニウム、酸化チタン)を混合し、例えば800℃で仮焼成することによる固相反応によりBixMOy粉体を得る方法などがあげられる。 As a method for preparing the Bi x MO y powder used in the production methods described in the second to fourth aspects, a Bi x MO y precursor liquid is obtained by hydrolyzing a bismuth salt and a metal alkoxide under acidic conditions. In addition, the Bi x MO y precursor liquid is concentrated to form a gel, and the gel Bi x MO y precursor is calcined to form a Bi x MO y powder. Bismuth oxide (Bi 2 O 3 ) and MO 2 (Silicon oxide, germanium oxide, titanium oxide) are mixed and, for example, a method of obtaining a Bi x MO y powder by a solid phase reaction by pre-baking at 800 ° C., etc.

なお、グリーンシート法ではバインダーを用いるが、このバインダーは焼結によって完全に消失し、焼結後のBixMOy焼結体には残存することはない。グリーンシート法で用いられるバインダーとしては、セルロースアセテート、ポリアルキルメタアクリレート、ポリビニルアルコール、ポリビニルブチラール等を好ましくあげることができる。 Although a binder is used in the green sheet method, this binder disappears completely by sintering and does not remain in the sintered Bi x MO y sintered body. Preferred examples of the binder used in the green sheet method include cellulose acetate, polyalkyl methacrylate, polyvinyl alcohol, and polyvinyl butyral.

ビスマス塩および金属アルコキシドは上記第1の製造方法で記載したものを好ましくあげることができ、また、ビスマス塩と金属アルコキシドを酸性条件下で反応させる方法も上記第1の製造方法で記載したものを好ましくあげることができる。   As the bismuth salt and the metal alkoxide, those described in the first production method can be preferably given, and the method for reacting the bismuth salt and the metal alkoxide under acidic conditions is also the one described in the first production method. Preferably it can be mentioned.

上記、第2の製造方法で使用されるBixMOy粉体は、ビスマス及び金属それぞれのアルコキシドをアルカリ条件下で反応させてBixMOy前駆体液を得、得られたこのBixMOy前駆体液を液相において結晶化することによっても得ることが可能である。 Above, Bi x MO y powder used in the second manufacturing method, bismuth and metal each alkoxide is reacted under alkaline conditions to obtain a Bi x MO y precursor liquid, the resulting Bi x MO y It can also be obtained by crystallizing the precursor liquid in the liquid phase.

ここで、ビスマスのアルコキシドとしては、Bi(O−CH33,Bi(O−C253,Bi(O−iC373などを好ましくあげることができ、金属アルコキシドは上記第1の製造方法で記載したものを好ましくあげることができる。ビスマスのアルコキシドと金属アルコキシドをアルカリ条件下で加水分解する方法としては、適宜公知の方法により行うことができ、好ましくは、ビスマスのアルコキシドと金属アルコキシドを水酸化ナトリウム、水酸化カリウムなどとともに加水分解する。 Here, preferred examples of the bismuth alkoxide include Bi (O—CH 3 ) 3 , Bi (O—C 2 H 5 ) 3 , Bi (O—iC 3 H 7 ) 3, etc. What was described by the said 1st manufacturing method can be mention | raise | lifted preferably. As a method of hydrolyzing the bismuth alkoxide and the metal alkoxide under alkaline conditions, a known method can be used as appropriate. Preferably, the bismuth alkoxide and the metal alkoxide are hydrolyzed together with sodium hydroxide, potassium hydroxide and the like. .

第2の製造方法で記載しているAD法は、あらかじめ準備された微粒子、超微粒子原料をキャリアガスと混合してエアロゾル化し、ノズルを通して基板に噴射して被膜を形成する技術である。この方法の詳細について図2を用いて説明する。図2は本発明の光導電層の製造に用いられるAD法を行う製膜装置の概略模式図である。   The AD method described in the second manufacturing method is a technique in which fine particles and ultrafine particles prepared in advance are mixed with a carrier gas to be aerosolized and sprayed onto a substrate through a nozzle to form a film. Details of this method will be described with reference to FIG. FIG. 2 is a schematic diagram of a film forming apparatus for performing the AD method used for manufacturing the photoconductive layer of the present invention.

製造装置10は、BixMOy原料粒子12とキャリアガスが攪拌・混合されるエアロゾル化チャンバー13と、製膜が行われる製膜チャンバー14と、キャリアガスを貯留する高圧ガスボンベ15からなり、さらに製膜チャンバー14には、BixMOy原料粒子12が堆積される基板16と、基板16を保持するホルダー17と、ホルダー17をXYZθで3次元に作動させるステージ18と、基板16にBixMOy原料12を噴出させる細い開口を備えたノズル19とが備えられ、さらに、ノズル19とエアロゾル化チャンバー13とをつなぐ第1配管20と、エアロゾル化チャンバー13と高圧ガスボンベ15とをつなぐ第2配管21と、製膜チャンバー14内を減圧する真空ポンプ22とによって構成されてなる。 The manufacturing apparatus 10 includes an aerosol forming chamber 13 in which the Bi x MO y raw material particles 12 and the carrier gas are stirred and mixed, a film forming chamber 14 in which film formation is performed, and a high-pressure gas cylinder 15 that stores the carrier gas. The film forming chamber 14 includes a substrate 16 on which the Bi x MO y raw material particles 12 are deposited, a holder 17 that holds the substrate 16, a stage 18 that operates the holder 17 in three dimensions with XYZθ, and a Bi x on the substrate 16. A nozzle 19 having a narrow opening for ejecting the MO y raw material 12, a second pipe 20 connecting the nozzle 19 and the aerosolization chamber 13, and a second pipe connecting the aerosolization chamber 13 and the high-pressure gas cylinder 15. The pipe 21 and the vacuum pump 22 for reducing the pressure inside the film forming chamber 14 are configured.

エアロゾル化チャンバー13内のBixMOy原料粒子12は、次のような手順によって基板16上に製膜形成される。エアロゾル化チャンバー13内に充填された0.1〜2μのBixMOy原料粒子12は、キャリアガスを貯留する高圧ガスボンベ15から第2配管21を通ってエアロゾル化チャンバー13に導入されるキャリアガスとともに、振動・撹拌されてエアロゾル化される。エアロゾル化されたBixMOy原料粒子12は第1配管20を通り、製膜チャンバー14内の細い開口を備えたノズル19から基板16にキャリアガスとともに吹き付けられ、塗膜が形成される。製膜チャンバー14は真空ポンプ22で排気され、製膜チャンバー14内の真空度は必要に応じて調整される。さらに、基板16のホルダーはXYZθステージ18により3次元に動くことができるため、基板16の所定の部分に必要な厚みのBixMOy塗膜が形成される。 The Bi x MO y raw material particles 12 in the aerosol forming chamber 13 are formed on the substrate 16 by the following procedure. The 0.1-2 μm Bi x MO y raw material particles 12 filled in the aerosolization chamber 13 together with the carrier gas introduced into the aerosolization chamber 13 through the second pipe 21 from the high-pressure gas cylinder 15 storing the carrier gas, Vibrated and agitated to be aerosolized. The aerosolized Bi x MO y raw material particles 12 pass through the first pipe 20 and are sprayed together with a carrier gas from a nozzle 19 having a narrow opening in the film forming chamber 14 to form a coating film. The film forming chamber 14 is evacuated by a vacuum pump 22, and the degree of vacuum in the film forming chamber 14 is adjusted as necessary. Further, since the holder of the substrate 16 can be moved three-dimensionally by the XYZθ stage 18, a Bi x MO y coating film having a necessary thickness is formed on a predetermined portion of the substrate 16.

原料粒子には、平均粒径0.1μm〜10μm程度の粉末を用いることが好ましく、さらに粒径が0.1〜2μmが50重量%以上のものが好ましく用いられる。ここで、粒径とは、粒子と同じ体積の球の直径である等体積球相当径を意味し、平均は個数平均である。   As the raw material particles, it is preferable to use powder having an average particle size of about 0.1 μm to 10 μm, and particles having a particle size of 0.1 to 2 μm are preferably 50% by weight or more. Here, the particle diameter means an equivalent volume sphere equivalent diameter which is the diameter of a sphere having the same volume as the particle, and the average is a number average.

