JP2006260898A - Shield conductive line and manufacturing method for sheet-like conductive line - Google Patents

Shield conductive line and manufacturing method for sheet-like conductive line Download PDF

Info

Publication number
JP2006260898A
JP2006260898A JP2005075385A JP2005075385A JP2006260898A JP 2006260898 A JP2006260898 A JP 2006260898A JP 2005075385 A JP2005075385 A JP 2005075385A JP 2005075385 A JP2005075385 A JP 2005075385A JP 2006260898 A JP2006260898 A JP 2006260898A
Authority
JP
Japan
Prior art keywords
pipe
conductive path
electric wire
electric wires
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005075385A
Other languages
Japanese (ja)
Inventor
Nobuyuki Hirano
信行 平野
Kunihiko Watanabe
邦彦 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2005075385A priority Critical patent/JP2006260898A/en
Publication of JP2006260898A publication Critical patent/JP2006260898A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/20Metal tubes, e.g. lead sheaths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • H01B13/26Sheathing; Armouring; Screening; Applying other protective layers by winding, braiding or longitudinal lapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring

Abstract

<P>PROBLEM TO BE SOLVED: To improve heat radiating property of a shield conductive path using a pipe. <P>SOLUTION: In this shield conductive line, a plurality of wires 10 are inserted in a metal pipe 20 to shield and protect the wires 10 with the pipe 20 and the pipe 20 is arranged along periphery of the plurality of wires 10. The heat generated by the wires 10 is transmitted from the periphery of the wires 10 to an inner circumference of the pipe 20 and emitted from the periphery of the pipe 20 to the air. Since the pipe 20 is arranged along the periphery of the wires 10, a gap between the periphery of the wires 10 and the inner circumference of the pipe 20 becomes small, resulting in excellent heat transfer efficiency from the wires 10 to the pipe 20. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、シールド導電路及びシート状導電路の製造方法に関するものである。   The present invention relates to a shield conductive path and a method for manufacturing a sheet-shaped conductive path.

ノンシールド電線を使用したシールド導電路としては、複数本のノンシールド電線を、金属細線をメッシュ状に編んだ筒状の編組線からなるシールド部材で包囲することにより一括してシールドする構造のものが考えられている。この種のシールド導電路においてシールド部材と電線を保護する方法としては、一般に、シールド部材を合成樹脂製のプロテクタで包囲する手段がとられるが、プロテクタを用いると部品点数が増えるという問題がある。   The shield conductive path using non-shielded wires has a structure in which a plurality of non-shielded wires are shielded collectively by surrounding them with a shield member consisting of a tubular braided wire made of fine metal wires knitted in a mesh shape. Is considered. As a method for protecting the shield member and the electric wire in this type of shield conductive path, generally, a means for surrounding the shield member with a synthetic resin protector is used. However, when the protector is used, there is a problem that the number of parts increases.

そこで、本願出願人は、特許文献1に記載されているように、ノンシールド電線を金属製のパイプ内に挿通する構造を提案した。この構造によれば、パイプが、電線をシールドする機能と電線を保護する機能を発揮するので、シールド部材とプロテクタを用いたシールド導電路に比べて部品点数が少なくて済むという利点がある。
特開2004−171952公報
Therefore, the applicant of the present application has proposed a structure in which a non-shielded electric wire is inserted into a metal pipe as described in Patent Document 1. According to this structure, since the pipe exhibits the function of shielding the electric wire and the function of protecting the electric wire, there is an advantage that the number of parts can be reduced as compared with the shield conductive path using the shield member and the protector.
JP 2004-171952 A

パイプを用いたシールド導電路では、通電時に電線で発生した熱が、熱伝導率の低い空気に遮断されてパイプに伝わり難く、しかも、パイプには、編組線における編み目の隙間のような外部との通気経路が存在しないため、電線で発生した熱がパイプの内部に籠もり易く、放熱性が低くなる傾向がある。
ここで、導体に所定の電流を流したときの発熱量は、導体の断面積が大きい程小さくなり、発熱に起因する導体の温度上昇値は、導電路の放熱性が高いほど小さく抑えられる。したがって、導体の温度上昇値に上限が定められている環境下では、上記のように放熱効率の低いシールド導電路の場合、導体の断面積を大きくして発熱量を抑える必要がある。
ところが、導体の断面積を増大することは、シールド導電路が大径化し重量化することを意味するため、その対策が望まれる。
本発明は上記のような事情に基づいて完成されたものであって、パイプを用いたシールド導電路における放熱性を向上させることを目的とする。
In shielded conductive paths using pipes, the heat generated by the wires during energization is blocked by air with low thermal conductivity and is not easily transmitted to the pipes. Therefore, the heat generated in the electric wire tends to be trapped inside the pipe and the heat dissipation tends to be low.
Here, the amount of heat generated when a predetermined current flows through the conductor decreases as the cross-sectional area of the conductor increases, and the temperature rise value of the conductor due to heat generation is suppressed as the heat dissipation of the conductive path increases. Therefore, in an environment where an upper limit is set for the temperature rise value of the conductor, in the case of the shield conductive path with low heat dissipation efficiency as described above, it is necessary to increase the cross-sectional area of the conductor to suppress the heat generation amount.
However, increasing the cross-sectional area of the conductor means that the shield conductive path becomes larger in diameter and becomes heavier.
This invention is completed based on the above situations, Comprising: It aims at improving the heat dissipation in the shield conductive path using a pipe.

上記の目的を達成するための手段として、請求項1の発明は、導体を絶縁被覆で包囲してなる複数本の電線と、金属製のパイプとを備え、前記複数本の電線を前記パイプ内に挿通することで、前記電線を前記パイプによりシールドするとともに保護するようにしたものにおいて、前記パイプを、前記複数本の電線の外周に沿った形状としたところに特徴を有する。   As a means for achieving the above object, the invention of claim 1 includes a plurality of electric wires formed by surrounding a conductor with an insulating coating, and a metal pipe, and the plurality of electric wires are disposed in the pipe. In this case, the wire is shielded and protected by the pipe, and the pipe is shaped along the outer periphery of the plurality of wires.

請求項2の発明は、請求項1に記載のものにおいて、前記パイプの内周を前記電線の外周に面接触させたところに特徴を有する。   The invention of claim 2 is characterized in that, in the invention of claim 1, the inner periphery of the pipe is brought into surface contact with the outer periphery of the electric wire.

請求項3の発明は、請求項1または請求項2に記載のものにおいて、前記複数の電線が隣り合うように配置されており、前記隣り合う電線を、その外周面同士が面接触するように非円形の断面形状としたところに特徴を有する。   According to a third aspect of the present invention, in the first or second aspect of the invention, the plurality of electric wires are arranged adjacent to each other, and the adjacent electric wires are in surface contact with each other. It is characterized by a non-circular cross-sectional shape.

請求項4の発明は、導体を絶縁被覆で包囲してなる複数本の電線と、金属製のパイプとを備え、前記複数本の電線を前記パイプ内に挿通することで、前記電線を前記パイプによりシールドするとともに保護するようにしたシート状導電路の製造方法であって、前記パイプに前記複数本の電線を挿通し、前記パイプを、前記電線の外周に沿った形状となるように変形させるところに特徴を有する。   The invention of claim 4 comprises a plurality of electric wires formed by surrounding a conductor with an insulating coating, and a metal pipe, and the plurality of electric wires are inserted into the pipe so that the electric wires are connected to the pipe. A method of manufacturing a sheet-shaped conductive path that is shielded and protected by inserting the plurality of electric wires through the pipe and deforming the pipe into a shape along the outer periphery of the electric wire. However, it has characteristics.

請求項5の発明は、請求項4に記載のものにおいて、前記パイプを軸線方向に移動させつつ、前記パイプの外周に対し径方向に複数のローラを押圧することで前記パイプを変形させるところに特徴を有する。   According to a fifth aspect of the present invention, in the apparatus according to the fourth aspect, the pipe is deformed by pressing a plurality of rollers in the radial direction against the outer periphery of the pipe while moving the pipe in the axial direction. Has characteristics.

請求項6の発明は、請求項4または請求項5に記載のものにおいて、前記ローラと、前記ローラに押圧方向への駆動力を付与する駆動手段との間に、荷重計測手段を介在させ、前記荷重計測手段の計測値に基づいて前記ローラの前記パイプ側への移動量を管理するところに特徴を有する。   The invention of claim 6 is the one according to claim 4 or 5, wherein a load measuring means is interposed between the roller and a driving means for applying a driving force in the pressing direction to the roller. It is characterized in that the amount of movement of the roller toward the pipe is managed based on the measurement value of the load measuring means.

<請求項1の発明>
電線で発生した熱は、電線の外周からパイプの内周に伝わり、パイプの外周から大気中に放出される。パイプを電線の外周に沿った形状としたので、電線の外周とパイプの内周との間隔が僅かとなり、電線からパイプへの熱の伝達効率に優れている。
<Invention of Claim 1>
The heat generated in the electric wire is transmitted from the outer periphery of the electric wire to the inner periphery of the pipe and is released from the outer periphery of the pipe to the atmosphere. Since the pipe is shaped along the outer periphery of the electric wire, the distance between the outer periphery of the electric wire and the inner periphery of the pipe is small, and heat transfer efficiency from the electric wire to the pipe is excellent.

<請求項2の発明>
パイプの内周を電線の外周に面接触させたので、電線からパイプへの熱の伝達効率が、更に向上する。
<Invention of Claim 2>
Since the inner periphery of the pipe is brought into surface contact with the outer periphery of the electric wire, the heat transfer efficiency from the electric wire to the pipe is further improved.

<請求項3の発明>
隣り合う電線同士の間に空気が存在する場合には、空気の断熱作用のために電線同士の隙間に熱が篭ることが懸念されるが、本発明では、隣り合う電線の外周面同士が面接触するようにしたので、電線同士の隙間における熱篭りを回避することができる。
<Invention of Claim 3>
In the case where air exists between adjacent electric wires, there is a concern that heat is generated in the gaps between the electric wires due to the heat insulation action of the air. Since they are in contact with each other, it is possible to avoid heat stagnation in the gap between the electric wires.

<請求項4の発明>
本発明方法によって製造したシート状導電路によれば、電線で発生した熱は、電線の外周からパイプの内周に伝わり、パイプの外周から大気中に放出される。パイプを電線の外周に沿った形状としたので、電線の外周とパイプの内周との間隔が僅かとなり、電線からパイプへの熱の伝達効率に優れている。
<Invention of Claim 4>
According to the sheet-like conductive path manufactured by the method of the present invention, heat generated in the electric wire is transmitted from the outer periphery of the electric wire to the inner periphery of the pipe, and is released from the outer periphery of the pipe to the atmosphere. Since the pipe is shaped along the outer periphery of the electric wire, the distance between the outer periphery of the electric wire and the inner periphery of the pipe is small, and heat transfer efficiency from the electric wire to the pipe is excellent.

<請求項5の発明>
パイプを移動させつつパイプを変形させるようにしたので、パイプの長さが異なる複数のシート状導電路に対応することができる。
<Invention of Claim 5>
Since the pipe is deformed while moving the pipe, it is possible to cope with a plurality of sheet-like conductive paths having different pipe lengths.

<請求項6の発明>
パイプのうちローラによって押圧される変形領域では、ローラからの押圧力に抗する反力がパイプ側からローラ側に作用し、この反力が荷重計測手段で計測される。この変形領域からの反力は、変形の度合いを示すものであるから、変形の状態を正確に管理することができる。これにより、パイプの全長に亘って均一な押圧力を付与し、パイプの全長に亘って一定の断面形状とすることができる。
<Invention of Claim 6>
In the deformation region of the pipe that is pressed by the roller, a reaction force against the pressing force from the roller acts from the pipe side to the roller side, and this reaction force is measured by the load measuring means. Since the reaction force from the deformation area indicates the degree of deformation, the state of deformation can be managed accurately. Thereby, a uniform pressing force can be applied over the entire length of the pipe, and a constant cross-sectional shape can be obtained over the entire length of the pipe.

<実施形態1>
以下、本発明を具体化した実施形態1を図1乃至図3を参照して説明する。本実施形態1のシールド導電路Aは、例えば電気自動車において走行用の動力源を構成するバッテリ、インバータ、モータなどの装置(図示せず)の間に配索されるものであり、3本のノンシールドタイプの電線10を、一括シールド機能と電線保護機能を兼ね備えるパイプ20内に挿通した構成になる。
<Embodiment 1>
A first embodiment of the present invention will be described below with reference to FIGS. 1 to 3. The shield conductive path A of the first embodiment is routed between devices (not shown) such as a battery, an inverter, and a motor that constitute a power source for traveling in an electric vehicle, for example. The non-shield type electric wire 10 is inserted into a pipe 20 having both a collective shielding function and an electric wire protection function.