エアロゾル化された原料粒子は、6mm2以下の微小開口のノズルを通すことによって流速2〜300m/secまで容易に加速され、キャリアガスによって基板に衝突させることで基板上に堆積させることができる。キャリアガスにより衝突した粒子は、互いに衝突の衝撃によって接合し膜を形成するので、緻密な膜が製膜される。原料粒子を堆積させる際の基板の温度は室温であってもよいが、100℃〜300℃に調整することによってより緻密な膜を製膜することが可能である。 The aerosolized raw material particles are easily accelerated to a flow rate of 2 to 300 m / sec by passing through a nozzle having a minute opening of 6 mm 2 or less, and can be deposited on the substrate by colliding with the substrate by a carrier gas. Since the particles colliding with the carrier gas are bonded to each other by impact of the collision to form a film, a dense film is formed. The temperature of the substrate when depositing the raw material particles may be room temperature, but a denser film can be formed by adjusting the temperature to 100 ° C. to 300 ° C.

光導電層の層厚は好ましくは10〜700μm、さらには80〜300μmであることが好ましい。光導電層の層厚が10μmよりも薄い場合にはX線吸収率が低下し感度の向上は望めず、一方、700μmよりも厚い場合にはX線吸収量は飽和によってこれ以上増加しない上に、発生した電荷が電極に到達するまで長い距離を移動することになり、途中で失活して、捕集効率が低下してしまい、却って画像が劣化してしまうことになる。   The layer thickness of the photoconductive layer is preferably 10 to 700 μm, more preferably 80 to 300 μm. When the photoconductive layer thickness is less than 10 μm, the X-ray absorption rate decreases and no improvement in sensitivity can be expected. On the other hand, when the photoconductive layer is thicker than 700 μm, the X-ray absorption amount does not increase further due to saturation. Then, the generated electric charge moves a long distance until it reaches the electrode, and it is deactivated in the middle, and the collection efficiency is lowered. On the contrary, the image is deteriorated.

放射線撮像パネルには、放射線を直接電荷に変換し電荷を蓄積する直接変換方式と、放射線を一度CsIなどのシンチレータで光に変換し、その光をa−Siフォトダイオードで電荷に変換し蓄積する間接変換方式があるが、本発明の光導電層は前者の直接変換方式に用いることができる。なお、放射線としてはX線の他、γ線、α線などについて使用することが可能である。   In the radiation imaging panel, a direct conversion method in which radiation is directly converted into charges and stored, and radiation is converted into light once by a scintillator such as CsI, and the light is converted into charges by an a-Si photodiode and stored. Although there is an indirect conversion method, the photoconductive layer of the present invention can be used for the former direct conversion method. In addition to X-rays, γ rays, α rays, etc. can be used as radiation.

また、本発明の光導電層は、光の照射により電荷を発生する半導体材料を利用した放射線画像検出器により読み取る、いわゆる光読取方式にも、放射線の照射により発生した電荷を蓄積し、その蓄積した電荷を薄膜トランジスタ(thin film transistor:TFT)などの電気的スイッチを1画素ずつON・OFFすることにより読み取る方式(以下、TFT方式という)にも用いることができる。   In addition, the photoconductive layer of the present invention accumulates charges generated by radiation irradiation in a so-called optical reading system that reads by a radiation image detector using a semiconductor material that generates charges by light irradiation. It can also be used for a method (hereinafter referred to as “TFT method”) in which the charges are read by turning on and off an electrical switch such as a thin film transistor (TFT) one pixel at a time.

まず、前者の光読取方式に用いられる放射線撮像パネルを例にとって説明する。図3は本発明の光導電層を有する放射線撮像パネルの一実施の形態を示す断面図を示すものである。   First, a radiation imaging panel used for the former optical reading method will be described as an example. FIG. 3 is a sectional view showing an embodiment of a radiation imaging panel having a photoconductive layer according to the present invention.

この放射線撮像パネル30は、後述する記録用の放射線L1に対して透過性を有する第1の導電層31、この導電層31を透過した放射線L1の照射を受けることにより導電性を呈する記録用放射線導電層32、導電層31に帯電される電荷(潜像極性電荷;例えば負電荷)に対しては略絶縁体として作用し、かつ、電荷と逆極性の電荷(輸送極性電荷;上述の例においては正電荷)に対しては略導電体として作用する電荷輸送層33、後述する読取用の読取光L2の照射を受けることにより導電性を呈する読取用光導電層34、読取光L2に対して透過性を有する第2の導電層35を、この順に積層してなるものである。   The radiation imaging panel 30 includes a first conductive layer 31 that is transparent to a recording radiation L1, which will be described later, and a recording radiation that exhibits conductivity when irradiated with the radiation L1 that has passed through the conductive layer 31. The conductive layer 32 and the charge charged to the conductive layer 31 (latent image polar charge; for example, negative charge) act as an insulator and have a charge opposite to the charge (transport polar charge; in the above example) For the positive charge), the charge transport layer 33 that acts as a substantially conductive material, the read photoconductive layer 34 that exhibits conductivity by irradiation of the read light L2 for reading described later, and the read light L2. The second conductive layer 35 having transparency is laminated in this order.

ここで、導電層31および35としては、例えば、透明ガラス板上に導電性物質を一様に塗布したもの(ネサ皮膜等)が適当である。電荷輸送層33としては、導電層31に帯電される負電荷の移動度と、その逆極性となる正電荷の移動度の差が大きい程良く、ポリN−ビニルカルバゾール(PVK)、N,N'−ジフェニル−N,N'−ビス(3−メチルフェニル)−〔1,1'−ビフェニル〕−4,4'−ジアミン(TPD)やディスコティック液晶等の有機系化合物、或いはTPDのポリマー(ポリカーボネート、ポリスチレン、PVK)分散物,Clを10〜200ppmドープしたa−Se等の半導体物質が適当である。特に、有機系化合物(PVK,TPD、ディスコティック液晶等)は光不感性を有するため好ましく、また、誘電率が一般に小さいため電荷輸送層33と読取用光導電層34の容量が小さくなり読み取り時の信号取り出し効率を大きくすることができる。   Here, as the conductive layers 31 and 35, for example, a transparent glass plate in which a conductive substance is uniformly applied (nesa film or the like) is suitable. As the charge transport layer 33, the larger the difference between the mobility of the negative charge charged in the conductive layer 31 and the mobility of the positive charge having the opposite polarity, the better, poly N-vinylcarbazole (PVK), N, N Organic compounds such as' -diphenyl-N, N'-bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (TPD) and discotic liquid crystals, or TPD polymers ( Polycarbonate, polystyrene, PVK) dispersion, semiconductor materials such as a-Se doped with 10 to 200 ppm of Cl are suitable. In particular, organic compounds (PVK, TPD, discotic liquid crystal, etc.) are preferable because they have light insensitivity, and since the dielectric constant is generally small, the capacitance of the charge transport layer 33 and the reading photoconductive layer 34 is reduced, so The signal extraction efficiency can be increased.

読取用光導電層34には、a−Se,Se−Te,Se−As−Te,無金属フタロシアニン,金属フタロシアニン,MgPc( Magnesium phtalocyanine),VoPc(phaseII of Vanadyl phthalocyanine),CuPc(Cupper phtalocyanine)等のうち少なくとも1つを主成分とする光導電性物質が好適である。   The reading photoconductive layer 34 includes a-Se, Se-Te, Se-As-Te, metal-free phthalocyanine, metal phthalocyanine, MgPc (magnesium phtalocyanine), VoPc (phase II of vanadyl phthalocyanine), CuPc (Cupper phtalocyanine), and the like. Among them, a photoconductive material mainly containing at least one of them is preferable.

記録用放射線導電層32には、本発明の光導電層を使用する。すなわち、本発明の光導電層は記録用放射線導電層である。   For the recording radiation conductive layer 32, the photoconductive layer of the present invention is used. That is, the photoconductive layer of the present invention is a recording radiation conductive layer.

続いて、静電潜像を読み取るために光を用いる方式について簡単に説明する。図4は放射線撮像パネル30を用いた記録読取システム(静電潜像記録装置と静電潜像読取装置を一体にしたもの)の概略構成図を示すものである。この記録読取システムは、放射線撮像パネル30、記録用照射手段90、電源50、電流検出手段70、読取用露光手段92並びに接続手段S1、S2とからなり、静電潜像記録装置部分は放射線撮像パネル30、電源50、記録用照射手段90、接続手段S1とからなり、静電潜像読取装置部分は放射線撮像パネル30、電流検出手段70、接続手段S2とからなる。   Next, a system that uses light to read an electrostatic latent image will be briefly described. FIG. 4 is a schematic configuration diagram of a recording / reading system using the radiation imaging panel 30 (integrated electrostatic latent image recording device and electrostatic latent image reading device). This recording / reading system comprises a radiation imaging panel 30, a recording irradiation means 90, a power supply 50, a current detection means 70, a reading exposure means 92, and connection means S1, S2. The panel 30, the power supply 50, the recording irradiation means 90, and the connection means S 1, and the electrostatic latent image reading device portion includes the radiation imaging panel 30, the current detection means 70, and the connection means S 2.

放射線撮像パネル30の導電層31は接続手段S1を介して電源50の負極に接続されるとともに、接続手段S2の一端にも接続されている。接続手段S2の他端の一方は電流検出手段70に接続され、放射線撮像パネル30の導電層35、電源50の正極並びに接続手段S2の他端の他方は接地されている。電流検出手段70はオペアンプからなる検出アンプ70aと帰還抵抗70b とからなり、いわゆる電流電圧変換回路を構成している。   The conductive layer 31 of the radiation imaging panel 30 is connected to the negative electrode of the power source 50 via the connection means S1, and is also connected to one end of the connection means S2. One of the other ends of the connecting means S2 is connected to the current detecting means 70, and the conductive layer 35 of the radiation imaging panel 30, the positive electrode of the power source 50, and the other of the other ends of the connecting means S2 are grounded. The current detection means 70 includes a detection amplifier 70a made of an operational amplifier and a feedback resistor 70b, and constitutes a so-called current-voltage conversion circuit.

導電層31の上面には被写体29が配設されており、被写体29は放射線L1に対して透過性を有する部分29aと透過性を有しない遮断部(遮光部)29bが存在する。記録用照射手段90は放射線L1を被写体29に一様に曝射するものであり、読取用露光手段92は赤外線レーザ光やLED、EL等の読取光L2を図4中の矢印方向へ走査露光するものであり、読取光L2は細径に収束されたビーム形状をしていることが望ましい。   A subject 29 is disposed on the upper surface of the conductive layer 31, and the subject 29 has a portion 29a that is transmissive to the radiation L1 and a blocking portion (light-shielding portion) 29b that is not transmissive. The recording irradiation means 90 uniformly exposes the radiation L1 to the subject 29, and the reading exposure means 92 scans and exposes the reading light L2 such as infrared laser light, LED, EL or the like in the direction of the arrow in FIG. Therefore, it is desirable that the reading light L2 has a beam shape converged to a small diameter.

以下、上記構成の記録読取システムにおける静電潜像記録過程について電荷モデル(図5)を参照しながら説明する。図4において接続手段S2を開放状態(接地、電流検出手段70の何れにも接続させない)にして、接続手段S1をオンし導電層31と導電層35との間に電源50による直流電圧Edを印加し、電源50から負の電荷を導電層31に、正の電荷を導電層35に帯電させる(図3(A)参照)。これにより、放射線撮像パネル10には導電層31と35との間に平行な電場が形成される。   Hereinafter, an electrostatic latent image recording process in the recording / reading system having the above-described configuration will be described with reference to a charge model (FIG. 5). In FIG. 4, the connection means S2 is opened (not connected to either the ground or current detection means 70), the connection means S1 is turned on, and the DC voltage Ed from the power source 50 is applied between the conductive layer 31 and the conductive layer 35. Then, a negative charge is applied to the conductive layer 31 and a positive charge is applied to the conductive layer 35 from the power supply 50 (see FIG. 3A). As a result, a parallel electric field is formed between the conductive layers 31 and 35 in the radiation imaging panel 10.

次に記録用照射手段90から放射線L1を被写体29に向けて一様に曝射する。放射線L1は被写体29の透過部29aを透過し、さらに導電層31をも透過する。放射線導電層32はこの透過した放射線L1を受け導電性を呈するようになる。これは放射線L1の線量に応じて可変の抵抗値を示す可変抵抗器として作用することで理解され、抵抗値は放射線L1によって電子(負電荷)とホール(正電荷)の電荷対が生じることに依存し、被写体29を透過した放射線L1の線量が少なければ大きな抵抗値を示すものである(図5(B)参照)。なお、放射線L1によって生成される負電荷(−)および正電荷(+)を、図面上では−または+を○で囲んで表している。   Next, the radiation L1 is uniformly irradiated toward the subject 29 from the recording irradiation means 90. The radiation L1 passes through the transmission part 29a of the subject 29 and further passes through the conductive layer 31. The radiation conductive layer 32 receives the transmitted radiation L1 and exhibits conductivity. This is understood by acting as a variable resistor that shows a variable resistance value according to the dose of radiation L1, and the resistance value is caused by the generation of a charge pair of electrons (negative charge) and holes (positive charge) by radiation L1. The resistance value is large when the dose of the radiation L1 transmitted through the subject 29 is small (see FIG. 5B). The negative charge (−) and the positive charge (+) generated by the radiation L1 are represented by enclosing − or + in circles in the drawing.

放射線導電層32中に生じた正電荷は放射線導電層32中を導電層31に向かって高速に移動し、導電層31と放射線導電層32との界面で導電層31に帯電している負電荷と電荷再結合して消滅する(図5(C),(D)を参照)。一方、放射線導電層32中に生じた負電荷は放射線導電層32中を電荷転送層33に向かって移動する。電荷転送層33は導電層31に帯電した電荷と同じ極性の電荷(本例では負電荷)に対して絶縁体として作用するものであるから、放射線導電層32中を移動してきた負電荷は放射線導電層32と電荷転送層33との界面で停止し、この界面に蓄積されることになる(図5(C),(D)を参照)。蓄積される電荷量は放射線導電層32中に生じる負電荷の量、即ち、放射線L1の被写体29を透過した線量によって定まるものである。   The positive charge generated in the radiation conductive layer 32 moves at high speed in the radiation conductive layer 32 toward the conductive layer 31, and the negative charge is charged in the conductive layer 31 at the interface between the conductive layer 31 and the radiation conductive layer 32. And disappear after charge recombination (see FIGS. 5C and 5D). On the other hand, the negative charges generated in the radiation conductive layer 32 move in the radiation conductive layer 32 toward the charge transfer layer 33. Since the charge transfer layer 33 acts as an insulator for charges of the same polarity as the charges charged in the conductive layer 31 (in this example, negative charges), the negative charges that have moved through the radiation conductive layer 32 are radiation. It stops at the interface between the conductive layer 32 and the charge transfer layer 33 and accumulates at this interface (see FIGS. 5C and 5D). The amount of charge accumulated is determined by the amount of negative charge generated in the radiation conductive layer 32, that is, the dose of radiation L1 transmitted through the subject 29.

一方、放射線L1は被写体29の遮光部29bを透過しないから、放射線撮像パネル30の遮光部29bの下部にあたる部分は何ら変化を生じない( 図5(B)〜(D)を参照)。このようにして、被写体29に放射線L1を曝射することにより、被写体像に応じた電荷を放射線導電層32と電荷転送層33との界面に蓄積することができるようになる。なお、この蓄積せしめられた電荷による被写体像を静電潜像という。   On the other hand, since the radiation L1 does not pass through the light shielding part 29b of the subject 29, the portion corresponding to the lower part of the light shielding part 29b of the radiation imaging panel 30 does not change at all (see FIGS. 5B to 5D). In this way, by exposing the subject 29 to the radiation L1, charges according to the subject image can be accumulated at the interface between the radiation conductive layer 32 and the charge transfer layer 33. The subject image based on the accumulated charges is called an electrostatic latent image.