電線10は、金属製(例えば、アルミニウム合金や銅合金など)の導体11の外周を合成樹脂製の絶縁被覆12で包囲した形態であり、導体11は、複数本の細線(図示せず)を螺旋状に寄り合わせた撚り線からなる。電線10の製造当初の断面形状については、図3に示すように、導体11が真円形とされ、絶縁被覆12も真円形とされている。後述するようにパイプ20を加工して変形させた状態(シールド導電路Aが完成した状態)では、3本の電線10が、俵積み状(電線10の中心を結んだときにほぼ正三角形を描く形態)に外接した状態となっている。また、導体11と絶縁被覆12は、真円の外周縁部における隣り合う2箇所を櫛形(弓形)に切欠した形状をなし、図1に示すように、3本の電線10は、絶縁被覆12における切欠部13同士を面接触させた状態で集合配置されている。   The electric wire 10 has a form in which the outer periphery of a conductor 11 made of metal (for example, aluminum alloy or copper alloy) is surrounded by an insulating coating 12 made of synthetic resin, and the conductor 11 includes a plurality of thin wires (not shown). Consists of twisted wires that are close together in a spiral. As for the cross-sectional shape at the beginning of manufacture of the electric wire 10, as shown in FIG. 3, the conductor 11 is a perfect circle, and the insulating coating 12 is also a perfect circle. As will be described later, in a state where the pipe 20 is processed and deformed (a state where the shield conductive path A is completed), the three electric wires 10 are stacked (when the center of the electric wire 10 is tied, a substantially equilateral triangle is formed. It is in a state circumscribing the drawing form. Further, the conductor 11 and the insulating coating 12 have a shape in which two adjacent portions on the outer peripheral edge of a perfect circle are cut into a comb shape (bow shape). As shown in FIG. Are arranged in a state where the notches 13 are in surface contact with each other.

パイプ20は、金属製(例えば、アルミニウム合金や銅合金など)であって、空気よりも熱伝導率が高い。パイプ20の製造当初の断面形状は、図2に示すように、頂部が円弧状とされた概ね正三角形をなしている。このときの、円弧部21の内周の曲率半径は、製造当初の電線10の外径よりも僅かに大きい寸法とされている。このようにパイプ20を概ね正三角形とすることにより、パイプ20内において3本の電線10が螺旋状に捻られることなくほぼ一定の位置関係を保つことができ、ひいては、後述するローラ31と電線10との位置関係をほぼ一定に保つことができる。尚、本実施形態1ではパイプ20を三角形としたが、電線の本数が4本である場合には、パイプ20を略正方形とすれば、4本の電線の位置関係をほぼ一定に保つことができる。パイプ20を加工して変形させた状態(シールド導電路Aが完成した状態)では、図1に示すように、パイプ20の製造当初の形状における3つの直線部22の中央部分を、中心側へ凹ませた形状とされ、このように凹部23を形成することで、3つの円弧状嵌合部24を120°ピッチで連ねた形状とされている。そして、各円弧状嵌合部24の内側には、夫々、電線10が面接触状態で収容されている。   The pipe 20 is made of metal (for example, an aluminum alloy or a copper alloy) and has a higher thermal conductivity than air. As shown in FIG. 2, the cross-sectional shape of the pipe 20 at the beginning of manufacture is a substantially equilateral triangle with the top portion having an arc shape. At this time, the radius of curvature of the inner circumference of the arc portion 21 is slightly larger than the outer diameter of the electric wire 10 at the time of manufacture. Thus, by making the pipe 20 into a substantially equilateral triangle, the three electric wires 10 can be maintained in a substantially constant positional relationship without being spirally twisted in the pipe 20. The positional relationship with 10 can be kept almost constant. In the first embodiment, the pipe 20 has a triangular shape. However, when the number of electric wires is four, the positional relationship of the four electric wires can be kept substantially constant if the pipe 20 has a substantially square shape. it can. In a state where the pipe 20 is processed and deformed (a state where the shield conductive path A is completed), as shown in FIG. 1, the central portions of the three straight portions 22 in the original shape of the pipe 20 are moved to the center side. By forming the concave portion 23 in this way, the three arcuate fitting portions 24 are connected at a 120 ° pitch. And the electric wire 10 is accommodated in the surface contact state inside each arc-shaped fitting part 24, respectively.

パイプ20を加工させるための加工機30について説明する。図3に示すように、加工機30は、外周面を3つの凹部23と対応するように、且つ回転軸32をパイプ20の移動方向(パイプ20の軸線方向)と交差する方向に向けて配置された3つのローラ31を備えている。ローラ31の外周面は、凹部23を形成するために幅方向中央部分が突出した形状をなしている。3つのローラ31によって囲まれた空間は、パイプ20を通過させるための加工空間33となっている。また、各ローラ31の回転軸32は、油圧シリンダ34(本発明の構成要件である駆動手段)に取り付けられている。油圧シリンダ34は、シリンダ本体35と、シリンダ本体35の内部で上下動するピストン(図示せず)と、ピストンに固着されてシリンダ本体35外へ突出するロッド36とを有する。ロッド36の先端部には、ロッド36の伸縮方向(パイプ20の径方向)の圧縮荷重を測定するロードセル37(本発明の構成要件である荷重計測手段)が取り付けられている。そして、このロードセル37の先端面に軸受体38が固定され、軸受体38に回転軸32が回転自由に支持されている。油圧シリンダ34は、作動油の供給と排出によってロッド36を伸縮移動させることで、ローラ31とロードセル37をパイプ20に対して接近・離間方向に移動させる。また、ロードセル37により、ローラ31がパイプ20の外周を押圧したときのパイプ20からの径方向外向きの反力を検出するようになっている。   A processing machine 30 for processing the pipe 20 will be described. As shown in FIG. 3, the processing machine 30 is arranged so that the outer peripheral surface thereof corresponds to the three recesses 23 and the rotation shaft 32 is directed in a direction intersecting the moving direction of the pipe 20 (the axial direction of the pipe 20). The three rollers 31 are provided. The outer peripheral surface of the roller 31 has a shape in which a central portion in the width direction protrudes in order to form the recess 23. A space surrounded by the three rollers 31 is a processing space 33 for allowing the pipe 20 to pass therethrough. The rotating shaft 32 of each roller 31 is attached to a hydraulic cylinder 34 (driving means that is a constituent feature of the present invention). The hydraulic cylinder 34 includes a cylinder body 35, a piston (not shown) that moves up and down inside the cylinder body 35, and a rod 36 that is fixed to the piston and protrudes outside the cylinder body 35. A load cell 37 (load measuring means which is a constituent element of the present invention) for measuring a compressive load in the expansion / contraction direction of the rod 36 (the radial direction of the pipe 20) is attached to the tip of the rod 36. A bearing body 38 is fixed to the front end surface of the load cell 37, and the rotating shaft 32 is rotatably supported by the bearing body 38. The hydraulic cylinder 34 moves the roller 31 and the load cell 37 toward and away from the pipe 20 by extending and contracting the rod 36 by supplying and discharging the hydraulic oil. Further, the load cell 37 detects a reaction force that is radially outward from the pipe 20 when the roller 31 presses the outer periphery of the pipe 20.

次に、シールド導電路Aの製造方法について説明する。
製造に際しては、まず、図2に示すように製造されたパイプ20内に、真円形断面の3本の電線10を挿通させる。このとき、3本の電線10は俵積み状に配置されるが、電線10同士の間、及び電線10の外周とパイプ20の内周との間には、電線10に挿通を容易にするためのクリアランスが空いている。また、各電線10は、パイプ20の円弧部21に対して概ね同心状に配置される。
Next, a method for manufacturing the shield conductive path A will be described.
In manufacturing, first, three electric wires 10 having a true circular cross section are inserted into a pipe 20 manufactured as shown in FIG. At this time, although the three electric wires 10 are arranged in a stacked manner, the electric wires 10 can be easily inserted between the electric wires 10 and between the outer periphery of the electric wires 10 and the inner periphery of the pipe 20. Clearance is vacant. Each electric wire 10 is arranged substantially concentrically with respect to the arc portion 21 of the pipe 20.

この状態から、パイプ20を軸線方向に移動させ、3つのローラ31で囲まれた加工空間33内に進入させる。すると、ローラ31の外周がパイプ20の直線部22を押圧し、この押圧作用により、直線部22に凹部23が形成され、凹部23が隣り合う電線10によって構成されている溝状部分に進入するとともに、円弧部21が縮径しつつ電線10の外周に密着する。また、凹部23と円弧部21は、変形しながら3本の電線10を中央へ寄せるように押圧し、この押圧作用によって電線10が、外周の一部を弓形に切欠した形状に変形させられるとともに、その切欠部13同士を面接触させるように密着した状態となる。以上により、パイプ20が、電線10の外周における円弧状領域に沿った形状に塑性変形させられるとともに、シールド導電路Aが完成する。   From this state, the pipe 20 is moved in the axial direction to enter the machining space 33 surrounded by the three rollers 31. Then, the outer periphery of the roller 31 presses the linear portion 22 of the pipe 20, and by this pressing action, a concave portion 23 is formed in the linear portion 22, and the concave portion 23 enters a groove-like portion constituted by the adjacent electric wires 10. At the same time, the arc portion 21 closely contacts the outer periphery of the electric wire 10 while reducing the diameter. In addition, the concave portion 23 and the circular arc portion 21 press the three electric wires 10 toward the center while being deformed, and by this pressing action, the electric wires 10 are deformed into a shape in which a part of the outer periphery is cut into an arcuate shape. Then, the cutout portions 13 are brought into close contact so as to be in surface contact with each other. As described above, the pipe 20 is plastically deformed into a shape along the arcuate region on the outer periphery of the electric wire 10 and the shield conductive path A is completed.

また、パイプ20の変形の度合いは、パイプ20に対するローラ31の押圧力によって決まるが、本実施形態では、ローラ31の押圧力を管理する手段として、ローラ31と、ローラ31に押圧方向への駆動力を付与する油圧シリンダ34のロッド36との間に、荷重計測手段としてのロードセル37を介在させ、このロードセル37の計測値に基づいてローラ31のパイプ20に対する押し込み量(侵入量)を管理するようにしている。パイプ20におけるローラ31の押圧領域では、ローラ31の押圧力に抗するパイプ20及び電線10からの反力がローラ31側に作用し、この反力がロードセル37によって計測される。パイプ20と電線10の変形の度合いが増大するのに伴ない、パイプ20側からの反力も増大し、この反力の値がロードセル37によって計測される。そして、この計測値に基づいてローラ31の侵入深さを調整することにより、パイプ20と電線10の変形量(製造完了時の形状)を正確に管理することができる。   The degree of deformation of the pipe 20 is determined by the pressing force of the roller 31 against the pipe 20, but in this embodiment, the roller 31 and the roller 31 are driven in the pressing direction as means for managing the pressing force of the roller 31. A load cell 37 as a load measuring means is interposed between the rod 36 of the hydraulic cylinder 34 to which force is applied, and the pushing amount (intrusion amount) of the roller 31 into the pipe 20 is managed based on the measured value of the load cell 37. I am doing so. In the pressing region of the roller 31 in the pipe 20, a reaction force from the pipe 20 and the electric wire 10 against the pressing force of the roller 31 acts on the roller 31 side, and this reaction force is measured by the load cell 37. As the degree of deformation of the pipe 20 and the electric wire 10 increases, the reaction force from the pipe 20 side also increases, and the value of this reaction force is measured by the load cell 37. Then, by adjusting the penetration depth of the roller 31 based on this measured value, the deformation amount (shape at the time of completion of manufacture) of the pipe 20 and the electric wire 10 can be accurately managed.