次に静電潜像読取過程について電荷モデル(図6)を参照しつつ説明する。接続手段S1を開放し電源供給を停止すると共に、S2を一旦接地側に接続し、静電潜像が記録された放射線撮像パネル30の導電層31および35を同電位に帯電させて電荷の再配列を行った後に(図6(A)参照)、接続手段S2を電流検出手段70側に接続する。   Next, an electrostatic latent image reading process will be described with reference to a charge model (FIG. 6). The connection means S1 is opened to stop the power supply, and S2 is temporarily connected to the ground side, and the conductive layers 31 and 35 of the radiation imaging panel 30 on which the electrostatic latent image is recorded are charged to the same potential to recharge the charge. After the arrangement (see FIG. 6A), the connecting means S2 is connected to the current detecting means 70 side.

読取用露光手段92により読取光L2を放射線撮像パネル30の導電層35側に走査露光すると、読取光L2は導電層35を透過し、この透過した読取光L2が照射された光導電層34は走査露光に応じて導電性を呈するようになる。これは上記放射線導電層32が放射線L1の照射を受けて正負の電荷対が生じることにより導電性を呈するのと同様に、読取光L2の照射を受けて正負の電荷対が生じることに依存するものである(図6(B)参照)。なお、記録過程と同様に、読取光L2によって生成される負電荷(−)および正電荷(+)を、図面上では−または+を○で囲んで表している。   When the reading light L2 is scanned and exposed to the conductive layer 35 side of the radiation imaging panel 30 by the reading exposure means 92, the reading light L2 passes through the conductive layer 35, and the photoconductive layer 34 irradiated with the transmitted reading light L2 is Conductivity is exhibited according to scanning exposure. This is dependent on the fact that the radiation conductive layer 32 is exposed to the radiation L1 to generate positive and negative charge pairs, and has a positive and negative charge pair upon receiving the reading light L2. (See FIG. 6B). As in the recording process, negative charges (−) and positive charges (+) generated by the reading light L2 are represented by enclosing − or + in circles in the drawing.

電荷輸送層33は正電荷に対しては導電体として作用するものであるから、光導電層34に生じた正電荷は蓄積電荷に引きつけられるように電荷輸送層33の中を急速に移動し、放射線導電層32と電荷輸送層33との界面で蓄積電荷と電荷再結合をし消滅する(図6(C)参照)。一方、光導電層34に生じた負電荷は導電層35の正電荷と電荷再結合をし消滅する(図6(C)参照)。光導電層34は読取光L2により十分な光量でもって走査露光されており、放射線導電層32と電荷輸送層33との界面に蓄積されている蓄積電荷、即ち静電潜像が全て電荷再結合により消滅せしめられる。このように、放射線撮像パネル30に蓄積されていた電荷が消滅するということは、放射線撮像パネル30に電荷の移動による電流Iが流れたことを意味するものであり、この状態は放射線撮像パネル30を電流量が蓄積電荷量に依存する電流源で表した図6(D)のような等価回路でもって示すことができる。   Since the charge transport layer 33 acts as a conductor for the positive charge, the positive charge generated in the photoconductive layer 34 moves rapidly in the charge transport layer 33 so as to be attracted to the accumulated charge, The accumulated charge and charge recombination disappear at the interface between the radiation conductive layer 32 and the charge transport layer 33 (see FIG. 6C). On the other hand, the negative charge generated in the photoconductive layer 34 is recombined with the positive charge of the conductive layer 35 and disappears (see FIG. 6C). The photoconductive layer 34 is scanned and exposed with a sufficient amount of light by the reading light L2, and the accumulated charge accumulated at the interface between the radiation conductive layer 32 and the charge transport layer 33, that is, the electrostatic latent image is all charge recombined. Will be extinguished. Thus, the disappearance of the charge accumulated in the radiation imaging panel 30 means that the current I has flowed to the radiation imaging panel 30 due to the movement of the charge, and this state is the radiation imaging panel 30. Can be expressed by an equivalent circuit as shown in FIG. 6D, in which the current amount is expressed by a current source whose amount depends on the accumulated charge amount.

このように、読取光L2を走査露光しながら、放射線撮像パネル30から流れ出す電流を検出することにより、走査露光された各部(画素に対応する)の蓄積電荷量を順次読み取ることができ、これにより静電潜像を読み取ることができる。なお、本放射線検出部動作については特開2000-105297号等に記載されている。   In this way, by detecting the current flowing out from the radiation imaging panel 30 while scanning and exposing the reading light L2, it is possible to sequentially read the accumulated charge amount of each scanning-exposed part (corresponding to the pixel). The electrostatic latent image can be read. The operation of the radiation detection unit is described in Japanese Patent Application Laid-Open No. 2000-105297.

次に、後者のTFT方式の放射線撮像パネルについて説明する。この放射線撮像パネルは、図7に示すように放射線検出部100とアクティブマトリックスアレイ基板(以下AMA基板)200が接合された構造となっている。図8に示すように放射線検出部100は大きく分けて放射線入射側から順に、バイアス電圧印加用の共通電極103と、検出対象の放射線に感応して電子−正孔対であるキャリアを生成する光導電層104と、キャリア収集用の検出電極107とが積層形成された構成となっている。共通電極の上層には放射線検出部支持体102を有していてもよい。   Next, the latter TFT type radiation imaging panel will be described. This radiation imaging panel has a structure in which a radiation detection unit 100 and an active matrix array substrate (hereinafter referred to as an AMA substrate) 200 are joined as shown in FIG. As shown in FIG. 8, the radiation detection unit 100 is roughly divided into a common electrode 103 for applying a bias voltage and light that generates carriers that are electron-hole pairs in response to the radiation to be detected in order from the radiation incident side. The conductive layer 104 and the detection electrode 107 for collecting carriers are stacked. The radiation detection unit support 102 may be provided on the upper layer of the common electrode.

光導電層104は本発明の光導電層である。共通電極103や検出電極107は、例えばITO(インジウム錫酸化物)や、AuあるいはPtなどの導電材料からなる。バイアス電圧の極性に応じて、正孔注入阻止層、電子注入阻止層が共通電極103や検出電極107に付設されていてもよい。   The photoconductive layer 104 is the photoconductive layer of the present invention. The common electrode 103 and the detection electrode 107 are made of a conductive material such as ITO (indium tin oxide), Au, or Pt, for example. Depending on the polarity of the bias voltage, a hole injection blocking layer and an electron injection blocking layer may be attached to the common electrode 103 and the detection electrode 107.

AMA基板200の各部の構成について簡単に説明する。AMA基板200は図9に示すように、画素相当分の放射線検出部105の各々に対して電荷蓄積容量であるコンデンサ210とスイッチング素子としてTFT220とが各1個ずつ設けられている。支持体102においては、必要画素に応じて縦1000〜3000×横1000〜3000程度のマトリックス構成で画素相当分の放射線検出部105が2次元配列されており、また、AMA基板200においても、画素数と同じ数のコンデンサ210およびTFT220が、同様のマトリックス構成で2次元配列されている。光導電層で発生した電荷はコンデンサ210に蓄積され、光読取方式に対応して静電潜像となる。TFT方式においては、放射線で発生した静電潜像は電荷蓄積容量に保持される。   The configuration of each part of the AMA substrate 200 will be briefly described. As shown in FIG. 9, the AMA substrate 200 is provided with a capacitor 210 as a charge storage capacitor and one TFT 220 as a switching element for each of the radiation detection portions 105 corresponding to pixels. In the support 102, the radiation detection units 105 corresponding to the pixels are two-dimensionally arranged in a matrix configuration of about 1000 to 3000 × 1000 to 3000 in accordance with the required pixels, and the AMA substrate 200 also has pixels. The same number of capacitors 210 and TFTs 220 are two-dimensionally arranged in the same matrix configuration. The electric charge generated in the photoconductive layer is accumulated in the capacitor 210 and becomes an electrostatic latent image corresponding to the optical reading method. In the TFT method, an electrostatic latent image generated by radiation is held in a charge storage capacitor.

AMA基板200におけるコンデンサ210およびTFT220の具体的構成は、図8に示す通りである。すなわち、AMA基板支持体230は絶縁体であり、その表面に形成されたコンデンサ210の接地側電極210aとTFT220のゲート電極220aの上に絶縁膜240を介してコンデンサ210の接続側電極210bとTFT220のソース電極220bおよびドレイン電極220cが積層形成されているのに加え、最表面側が保護用の絶縁膜250で覆われた状態となっている。また接続側電極210bとソース電極220bはひとつに繋がっており同時形成されている。コンデンサ210の容量絶縁膜およびTFT220のゲート絶縁膜の両方を構成している絶縁膜240としては、例えば、プラズマSiN膜が用いられる。このAMA基板200は、液晶表示用基板の作製に用いられるような薄膜形成技術や微細加工技術を用いて製造される。   Specific configurations of the capacitor 210 and the TFT 220 in the AMA substrate 200 are as shown in FIG. That is, the AMA substrate support 230 is an insulator, and the connection-side electrode 210b of the capacitor 210 and the TFT 220 are disposed on the ground electrode 210a of the capacitor 210 and the gate electrode 220a of the TFT 220 formed on the surface thereof via the insulating film 240. In addition to the source electrode 220b and the drain electrode 220c being stacked, the outermost surface side is covered with a protective insulating film 250. Further, the connection side electrode 210b and the source electrode 220b are connected to each other and are formed simultaneously. As the insulating film 240 constituting both the capacitor insulating film of the capacitor 210 and the gate insulating film of the TFT 220, for example, a plasma SiN film is used. The AMA substrate 200 is manufactured by using a thin film forming technique or a fine processing technique used for manufacturing a liquid crystal display substrate.

続いて放射線検出部100とAMA基板200の接合について説明する。検出電極107とコンデンサ210の接続側電極210bを位置合わせした状態で、両基板100、200を銀粒子などの導電性粒子を含み厚み方向のみに導電性を有する異方導電性フィルム(ACF)を間にして加熱・加圧接着して貼り合わせることで、両基板100、200が機械的に合体されると同時に、検出電極107と接続側電極210bが介在導体部140によって電気的に接続される。   Subsequently, the joining of the radiation detection unit 100 and the AMA substrate 200 will be described. With the detection electrode 107 and the connection side electrode 210b of the capacitor 210 aligned, both substrates 100 and 200 are made of anisotropic conductive film (ACF) containing conductive particles such as silver particles and having conductivity only in the thickness direction. The substrates 100 and 200 are mechanically combined by heating and pressurizing and bonding together, and at the same time, the detection electrode 107 and the connection side electrode 210b are electrically connected by the interposition conductor 140. .

さらに、AMA基板200には、読み出し駆動回路260とゲート駆動回路270とが設けられている。読み出し駆動回路260は、図9に示すように、列が同一のTFT220のドレイン電極を結ぶ縦(Y)方向の読み出し配線(読み出しアドレス線)280に接続されており、ゲート駆動回路270は行が同一のTFT220のゲート電極を結ぶ横(X)方向の読み出し線(ゲートアドレス線)290に接続されている。なお、図示しないが、読み出し駆動回路260内では、1本の読み出し配線280に対してプリアンプ(電荷−電圧変換器)が1個それぞれ接続されている。このように、AMA基板200には、読み出し駆動回路260とゲート駆動回路270とが接続されている。ただし、AMA基板200内に読み出し駆動回路260とゲート駆動回路270とを一体成型し、集積化を図ったものも用いられる。   Further, the AMA substrate 200 is provided with a read drive circuit 260 and a gate drive circuit 270. As shown in FIG. 9, the read drive circuit 260 is connected to a read wiring (read address line) 280 in the vertical (Y) direction connecting the drain electrodes of the TFTs 220 having the same column, and the gate drive circuit 270 has a row. A horizontal (X) direction read line (gate address line) 290 connecting the gate electrodes of the same TFT 220 is connected. Although not shown, one preamplifier (charge-voltage converter) is connected to one readout wiring 280 in the readout drive circuit 260. As described above, the read driving circuit 260 and the gate driving circuit 270 are connected to the AMA substrate 200. However, an integrated circuit in which the read drive circuit 260 and the gate drive circuit 270 are integrally formed in the AMA substrate 200 is also used.

なお、上述の放射線検出器100とAMA基板200とを接合合体させた放射線撮像装置による放射線検出動作については例えば特開平11-287862号などに記載されている。
以下に本発明の放射線撮像パネルを構成する光導電層の実施例を示す。
The radiation detection operation by the radiation imaging apparatus in which the radiation detector 100 and the AMA substrate 200 are joined and combined is described in, for example, Japanese Patent Application Laid-Open No. 11-287862.
Examples of the photoconductive layer constituting the radiation imaging panel of the present invention are shown below.

(実施例1)
酸化ビスマス(Bi23)粉末と酸化チタン(TiO2)粉末をBi:Ti= 11.9:1となるように配合し、酸化ジルコニウムボールを用いてエタノール中でボールミル混合を行った。その後、回収、乾燥し、800℃,8時間の仮焼成処理を行って酸化ビスマスと酸化チタンの固相反応によりBi11.9TiO19.85粉末を合成した。このBi11.9TiO19.85粉末を乳鉢で150μm以下に粗く粉砕した後、酸化ジルコニウムボールを用いたエタノール中のボールミルで粉砕、分散を行った。なお、この時分散を促進する分散剤として0.4wt%のポリビニルブチラール(PVB)を添加した。その後、バインダとして3.7wt%のポリビニルブチラールと可塑剤として0.8wt%のフタル酸ジオクチルを加えた後、更にボールミルを継続しシート成型用のスラリーを調整した。ボールミル混合後、回収したスラリーは真空脱泡処理によりスラリーの脱泡と濃縮を行い、スラリーの粘度を調整した。
Example 1
Bismuth oxide (Bi 2 O 3 ) powder and titanium oxide (TiO 2 ) powder were blended so that Bi: Ti = 11.9: 1, and ball mill mixing was performed in ethanol using zirconium oxide balls. Thereafter, the powder was recovered, dried, pre-baked at 800 ° C. for 8 hours, and Bi 11.9 TiO 19.85 powder was synthesized by a solid phase reaction between bismuth oxide and titanium oxide. The Bi 11.9 TiO 19.85 powder was roughly pulverized to 150 μm or less with a mortar, and then pulverized and dispersed in a ball mill in ethanol using zirconium oxide balls. At this time, 0.4 wt% polyvinyl butyral (PVB) was added as a dispersant for promoting dispersion. Thereafter, 3.7 wt% polyvinyl butyral as a binder and 0.8 wt% dioctyl phthalate as a plasticizer were added, and then a ball mill was continued to prepare a slurry for sheet molding. After the ball mill mixing, the recovered slurry was defoamed and concentrated by vacuum defoaming to adjust the viscosity of the slurry.

粘度調整を行ったスラリーはコーターを用いて離型剤の付いたフィルムベース上に塗布してシート状に成型した。成型体は室温に24時間放置して乾燥させた後、フィルムベースから剥離した。剥離したシート成型体をサファイア単結晶上に置いて、Ar雰囲気中、焼結温度820℃で焼結を行いBi11.9TiO19.85焼結体を得た。この焼結体約0.3gを硝酸と硫酸で加熱分解し、希硝酸で溶解して定容とした。得られた溶液を希硝酸で適宜希釈したのち、ICP発光分光分析法(セイコーインスツルメンツ製、シーケンシャル型ICP発光分光分析装置)により、Bi:Tiの組成比を2回測定したところ、2回ともBi:Ti=11.9:1であった。 The slurry whose viscosity was adjusted was coated on a film base with a release agent using a coater and molded into a sheet. The molded body was left to dry at room temperature for 24 hours, and then peeled off from the film base. The peeled sheet molding was placed on a sapphire single crystal and sintered in an Ar atmosphere at a sintering temperature of 820 ° C. to obtain a Bi 11.9 TiO 19.85 sintered body. About 0.3 g of this sintered body was thermally decomposed with nitric acid and sulfuric acid and dissolved with dilute nitric acid to obtain a constant volume. After the obtained solution was appropriately diluted with dilute nitric acid, the Bi: Ti composition ratio was measured twice by ICP emission spectroscopic analysis (Seiko Instruments, sequential ICP emission spectroscopic analyzer). : Ti = 11.9: 1.