次に、本実施形態の作用及び効果を説明する。
電線10に通電すると、電線10の導体11において熱が発生するが、この発生した熱は、導体11から絶縁被覆12に伝達され、絶縁被覆12の外周からパイプ20の円弧状嵌合部24の内周に伝達され、パイプ20の外周から大気中へ放出される。本実施形態では、パイプ20を電線10の外周に沿った円弧形状とし、電線10の外周にパイプ20の円弧状嵌合部24を面接触させたので、電線10の外周とパイプ20の内周との間隔が僅か若しくは殆どなくなり、電線10からパイプ20への熱の伝達効率に優れている。したがって、図6に示すように、電線100とパイプ101のとの隙間に大きな空気層102が介在する従来のシールド導電路と比較すると、本実施形態のシールド導電路Aは電線10で発生した熱を放出する性能に優れている。
Next, the operation and effect of this embodiment will be described.
When the electric wire 10 is energized, heat is generated in the conductor 11 of the electric wire 10, and this generated heat is transmitted from the conductor 11 to the insulating coating 12, and from the outer periphery of the insulating coating 12 to the arcuate fitting portion 24 of the pipe 20. It is transmitted to the inner periphery and released from the outer periphery of the pipe 20 into the atmosphere. In the present embodiment, since the pipe 20 has an arc shape along the outer periphery of the electric wire 10 and the arc-shaped fitting portion 24 of the pipe 20 is brought into surface contact with the outer periphery of the electric wire 10, the outer periphery of the electric wire 10 and the inner periphery of the pipe 20. , And the heat transfer efficiency from the electric wire 10 to the pipe 20 is excellent. Therefore, as shown in FIG. 6, the shield conductive path A of the present embodiment has a heat generated in the electric wire 10 as compared with a conventional shield conductive path in which a large air layer 102 is interposed in the gap between the electric wire 100 and the pipe 101. It has excellent performance for releasing

導体11に所定の電流を流したときの発熱量は、導体11の断面積が大きい程小さくなり、発熱に起因する導体11の温度上昇値は、導電路の放熱性が高いほど小さく抑えられる。したがって、電気自動車のように導体11の温度上昇値に上限が定められている環境下では、本実施形態のように放熱効率の高いシールド導電路Aの場合、導体11における発熱許容量が大きくなるので、導体11の断面積を小さくすることができる。導体11の断面積を小さくすることにより、シールド導電路Aの小径化及び軽量化を図ることができる。   The amount of heat generated when a predetermined current is passed through the conductor 11 decreases as the cross-sectional area of the conductor 11 increases, and the temperature rise value of the conductor 11 due to heat generation is suppressed as the heat dissipation of the conductive path increases. Therefore, in an environment where an upper limit is set for the temperature rise value of the conductor 11 as in an electric vehicle, in the case of the shield conductive path A having a high heat dissipation efficiency as in this embodiment, the heat generation allowance in the conductor 11 is increased. Therefore, the cross-sectional area of the conductor 11 can be reduced. By reducing the cross-sectional area of the conductor 11, the shield conductive path A can be reduced in diameter and weight.

また、本実施形態では、パイプ20の内周を電線10の外周に面接触させたので、電線10からパイプ20への熱の伝達効率が、更に向上している。
また、隣り合う電線同士の間に空気が存在する場合には、空気の断熱作用のために電線同士の隙間に熱が篭ることが懸念されるが、本実施形態では、隣り合う電線10の外周面(切欠部13)同士が面接触するようにしたので、電線10同士の隙間における熱篭りを回避することができる。
また、シールド導電路Aを自動車に搭載した場合、走行中にパイプ20内で電線10が振動することに起因して、異音が発生したり電線10の絶縁被覆12が損傷したりすることが懸念されるが、本実施形態では、電線10がパイプ20内で移動しないように固定されているので、振動に起因する異音の発生や電線10の絶縁被覆12の損傷を防止することができる。
In the present embodiment, since the inner periphery of the pipe 20 is brought into surface contact with the outer periphery of the electric wire 10, the heat transfer efficiency from the electric wire 10 to the pipe 20 is further improved.
In addition, when there is air between adjacent electric wires, there is a concern that heat may be generated in the gap between the electric wires due to the heat insulating action of the air, but in this embodiment, the outer periphery of the adjacent electric wires 10 Since the surfaces (notch portions 13) are in surface contact with each other, it is possible to avoid thermal stagnation in the gap between the electric wires 10.
Further, when the shield conductive path A is mounted on an automobile, abnormal noise may occur or the insulating coating 12 of the electric wire 10 may be damaged due to the vibration of the electric wire 10 in the pipe 20 during traveling. Although concerned, in this embodiment, since the electric wire 10 is being fixed so that it may not move within the pipe 20, generation | occurrence | production of the abnormal noise resulting from a vibration and damage to the insulation coating 12 of the electric wire 10 can be prevented. .

また、シールド導電路Aの製造(パイプ20の変形加工)に際しては、パイプ20を軸線方向(長さ方向)に移動させつつ、パイプ20の外周に対し径方向に3つのローラ31を押圧することでパイプ20を変形させるようにしたので、パイプ20の長さが異なる複数のシールド導電路Aに対応することができる。また、3つのローラ31の位置を変えることで、パイプ20の外径が異なる複数のシールド導電路Aにも対応することができる。   Further, when manufacturing the shield conductive path A (deformation processing of the pipe 20), the three rollers 31 are pressed in the radial direction against the outer periphery of the pipe 20 while moving the pipe 20 in the axial direction (length direction). Since the pipe 20 is deformed in this way, it is possible to cope with a plurality of shield conductive paths A having different lengths of the pipe 20. Further, by changing the positions of the three rollers 31, it is possible to cope with a plurality of shield conductive paths A having different outer diameters of the pipe 20.

また、ローラ31と、ローラ31に押圧方向への駆動力を付与する駆動手段である油圧シリンダ34との間に、荷重計測手段としてのロードセル37を介在させ、パイプ20のうちローラ31によって押圧される変形領域では、ローラ31からの押圧力に抗する反力をロードセル37で計測するようにした。この変形領域からの反力は、変形の度合いを示すものであるから、ロードセル37の計測値に基づいて、パイプ20と電線10の変形の状態を正確に管理することができる。これにより、パイプ20の全長に亘って均一な押圧力を付与し、パイプ20の全長に亘って一定の断面形状とすることができる。   In addition, a load cell 37 as a load measuring unit is interposed between the roller 31 and a hydraulic cylinder 34 which is a driving unit that applies a driving force in the pressing direction to the roller 31, and is pressed by the roller 31 in the pipe 20. In the deformation region, the reaction force against the pressing force from the roller 31 is measured by the load cell 37. Since the reaction force from the deformation region indicates the degree of deformation, the deformation state of the pipe 20 and the electric wire 10 can be accurately managed based on the measurement value of the load cell 37. Thereby, a uniform pressing force can be applied over the entire length of the pipe 20, and a constant cross-sectional shape can be formed over the entire length of the pipe 20.

<実施形態2>
次に、本発明の実施形態2を図4を参照して説明する。本実施形態2のシールド導電路Bは、パイプ50を電線40の外周に沿った形状に成形した状態においても、電線40は真円形を保つ形態としたものである。したがって、隣合う電線40同士は、線接触又は点接触する状態となる。上記以外の構成については、実施形態1と同じであるため、同じ構成については、同一符号を付し、構造、作用及び効果の説明は省略する。
<Embodiment 2>
Next, Embodiment 2 of the present invention will be described with reference to FIG. The shield conductive path B of the second embodiment is configured such that the electric wire 40 maintains a perfect circle even when the pipe 50 is formed in a shape along the outer periphery of the electric wire 40. Therefore, adjacent electric wires 40 are in a line contact or point contact state. Since the configuration other than the above is the same as that of the first embodiment, the same configuration is denoted by the same reference numeral, and description of the structure, operation, and effect is omitted.

<実施形態3>
次に、本発明の実施形態3を図5を参照して説明する。本実施形態3のシールド導電路Cのパイプ60は、金属製(例えば、アルミニウム合金や銅合金など)であり、全体として概ね長円形断面をなす。詳細には、長円形を構成する一対の直線部61であった部分には、夫々、一対ずつの凹部62が形成されており、この凹部62により、パイプ60には、左右両端に位置する円弧状嵌合部63と、両円弧状嵌合部63の間に位置する一対の円弧状挟持部64とが形成されている。パイプ60内に電線70が挿通された状態では、3本の電線70がパイプ60の長さ方向に一列に並び、円弧状嵌合部63に、真円形のままの電線70が嵌合されるとともに、一対の円弧状挟持部64の間に、真円形のまの電線70が嵌合される。各電線70の外周はパイプ60の内周に対して面接触し、隣り合う電線70の外周同士は線接触または点接触した状態となる。上記以外の構成については、実施形態1と同じであるため、同じ構成については、同一符号を付し、構造、作用及び効果の説明は省略する。
<Embodiment 3>
Next, Embodiment 3 of the present invention will be described with reference to FIG. The pipe 60 of the shield conductive path C according to the third embodiment is made of metal (for example, an aluminum alloy or a copper alloy), and has a generally oval cross section as a whole. In detail, a pair of concave portions 62 is formed in each of the portions that are the pair of straight portions 61 constituting the oval shape, and the concave portions 62 cause the pipe 60 to have circles positioned at both left and right ends. An arcuate fitting part 63 and a pair of arcuate clamping parts 64 positioned between the arcuate fitting parts 63 are formed. In a state where the electric wires 70 are inserted into the pipe 60, the three electric wires 70 are arranged in a line in the length direction of the pipe 60, and the electric wires 70 that remain in a true circle are fitted into the arc-shaped fitting portion 63. At the same time, a completely circular electric wire 70 is fitted between the pair of arcuate sandwiching portions 64. The outer periphery of each electric wire 70 is in surface contact with the inner periphery of the pipe 60, and the outer periphery of the adjacent electric wires 70 is in line contact or point contact. Since the configuration other than the above is the same as that of the first embodiment, the same configuration is denoted by the same reference numeral, and description of the structure, operation, and effect is omitted.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施態様も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(1)上記実施形態では1つのパイプ内に3本の電線を挿通したが、本発明によれば、1つのパイプに挿通される電線の本数は1本、2本、4本以上のいずれとしてもよい。
(2)上記実施形態ではパイプの内周を電線の外周に面接触させたが、本発明によれば、パイプと内周と電線の外周とを非接触、線接触、点接触のいずれの形態としてもよい。この場合、電線とパイプとの隙間に、空気よりも熱伝導率の高い充填材を充填してもよい。
(3)上記実施形態ではパイプに電線を挿通した後にパイプを変形させたが、本発明によれば、予め電線の外周に沿った形状に成形したパイプ内に電線を挿通してもよい。
(4)上記実施形態ではパイプ内における電線との隙間に空気溜まりが生じないようにしたが、本発明によれば、パイプ内における電線との隙間に小容積の空気溜まりが残る形態としてもよい。
(5)上記実施形態ではローラを移動させずにパイプを軸線方向に移動させつつ変形させたが、本発明によれば、パイプを移動させずに、ローラを回転移動させながらパイプを変形させていってもよい。
(6)上記実施形態ではローラを用いてパイプを移動させながら変形させたが、本発明によれば、固定したパイプに対し、径方向にダイスを押圧することによってパイプを変形させてもよい。
(7)上記実施形態では電線の導体を撚り線としたが、本発明によれば、導体は単芯線としてもよい。
<Other embodiments>
The present invention is not limited to the embodiment described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and further, within the scope not departing from the gist of the invention other than the following. Various modifications can be made.
(1) In the above embodiment, three electric wires are inserted into one pipe, but according to the present invention, the number of electric wires inserted into one pipe is one, two, four or more. Also good.
(2) In the above embodiment, the inner periphery of the pipe is brought into surface contact with the outer periphery of the electric wire. However, according to the present invention, the pipe, the inner periphery and the outer periphery of the electric wire are not contacted, line contact, or point contact. It is good. In this case, the gap between the electric wire and the pipe may be filled with a filler having a higher thermal conductivity than air.
(3) In the above-described embodiment, the pipe is deformed after the electric wire is inserted into the pipe. However, according to the present invention, the electric wire may be inserted into a pipe that has been previously formed into a shape along the outer periphery of the electric wire.
(4) In the above embodiment, no air pool is generated in the gap with the electric wire in the pipe. However, according to the present invention, a small volume of air pool may remain in the gap with the electric wire in the pipe. .
(5) In the above embodiment, the pipe is deformed while moving in the axial direction without moving the roller. However, according to the present invention, the pipe is deformed while rotating the roller without moving the pipe. May be.
(6) In the above embodiment, the pipe is deformed while being moved using a roller. However, according to the present invention, the pipe may be deformed by pressing a die in the radial direction against the fixed pipe.
(7) In the above embodiment, the conductor of the electric wire is a stranded wire. However, according to the present invention, the conductor may be a single core wire.