(実施例2)
酸化ビスマス粉末と酸化チタン粉末をBi:Ti=11.6:1となるように配合した以外は、実施例1と同様にしてBi11.6TiO19.4焼結体を作製した。また、実施例1と同様にして焼結体のBi:Tiの組成比を2回測定したところ、2回ともBi:Ti=11.6:1であった。
(Example 2)
A Bi 11.6 TiO 19.4 sintered body was produced in the same manner as in Example 1 except that bismuth oxide powder and titanium oxide powder were blended so that Bi: Ti = 11.6: 1. Further, when the Bi: Ti composition ratio of the sintered body was measured twice in the same manner as in Example 1, Bi: Ti = 11.6: 1 in both cases.

(実施例3)
酸化ビスマス粉末と酸化チタン粉末をBi:Ti=11.3:1となるように配合した以外は、実施例1と同様にしてBi11.3TiO18.95焼結体を作製した。また、実施例1と同様にして焼結体のBi:Tiの組成比を2回測定したところ、2回ともBi:Ti=11.3:1であった。
(Example 3)
A Bi 11.3 TiO 18.95 sintered body was produced in the same manner as in Example 1 except that bismuth oxide powder and titanium oxide powder were blended so that Bi: Ti = 11.3: 1. Further, when the Bi: Ti composition ratio of the sintered body was measured twice in the same manner as in Example 1, Bi: Ti = 11.3: 1 in both cases.

(実施例4)
酸化ビスマス粉末と酸化チタン粉末をBi:Ti=11.1:1となるように配合した以外は、実施例1と同様にしてBi11.1TiO18.65焼結体を作製した。また、実施例1と同様にして焼結体のBi:Tiの組成比を2回測定したところ、2回ともBi:Ti=11.1:1であった。
Example 4
A Bi 11.1 TiO 18.65 sintered body was produced in the same manner as in Example 1 except that bismuth oxide powder and titanium oxide powder were mixed so that Bi: Ti = 11.1: 1. Further, when the Bi: Ti composition ratio of the sintered body was measured twice in the same manner as in Example 1, Bi: Ti = 11.1: 1 in both cases.

(実施例5)
酸化ビスマス粉末と酸化ケイ素(SiO2)粉末をBi:Si=11.9:1となるように配合した以外は、実施例1と同様にしてBi11.9SiO19.85焼結体を作製した。この焼結体約0.1gを硝酸で加熱分解し、純水を加えて濾別した(濾液は定容とした)。この際、不溶解物は炭酸ナトリウムで融解し、希硝酸で溶解して定容とした。得られた溶液を希硝酸で適宜希釈したのち、実施例1と同じICP発光分光分析装置によりBi:Siの組成比を2回測定したところ、2回ともBi:Si=11.9:1であった。
(Example 5)
A Bi 11.9 SiO 19.85 sintered body was produced in the same manner as in Example 1 except that bismuth oxide powder and silicon oxide (SiO 2 ) powder were mixed so that Bi: Si = 11.9: 1. About 0.1 g of this sintered body was decomposed by heating with nitric acid, and pure water was added to separate the filtrate (the filtrate was kept at a constant volume). At this time, the insoluble matter was melted with sodium carbonate and dissolved with dilute nitric acid to obtain a constant volume. The resulting solution was appropriately diluted with dilute nitric acid, and then the Bi: Si composition ratio was measured twice with the same ICP emission spectroscopic analyzer as in Example 1. Both were Bi: Si = 11.9: 1. .

(実施例6)
酸化ビスマス粉末と酸化ケイ素粉末をBi:Si=11.6:1となるように配合した以外は、実施例1と同様にしてBi11.6SiO19.4焼結体を作製した。また、実施例5と同様にして焼結体のBi:Siの組成比を2回測定したところ、2回ともBi:Si=11.6:1であった。
(Example 6)
A Bi 11.6 SiO 19.4 sintered body was produced in the same manner as in Example 1 except that bismuth oxide powder and silicon oxide powder were mixed so that Bi: Si = 11.6: 1. Further, when the Bi: Si composition ratio of the sintered body was measured twice in the same manner as in Example 5, Bi: Si = 11.6: 1 was measured twice.

(実施例7)
酸化ビスマス粉末と酸化ケイ素粉末をBi:Si=11.3:1となるように配合した以外は、実施例1と同様にしてBi11.3SiO18.95焼結体を作製した。また、実施例5と同様にして焼結体のBi:Siの組成比を2回測定したところ、2回ともBi:Si=11.3:1であった。
(Example 7)
A Bi 11.3 SiO 18.95 sintered body was produced in the same manner as in Example 1 except that bismuth oxide powder and silicon oxide powder were mixed so that Bi: Si = 11.3: 1. Further, when the Bi: Si composition ratio of the sintered body was measured twice in the same manner as in Example 5, it was Bi: Si = 11.3: 1 in both cases.

(実施例8)
酸化ビスマス粉末と酸化ケイ素粉末をBi:Si=11.1:1となるように配合した以外は、実施例1と同様にしてBi11.1SiO18.65焼結体を作製した。また、実施例5と同様にして焼結体のBi:Siの組成比を2回測定したところ、2回ともBi:Si=11.1:1であった。
(Example 8)
A Bi 11.1 SiO 18.65 sintered body was produced in the same manner as in Example 1 except that bismuth oxide powder and silicon oxide powder were blended so that Bi: Si = 11.1: 1. Further, when the Bi: Si composition ratio of the sintered body was measured twice in the same manner as in Example 5, it was Bi: Si = 11.1: 1 in both cases.

(実施例9)
酸化ビスマス粉末と酸化ゲルマニウム(GeO2)粉末をBi:Ge=11.9:1となるように配合した以外は、実施例1と同様にしてBi11.9GeO19.85焼結体を作製した。また、実施例5と同様にして焼結体のBi:Geの組成比を2回測定したところ、2回ともBi:Ge=11.9:1であった。
Example 9
A Bi 11.9 GeO 19.85 sintered body was produced in the same manner as in Example 1 except that bismuth oxide powder and germanium oxide (GeO 2 ) powder were blended so that Bi: Ge = 11.9: 1. Further, when the Bi: Ge composition ratio of the sintered body was measured twice in the same manner as in Example 5, it was Bi: Ge = 11.9: 1 in both cases.

(実施例10)
酸化ビスマス粉末と酸化ゲルマニウム粉末をBi:Ge=11.6:1となるように配合した以外は、実施例1と同様にしてBi11.6GeO19.4焼結体を作製した。また、実施例5と同様にして焼結体のBi:Geの組成比を2回測定したところ、2回ともBi:Ge=11.6:1であった。
(Example 10)
A Bi 11.6 GeO 19.4 sintered body was produced in the same manner as in Example 1 except that bismuth oxide powder and germanium oxide powder were mixed so that Bi: Ge = 11.6: 1. Further, when the Bi: Ge composition ratio of the sintered body was measured twice in the same manner as in Example 5, it was Bi: Ge = 11.6: 1 in both cases.

(実施例11)
酸化ビスマス粉末と酸化ゲルマニウム粉末をBi:Ge=11.3:1となるように配合した以外は、実施例1と同様にしてBi11.3GeO18.95焼結体を作製した。また、実施例5と同様にして焼結体のBi:Geの組成比を2回測定したところ、2回ともBi:Ge=11.3:1であった。
(Example 11)
A Bi 11.3 GeO 18.95 sintered body was produced in the same manner as in Example 1 except that bismuth oxide powder and germanium oxide powder were mixed so that Bi: Ge = 11.3: 1. Further, when the Bi: Ge composition ratio of the sintered body was measured twice in the same manner as in Example 5, Bi: Ge = 11.3: 1 in both cases.

(実施例12)
酸化ビスマス粉末と酸化ゲルマニウム粉末をBi:Ge=11.1:1となるように配合した以外は、実施例1と同様にしてBi11.1GeO18.65焼結体を作製した。また、実施例5と同様にして焼結体のBi:Geの組成比を2回測定したところ、2回ともBi:Ge=11.1:1であった。
(Example 12)
A Bi 11.1 GeO 18.65 sintered body was produced in the same manner as in Example 1 except that bismuth oxide powder and germanium oxide powder were mixed so that Bi: Ge = 11.1: 1. Further, when the Bi: Ge composition ratio of the sintered body was measured twice in the same manner as in Example 5, it was Bi: Ge = 11.1: 1 in both cases.

(比較例1)
酸化ビスマス粉末と酸化チタン粉末をBi:Ti=12.0:1となるように配合した以外は、実施例1と同様にしてBi12TiO20焼結体を作製した。また、実施例1と同様にして焼結体のBi:Tiの組成比を2回測定したところ、2回ともBi:Ti=12.0:1であった。
(Comparative Example 1)
A Bi 12 TiO 20 sintered body was produced in the same manner as in Example 1 except that bismuth oxide powder and titanium oxide powder were blended so that Bi: Ti = 12.0: 1. Further, when the Bi: Ti composition ratio of the sintered body was measured twice in the same manner as in Example 1, Bi: Ti = 12.0: 1 in both cases.

(比較例2)
酸化ビスマス粉末と酸化チタン粉末をBi:Ti=11.0:1となるように配合した以外は、実施例1と同様にしてBi11TiO18.5焼結体を作製した。また、実施例1と同様にして焼結体のBi:Tiの組成比を2回測定したところ、2回ともBi:Ti=11.0:1であった。
(Comparative Example 2)
A Bi 11 TiO 18.5 sintered body was produced in the same manner as in Example 1 except that bismuth oxide powder and titanium oxide powder were blended so that Bi: Ti = 11.0: 1. Further, when the Bi: Ti composition ratio of the sintered body was measured twice in the same manner as in Example 1, Bi: Ti = 11.0: 1 in both cases.

(比較例3)
酸化チタン粉末と酸化ケイ素粉末をBi:Si=12.0:1となるように配合した以外は、実施例1と同様にしてBi12SiO20焼結体を作製した。また、実施例5と同様にして焼結体のBi:Siの組成比を2回測定したところ、2回ともBi:Si=12.0:1であった。
(Comparative Example 3)
A Bi 12 SiO 20 sintered body was produced in the same manner as in Example 1 except that titanium oxide powder and silicon oxide powder were blended so that Bi: Si = 12.0: 1. Further, when the Bi: Si composition ratio of the sintered body was measured twice in the same manner as in Example 5, it was Bi: Si = 12.0: 1 in both cases.

(比較例4)
酸化チタン粉末と酸化ケイ素粉末をBi:Si=11.0:1となるように配合した以外は、実施例1と同様にしてBi11SiO18.5焼結体を作製した。また、実施例5と同様にして焼結体のBi:Siの組成比を2回測定したところ、2回ともBi:Si=11.0:1であった。
(Comparative Example 4)
A Bi 11 SiO 18.5 sintered body was produced in the same manner as in Example 1 except that titanium oxide powder and silicon oxide powder were blended so that Bi: Si = 11.0: 1. Further, when the Bi: Si composition ratio of the sintered body was measured twice in the same manner as in Example 5, it was Bi: Si = 11.0: 1 in both cases.

(比較例5)
酸化チタン粉末と酸化ゲルマニウム粉末をBi:Ge=12.0:1となるように配合した以外は、実施例1と同様にしてBi12GeO20焼結体を作製した。また、実施例5と同様にして焼結体のBi:Geの組成比を2回測定したところ、2回ともBi:Ge=12.0:1であった。
(Comparative Example 5)
A Bi 12 GeO 20 sintered body was produced in the same manner as in Example 1 except that titanium oxide powder and germanium oxide powder were blended so that Bi: Ge = 12.0: 1. Further, when the Bi: Ge composition ratio of the sintered body was measured twice in the same manner as in Example 5, it was Bi: Ge = 12.0: 1 in both cases.

(比較例6)
酸化チタン粉末と酸化ゲルマニウム粉末をBi:Ge=11.0:1となるように配合した以外は、実施例1と同様にしてBi11GeO18.5焼結体を作製した。また、実施例5と同様にして焼結体のBi:Geの組成比を2回測定したところ、2回ともBi:Ge=11.0:1であった。
(Comparative Example 6)
A Bi 11 GeO 18.5 sintered body was produced in the same manner as in Example 1 except that titanium oxide powder and germanium oxide powder were blended so that Bi: Ge = 11.0: 1. Further, when the Bi: Ge composition ratio of the sintered body was measured twice in the same manner as in Example 5, it was Bi: Ge = 11.0: 1 in both cases.

実施例1〜12および比較例1〜6で完成させた焼結体を導電性ペーストドータイト(藤倉化成製)を用いてAl基板に接合し、上部電極は、60nmの厚みでAuをスパッタして光導電層を備えた放射線撮像パネルの検出部を完成させた。X線光電流信号は、電圧80kVの条件で30mRのX線を0.1秒間、試料に照射し、電圧を印加した条件で生じたパルス状の光電流を電流増幅器で電圧に変換し、デジタルオシロスコープで測定した。印加電圧は、電場1.5V/μmに相当するように印加した。X線照射中の最大光電流(X線遮断直前の光電流)を測定し、次いで、X線を遮断して300msec後の光電流を測定した。   The sintered bodies completed in Examples 1 to 12 and Comparative Examples 1 to 6 were joined to an Al substrate using conductive paste dotite (manufactured by Fujikura Kasei), and the upper electrode was formed by sputtering Au with a thickness of 60 nm. The detection part of the radiation imaging panel provided with the photoconductive layer was completed. The X-ray photocurrent signal is obtained by irradiating the sample with 30mR X-ray for 0.1 seconds under the condition of voltage 80kV, converting the pulsed photocurrent generated under the applied voltage condition into voltage with a current amplifier, and using a digital oscilloscope. It was measured. The applied voltage was applied so as to correspond to an electric field of 1.5 V / μm. The maximum photocurrent during X-ray irradiation (photocurrent immediately before X-ray cutoff) was measured, and then the photocurrent after 300 msec after X-ray cutoff was measured.

結果を表1に示す。測定値は、X線照射中の最大光電流に対するX線遮断後300msec後の光電流により示した。また、相対値は、各Bi12MO20の、X線照射中の最大光電流に対するX線遮断後300msec後の光電流を1.0とした相対値、およびBi12TiO20の、X線照射中の最大光電流に対するX線遮断後300msec後の光電流を1.0とした相対値で示した。

Figure 2006261203
The results are shown in Table 1. The measured value was shown by the photocurrent after 300 msec after the X-ray cutoff with respect to the maximum photocurrent during X-ray irradiation. In addition, the relative value of each Bi 12 MO 20 relative to the maximum photocurrent during X-ray irradiation, with the photocurrent after 300 msec after X-ray cutoff being 1.0, and Bi 12 TiO 20 during X-ray irradiation The relative value is shown with the photocurrent after 300 msec after the X-ray cutoff with respect to the maximum photocurrent being 1.0.
Figure 2006261203

表1から明らかなように、本発明のBixMOyからなる光導電層は、X線照射中の最大光電流に対するX線遮断後300msec後の光電流が小さく、光伝導の残留特性を向上させることが可能であった。従って、セミ動画や動画のように前に感知した電気信号の影響を受けると画像が不鮮明となったり乱れたりといった場合であっても、鮮明な画像を得ることが可能である。 As is clear from Table 1, the photoconductive layer made of Bi x MO y of the present invention has a small photocurrent after 300 msec after X-ray blocking with respect to the maximum photocurrent during X-ray irradiation, and improves the residual characteristics of photoconduction. It was possible to make it. Therefore, a clear image can be obtained even when the image becomes unclear or disturbed when affected by an electrical signal previously sensed, such as a semi-moving image or moving image.