実施形態1のシールド導電路の断面図Sectional drawing of the shield conductive path of Embodiment 1 成形する前のパイプの断面図Cross section of the pipe before molding パイプの加工工程をあらわす断面図Cross-sectional view showing the processing process of pipes 実施形態2のシールド導電路の断面図Sectional drawing of the shield conductive path of Embodiment 2. 実施形態3のシールド導電路の断面図Sectional drawing of the shield conductive path of Embodiment 3 従性例のシールド導電路の断面図Cross-sectional view of compliant conductive shield path

符号の説明Explanation of symbols

A…シート状導電路
B,C…シート状導電路
10…電線
11…導体
12…絶縁被覆
20…パイプ
31…ローラ
34…油圧シリンダ(駆動手段)
37…ロードセル(荷重計測手段)
40,70…電線
50,60…パイプ
A ... Sheet-like conductive path B, C ... Sheet-like conductive path 10 ... Electric wire 11 ... Conductor 12 ... Insulation coating 20 ... Pipe 31 ... Roller 34 ... Hydraulic cylinder (driving means)
37 ... Load cell (load measuring means)
40, 70 ... Electric wire 50, 60 ... Pipe

Claims (6)

導体を絶縁被覆で包囲してなる複数本の電線と、
金属製のパイプとを備え、
前記複数本の電線を前記パイプ内に挿通することで、前記電線を前記パイプによりシールドするとともに保護するようにしたものにおいて、
前記パイプを、前記複数本の電線の外周に沿った形状としたことを特徴とするシールド導電路。
A plurality of electric wires formed by surrounding a conductor with an insulating coating;
With metal pipes,
By inserting the plurality of electric wires into the pipe, the electric wire is shielded and protected by the pipe.
A shield conductive path, wherein the pipe is shaped along the outer periphery of the plurality of electric wires.
前記パイプの内周を前記電線の外周に面接触させたことを特徴とする請求項1記載のシールド導電路。 The shield conductive path according to claim 1, wherein the inner periphery of the pipe is in surface contact with the outer periphery of the electric wire. 前記複数の電線が隣り合うように配置されており、
前記隣り合う電線を、その外周面同士が面接触するように非円形の断面形状としたことを特徴とする請求項1又は請求項2記載のシールド導電路。
The plurality of electric wires are arranged so as to be adjacent to each other,
The shield conductive path according to claim 1 or 2, wherein the adjacent electric wires have a non-circular cross-sectional shape so that their outer peripheral surfaces are in surface contact with each other.
導体を絶縁被覆で包囲してなる複数本の電線と、金属製のパイプとを備え、前記複数本の電線を前記パイプ内に挿通することで、前記電線を前記パイプによりシールドするとともに保護するようにしたシート状導電路の製造方法であって、
前記パイプに前記複数本の電線を挿通し、
前記パイプを、前記電線の外周に沿った形状となるように変形させることを特徴とするシールド導電路の製造方法。
A plurality of electric wires formed by surrounding a conductor with an insulation coating and a metal pipe, and by inserting the plurality of electric wires into the pipe, the electric wires are shielded and protected by the pipe. A method for producing a sheet-like conductive path,
Inserting the plurality of electric wires through the pipe,
A method of manufacturing a shield conductive path, wherein the pipe is deformed so as to have a shape along an outer periphery of the electric wire.
前記パイプを軸線方向に移動させつつ、前記パイプの外周に対し径方向に複数のローラを押圧することで前記パイプを変形させることを特徴とする請求項4に記載のシールド導電路の製造方法。 The method for manufacturing a shield conductive path according to claim 4, wherein the pipe is deformed by pressing a plurality of rollers in a radial direction against the outer periphery of the pipe while moving the pipe in the axial direction. 前記ローラと、前記ローラに押圧方向への駆動力を付与する駆動手段との間に、荷重計測手段を介在させ、
前記荷重計測手段の計測値に基づいて前記ローラの前記パイプ側への移動量を管理することを特徴とする請求項4または請求項5に記載のシールド導電路の製造方法。
A load measuring means is interposed between the roller and a driving means for applying a driving force in the pressing direction to the roller,
6. The method for manufacturing a shield conductive path according to claim 4, wherein the amount of movement of the roller toward the pipe is managed based on a measurement value of the load measuring means.
JP2005075385A 2005-03-16 2005-03-16 Shield conductive line and manufacturing method for sheet-like conductive line Pending JP2006260898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005075385A JP2006260898A (en) 2005-03-16 2005-03-16 Shield conductive line and manufacturing method for sheet-like conductive line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005075385A JP2006260898A (en) 2005-03-16 2005-03-16 Shield conductive line and manufacturing method for sheet-like conductive line

Publications (1)

Publication Number Publication Date
JP2006260898A true JP2006260898A (en) 2006-09-28

Family

ID=37099903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005075385A Pending JP2006260898A (en) 2005-03-16 2005-03-16 Shield conductive line and manufacturing method for sheet-like conductive line

Country Status (1)

Country Link
JP (1) JP2006260898A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062885A1 (en) * 2006-11-24 2008-05-29 Autonetworks Technologies, Ltd. Shield conductor and shield conductor manufacturing method
JP2008130256A (en) * 2006-11-16 2008-06-05 Auto Network Gijutsu Kenkyusho:Kk Shield conductor, and connection member of shield conductor
WO2009039872A1 (en) * 2007-09-24 2009-04-02 Siemens Aktiengesellschaft Electrical line with carbon nanotubes
JP2010186601A (en) * 2009-02-10 2010-08-26 Autonetworks Technologies Ltd Shielded conductive path and method for manufacturing shielded conductive path
CN102804289A (en) * 2009-06-19 2012-11-28 3M创新有限公司 Shielded Electrical Cable
CN103606401A (en) * 2013-10-27 2014-02-26 安徽蓝德集团股份有限公司 Reinforced stretch-resistant square buffer control cable
WO2014050737A1 (en) * 2012-09-28 2014-04-03 矢崎総業株式会社 Shielded conductor path and method for producing same
DE102013019442A1 (en) * 2013-11-21 2015-05-21 Auto-Kabel Management Gmbh Electric cable, method for making such an electric cable and use of such an electric cable
JP2016054030A (en) * 2014-09-03 2016-04-14 住友電装株式会社 Wire harness and shield conduction path
WO2019176001A1 (en) * 2018-03-14 2019-09-19 株式会社オートネットワーク技術研究所 Electric wire conductor, coated electric wire, wire harness, and method for manufacturing electric wire conductor
EP3627635A1 (en) * 2018-09-19 2020-03-25 Rosenberger Hochfrequenztechnik GmbH & Co. KG Connecting element, module connection, circuit board arrangement and method for fabrication of a connecting element
JP2020119858A (en) * 2019-01-28 2020-08-06 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Wire harness
CN112768126A (en) * 2020-12-30 2021-05-07 江西新吉电缆有限公司 Cross-linked polyethylene insulation low-smoke halogen-free flame-retardant fire-resistant power cable
US11296465B2 (en) 2018-12-21 2022-04-05 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Electrical plug-in connection, assembly connection and circuit board arrangement