以上のように、本発明の光導電層は、BixMOyからなる多結晶体であり、BixMOyのxが11.1≦x≦11.95、yはMおよびxにより決まる化学量論的な酸素原子数であるため、光伝導の残留特性を向上させることが可能となる。そして、多結晶体であるために光導電層の大面積化に対応が可能である。さらに、塗布法で形成される光導電層のようにバインダーが介在していないので、発生電荷の捕集効率の低減が抑制され、電気ノイズを小さくすることが可能となり、画像の粒状性が向上し、感度を向上させることができる。 As described above, the photoconductive layer of the present invention, Bi x MO a polycrystalline body comprising a y, Bi x MO x is 11.1 ≦ x ≦ 11.95 of y, y is a chemical which is determined by M and x Because of the stoichiometric number of oxygen atoms, it is possible to improve the residual characteristics of photoconduction. And since it is a polycrystal, it can respond to the enlargement of a photoconductive layer. Furthermore, since no binder is present like the photoconductive layer formed by the coating method, the reduction in the efficiency of collecting generated charges is suppressed, electrical noise can be reduced, and the graininess of the image is improved. In addition, the sensitivity can be improved.

BixMOy焼結体の製造方法を示す概略構成断面図Schematic constitutional sectional view showing a method for producing a Bi x MO y sintered body 本発明の光導電層の製造方法に用いられる製造装置の概略模式図Schematic schematic diagram of a production apparatus used in the photoconductive layer production method of the present invention 本発明の製造方法により製造される光導電層を有する放射線撮像パネルの一実施の形態を示す断面図Sectional drawing which shows one Embodiment of the radiation imaging panel which has a photoconductive layer manufactured with the manufacturing method of this invention 放射線撮像パネルを用いた記録読取システムの概略構成図Schematic configuration diagram of a recording and reading system using a radiation imaging panel 記録読取システムにおける静電潜像記録過程を電荷モデルにより示した図Diagram showing the electrostatic latent image recording process in a recording and reading system using a charge model 記録読取システムにおける静電潜像読取過程を電荷モデルにより示した図Diagram showing the electrostatic latent image reading process in the recording and reading system using a charge model 放射線検出器とAMA基板の合体状態を示す概略模式図Schematic diagram showing the combined state of the radiation detector and the AMA substrate AMA基板の等価回路を示す電気回路図Electrical circuit diagram showing equivalent circuit of AMA substrate 放射線検出部の画素分を示す概略断面図Schematic cross-sectional view showing the pixels of the radiation detector

符号の説明Explanation of symbols

1 被焼成体(成形体)
2 セッター
3 支柱
10 光導電層の製造装置
12 BixMOy原料粒子
13 エアロゾル化チャンバー
14 製膜チャンバー
15 高圧ガスボンベ
16 基板
17 ホルダー
18 ステージ
19 ノズル
30 放射線撮像パネル
31 導電層
32 記録用放射線導電層
33 電荷輸送層
34 記録用光導電層
35 導電層
70 電流検出手段
1 To-be-fired body (molded body)
2 setters 3 props
10 Photoconductive layer manufacturing equipment
12 Bi x MO y raw material particles
13 Aerosolization chamber
14 Film forming chamber
15 High pressure gas cylinder
16 substrate
17 Holder
18 stages
19 nozzles
30 Radiation imaging panel
31 Conductive layer
32 Radiation conductive layer for recording
33 Charge transport layer
34 Photoconductive layer for recording
35 Conductive layer
70 Current detection means

Claims (4)

放射線画像情報を静電潜像として記録する放射線撮像パネルを構成する光導電層であって、該光導電層がBixMOy(ただし、MはGe,Si,Ti中の少なくとも1種である。)からなる多結晶体であり、前記BixMOyのxが11.1≦x≦11.95、yはMおよびxにより決まる化学量論的な酸素原子数であることを特徴とする光導電層。 A photoconductive layer constituting a radiation imaging panel that records radiation image information as an electrostatic latent image, wherein the photoconductive layer is Bi x MO y (where M is at least one of Ge, Si, and Ti). ), Wherein x of the Bi x MO y is 11.1 ≦ x ≦ 11.95, and y is the stoichiometric number of oxygen atoms determined by M and x. Photoconductive layer. 前記MがTiであることを特徴とする請求項1記載の光導電層。   The photoconductive layer according to claim 1, wherein M is Ti. 前記BixMOyが焼結体であることを特徴とする請求項1または2記載の光導電層。 3. The photoconductive layer according to claim 1, wherein the Bi x MO y is a sintered body. 放射線画像情報を静電潜像として記録する、請求項1、2または3項記載のBixMOyからなる光導電層を備えたことを特徴とする放射線撮像パネル。 A radiation imaging panel comprising a photoconductive layer made of Bi x MO y according to claim 1, 2 or 3 for recording radiation image information as an electrostatic latent image.
JP2005072955A 2005-03-15 2005-03-15 Photoconductive layer constituting radiation imaging panel and radiation imaging panel Abandoned JP2006261203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005072955A JP2006261203A (en) 2005-03-15 2005-03-15 Photoconductive layer constituting radiation imaging panel and radiation imaging panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005072955A JP2006261203A (en) 2005-03-15 2005-03-15 Photoconductive layer constituting radiation imaging panel and radiation imaging panel

Publications (1)

Publication Number Publication Date
JP2006261203A true JP2006261203A (en) 2006-09-28

Family

ID=37100148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005072955A Abandoned JP2006261203A (en) 2005-03-15 2005-03-15 Photoconductive layer constituting radiation imaging panel and radiation imaging panel

Country Status (1)

Country Link
JP (1) JP2006261203A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343531A (en) * 1976-09-30 1978-04-19 Siemens Ag Method of and device for using bismuth oxide compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343531A (en) * 1976-09-30 1978-04-19 Siemens Ag Method of and device for using bismuth oxide compound

Similar Documents

Publication Publication Date Title
EP1584950A2 (en) Radiation imaging panel with a photoconductive layer
US7632539B2 (en) Method for manufacturing photoconductive layers that constitute radiation imaging panels
US7476341B2 (en) Process for producing photo-conductor layers for constituting radiation imaging panels
US20060051287A1 (en) Processes for producing Bi12MO20 precursors, Bi12MO20 particles, and photo-conductor layers
JP4782445B2 (en) Bi12MO20 powder manufacturing method and photoconductive layer constituting radiation imaging panel
JP2007005623A (en) Photoconduction layer which constitutes radiation image pick-up panel and radiation image pick-up panel
JP2006261202A (en) Photoconduction layer constituting radiographic imaging panel, and radiographic imaging panel
JP4602205B2 (en) Bi12MO20 precursor, manufacturing method of Bi12MO20 powder, and manufacturing method of photoconductive layer constituting radiation imaging panel
JP2008153626A (en) Photo-conductor, radiation detector, and radiation imaging panel
JP4545538B2 (en) Photoconductive layer and radiation imaging panel constituting radiation imaging panel
JP2006261203A (en) Photoconductive layer constituting radiation imaging panel and radiation imaging panel
US7419697B2 (en) Method for manufacturing photoconductive layer constituting radiation imaging panel
US7429296B2 (en) Method for manufacturing photoconductive layer constituting radiation imaging panel
JP2006245463A (en) Bi12TiO20 SINTERED COMPACT AND PHOTOCONDUCTIVE LAYER
JP2005274259A (en) Manufacturing method for photoconductive layer constituting radiation imaging panel
JP2006261204A (en) Photoconductive layer constituting radiation imaging panel and radiation imaging panel
JP2005285937A (en) Photoconductive layer constituting radiation image pickup panel, and radiation image pickup panel
JP2007063106A (en) METHOD FOR PRODUCING Bi12MO20 POWDER AND PHOTOCONDUCTIVE LAYER CONSTITUTING RADIATION IMAGING PANEL
JP2006240953A (en) Bi12TiO20 SINTERED COMPACT AND PHOTOCONDUCTIVE LAYER
JP2007005624A (en) Photoconduction layer which constitutes radiation image pick-up panel and radiation image pick-up panel
JP2005274258A (en) Manufacturing method for photoconductive layer constituting radiation imaging panel
JP2007012843A (en) Optical conductive layer and radiation imaging panel
JP2006093582A (en) Radiation imaging panel and photoconduction layer constituting the same
JP2005292023A (en) Photoconducting layer constituting radiation imaging panel, and radiation imaging panel
JP2005294680A (en) Optical conductive layer for constituting radiant-ray photographing panel, and same panel

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20101227