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130256A (en) * 2006-11-16 2008-06-05 Auto Network Gijutsu Kenkyusho:Kk Shield conductor, and connection member of shield conductor
JP5107256B2 (en) * 2006-11-24 2012-12-26 株式会社オートネットワーク技術研究所 Shield conductor
WO2008062885A1 (en) * 2006-11-24 2008-05-29 Autonetworks Technologies, Ltd. Shield conductor and shield conductor manufacturing method
US8013249B2 (en) 2006-11-24 2011-09-06 Autonetworks Technologies, Ltd. Shield conductor and shield conductor manufacturing method
WO2009039872A1 (en) * 2007-09-24 2009-04-02 Siemens Aktiengesellschaft Electrical line with carbon nanotubes
JP2010186601A (en) * 2009-02-10 2010-08-26 Autonetworks Technologies Ltd Shielded conductive path and method for manufacturing shielded conductive path
CN102804289A (en) * 2009-06-19 2012-11-28 3M创新有限公司 Shielded Electrical Cable
CN102804289B (en) * 2009-06-19 2016-08-24 3M创新有限公司 Shielded cable
WO2014050737A1 (en) * 2012-09-28 2014-04-03 矢崎総業株式会社 Shielded conductor path and method for producing same
CN104663011A (en) * 2012-09-28 2015-05-27 矢崎总业株式会社 Shielded conductor path and method for producing same
CN103606401A (en) * 2013-10-27 2014-02-26 安徽蓝德集团股份有限公司 Reinforced stretch-resistant square buffer control cable
CN103606401B (en) * 2013-10-27 2015-09-30 安徽蓝德集团股份有限公司 A kind of reinforcement stretch-proof square cushioning control cable
DE102013019442A1 (en) * 2013-11-21 2015-05-21 Auto-Kabel Management Gmbh Electric cable, method for making such an electric cable and use of such an electric cable
JP2016054030A (en) * 2014-09-03 2016-04-14 住友電装株式会社 Wire harness and shield conduction path
WO2019176001A1 (en) * 2018-03-14 2019-09-19 株式会社オートネットワーク技術研究所 Electric wire conductor, coated electric wire, wire harness, and method for manufacturing electric wire conductor
US11189394B2 (en) 2018-03-14 2021-11-30 Autonetworks Technologies, Ltd. Electric wire conductor, covered electric wire, wire harness, and method for manufacturing electric wire conductor
US11749423B2 (en) 2018-03-14 2023-09-05 Autonetworks Technologies, Ltd. Electric wire conductor, covered electric wire, wire harness, and method for manufacturing electric wire conductor
US11251552B2 (en) 2018-09-19 2022-02-15 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Method for the manufacture of a connecting element
EP3627636B1 (en) * 2018-09-19 2020-11-04 Rosenberger Hochfrequenztechnik GmbH & Co. KG Electrical connector, module connection and circuit board assembly
EP3627635A1 (en) * 2018-09-19 2020-03-25 Rosenberger Hochfrequenztechnik GmbH & Co. KG Connecting element, module connection, circuit board arrangement and method for fabrication of a connecting element
US11251551B2 (en) 2018-09-19 2022-02-15 Rosenberger Hochfrequenztecknik GmbH & Co. KG Connecting element, assembly connection and circuit board arrangement
CN110932003A (en) * 2018-09-19 2020-03-27 罗森伯格高频技术有限及两合公司 Connecting element, module connecting piece, circuit board arrangement and method for producing a connecting element
CN110932003B (en) * 2018-09-19 2024-03-12 罗森伯格高频技术有限及两合公司 Connecting element, component connection, circuit board arrangement and method for producing a connecting element
US11296465B2 (en) 2018-12-21 2022-04-05 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Electrical plug-in connection, assembly connection and circuit board arrangement
CN114300892A (en) * 2018-12-21 2022-04-08 罗森伯格高频技术有限及两合公司 Connecting element, electrical plug connector and circuit board arrangement
JP2020119858A (en) * 2019-01-28 2020-08-06 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Wire harness
JP7202908B2 (en) 2019-01-28 2023-01-12 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング wire harness
CN112768126A (en) * 2020-12-30 2021-05-07 江西新吉电缆有限公司 Cross-linked polyethylene insulation low-smoke halogen-free flame-retardant fire-resistant power cable

Similar Documents

Publication Publication Date Title
JP2006260898A (en) Shield conductive line and manufacturing method for sheet-like conductive line
JP6581676B2 (en) Coil segments for stator coils and methods for manufacturing coil segments
JP6149800B2 (en) Shield conductive path
JP2007109642A (en) Shield conductor for vehicle and manufacturing method of the same
JP2006269201A (en) Shielded conductive path
KR20120102798A (en) Shielded conduction path
JP6008251B2 (en) Conductive path and conductive path spacer
JP5063613B2 (en) Shield conductor and method of manufacturing shield conductor
JP6607405B2 (en) Conductive path
JP6164531B2 (en) Shield conductive path
JP2010027577A (en) Electric conductor and method of manufacturing electrical conductor
JP2016054030A (en) Wire harness and shield conduction path
JPWO2006118273A1 (en) Power distribution body
WO2016163217A1 (en) Wiring module equipped with external cover member
JP2010129257A (en) Twisted conductor
JP2009205982A (en) Conductor and method of manufacturing the same
JP2011066991A (en) Stator and rotating electric machine
JP4823561B2 (en) Shield conductive path
JP2006318680A (en) Shield conductor
US20160137146A1 (en) Shielded wire and wire harness
JP2017188349A (en) Wire harness
JP2007299558A (en) Electric cable
JP2015126636A (en) Stator of rotary electric machine and method for manufacturing coil
JP2007080623A (en) Shield conductor and manufacturing method of shield conductor
WO2016158400A1 (en) Electric cable module and electric cable module manufacturing method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070427